diff --git a/.codecov.yml b/.codecov.yml
index 419985e6..03240796 100644
--- a/.codecov.yml
+++ b/.codecov.yml
@@ -1,6 +1,9 @@
coverage:
status:
patch: false
+ range: 50..70
+ round: nearest
+ precision: 2
ignore:
- tests/*
diff --git a/docs/source/tutorials/.ipynb_checkpoints/03_psfsub-checkpoint.ipynb b/docs/source/tutorials/.ipynb_checkpoints/03_psfsub-checkpoint.ipynb
deleted file mode 100644
index 23a180d8..00000000
--- a/docs/source/tutorials/.ipynb_checkpoints/03_psfsub-checkpoint.ipynb
+++ /dev/null
@@ -1,3013 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 3. PSF modeling and subtraction"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Authors: *Carlos Alberto Gomez Gonzalez* and *Valentin Christiaens* \n",
- "> Suitable for VIP *v1.0.0* onwards \n",
- "> Last update: *2022/03/16*"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**Table of contents**\n",
- "\n",
- "* [3.1. Loading ADI data](#3.1.-Loading-ADI-data)\n",
- "* [3.2. median-ADI](#3.2.-median-ADI)\n",
- " - [3.2.1. Full-frame median-ADI](#3.2.1.-Full-frame-median-ADI)\n",
- " - [3.2.2. Smart median-ADI](#3.2.2.-Smart-median-ADI)\n",
- "* [3.3. Pairwise frame difference](#3.3.-Pairwise-frame-difference)\n",
- "* [3.4. Least-squares approximation - LOCI](#3.4.-Least-squares-approximation---LOCI)\n",
- "* [3.5. PCA](#3.5.-PCA)\n",
- " - [3.5.1. Full-frame PCA](#3.5.1.-Full-frame-PCA)\n",
- " - [3.5.2. Optimizing the number of PCs for full-frame PCA-ADI](#3.5.2.-Optimizing-the-number-of-PCs-for-full-frame-PCA-ADI)\n",
- " - [3.5.3. Full-frame PCA-ADI with a parallactic angle threshold](#3.5.3.-Full-frame-PCA-ADI-with-a-parallactic-angle-threshold)\n",
- " - [3.5.4. PCA for big datacubes](#3.5.4.-PCA-for-big-datacubes)\n",
- " - [3.5.5. Annular PCA](#3.5.5.-Annular-PCA)\n",
- " - [3.5.6. PCA in a single annulus](#3.5.6.-PCA-in-a-single-annulus)\n",
- "* [3.6. NMF](#3.6.-NMF)\n",
- " - [3.6.1. Full-frame NMF](#3.6.1.-Full-frame-NMF)\n",
- " - [3.6.2. Annular NMF](#3.6.2.-Annular-NMF)\n",
- "* [3.7. LLSG](#3.7.-LLSG)\n",
- "* [3.8. ANDROMEDA](#3.8.-ANDROMEDA)\n",
- "* [3.9. PACO](#3.9.-PACO)\n",
- "* [3.10. Summary mosaic](#3.10.-Summary-mosaic)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This tutorial shows:\n",
- "\n",
- "- how to load ADI-ready datacubes; \n",
- "- how to use the stellar PSF subtraction algorithms implemented in VIP to produce final post-processed images (more details and higher completeness than the quick-start tutorial)."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "-----------"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Let's first import a couple of external packages needed in this tutorial:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "scrolled": true
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "from hciplot import plot_frames, plot_cubes\n",
- "from matplotlib.pyplot import *\n",
- "from matplotlib import pyplot as plt\n",
- "import numpy as np\n",
- "from packaging import version"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "In the following box we import all the VIP routines that will be used in this tutorial.\n",
- "The path to some routines has changed between versions 1.0.3 and 1.1.0, which saw a major revamp of the modular architecture, hence the `if` statements."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "VIP version: 1.1.1\n"
- ]
- }
- ],
- "source": [
- "import vip_hci as vip\n",
- "vvip = vip.__version__\n",
- "print(\"VIP version: \", vvip)\n",
- "if version.parse(vvip) < version.parse(\"1.0.0\"):\n",
- " msg = \"Please upgrade your version of VIP\"\n",
- " msg+= \"It should be 1.0.0 or above to run this notebook.\"\n",
- " raise ValueError(msg)\n",
- "elif version.parse(vvip) <= version.parse(\"1.0.3\"):\n",
- " from vip_hci.andromeda import andromeda\n",
- " from vip_hci.conf import VLT_NACO\n",
- " from vip_hci.frdiff import frame_diff\n",
- " from vip_hci.leastsq import xloci\n",
- " from vip_hci.llsg import llsg\n",
- " from vip_hci.medsub import median_sub\n",
- " from vip_hci.metrics import normalize_psf\n",
- " from vip_hci.metrics import compute_stim_map as stim_map\n",
- " from vip_hci.metrics import compute_inverse_stim_map as inverse_stim_map\n",
- " from vip_hci.nmf import nmf, nmf_annular\n",
- " from vip_hci.pca import pca, pca_annular, pca_annulus, pca_grid\n",
- "else:\n",
- " from vip_hci.config import VLT_NACO\n",
- " from vip_hci.fm import normalize_psf\n",
- " from vip_hci.invprob import andromeda\n",
- " from vip_hci.metrics import inverse_stim_map, stim_map\n",
- " from vip_hci.psfsub import (frame_diff, llsg, median_sub, nmf, nmf_annular,\n",
- " pca, pca_annular, pca_annulus, pca_grid, xloci)\n",
- " \n",
- "# common to all versions:\n",
- "from vip_hci.fits import open_fits, write_fits, info_fits\n",
- "from vip_hci.metrics import significance, snr, snrmap\n",
