This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapplyGGIR.R
executable file
·96 lines (91 loc) · 5.34 KB
/
applyGGIR.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
rm(list=ls())
graphics.off()
library(GGIR)
#==================================================================
# INPUT NEEDED:
# specify file number to start and end with, fill in c() if unknown
f0 = c() #file to start with if used in serial analyses
f1 = c() #file to end with if used in serial analyses (modify accordingly, if infinite then it will process until last file)
mode= c(2) #What part of the analysis needs to be done (options: 1,2,3,4 and 5)
dayborder = 4
studyname = "data500" #name of study, only needed if datadir is a list of filenames
datadir = "/media/windows-share/London/data500" #Where is the raw accelerometer data? (leave as c() if you work with milestone data and mode > 1
outputdir = "/media/windows-share/London/data_500"
selectdaysfile = "/media/windows-share/London/data_500/wearcodes.csv"
# datadir = "/media/sf_VBox_Shared/London/run_05-10/raw" #Where is the raw accelerometer data? (leave as c() if you work with milestone data and mode > 1
# outputdir = "/media/sf_VBox_Shared/London/run_05-10/" #Name directory where output needs to be stored
# selectdaysfile = "/media/sf_VBox_Shared/London/run_05-10/wearcodes.csv"
#=====================================================================================
# load functions from functions folder (replace by require(GGIR) once package is updated)
stt <- Sys.time()
print(paste0("Starting at: ", stt))
#=====================================================================================
g.shell.GGIR(#=======================================
# INPUT NEEDED:
#-------------------------------
# General parameters
#-------------------------------
mode=mode, #specify above
datadir=datadir, #specify above
outputdir=outputdir, #specify above
studyname=studyname, #specify above
f0=f0, #specify above
f1=f1, #specify above
overwrite = FALSE, #overwrite previous milestone data?
do.imp=TRUE, # Do imputation? (recommended)
idloc=1, #id location (1 = file header, 2 = filename)
print.filename=TRUE,
storefolderstructure = FALSE,
selectdaysfile=selectdaysfile,
#-------------------------------
# Part 1 parameters:
#-------------------------------
# Key functions: reading file, auto-calibration, and extracting features
windowsizes = c(5,900,3600), #Epoch length, non-wear detection resolution, non-wear detection evaluation window
do.cal=TRUE, # Apply autocalibration? (recommended)
do.enmo = TRUE, #Needed for physical activity analysis
do.en=TRUE,
do.anglez=TRUE, #Needed for sleep detection
do.angley=TRUE,
do.anglex=TRUE,
do.roll_med_acc_x=TRUE,
do.roll_med_acc_y=TRUE,
do.roll_med_acc_z=TRUE,
do.dev_roll_med_acc_x=TRUE,
do.dev_roll_med_acc_y=TRUE,
do.dev_roll_med_acc_z=TRUE,
chunksize=1.0, #size of data chunks to be read (value = 1 is maximum)
desiredtz = "Europe/London",
printsummary=TRUE,
minloadcrit=46,
epochvalues2csv = FALSE,
#-------------------------------
# Part 2 parameters:
#-------------------------------
# Key functions: Non-wear detection, imputation, and basic descriptives
strategy = 1, #Strategy (see tutorial for explanation)
ndayswindow=7, #only relevant when strategy = 3
hrs.del.start = 0, # Only relevant when strategy = 2. How many HOURS need to be ignored at the START of the measurement?
hrs.del.end = 0, # Only relevant when strategy = 2. How many HOURS need to be ignored at the END of the measurement?
maxdur = 2, # How many DAYS of measurement do you maximumally expect?
includedaycrit = 0, # number of minimum valid hours in a day to attempt physical activity analysis
L5M5window = c(0,24), #window over which to calculate L5 and M5
M5L5res = 10, #resolution in minutes of M5 and L5 calculation
winhr = 5, # size of M5 and L5 (5 hours by default)
qlevels = c(), #c(c(1380/1440),c(1410/1440)), #quantiles to calculate, set value at c() if you do not want quantiles
qwindow=c(0,24), #window over which to calculate quantiles
ilevels = c(),#c(seq(0,400,by=50),8000), #acceleration values (metric ENMO) from which a frequency distribution needs to be derived, set value at c() if you do not want quantiles
mvpathreshold = c(100), #MVPA (moderate and vigorous physical activity threshold
window.summary.size = 10,
dayborder = dayborder, # dayborder is the hour at which one day becomes the next day
bout.metric = 4,
closedbout=FALSE,
#-----------------------------------
# Report generation
#-------------------------------
# Key functions: Generating reports based on meta-data
do.report=c(2), #for what parts does and report need to be generated?)
visualreport = FALSE)
fnsh <- Sys.time()
print(paste0("DONE. At: ", fnsh))
print(paste0("Took ", difftime(fnsh, stt, units = "mins"), " minutes"))