- "from vip_hci.var import fit_2dgaussian, frame_center"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 3.1. Loading ADI data"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "In the 'dataset' folder of the `VIP_extras` repository you can find a toy ADI (Angular Differential Imaging) cube and a NACO point spread function (PSF) to demonstrate the capabilities of ``VIP``. This is an L'-band VLT/NACO coronagraphic (VORTEX AGPM) dataset of beta Pictoris published in [Absil et al. (2013)](https://ui.adsabs.harvard.edu/abs/2013A%26A...559L..12A/abstract). The sequence has been heavily sub-sampled temporarily to make it smaller. The frames were also cropped to the central 101x101 area. In case you want to plug-in your cube just change the path of the following cells.\n",
- "\n",
- "More info on this dataset, and on opening and visualizing fits files with VIP in general, is available in Tutorial `1. Quick start`.\n",
- "\n",
- "Let's load the datacube, associated parallactic angles and non-coronagraphic PSF:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Fits HDU-0 data successfully loaded. Data shape: (61, 101, 101)\n",
- "Fits HDU-0 data successfully loaded. Data shape: (61,)\n",
- "Fits HDU-0 data successfully loaded. Data shape: (39, 39)\n"
- ]
- }
- ],
- "source": [
- "cubename = '../datasets/naco_betapic_cube_cen.fits'\n",
- "angname = '../datasets/naco_betapic_pa.fits'\n",
- "psfnaco = '../datasets/naco_betapic_psf.fits'\n",
- "\n",
- "cube = open_fits(cubename)\n",
- "pa = open_fits(angname)\n",
- "psf = open_fits(psfnaco)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " **Question 1.1:** When observing a celestial object with a given telecope, what 3 parameters do the values of parallactic angle depend on? \n",
- "\n",
- "**Note**: throughout this notebook, questions will be raised in orange. Corresponding answers will be provided in green at the end of the respective (sub)sections."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "derot_off = 104.84 # NACO derotator offset for this observation (Absil et al. 2013)\n",
- "TN = -0.45 # Position angle of true north for NACO at the epoch of observation (Absil et al. 2013)\n",
- "\n",
- "angs = pa+derot_off+TN"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Let's measure the FWHM by fitting a 2D Gaussian to the core of the unsaturated non-coronagraphic PSF:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABeQAAAGcCAYAAAC4BqDXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtJUlEQVR4nOzdeXhdV3kv/u+rebBmWYNtTdbgebYzhyFNCwUapjCEplzSBBIKHdLpR6A0tClNQ3uB2wIlhLahhNtQCIVAL0PLUMhA4sTzJFm2ZVmWZMnWaM3SWb8/juwoimTr3WfrrLO8vp/n2U+sc/bZ+mrl7LXfs87ea4sxBkREREREREREREREtLiSbAcgIiIiIiIiIiIiIvIBB+SJiIiIiIiIiIiIiOKAA/JERERERERERERERHHAAXkiIiIiIiIiIiIiojjggDwRERERERERERERURxwQJ6IiIiIiIiIiIiIKA44IE9EREREREREREREFAcckCciIiIiIiIiIiIiioMU2wHCJCICYBmAQdtZiIiuUDkA2o0xBrjY7xaEsN3eC9skCop1ABHRomMdQAmLdQAR0aJjHRCSK2pAHtGDb5vtEEREV7gVAE5P/7ug6dmqcwV5yYE31ts/hYZrTxYB6AkjHHmNdQAR0eJjHUCJinUAEdHiYx0QgittQH4QAG6Q30CKpNrO8jJJaeE29cZXrcG+nx8OZVuSkR7KdsIm6RmhbWvDdXXY/0xzOBtLTeDdJsQvFDdcW4v9zx4LZVtmdCyU7YTNjIyEur2NN67Gvl8cCWVbZmIqlO2EadJM4BeT3wZmnXWUlyfIL5DA240g+GuJZonWAXgDUpBYdYCkh3us3fiq1dj383D6m6Ql2aFsJ2ySE16uDVevxP7njoeyLZOeFsp2FsVkeMeODVfXYP9zJ0LZlgyFe7wNS2QwvJNow6wBACAynHhtNmkm8BT+E2AdQIlrEAA+/pMbkLEksT6zNQ+XhLq9huw1aBoKZzzgvw6sDWU7YcvfHV4tt71+OV44evryKy5ARk8klO0shrGC8GalDrPNBuoS88Tn3Lre0La1vaAaL/S2hLa9u2t/Edq2wjJyfgp/8uoXAdYBoUiso1RIUiQ18QbkQ86TnpqBFAnnA6GEtJ2wSVJ4udJTM5AS1vaSEuu99TIhDsinp2YiJSmcASSTlJgHYCPhDnqHuV8amQxlO0Q+SkHi1QGyKHVAONtMCvF4GyYJ6RgEAOlpIR7TkhOzvQAAJrzjWnpaJlKSw2kzSUq8L5kBIBJiDRxmDQAAkUStAxKzpCN6mYwlKQk3IJ8W8rE2IzsDaSH1OUmZ4Z0IF6bktPBqp7SMLCSnhfN3pqQm7oD8ZFp4A/JhtllSRmIePJKzwqs107IzkTwW3vYyE6wPo/Dx/7CjGneGc5aXL5r2tNqO4By2mV7jC37ul1MmgikT/FvtKZO4RS1RovK1vwmqae8p2xGc07SPsz5o+LxPsg4gir+WEX/7nCAOnDxjO4Jz2GY6B/rDuZrARawDggnv6zOKq9KqYtsRnFKyotB2BOeUVLDNtHzdLyMwMS9EpFNa6Wd/E1TJijDuNeWX0uVsMw1fawCAdQCRDUVp/vY5QSwrzLEdwTlsM51lmfm2I1jDOiAYniHvqPySXNsRnJJfvMR2BOfkF7HNtPKX+rlfRhCJad63CPz8RpwoFqwDdHhM08srSsx7CyQqX2sAgHUAkQ05yf72OUEU5mQBOGc7hlPYZjqFaf7WTawDguEZ8o6aGJuwHcEpE+OJOXdpImOb6U2MJ+h8r0R0xZkYY3+jwWOa3iTbTIX7JBHF06TheIDGRIg3PffFONtMZTzC9iIdniHvqANPN9mO4JSDzx2zHcE5B5/nvIRavu6XU8ZgKoYbCsfyWiJfHXi60XYEpxzcecJ2BOcceKHFdgSnHHjGzxoAYB1AZEPzsL99ThC7jrXbjuCc3Wwzld19J21HsIZ1QDA8Q95RW25aZzuCUzbf2GA7gnM231BvO4Jztrx2re0IVhjENm+cn4dfotiwDtDZfH2d7QjO2Xxdre0ITvG1BgBYBxDZsDqbdYDG1asqbEdwDttM5+rClbYjWMM6IBieIU9ERDGZgsFUDIfRWF5LREREdrEOICIi8hfrgGB4hryjutt4cw2Ns+19tiM452xHn+0Izulu67EdgYg8wf5G52xHv+0IzmGb6XCfjC8RqReRZ0SkSUR2isgrThcWkWoR+ZmI9IvInjmev1NEjorIMRF5RERS4xKeKAS9ExwP0DjTe952BOd0ss1UOkcHbEcgx3BA3lGDvUO2IzhlsH/YdgTnDPaN2I7gnME+P/fLWC5Pu7AQkc551gEqrAP0BvtZB2j4WgMA1uqAhwF8yRjTAOAhAI/Osc4AgD8D8J7ZT4hIDYAHANwIoA5AKYAPBAlCZMPQlL99ThADw6O2IziHbaYzMOlv3cTxgGA4IO+olRsqbUdwSs2aZbYjOKdmTbntCM5Zud7PefYu3MQlloWIdGo2+NnfBFWzmsc0rZrVZbYjOMXXGgCIfx0gIiUAtgN4bPqhJwBUiMjLbhZhjOkxxjwFYK6Ry1sBPGmM6TTGGABfBHCb9m8nsmVFBscDNOqXF9uO4JwGtplKw5JS2xGs4XhAMJxDnoiIYhKZXmJ5PREREbkppDogTURyZz01ZowZm+MlFQA6jDGTAGCMMSLSCqASQPMCf20lgJMzfm6ZfoyIiIgUOB4QDM+Qd9TRXSdsR3BK875TtiM4p3l/m+0Izjm6u8V2BG9w7ljy3dFdLbYjOKX5wGnbEZzTfKDddgSnsAaI2b0A+mct91lNRJTAWkc5HqBx+FSX7QjOYZvpHB5g3UQ6CTUgLyLJIvKAiJwQkZHpQZKPi4jYzpZoipYV2I7glKLyfNsRnFNUlmc7gnN83S8j03dVD7pw7li6gHXAwhUv97O/CaqodPaJt3Q5bDMdX2sAILQ64DMA8mYtD87zK08BKBeRFACYPkZUAmhVxG4FUDXj52rl6ylkrAF08lL87XOCKMlbYjuCc5ayzVSWZvhbN1kaD3BeQg3IA/j/AHwQwIcBrJn++U8B/K7NUImosCzfdgSnFCzNsR3BOWwzvcJSP7/EmDKxL5i+VH3Wkj7X7+PcsVc01gELVOBpfxMUj2l6BUv5QVzD1xoACK0OGDfGDMxa5pquBsaYLgC7ANw+/dDbAbQZYxY6XQ0QrR1uEZGy6QHfewA8HrgRKAysARTyUvJtR3BKUW6W7QjOKWabqRSn+Vs3hVQHeCfR5pC/DsB3jDH/Of1zi4jcBuAqi5kS0uTElO0ITpma9HVWquDYZnqTk37ulyHNGXcvoh+6ZvoLAJ+Y4yWcO/bKxTpggaZYB6jwmKbHNtPxuTa3NHfs3QAeFZGPInpF3B0AICJfRvQL9ydFJAtAE4B0AHki0gbgq8aY+4wxx0XkfgBPT2/vZ4hefUf2sAZQmIK/fU4Qk1M8pmmxzXQmjb/txTnkg0m0AflnAHxARBqMMU0isgnADQD+cK6Vp8+enHkGpTenP+3/xRHbEZyy/1nNCTMEAPt/ecx2BOfs/0Wj7Qgu+wyAT856bM4z4+iKxjpggfaxDlDZ/9xx2xGcs/95zk+ssf8p1gDxZIxpBHDtHI/fNePfwwBWXGIbjwB4ZFECUhCqGgDwuw44OsQ6QOPFZt5LRottpvNib4vtCOSYRJuy5m8QvVTwiIhMANgN4LPGmK/Ns/59ePmNf7y5C+WmV6+xHcEpG6+vtx3BORuvq7v8SvQym1612nYEK6YgMS9QXKoOzh17JWMdsECsA3Q2XlNrO4JzNl690nYEp/haAwCh1QFE2hoA8LgOaMhmHaCxo37e7+ZoHjsa2GYaOwpqbEewhnVAMIk2IP9OAL+J6A34tgL4XwD+WET+1zzrP4iX3/jHmx4jKTnR/tcltqQkP3fwWLDN9HzdLyMAIiaGRfn7OHfsFY11wAL52t8ElZTMY5oW20zH530y3nUAXbG0NQDgcx2QcEM5iY2fbfWSeD9lFZ/bi3VAMIk2Zc3fAvgbY8yFQZH9IlKF6DffX5m98vTZkxfPoPTpBuznOnptR3BKz5kB2xGcwzbTO9fRZzuCFbF+qx3wtZw79srEOmCBWAfo8Jim19M1aDuCU3ytAQBrdQBdeVQ1AOB3HdA3yTpAo7t/yHYE57DNdLrH/K2bWAcEk2gD8ll45ZcjU0i8M/mt6+UHS5XebraXVu9Zfw8oQfV29duO4A3OHXvFYh2wQKwDdHrPnrcdwTlsMx3WAEQxYw2gMDjJOkDj3OCw7QjOYZvpnBtn3RRPIlKP6Je1xYhOWfY+Y8zBOda7E8BHED2W/ATA7xhjJi71nIi8BsD3Acy8QdC1xpiRMP+GRDu4fRfAx0TkjSJSLSJvRfQmLv9hOVfCqdtcdfmV6KLa9d5cvRia2nXLbUdwTt0mP/fLSIzzxUU8/Uac5sQ6YIFYB+jUrltmO4JzateW247gFF9rAIB1AIWGNYBCRYa/fU4Qq1cstR3BOWwzndU5/tZNluqAhwF8yRjTAOAhAI/OXkFEagA8AOBGAHUASgF84HLPTWs0xmyesYQ6GA8k3oD87wL4JoAvADgM4O8QbeSP2wxFRETzixiJeSGaxjqAiMgxrAMoJKwBiIgcFO86QERKAGwH8Nj0Q08AqBCRulmr3orodLadxhgD4IsAblvAc3GRUFPWGGMGAfzB9EKXcGzvSdsRnHL84GnbEZxz/GC77QjOObav1XYEK6YQ27xvU+FFIcexDlg41gE6xw/xmKZ1/HCH7QhO8bUGAFgHUDhYA+icGmUdoNHY1m07gnPYZjqNg522I1gTUh2QJiK5s54am75XyGwVADqMMZMAYIwxItIKoBJA84z1KgHM7Cxbph+73HMAUCsiu6bj/Ysx5gsL/4sWJtHOkKcFyls6+31Kl5JXtMR2BOfkFWXbjuCcvOIc2xGIyBOsA3TyClkHaOUVsg7QYA1ARPGUk8I6QKNgSabtCM4pyGGbaRSksW6K0b2IzgU/c7nPUpZdAFYYY7YCeCuAe0TknWH/Eg7IO6p4WYHtCE4pKsuzHcE5bDM9X/fLKSTFvBCRjq/9TVBFZRy40CoqZZtp+LxPsg4gir/8FH/7nCBK8vnFvFZJHttMoyTd3y/mQ6oDPgMgb9by4Dy/8hSAchFJAQAREUTPbp99uWIrgJk33Kiesc68zxljBowx/dP/bgPwb4jONR8qVj+Oik5xRAvF5tJjm+n5ul9y7lii+PO1vwmKzRUA20zF532SdQBR/Bl20ioed9GBscl0fG6vkOqA8emB8JnLXNPVwBjThehZ7LdPP/R2AG3GmOZZqz4B4BYRKZsetL8HwOOXe05EykUkafrfOQDeBGB3WO11QULNIU8Lt+enh2xHcMrep5psR3DO3qeP2o7gnD0/O2w7ghUX7qoey+uJSId1gM7eZ2bX53Q5e549ZjuCU3ytAQDWAUQ2NA6xDtB4vumU7QjOeb6RbabxfM9x2xGssVQH3A3gURH5KIABAHcAgIh8GdGbtT5pjDkuIvcDeHr6NT9D9GbhuNRziA7wf1BEJhEdN/8GgH8JEvJSeIa8ozbcuNp2BKdsuHb2zZbpcjZcU2s7gnM23LjKdgQi8sRG1gEqG65eaTuCczZcVWM7glM23MAagIjipz6bdYDGtrrltiM4h22ms62g2nYErxhjGo0x1xpjGowx240x+6cfv8sY8+SM9R4xxtROL3caYyYu95wx5nPGmHXGmE3T//2EWYRLIXmGvKNSUpNtR3BKcgq/e9Jim+mlpPi5X06ZJEyZ4O+XKV5DSqSWzDpAhcc0PbaZjs+1OesAovhLhr99ThApyTymabHNdFLE3/ZiHRAMB+Qd1Xum33YEp/R1D9qO4Jy+s+dtR3BOb9eA7QhWRJCESAwXXEW8nnGPKJjeLtYBGjym6bHNdHzeJ1kHEMXfwKS/fU4Q5waHbUdwDttM59z4kO0I1rAOCMbfr3Ac193WYzuCU7rb+2xHcA7bTI/7JRHFS/cp9jca3R19tiM4p7uDgz0a3W29tiMQkUd6J1gHaJzp5ZfMWmwznTOjrJtIhwPyjmrYxnk9Neo3VdiO4Jz6jStsR3BOw9Zq2xGsmJq+iUssCxHpsA7Qqd/AY5pW/QbOHavhaw0AsA4gsqEqk3WAxtrKEtsRnMM201mbu8x2BGtYBwTDKWuIiCgmnDOOiIjIX6wDiIiI/MU6IBgOyDvqxIFTtiM4peVwh+0Izmk5wjbTOnGwzXYEKwwEkRi+1TaefiNOFAvWATotjZ22IzinpfGM7QhO8bUGAFgHENlweox1gMbR9rO2IziHbaZz9Ly/dRPrgGA4ZY2jsvOybEdwSnZuhu0IzsnOzbQdwTlsMyKKF9YBOtk5rAO02GY6rAGIKJ4yk1gHaORkptuO4By2mU5OCusm0rkyz5A3EQAR2yleRjLDLdJLasvR3hbSTSPKl4aznZCNrMgNbVt5myvRvCScDnIsLzmU7SyG5InwLvVZsrESg4VpoWwrs3M0lO2ELeVUuN/6l66pQse5sVC2ZQYT7yY6SSYJmHjl49F532K4RC3B+mtyn6SnQyTVdoyXSS4sCHV7ZWur0BlSfzNZkZh1wPCK8AYbGjZUYiA/nLJ3LCdxz2dJGQuvDqhfV4G+onD+1uyOcN6rYUtrDW+woXRDDToGpkLbHroS78zEJDMODL3ycdYBlGj+8fnXICkzsQbHcg6F87nqgmvqKvDL5nDOkq/dlZif1dJPhHfl0drrMzH+dDjbM2mJVWPOlFpfFNq2agqz0BPS52UjiTn0ODgWXnvlVlVg8GRom0NbVWF4GwvJ6PgcgwFgHRBUYu4VRETkjNjnjEvcwS0iIiK6NNYBRERE/mIdEAwH5B2153+O2I7glBf3tNqO4JwX9rHNtPY81WQ7ghURJCESwzfisbyWyFd7fuFnfxPUC/t5TNPaeZDzE2vsebrZdgRrWAcQxV9YZ8f7Ys/TR21HcM6Le1k7aTxz0t99knVAMH7+1VeAtVfX2o7glPVrl9mO4JwNq9lmWmt31NiOQESeYH+js2EVj2laGxvKbUdwytpt1bYjEJFHtlSzj9ZYu73adgTnbFjD2klj23Luk6TDM+QdlZaRuPOWJaL0NL7Vtdhmemnpfu6XU0YwZYLfGT2W1xL5inWADo9peumpbDONtAx/24t1AFH8paf42+cE4evntFiksXZS8XmfZB0QjL/vGMcNnEu8Gz4msv6BEdsRnNPHNlMb6PFzv4wgKaabuPh6iRpRLAZ65rizIs2rf5DHNK0+tpmKz/sk6wCi+OsdYh+tMdDrbx8dFMdQdHqH/W0v1gHBcEDeUR0t4dzt2hftHf22Izin/Uyf7QjO6Wg9ZzuCFRGThEgMN2KJ5bVEvuo4yTpA4zSPaWqnu1g7aXS09tiOYA3rAKL4a+thH63RcdLPz2mxaO/ke0yjtd/f9mIdEIyff/UVYBXnqVRZs6rMdgTnrK3nHGhaqzZX2Y5ARJ5YtYX9jcbaOh7TtNbVsnbSWLW5wnYEIvLIhgr20RqrNlfajuCcNQ18j2lsKmd7kQ7PkCciophMxXiJWiyvJSIiIrtYBxAREfmLdUAwHJB3VGtjh+0ITmnxdCqRWJw4xTbTaj3aaTuCFbyJC1H8tTb52d8E1dLGY5rWidP+TsESROvRM7YjWMM6gCj+jp1hH63hcx8dVAvHA1Saz/q7T7IOCIYD8o5Kz0yzHcEp6byrulpGOrsHrfQMP99nEUhMN2KJwM8DMFEsWAfopKfxmKbFNtNJz/B3n2QdQBR/GeyjVdIz/fycFgvWAToZqf62F+uAYPy8LuAKUFpZZDuCU8pLc21HcE55SZ7tCM4preB+SUTxUVpRaDuCU3hM01u2lLWTRmlFge0IROSR5QXsozVKV7Bu0iovZe2ksSKP+yTp+PsVDhERhWLKJGEqhjujx/JaIiIisot1ABERkb9YBwTDAXlH7XuqyXYEp+zed8p2BOfsOsA209r3bLPtCFYYSEyXmRlPL1EjisW+Z/zsb4LadZDHNK1dh9tsR3DKvl8etx3BGtYBRPG38zj7aI19vzxmO4Jzdu9n7aTxXKu/+yTrgGD8/BriCrBqa7XtCE5Zs6rcdgTnrK0vsx3BOas2V9qOYMWFb8RjWYhIx9f+Jqi1dTymaa2tZZtprNpUYTuCNawDiOJvfUWp7QhO8bmPDmpNA+sAjY3l/u6TrAOCSai/WkRaRMTMsXzedrZEk57l742jguANSvUyeCNcNd5kkSg2rAMWjnWADo9perxhoA5vGEgUO9YBC5eZyj5Hg5/T9Fg76XCfJK1Eq7R3AEie8fN6AP8F4Bt24iSuwd4h2xGcMjA4ajuCc9hmeoN9fu6XU0jCVAzf78byWrrisA5YoMG+YdsRnDJwnsc0rYEhtpmGz/sk6wAKEeuABeofZh+t4XMfHRRrJ53+EX/bi3VAMAk1IG+M6Z75s4h8BMAxAP9jJ1Hiajt6xnYEp7S29diO4JzWdraZVtuxLtsRrIgYQcQEn/ctltfSlYV1wMK1NbMO0OAxTe9ke6/tCE5pO959+ZWuUKwDKCysAxbuRDf7aI22435+TovFKY6hqBzv8XefZB0QTMJ+DSEiaQBuB/DPxhgzzzrpIpJ7YQGQE9eQFq25aqXtCE5Zv2aZ7QjOWb+Kbaa1ZluN7QhWXPhGPJaFaDbWAZe2Zruf/U1Q6xt4TNPaUM/772is2VplO4I1rANoMbAOuLTNVeyjNdbwHnxq61azdtLYstzffZJ1QDCJ/Fe/BUA+gEcvsc59APpnLP7e1piIiOjK8hawDiAiIvLVW8A6gIiIrlCJPCB/J4DvG2PaL7HOgwDyZiwr4hEsEXDKGp3WNn8vHwqq9TQvUdPyd8qapJgXojmwDriEtmY/+5ugOGWN3skO1k4afk9ZwzqAFgXrgEvglDU6nLJGj+MBOn5PWcM6IIiEmkP+AhGpAnAzgLddaj1jzBiAsRmvW+RkiSM5xc83bFDJyf68N8KSnMz3mJav+2UEginEMGdcDK+lKxPrgMvztb8JKjmJ7aXFOkDH5/ZiHUBhYx1weSlJ/vytYfC5jw6KtZNOivjbXqwDgknUd8wdALoA/KftIImqvGap7QhOWV6ebzuCc5aX5duO4JzyqmLbEayI3sQllm/E/TwA0yWxDriM8mo/+5ugeEzTW1GSZzuCU8qrimxHsIZ1AC0C1gGXUVGUbzuCU3z9nBYLjqHoVBb4WzexDggm4QbkRSQJ0QPwV4wxk7bzEBERUfywDiAiIvIX6wAiIvJBIk5ZczOASgD/bDtIIjvwbLPtCE7Zd+C07QjO2XuI90TSOvD8MdsRrJiK8RK1WF5LVyTWAQtw4Dk/+5ug9h7mMU1rTyNrJ40Dz5+wHcEa1gEUMtYBC/DiCfbRGgeeP247gnP2HeR7TGNnm7/txTogmIQ7Q94Y8yNjjBhjmmxnSWS1G7y5X00o6mo5xY9WXU2J7QjOqV273HYEKyKI8SYuiXcoIotYByxM7TrWARr11TymadVXsXbSqF27zHYEa1gHUJhYByzM6mXsozVq1/nbRwdVt5LvMY21Jf62F+uAYPz8q68AmUsybEdwSlZmmu0Izslmm6lxvySieMlckm47glNYB+hlZ7DNNLhPElE8Zaezj9bIzObnNC3WTjrZaWwv0uGAvKOGB0dtR3DK0PC47QjOGRoesx3BOcPn/dwvp0xSzAsR6bAO0OExTW9ohLWThs/7JOsAovg7P8o+WsPXz2mx4BiKzvkxf9vLRh0gIvUi8oyINInIThFZN896d4rIURE5JiKPiEjqQp6bfl5E5Cci0qcOuACsfhx14iDnQtU4dqLbdgTnNJ88azuCc04carcdwQoDQSSGxXg6ZxxRLHztb4JqbuUxTYttpnPiSKftCNawDiCKv6ZO9tEaJw532I7gnGMtHEPRONLt7z5pqQ54GMCXjDENAB4C8OjsFUSkBsADAG4EUAegFMAHLvfcDPcCWLQbd3FA3lHrrqmzHcEpG9f5Obd3LDatYZtprbtqpe0IVvDMOKL4W3e1n/1NUJtW85imtWkV59vVWLej2nYEa1gHEMXf1mr20RrrdtTYjuCcjZ7eHy2o7Sv83SdDqgPSRCR31jLnfIAiUgJgO4DHph96AkCFiMweKL0VwJPGmE5jjAHwRQC3LeA5TJ9x/xYAfxNKI82B1Q8RERERERERERER2XAvgP5Zy33zrFsBoMMYMwkA0wPqrQAqZ61XCeDkjJ9bZqwz73PTU9c8AuBuAFNB/piFSFmsDdPiaj/eZTuCU9ra+2xHcE5bR5/tCM5p9/SyvogRREzwy81jeS2Rr9o5FZtKW2ev7QjOOXWmz3YEp7S3nLMdwRrWAUTx13quz3YEp7S3+DudSFCnOR6gcrK3z3YEa0KqAz4D4JOznrJ1E6j7AXzLGHNYRKoX65dwQN5RJmJsR3BK9Asz0oiwzdR83S+nkISpGC64iuW1RL7ytb8JKhKxncA9LAN0fN4nWQcQxR8/q+lwPEAv4vFxLQif98mQ6oBxY8zAAl9yCkC5iKQYYyZFRBA9u7111nqtAGpn/Fw9Y51LPfdqAJUi8mFEx81zRaQFwA5jTGhnRbH6cdTyulLbEZxSsbzAdgTnVC5jm2ktX1liO4IVF74Rj2UhIp3ltX72N0HxmKZXWZZvO4JTlq8sth3BGtYBRPFXXczjmsbymqW2IziHYyg6NYX+tle86wBjTBeAXQBun37o7QDajDHNs1Z9AsAtIlI2PWh/D4DHL/ecMeZGY0yVMaYawA0ABowx1WEOxgMckCciIiIiIiIiIiIiN9wN4G4RaQLwEQB3AICIfFlEbgEAY8xxRKefeRpAM4BuAA9f7rl44ZQ1jjr03DHbEZxy4FC77QjO2X+EbaZ16IUTtiNYEYEgEsP3uxHwzDgirUM7/exvgtrfyGOa1r6jHbYjOOXQiycvv9IVinUAUfztPsk+WuPQiy22IzjnwGHWThq7Tvu7T9qoA4wxjQCunePxu2b9/AiiN2idaxvzPjdjnRYA+eqAC8Az5B1VtbrcdgSnVFUV2Y7gnOoKtplWVYOfU0lFjGAqhoWXqhPpVTWU2Y7glOoVhbYjOKdmOdtMo6re32mkWAcQxV9dCftojap6Pz+nxaK6kuMBGnVF/u6TrAOC4RnyjsrOy7IdwSk52em2IziHbaaXnevnfhnSXdWJSCE7L9N2BKfkZGfYjuCcnCzWARrZuf7uk6wDiOIvJ5N9tIbPfXRQSzgeoJKb4W97sQ4IhmfIO2p0aMx2BKeMjE7YjuActpne6DD3SyKKj9HhcdsRnDIyyvbSGhljHaDBfZKI4mlknH20Bj+n6XE8QIf7JGldkWfIJ6WnIUnSbMd4ubLiUDd3tHMotG32bEnMS2vObQjvW7KOpB5MLksNZVtTZQn8gWswvF26U7owWRHO/4OC/dmhbCdsSyemQt3ekTPnMVUWzt3VkyYnQ9lOqCJJwMAcD5skREwMc8bF8FqiuSRlZyEpKbHqgKnl4dYBR7qHQ9vmuY1LQtlO2HrXm9C21SXdmCwP55gmJSOhbGcxTPWH977vlk5MLo+Esq28w4l5ZuLSSHg18MGeYUyFODVS2shoaNsKS1JkHBh65eM26gARqQfwFQDFAPoBvM8Yc3CO9e5E9GZvSQB+AuB3jDETIpIE4O8AvB7AJIBzAN5vjGkO+ndQ4ljSmIbk9MSqA/KPhVvbt7W0I38qnD46UY3WhTcV2P7hcUyFtL3RwsQdRhspCu9z1c6xc5iqDOdvzT6TmO/VgqPh7Ze9yW2oCHGf/NG2NaFtKyyTQ2MAfviKxzkeEIyff/UVYMOOGtsRnHL1iuW2IzjnmmUrbEdwzsZtVbYjWDEFiXkhIp2NW/3sb4K6ejnrAK1rylkHaGzaXGE7gjWW6oCHAXzJGNMA4CEAj85eQURqADwA4EYAdQBKAXxg+ulbAFwPYJMxZiOAHwP46yBBiGzYso59tMamjf720UFtr2ftpOHze4zjAcFwQJ6IiGJyYc64WBYiIiJyU7zrABEpAbAdwGPTDz0BoEJE6mateiuAJ40xncYYA+CLAG6bfs4ASAeQISICIBdAW7AWICIi8hfHA4JJ3Gtt6JI6T/XYjuCUU/39tiM4p3WAbabVebrXdgQi8kRnO/sbjVMDc8y3RZfUOsg6QKOjg+0VozQRyZ312JgxZq6JnysAdBhjJgHAGGNEpBVAJYCZU85UAjg54+eW6ccA4LsAXgugE8AggNMAXh3rH0EUL+1n2OdodHT22Y7gnNPn+B7T4HuMtHiGvKMmxhNwfukENjYV7lzhPhib4ntMa3zcz/fZhTnjYlmISMfX/iYoHtP02GY64x7X5iHVAfciOhf8zOW+RYy9HcB6AMsBLEN0ypovLuLvIwrV+IS/fU4QE6yb1MZCvt/alc7n9xjHA4Lx86++AlTUhneDEx/UFSbmjWsTWX1Bke0IzqmsCfemja4wEERiWEyAOeNEpF5EnhGRJhHZKSLr5lnvThE5KiLHROQREUmdfjxJRD4tIodEZJ+I/HSOS92JElZltZ/9TVB1BawDtOrzWQdoVFX5214h1QGfAZA3a3lwnl95CkC5iKQAwPSUM5UAWmet1wpg5g03qmes814APzHG9BljIojeIPa1sbYFUbxUr/C3zwmispLtpbWyjLWThs/vMRvjAVcCDsgTEVFMpozEvATAm7kRERElgJDqgHFjzMCsZa7pamCM6QKwC8Dt0w+9HUCbMaZ51qpPALhFRMqmB+3vAfD49HPHAdwkImnTP78JwIHwWoWIiMgPlsYDnMcBeUcd2XvKdgSn7O7otB3BObu7OmxHcM6R/adtR/ACb+ZGBBw5wP5GY/cZ1gFarAN0Dh9qtx3BN3cDuFtEmgB8BMAdACAiXxaRWwDAGHMcwP0AnkZ0bvluRL/QB4DPAzgBYK+I7APwKwA+GNe/gCgGB5vYR2scPsI+Wmt/C2snDb7HSIsD8o5aVsnLhzSq8vNsR3BOVW6+7QjOKa8osB3BipDmjEsTkdxZS/o8v/IVN3ND9BL0ylnrXe5mbj9D9GZuHYh+EP/z2FuDKD587W+Cqs5lHaDFOkBn2XJ/90kbc8caYxqNMdcaYxqMMduNMfunH7/LGPPkjPUeMcbUTi93GmMmph8fM8a83xizxhiz0Rjza9MD+EROWF6WbzuCU5Yty7cdwTkVxaydNHx+j3EO+WD8/KuvALkF2bYjOKUwM9N2BOcUZrDNtPLys2xHsCJiJOYFvJkbkUpenp/9TVAFrAPUWAfo5OX5214h1QFEpJCf62+fE0ReLusmrfwlfI9p+PweYx0QTIrtABTM+MiE7QhOGZnkXei1Rib5HtMaG/WzzSIAIjHciCUS/c9nAHxy1lNzzh2LGTdzM8ZMXuZmbrUzfq7GHDdzAwAR+QqAHwX6A4gsGBvzs78JapR1gBprJ52xMX/bK6Q6gIgURj3uc4Jg3aQ3Os73mIbP7zHWAcHwDHlHHd47e9yJLmV3O+fY09p1hm2mdXg/pyCPAW/mRqTA/kZnVyePaVq7ujgXqsahg7yvAxHFz8Em9tEahw6zvbT2tbB20uB7jLQ4IO+oTdfUXn4luui6ygrbEZxz/fLZ03HT5WzeUWM7ghWWLlHjzdzIa5u3+9nfBHXdCtYBWtcvYx2gsWVrle0I1vBSdaL427aBfbTGls3+9tFBXdXA2knD5/cY64BgOGUNERHFJILYbsQSCfDdsDGmEcC1czx+16yfHwHwyBzrjQF4v/oXExER0cvYqAOIiIgoMbAOCCbh/moRWS4ij4nIOREZEZH9IrLddq5E09XeZzuCU04PDNqO4JzT5wdsR3BOV0e/7QhWmBi/DTeefiNOc2MdsDBdnX72N0GdHmQdoMU6QOfMGX/bi3UAhYU1wMJ1dvvb5wRxpovtpdXRw9pJw+f3GOuAYBLqDHkRKUB0aoGfAvh1RKcXqAfQazNXIhoZmu9ehzSX8+PjtiM4h22mNzzM/ZIoFqwDFo79jc4Qj2lq5yfYZhrDw2wvoliwBtAZHmGfo8G6SW9olO8xDb7HSCvRzpD//wCcMsbcYYx53hhzwhjzI2PMMdvBEk1VfantCE5ZVVxkO4JzVhUW247gnOraEtsRrIhAYl6IprEOWKDqlX72N0E1FLEO0FpVwDpAo6bG3/ZiHUAhYQ2gsLLS3z4niJrqpbYjOKduGWsnDZ/fY6wDgkm0AflbALwgIt8QkS4R2S0inOOXiCiB8SYuFCLWAUREjmEdQCFhDUBE5CDWAcEk2oD8SgAfBHAUwOsA/COAvxeR/zXXyiKSLiK5FxYAOfGLatfR/W22IzhlX+cZ2xGcs7e703YE5zQdarcdgch1rAMWqOkw+xuNfV2sA7RYB+g0HmF7EcVIVQMAftcBh5vZ52g0NrG9tA6eZO2kwfcYaSXagHwSgF3GmI8aY3YbY74E4BEA98yz/n0A+mcs3oxSlyzLtx3BKctzvanNQrN8Sa7tCM4pKcuzHcEKfiNOIWIdsEC+9jdBLc/hMU2LdYBOaam/7cU6gEKirQEAj+uAsqX+9jlBlJawvbTKCzmGouHze4x1QDCJNiDfAeDQrMcOA6icZ/0HAeTNWFYsXrTEkle0xHYEpxRlZdmO4JziTLaZVn5htu0IVvAATCFiHbBA+QV+9jdBFWVm2o7gHNYBOvkF/rYX6wAKibYGADyuAwry/O1zgsjPZ3tpFeawzTR8fo+xDggmxXaAWZ4GsGrWYw0ATs61sjFmDMDFWxmL+PM/cXJ80nYEp4xPTdmO4By2md7EuJ9tFutB1NcDMM2JdcACTUywDtDgMU2PbaYzMeFve7EOoJCoagDA9zrA3z4nCLaX3sQk20zD5/cY64BgEu0M+c8AuEZEPioidSLyHgAfAPB5y7kSzoEX561LaA47T3OuXa3nO0/bjuCcA3tabUcgch3rgAU6sOeU7QhO2dnBOkDr+TOsAzT27/NmpgyixcIaQGHvYfbRGvsPsI/W2nWMtZMG32OklVAD8saYnQDeCuA2AAcAfBzAHxhjvmY1WALafM1K2xGccl1lhe0Izrl+OdtMa/OOatsRrIhAYl6IANYBGr72N0Fdx2Oa2vXL2GYaW7ZW2Y5gDesACgNrAJ1tG9hHa2zdcqmZj2guVzXwPabh83uMdUAwiTZlDYwx3wPwPds5Ep5Hl+OFga2lJ2w1NZ8uk53JxHiJmvH0EjWaG+uAhWEfreNp9xwTvsd0fH6PsQ6gsLAGWDhfP3cEx/bS4ltMy98GYx0QTMINyNPCnO3stx3BKZ3nz9uO4JyOoUHbEZxztmvAdgQrOGccUfz52t8ExTpAj3WATne3v+3FOoAo/rrO+dvnBHH2LNtL60wfaycNn99jrAOCSagpa2jhBvuGbUdwSu/IqO0IzukdZZtpDfSN2I5ARJ4Y6Gd/o8Fjml7vGNtMg/skEcXTwCD7aI3+AfbRWv1DfI9p8D1GWhyQd1TN6nLbEZyyZmmx7QjOWVu01HYE56xsKLUdwYoL34jHshCRzsp6P/uboNYUsw7QWlvIOkCjtq7EdgRrWAcQxV9dNftojdqV/vbRQTUsZ+2k4fN7jHVAMJyyhoiIYhIxsV1mFjEhhiEiIqK4Yh1ARETkL9YBwXBA3lHHDrXbjuCUA11dtiM458BZtplW85EO2xGsMEZiuhGLrzdxIYpFc6Of/U1QB7t5TNM6cI5tpnG06YztCNawDiCKv6bj7KM1jjb720cHdfgU32MaPr/HWAcEwylrHFW4NMd2BKeUZGfbjuCckiy2mVZhMfdLIoqPwuIltiM4ZSmPaWolmWwzjcIi7pNEFD9FBeyjNYoK2V5aS/PYZhp8j5EWB+QdVcABeRUOyOtxQF7P1wGyCCTmhYh0CotYB2iwDtBjHaBTVORve7EOIIo/DsjrFBb6+TktFsW5fI9p+Pwes1EHiEi9iDwjIk0islNE1s2z3p0iclREjonIIyKSernnRORaEdkzvRwUkYdFJD1wA82DA/KOikxFbEdwypTxdFKqGEwZvse0fN0veRMXoviLRPzsb4KKsA5QY+2kE/F1AlSwDiCywec+JwjWTXp8j+n4/B6zVAc8DOBLxpgGAA8BeHT2CiJSA+ABADcCqANQCuADl3sOwF4AO4wxmwFsAFAC4HeChLwUDsg7at/zJ2xHcMovT7XZjuCcZ9vZZlp7XzxpO4IVF+aMi2UhIh1f+5ugnj3NY5rWsx2nbEdwyp7drbYjWMM6gCj+dh1gH62xZy/bS2vnUdZOGj6/x0KqA9JEJHfWMudZ6SJSAmA7gMemH3oCQIWI1M1a9VYATxpjOo0xBsAXAdx2ueeMMcPGmInp9dIAZAII/RsqDsg7auNVNbYjOOWaihW2Izjn2mVsM61N26psRyAiT7C/0bl2OY9pWteWV9iO4JTNWyptRyAij2xdzz5aY/MmtpfWjnrWThp8j8XsXgD9s5b75lm3AkCHMWYSAKYH1FsBzC7GKgHMPIupZcY6l3oOIlItInsBnJ3O8gXtH3Q5KWFvkOIjKZnfpWgkC8+80UoWvse0fN0vTYyXm/PMOCK9pCQ/+5ugklgHqLF20klK8re9WAcQxZ/PfU4QrJv0+B7T8fk9FlId8BkAn5z11FgMsWJijGkBsElEliB6Jv7bADwe5u/ggLyjersHbUdwStfQkO0IzukaZptp9Zw9bzuCFQaxXW5ueDM3IrWec6wDNFgH6LEO0Dl3zt/2Yh1AFH/nev3tc4Lo6fHzc1oszg7wPabh83sspDpg3BgzsMCXnAJQLiIpxphJERFEz26fPX9gK4DaGT9Xz1jnUs+9lM2Y8yLyOIDfRMgD8v5+heO4Hg7Iq/CDuB4/iOv1nPVzv+TN3Ijiz9cvAIPq5jFNrWuEbabRc87ffZJ1AFH8cUBe51wP20uru59tpuHzeyzedYAxpgvALgC3Tz/0dgBtxpjmWas+AeAWESmbHrS/By8Nqs/7nIjUiUjq9L/TALwVwD51w1zGFXmGvGRnQ5LSbMd4mdGKvFC3t25zJV7cE87No85tSMwi+OpXHQ5tW+tyVuPg4JFQtnVL8e5QtrMYfta/JrRtrc5ehyNDB0PZ1g8nNoeynbDltWSGur3qEPfLzK7E6sMAQCKh38eEaFHIkixI0pz3ALJmeHlWqNtbu7ESL+wLp7/pW5OY+/ZrrjkQ2rbWLFmDw+fDqSveXLQrlO0shp8MrA1tWw3Z69E0FM7/gycj20LZTtiyO8I71q5bvwI7D4R3Y9e00+HWKKGI8FwuckPmWYPktMQ6tkVSw/3MXddQihf2h1QH1CZWzXRBJMSPQw2rlqO1MaSbbibWW+tlJBLettauKMFzR8Jps+TREIOFKOXHL4a2rdU3b8DuH+8PbXstb7omtG2FJTI6ajvCTHcDeFREPgpgAMAdACAiX0b0Zq1PGmOOi8j9AJ6efs3PADwMAJd6DsBNAH5PRKYQHTf/MYAHwv4DrsgBeSIiih9jokssryciIiI3sQ4gIiLyl406wBjTCODaOR6/a9bPjwB4ZJ5tzPmcMeZLAL6kT6XDAXlHNZ/oth3BKa0jbbYjOKdtNLyzvHzh634ZgSASw/yvsbyWyFfNLX72N0G1sQ5QOz160nYEpxw96e8+yTqAKP5YB+g0nT5rO4JzmtrYZhrH9/pbN7EOCIbXHToqLycBL2NNYDnJS2xHcE52CttMy9f90hiJeSEindycDNsRnJKdkm07gnOyk3NsR3BKnsf7JOsAovjzuc8JIi+b7aXFNtPJLfJ3/IR1QDAckHfU0mJ/d/YgCtLybUdwTkFKoe0IzuF+SUTxUlLEwVKNgtQC2xGck5/KOkCjpJD7JBHFz1LWASql+fycplVawDbTKF5RZDsCOYZT1jiKUy3SYjN8l6n52mJB7ow++/VEpGM46TItMtYBOj63F+sAIgtYB6iwufTYZkoeNxjrgGA4IO+oXXs4v7fGwcEjtiM4p3HokO0IzvF1v+TN3Iji78X9p2xHcMrh84dtR3DO0aGDtiM45YUD/u6TrAOI4s/nPieI55vYXlrPN7LNNHb/+IDtCNawDgiGU9Y4auP65bYjOGXVkjrbEZxTl9VgO4JzfN0vOWccUfxtWuNnfxNUfXa97QjOWZm1ynYEp2xa7e8+yTqAKP587nOC2Fq7zHYE52ypY5tprL9xte0I1rAOCIYD8o5KTUm2HcEpKcKLQbRSJNV2BOdwvySieElNZX+jwTpAj3WAThprACKKI9YBOvycpsfjmk5qOusm0uGnE0f19g/bjuCUgclB2xGcMzg1YDuCc3zdL2P9VtvXb8SJYuFrfxPUIOsAtcHJftsRnNIz4O8+yTqAKP5YB+j0DLK9tNhmOn1d/tZNrAOC4YC8o850cbBU4+x4j+0IzukZP2s7gnN83S9NjDdx8fUATBSLzm4/+5ugzo2fsx3BOb0TrAM0Os/6u0+yDiCKP5/7nCA6evjFvBbbTKfrpL91E+uAYDhljaNW15fZjuCUlVlVtiM4pypzpe0IzvF1v7xwE5dYFiLSWVPnZ38TVHVWte0IzqnMrLUdwSlrV/q7T7IOIIq/NbX+9jlBrKsqtR3BOWwznYYd/tZNrAOC4YA8EREREREREREREVEccMoaR53w+HKYINpG2m1HcE77WJvtCM7xdb+MfqsdyyVqIYYh8sTxVj/7m6BOj562HcE5HWOnbEdwyrFT/u6TrAOI4o91gE5zO6eu02Kb6bQcaLUdwRrWAcHwDHlHZWWm2Y7glMzkDNsRnJORxDbT8nW/vHATl1gWItLxtb8JKjM503YE52Qksc00sj3eJ1kHEMWfz31OENkZbC8ttplOVo6/dRPrgGASakBeRD4hImbWcsR2rkRUWpJrO4JTitIKbUdwTmFqse0IzuF+SRQb1gELV7aU/Y1GYSrrAK0C1gEqZcXcJ4lixTpg4UpZB6iUF+bYjuActplOSdVS2xHIMYk4Zc1BADfP+HnSVhAiIro8M73E8nqiGVgHEBE5hHUAhYx1ABGRQ1gHBJOIA/KTxphO2yES3a69/s5PFcShwUbbEZzTOHTIdgTn+LpfxnqZma+XqNG8WAcswIv7/exvgjpynidYah0dOmg7glNeOOjvPsk6gELGOmABXvR4vuognm/ifVG0nm9km2ns+fEB2xGsYR0QTEJNWTOtXkTaReS4iHxNRCrnW1FE0kUk98ICwJtratauWWY7glPqslfajuCcmqw62xGc4+1+aUJYiF7COmAB1jV42t8EVJtVazuCc6oyWQdorK8vtx3BHtYBFC7WAQvgdZ8TwMZqtpfWxhq2mcaaa+ttR7CHdUAgiTYg/xyA9wF4PYAPAqgB8AsRme/Aeh+A/hlLWxwyJoSMtES8uCFxpSWl2o7gnDThTVy0uF8SxYx1wAJlpLO/0UhlHaCWlpRuO4JTMtL4HiMKAeuABUpPZ5+jwc9pemwznfQs1k2kk1B7mDHm+zN+3CcizwE4CeCdAP5pjpc8CODTM37OgScH4f6BEdsRnDI4ed52BOecnxq0HcE5vu6XBjFeogY/L1GjV2IdsHB9nvY3QZ2fYh2gNcQ6QKVv0N99knUAhYV1wML5+rkjqL7zbC+tXraZysDZAdsRrGEdEExCDcjPZozpE5EmAHNeM2uMGQMwduFnEX/+J55u77MdwSldY922Izine/yM7QjO8XW/NCa6xPJ6ormwDpjf6c4+2xGc0jXWZTuCc86yDlBpO9NnO4I1rANosbAOmJ/PfU4Qp872247gnLZutplGe7O/dRPrgGASbcqalxGRJQBqAXTYzpJo1q7mfF4atdk1tiM4p4Zzx6r5ul9euIlLLAvRXFgHzG9dg5/9TVArs3gvGS3OIa+zvs7ffZJ1AC0W1gHzW8c55FU2VJfZjuCcDTVsM43V1/g7hzzrgGASakBeRP5ORF4tItUich2A/wAwBeDfLEcjIiKiRcY6gIiIyF+sA4iIyBeJNmXNCkQPtkUAugE8BeAaYwznG5nl5Kke2xGc0j7aaTuCczrG2m1HcI63+6WR6BLL64miWAcsUEvbOdsRnNIxxpMrtc6MnbYdwSknTnu8T7IOoPCwDlgg1gE6xzs9/ZwWg+MdbDON1sNe3L5ibqwDAkmoAXljzLttZ3BFamqy7QhOSZWEeqs7ITWJbabl637JOeMoLKwDFi4tlX20Rqqk2o7gnBS2mYrP+yTrAAoL64CF87nPCSI9xc/PabFI9/SzbVBp6f7WTawDgkmoKWto4ZaV5dmO4JSl6cW2IzinOLXEdgTneLtfmhAWIlJZVuppfxNQcRrrAK2iNNYBGstLPN4nWQcQxR3rAJ3lxWwvLbaZTtnKUtsR7GEdEAgH5ImIiIiIiIiIiIiI4oDXOTlqz36P56cK4Mhgk+0IzmkaOmI7gnN83S9jvTO6r3dVJ4rF7oN+9jdBNZ5vtB3BOc1Dh21HcMouj+eOZR1AFH+7D/nb5wTxwlHeF0XrhSa2mca+nx2yHcEa1gHB8Ax5R62q9/hymABqsqtsR3BOVWa17QjO8Xa/5CVqRHG3utbT/iag6qxq2xGcU5FZYzuCU9as9HiKHwt1gIjUi8gzItIkIjtFZN08690pIkdF5JiIPCLy0s0RRGSDiPxMRA5PL2/TJyGyY7XPfU4A6yrZXlrrqthmGg3bV9qOYA/HAwLhgLyjMjP8vWFEEOlJ6bYjOCc9KcN2BOf4ul9e+EY8loWIdHztb4JiHaDHOkAnMz3NdgRrLNUBDwP4kjGmAcBDAB6dvYKI1AB4AMCNAOoAlAL4wPRzWQC+A+DPjDFrAKwH8IsgQYhsyMzwt88JItPjG24GxTbTyVjib93E8YBgOCDvqMGhMdsRnDI8NWI7gnOGI0O2IziH+yURxQv7G53hqWHbEZwzMsU6QGNweNR2BG+ISAmA7QAem37oCQAVIlI3a9VbATxpjOk0xhgAXwRw2/Rz7wHwS2PMUwBgjJkyxnQvfnqicJwfYp+jMTjMukmLbaZzvo91E+lwDnlHnTx5znYEp5weabcdwTkdo2wzLW/3y1gvM/P0EjWiWLSc8rS/CaidxzS1zjHOHatxoq3HdgR7wqkD0kQkd9YzY8aYuUaEKgB0GGMmAcAYY0SkFUAlgOYZ61UCODnj55bpxwBgLYAxEfkegBUA9gH4Iw7Kkyu87nMCONbJ9tI61sE202j1+f5OHA8IhGfIO2r92mW2Izilfkmt7QjOqc2qtx3BOf7ulxLCQkQaG1b72t8EU5c9+8RZupyarAbbEZyyscHnfTKUOuBeAP2zlvsWMXQKgJsB3A1gC4DTAP5xEX8fUag2rPK5z9HbvLLcdgTnbK5lm2msvX6V7QgWcTwgCJ4hT0REseE34kRERP4Kpw74DIBPznpmvvkSTgEoF5EUY8ykiAiiZ763zlqvFcDMs3KqZ6zTCuCnxpjTACAijwH4YcC/gIiIyF8cDwiEZ8g76tTpXtsRnNI5esZ2BOecGe+wHcE53C+JKF5a29nfaJwZYx2g1TXGOkCjtYP7ZIzGjTEDs5Y5B+SNMV0AdgG4ffqhtwNoM8Y0z1r1CQC3iEjZ9KD9PQAen37u3wHsmDFNzhsA7A3zDyJaTKdYB6ic7GJ7aZ08wzbTaGvk9IikwwF5R0VrSlooEb7VtYTdg5q3+6UJYVESkXoReUZEmkRkp4ism2e9O0XkqIgcE5FHRCR1xnMbRORnInJ4enmbPgmRHUm+9jcBiaeXwsbC22NaQF43l4U6ANGpZu4WkSYAHwFwBwCIyJdF5BYAMMYcB3A/gKcRnVu+G8DD08+1AvhrAM+IyD4ANyE6YE/kBK/7nAB4TNNjm+kkJXk8fuLueMCcz4nITSLyvIgcEpGDIvIpWYRBRY/fMW5bsSzfdgSnlKYvtR3BOSVppbYjOMfb/dJI7IvewwC+ZIxpAPAQgEdnryAiNQAeAHAjgDoApQA+MP1cFoDvAPgzY8waAOsB/CJIECIbVpTn247glJL0EtsRnLM0rcx2BKdUlBXYjmCPhTrAGNNojLnWGNNgjNlujNk//fhdxpgnZ6z3iDGmdnq50xgzMeO5rxpj1htjNhpjft0YcyqU9iCKgxXlHvc5AVQuzbcdwTmVJfm2IzhlWb3HdZOb4wHzPgegF8C7jTFrAWwDcB2A9wYJeSlX5BzykpoKSUq9/IpxNJ6THOr2JrKSQ9vmZMnE5Vey4K3Fu0Lb1tL0FDSkh7O9ty8ZCGU7iyFiGkPbVklGLkqSw9ne93PXh7KdsE1mhvud5FR6UujbdIEx0SWW12uISAmA7QB+bfqhJwB8TkTqZl2ufiuAJ40xndOv+yKAjwL4PID3APilMeapaAYzheiZc3QFMKmpMMkJVgcsCbdvmMiU0LYZWToeynbC9obCfaFta2l6BmrSwtneLdnDoWxnMUyYptC2tTQ9H6VJ4WzvyZyNoWwnbFNpaeFtKxWYSgvvbEKTnHj1hJnnXK541wFEl5M0bpCcYG+s1PORULeXMhIJbZtDJeGOVYTlfHV4/w9HyoDBkMqd1IHEPXM8vSe8bUWSBJGUcP7WyezEO6YBQFZxUWjbSsrNRXKI28voTrw2mxpb1DogbcY0cheMzTV9XUjjAfM+Z4zZ/VI2MyoiexC9D02oEu//MC3I3iOnbUdwyrmxPbYjOOfsKKfR1Np7mPtlDNJEJHfWkj7PuhUAOowxkwBgjDGI3pytctZ6lQBOzvi5ZcY6awGMicj3RGSPiPyriPBSGnLGXs5TqcI6QI9tpsN9kojiad9Bfu7Q2HmafbTW7uNsM42Dz82+jQkp3Qugf9Zy3zzrhjEecKnnLhKRMkQH77+34L9kgTgg76i6ymLbEZySm1ZvO4Jz8tLqbEdwTl2Vp/tlOHPGaQ7AYUgBcDOic9BuAXAawD8u4u8jChXrAB3WAXpsMx2v90k7c8gTea22hueRaKwu9riPDqhhGdtMo2btctsR7AmnDvgMgLxZy4Px+yNeafqM/e8C+JQx5oWwt39FTlnjg+ys+U4cpbmkSrbtCM5JTWKbafm7Xwae9+2l10cPwJ+c9cQrLk+bdgpAuYikGGMmJXrHoUpEvxWfqRVA7Yyfq2es0wrgp8aY0wAgIo8B+GHQv4Ao3rIzw5tqwwesA/TYZjp+75Oh1AFEpJCd5XOfo5eTzvbSys5gm2lk5WTajmBRKHXAuDFmofNDhzUeMN9zEJEcAD8A8B1jzKcXmEuFZ8g7angkMed7TVSTZsh2BOdMRhJ3jtxENeTpfikm9gXTB+BZy5wD8saYLgC7ANw+/dDbAbTNmi8OiM4ld4uIlE0fpO8B8Pj0c/8OYMeMeereAIDzNJEzWAfosA7QY5vp+LxPhlQHEJHC8LC/fU4Q58fZXlpDY2wzjZHzo7YjWBPvOiCk8YB5nxORJYgOxv/AGPNX+hZZGA7IO+poS5ftCE7pHw/vJme+6GObqTWf4H4ZR3cDuFtEmgB8BMAdACAiXxaRWwDAGHMcwP0AngbQjOhNWx+efq4VwF8DeEZE9gG4CdGDMJETmlp5D2IN1gF6bDMd7pNEFE/Nx9nnaBzqYntpNbaxzTSOHThlO4JvYh0PmPc5AL8P4CoAb5u+39weEflY2H8AB+QdtWnNCtsRnFKUvsV2BOcUZ2y2HcE5m9Z6ul9amDvWGNNojLnWGNNgjNlujNk//fhdxpgnZ6z3iDGmdnq50xgzMeO5rxpj1htjNhpjft0YwyqKnLF5lcfzVAbAOkCPbabj9T7JOeSJ4m7jeo/7nACuWsH20tpayzbTWH+Nx/fecXc8YM7njDGfNMakGmM2z1hmT68bM84hT0REsTExzhkX03xzREREZBXrACIiIn+xDgiEZ8g76nRnn+0IThmabLMdwTnnJ9hmWtwviShe2s70247gFNYBemwzHe6TRBRPpzv6bEdwysk+9tFap8722Y7glI4WTvFDOjxD3lFTkYjtCE4xmLIdwTlsM72pKU/3y1gvN+el6kRqrAN0eEzTY5vpeL1Psg4gijtvP3cE5HUfHdBUhJ2zxtSkx3UT64BAeIa8oyqXFdqO4JQlKVW2IzgnJ5VtplW53NP9knPHEsVdVXmB7QhOYR2gxzbT8XqfZB1AFHeVKzz93BHQykKP++iAqkvYZhor6spsR7CHdUAgPEOeiIhiw2/EiYiI/MU6gIiIyF+sAwLhGfKOOtDUbjuCU3rG99mO4JxzY/ttR3DOgUbul0QUH/uPdtiO4BTWAXpsMx3uk0QUTwcO83OHxq529tFae1vYZhqHdx63HYEcwwF5R3HKGp0lKdW2Izgnh5eqq/k7ZY3EvhCRitfTYwTAOkCPbabj9T7JOoAo7jhljQ6nrNHjlDU6K+pLbUewh3VAIJyyxlG5SzJsR3BKWlKu7QjOSUvOBSZsp3CLr/ulmOgSy+uJSMfX/iYo1gF6bDMdn/dJ1gFE8Zeb42+fE0R+BttLKy+LbaaRk59tO4I1rAOCCXyGvIhcHWaQObb/ERExIvLZxfw9rhod40ipxpQZtR3BOVMRtpmWt/slb+LiJdYBdo2OTdqO4BTWAXpsMx2v90nWAd5Z7Bpg+newDriE0VFPP3cENDLB9tIaHWebaYyNjNmOYA/rgEBimbLmWRFpEpGPi8jK0BIBEJEdAO4GwMkr53GoudN2BKf0jh+0HcE5PeOHbEdwzqGj3C/JK6wDLDp0nP2NBusAPbaZDvdJ8syi1QAA64CFONzEPkdjb+cZ2xGcc6CVbabRuOuk7QjkmFgG5G8HcBTAxwEcFZGnReQeEYlpMjMRWQLgawDeD6A3lm1dybauq7AdwSnF6dtsR3DO0oyttiM4Z+t67pfkFdYBFm1ds8J2BKewDtBjm+lwnyTPLEoNALAOWKgtG/m5Q+OaCvbRWtvr2GYaG69vsB2BHBN4QN4Y83+NMW8EsAzA7wMQAF8A0C4i3xaRW0UkLcCmPw/gP40x/325FUUkXURyLywAcgL8PiIiisGFOeNiWcg9rAOIiAhgHeCjRawBANYBREROYR0QTCxnyAMAjDFnjTGfM8ZcB6AewCcBrAbwdQCdIvIlEblhIdsSkXcD2ArgvgX++vsA9M9Y2rT5XdXR1W87glOGp9ptR3DO0GSH7QjO8Xa/5F3VvcY6wI6O7gHbEZzCOkCPbabj9T7JOsBbYdYAAOsAjY4znn7uCOhUv8d9dEDtPWwzjTOtZ21HsId1QCAxD8jPMgJgGMAoot+SGwBvBvA/IrJTRNbO90IRqQDwfwD8pjELvovUgwDyZizeXFMzNu7xjaMC4A1K9XgzNz2vb+hGFMU6IE5GWQeosA7QY5vpcJ8kCl4DAKwDtMb4uUNldJLtpcXjms7YCG+CSzoxD8iLSI6I3CEi/w3gJIC/BtAC4FYAZYhexvYuACUA/uUSm9o2vc4uEZkUkUkArwbwe9M/J89+gTFmzBgzcGEBMBjr3+OK6hVFtiM4JSc19HsNXfFyU2tsR3BOTYWn+yXvqu411gF21CyPeZper7AO0GOb6Xi9T7IO8FaINQDAOkClutLTzx0B1Rd53EcHtLKMbaZRuarcdgR7WAcEkhL0hSLyZgC/CeBNADIA7ATwBwAeN8acm7X6N0WkANH54ObzYwAbZj32LwCOAHjIGDMVNCsRES2iWA+inh6AXcc6gIiIALAO8NAi1AAA6wAiIjexDggk8IA8gP8AcArAZwD8qzGm8TLr70X0bulzMsYMAjgw8zERGQJwzhhzYO5X+evQUc7vrdE7zreQVs/YQdsRnOPrfimI7UYsfs4Yd0VgHWDRwWOdtiM4hXWAHttMx+d9knWAl0KtAQDWAVqHG/3tc4LY08H20jpwkm2m0bjrhO0I1rAOCCaWKWtuMsZUGWM+toADMIwxzxtj7ojh99EMy0vzbUdwSnaKN9MJhmYJ20xtGfdL8gvrAItWlOTZjuAU1gF6bDMd7pPkGdYAli0rZ5+jUZnP9tJaUcw20yivXmo7Ajkm8BnyxpifhZhjvt/xmsX+Ha7Ky820HcEpaUn5tiM4Jy05D+B9SVTyfd0veYmal1gH2JWX42l/ExDrAD22mY7X+yTrAO/EowaY/j2vicfvcRHHA3QKM9leWvnZbDON3MIltiPYwzogkFimrCGLxnnHa5UpM2Y7gnOmzLjtCM4Z83W/5AGYKO5YB+iwDtBjm+l4vU+yDiCKO28/dwQ0Osn20hpjm6mMj3o8fsI6IBAOyDtqX2O77QhO6RnfazuCc86Nsc209h/xc78UE+OccZ4egIlisdfTe1YExTpAj22m4/M+yTqAKP4OHPLzc0dQL7b720cHtec420zj0PPHbUewhnVAMLHMIU8Wbd9QaTuCU5amX2U7gnNKMnbYjuCc7Ru5XxJRfOxYV2E7glNYB+ixzXS4TxJRPG3bzM8dGtdXso/WurqBbaax+VWrbUcgx/AMeSIiio0BYGK4N7qn34gTERFdEVgHEBER+Yt1QCAckHfUmbMDtiM4ZWSq03YE5wxPnrEdwTlnzg7ajmAH54wjirsz5zztbwJiHaDHNtPxep9kHUAUd13dHvc5AbQPsL20OnvZZhrdp3tsR7CHdUAgHJB31Plhj28YEcBE5LztCM5hm+mdH/LzBnicM44o/lgH6PCYpsc20/F5n2QdQBR/vn7uCGpwnO2lNTjKNtMYGhixHcEa1gHBcA55R9VWFtuO4JTc1DrbEZyTl1ZrO4Jzaqu4XxJRfNRWFNmO4BTWAXpsMx3uk0QUTyur+blDY1Ux20urvpxtplG9ZrntCOQYniFPRESx4SVqRERE/mIdQERE5C/WAYFwQN5RR45xfm+NvvHDtiM4p3eMbabl637JS9SI4u/wiS7bEZzCOkCPbabj8z7JOoAo/hqP+vm5I6j9Z/zto4M6dIrvMY2je0/ajmAN64BgOGWNo0qKl9iO4JTMlFLbEZyTxTZTKynKsR3BDhPCQkQqpYWsAzRYB+ixzXS83idZBxDFXclSTz93BFS+xOM+OqCyfL7HNJYuK7AdwR7WAYFwQN5RhXnZtiM4JT2p0HYE56Qns820CvOzbEcgIk8U5rG/0WAdoMc20+E+SUTxVMDPHSrF2WwvrcIctplG/tJc2xHIMZyyxlFTU1O2IzglgknbEZxjDN9jWpNTEdsR7OCccURxN+VrfxMQ6wA9tpmO1/sk6wCiuJuc9LjPCcDbz2kxmIywzTSmJj0eP2EdEAgH5B21+9Bp2xGccm5sl+0Izulmm6ntOdhmO4IVnDOOKP52HWEdoME6QI9tpuPzPsk6gCj+9h7w83NHUM+d9rePDurFZraZxv5njtqOYA3rgGCuyAF5E4nAILG+zUsZCTfPtk2VeHFvayjbSupPzLfBj/vXhratVdlr0Th0KJRtTSFxb3L25NnNoW1rXc5qHBw8Esq2UrtTQ9lO2NIGxkLd3pYtldi9O5z90oyPh7KdMJnIhO0IRAsikQgk0eqAsXArze3rK/DCgVPhbGwgMfvo/xlYFdq2GrLXoWnoYCjbSpbErQP+X8/G0La1ZskaHD4fzt+a1J0WynbClnY+vH5i24YKvLg/pH0SgIwn3jFXWAeQI5KmDJKSEmuEJ7U/3Np+y7Yq7H4xnJtIZvQlh7KdsEXaw5th+eq6FXiuOZwvMZISuCtMHQrvfb9jTQV2Hg7nuJYcch0cFklPD21bm26ox96nwhuUNwk4wXgiZnIZm5O8IBDbEZzDFtMTYasRUZywvyFKKKwBiCie2OfosL302GI6HHOKLxGpF5FnRKRJRHaKyLp51rtTRI6KyDEReUREUi/3nIhUi8jPRKRfRPYs1t/AAXlHnT133nYEp/RN9tqO4JyeiT7bEZxz9qyn+yXvqk4Ud2d7PO1vAupnHaDWxzpApdvnfZJ1AFHcne0etB3BKV39HvfRAXX3sc00znX2245gj5064GEAXzLGNAB4CMCjs1cQkRoADwC4EUAdgFIAH7jccwAGAPwZgPcESrZAHJB3VN/AiO0IThmcHLAdwTmDkzwAa/X1DduOYMWFOeNiWYhIp3fAz/4mqPOTHLjQGmSbqfT1+7tPsg4gij9fP3cE1TPE8ROt3kG2mUa/x1/Mx7sOEJESANsBPDb90BMAKkSkbtaqtwJ40hjTaYwxAL4I4LbLPWeM6THGPAVgKEBzLBgH5B1VV7PUdgSnVGRU2Y7gnKrMFbYjOKeursR2BCLyRH01+xuN5RmVtiM4pyKzwnYEp9TXcJ8kovipqy+1HcEpq5dx/ESroYJtprFy7XLbEVyXJiK5s5b5JvmvANBhjJkEgOkB9VYAswv+SgAzb7bRMmOdSz0XFxyQJyKi2PEydSIiIn+xDiAiIvJX7HXAvQD6Zy33xSu+DSm2A1AwR4932Y7glFOj4dyB3ictw+HcUd0nzc1nbEewI9YP1PwwTqTWdIJ1gEYb6wC11pFW2xGc4vU+yTqAKO6amzz93BHQ4dPdtiM4p7GVbaZx7GCb7Qj2hFMHfAbAJ2c9MzbPK04BKBeRFGPMpETv2lyJ6FnyM7UCqJ3xc/WMdS71XFzwDHlHFeZn2Y7glJyUXNsRnJOXyjbTKijIth3BCs4dSxR/hXmsAzRyU/JsR3BOHttMxed9knUAUfwVFPr5uSOo4hx/++igfD6uBVFQnGM7gjUh1QHjxpiBWcucA/LGmC4AuwDcPv3Q2wG0GWOaZ636BIBbRKRsetD+HgCPL+C5uOCAvKOKCpfYjuCU/JQC2xGcU5DKD+JaRUXcL4koPopZB6jkpuTbjuCcPNYBKtwniSieiorZ52gszeUXGFpL89hmGoWlrJvi7G4Ad4tIE4CPALgDAETkyyJyCwAYY44DuB/A0wCaAXQDePhyz4lIloi0AfgGgLUi0iYiD4b9B3DKGkdFIjyVRCOCiO0IzmGb6Xm7X/JSdaK4i0TYR2sYdjRqbDMdb2sAgHUAkQVTrANUWDfpRQw7Zw2v32MW6gBjTCOAa+d4/K5ZPz8C4JF5tjHnc8aYYQAr9Kl0OCDvqN37Ob+3RtPQYdsRnHNosMl2BOfs2ePnfLuxXm7OS9WJ9Hb5PE9lAEeHDtmO4Jwj54/YjuCUXQf8rc1ZBxDF395dfn7uCOr5Y6dtR3DOC0dYa2rse2b2bCn+YB0QDKescdTm9Yv+Zc0VpT57te0IzlmzpN52BOds2lhhO4IdsdxRPdZv04k8tWXNctsRnFKXxTpAa1X2KtsRnLJ5nce1OesAorjbuNnTzx0BbV/Juklr6yq2mcaGa2ovv9KVinVAIByQd1RyMv/XaSQj2XYE5yQL20wrOYX7JRHFR3IK+2iNJB7T1JKExzSNFNbmRBRHKawDVNhH66Uksc00WJuTFqescVRP35DtCE7pn+yzHcE5fRMDtiM4p6fH0/2Sc8cSxR3rAJ3ByX7bEZwzMMk6QOOcz/sk6wCiuOvpOW87glPODnrcRwd0bmDYdgSn9HZ7XDexDggkob7yEpEPisg+ERmYXp4VkV+3nSsRnT3HA7BG/2Sv7QjO6Z3osx3BOWfPDtqOYMWFOeNiWYgA1gEa3fwgrtI3wTpAq5dtpuJzbc46gMLCOmDhznb72+cE0dXPAXmtrl6+xzTOdfp78gfrgGASakAeQBuAjwDYBmA7gJ8A+I6IrLOaKgE11JbajuCUyowa2xGcU5NVaTuCcxoaymxHsINzxlF4WAcs0KqVrAM0KjKrbUdwTlVmle0ITlnlc23OOoDCwzpggRpWefq5I6C1K0psR3DOmiq2mUbdBo/v68A6IJCEmrLGGPPdWQ99TEQ+COAaAActRCIiIqI4YR1ARETkL9YBRETki4QakJ9JRJIBvANANoBnLcdJOMdaum1HcErbaKvtCM5pHTltO4Jzjh/3dL/knHG0CFgHXNqxk572NwG1j56yHcE5baNttiM4pdnnfZJ1AC0C1gGXdvxYl+0ITmnqOGs7gnOOtrHNNE4cbrcdwR7WAYEk2pQ1EJENInIewBiALwJ4qzHm0DzrpotI7oUFQE48s9qUsyTDdgSnZCdn247gnOzkLNsRnJOT4+l+Get8cZ4egGlurAMWhnWAThbrADXWTjq52R7vk6wDKESsAxZmia+fOwLKzUy3HcE5Xh/XAsjJ93j8hHVAIAk3IA+gEcBmAFcD+EcAXxGRtfOsex+A/hmLN6fylBR7U2uEoiC1yHYE5xSlFdiO4JylSz3dLzlnHIWLdcAClBR52t8ElJ9aaDuCcwpSWQdoeF2bW6gDRKReRJ4RkSYR2TnfHOMicqeIHBWRYyLyiIikznpeROQnItKnT0GLhHXAApSU5NqO4JSyfI/76IBKC5bYjuCU4vJ82xHs4XhAIAk3IG+MGTfGNBtjXjTG3AdgL4Dfn2f1BwHkzVhWxCkmERERLQLWAUREtAAPA/iSMaYBwEMAHp29gojUAHgAwI0A6gCUAvjArNXuBXBsUZOSCusAIiLyQcINyM8hCcCc1xcZY8aMMQMXFgCD8Y1mz4t7OSe6xpEh3gNI68DgEdsRnLNr10nbEayI5fK0i5epEc2PdcAcXtjPOkCjiXWA2uHzh21HcMoL+/zdJ+NdB4hICYDtAB6bfugJABUiUjdr1VsBPGmM6TTGGESnP7ltxnbWAXgLgL8J9IdTvLAOmMOuF1psR3DKL4/yXjJazx9mm2nsearJdgRrOB4QTEINyIvIgyLyKhGpnp477kEArwHwNcvREs7GdcttR3BKXVaD7QjOWb1k9mcaupwNGzw9KYeXqFFIWAcs3KbVrAM0arNW2Y7gnPrsetsRnLJpjcf7ZDh1QNrMucCnl/kmfa4A0GGMmQSA6cH2VgCVs9arBDDzbImWC+tMT13zCIC7AUwF/MspZKwDFm7DpgrbEZyytWaZ7QjO2VLPNtNYd9VK2xHs4XhAICm2A8xSAuBfAZQjOgfcPgCvM8b8l9VUCSg1Jdl2BKekvHy6SFqAFEm07iHxpaZ6vF96ehCl0LEOWCCv+5sAknlMU2MdoOP9Phl7HXAvgD+d9dhfAPhEzFue2/0AvmWMOSwi1Yv0O0iPdcACed/nKKVx/ESNY046qWme100cD1BLqHeMMeZO2xlc0ds/bDuCUwanBmxHcM7ApDdXfIamr4/7JVEsWAcsHOsAnfOTrAO0BlkHqHCfjNlnAHxy1mNj86x7CkC5iKQYYyZFRBA98332vEGtAGpn/Fw9Y51XA6gUkQ8j+pk4V0RaAOwwxnQH/isoJqwDFq63d8h2BKf0nGcfrdUzyDbT6DvHuol0EmrKGlq4zi5+sNQ4N37WdgTndI+dsx3BOZ2d/bYjWCEhLESk09nNOkCjZ4J1gNZZ1k4qPtfmIdUB4zPnAp9e5hyQN8Z0AdgF4Pbph94OoM0Y0zxr1ScA3CIiZdOD9vcAeHx6GzcaY6qMMdUAbgAwYIyp5mA8ueKMp587gjrdw8FSrY6zbDONrlO9tiNYw/GAYDgg76g19WW2IzilOtPj+bwCqs2uth3BOatXl9uOYAfnjCOKuzV1rAM0KlkHqNVk1diO4BSva3M7dcDdAO4WkSYAHwFwBwCIyJdF5BYAMMYcR3RqmqcBNAPoBvBwoN9GlGBWr+H83hobKkttR3DOuhq2mUbD5tm3MfEIxwMCSagpa4iIyD2x3hk9yGtFpB7AVwAUIzrH6PuMMQfnWO9ORD+oJwH4CYDfMcZMzHheAPwYwFZjTH6A+ERERF6zUQcYYxoBXDvH43fN+vkRRG/eeqlttQDI16cgIiIiG3XAlYBnyDvqRCunE9FoH2uzHcE5bSPttiM4p6WFl/fH0cMAvmSMaQDwEIBHZ68gIjUAHgBwI4A6AKUAPjBrtXsBHFvUpESL4MQp1gEanWOnbUdwTvso6wAN7pNEFE8tJzi7kkZzJ/torWPtbDONk00dtiOQYzgg76jMjFTbEZySnpRhO4Jz0pPTbUdwjrf7ZZwvUROREgDbATw2/dATACpEpG7WqrcCeNIY02mMMQC+COC2GdtZB+AtAP5Gl4DIPm/7m4DSknhM00pnm6lkpHu8T/JSdaK4y8hMsx3BKVlpHvfRAWX5fFwLIDPL47qJdUAgHJB3VFlJru0ITilKLbYdwTlL04psR3BOaVme7Qh2hHMAThOR3FnLfFVNBYAOY8wkAEwPtrcCmD1xXyWAkzN+brmwjoikInoJ+90ApgL+5UTWlC1lHaBRyDpArYh1gEq5z7U5P4gTxV2Zr587AlpW6HEfHVB5EdtMo2RFoe0I9rAOCIQD8kREFJMLc8bFsiA6dUz/rOW+RYx9P4BvGWMOL+LvICIiuuKFVAcQERGRg1gHBMObujpq9/5TtiM4pXHokO0Izjk42Gg7gnP27Gm1HcFlnwHwyVmPjc2z7ikA5SKSYoyZnL4xayWiZ8nP1AqgdsbP1TPWeTWAShH5MKLHwlwRaQGwwxjDSTkp4e06wDpA4yjrALUj54/YjuCUXazNiSiO9uw6efmV6KLnm3lPOa0XjrDNNPY9c9R2BHIMz5B31JqGMtsRnFKdVXv5lehl6rJrbEdwzurV5bYj2BHOJWrjxpiBWcucA/LGmC4AuwDcPv3Q2wG0GWOaZ636BIBbRKRsetD+HgCPT2/jRmNMlTGmGsANAAaMMdUcjCdXrK1nHaBRlTn7FhN0OSuzVtqO4JS1PtfmvFSdKO5Wr11mO4JTNlSW2o7gnPUr2WYaq7ZU2Y5gD+uAQHiGvKO8vnFUAOnzTkVN80lP4o2CtDI8vclirJeZBXzt3QAeFZGPAhgAcAcAiMiXEb2R65PGmOMicj+Ap6df8zMADwdPSpQ4WAfopPGYpsY20/F5n7RUBxB5zdfPHUFl8qauahlsM5V0j2+0zDogGA7IO2rg/KjtCE4ZmjpvO4Jzzk8O2Y7gnMEB7pfxYoxpBHDtHI/fNevnRxC9eeulttUCID/EeESLjnWAzvAUj2laQ2wzFe6TRBRPAwMjtiM4pX+YfbRW/xDbTGOwj3UT6XBA3lGnTvfajuCUM+OdtiM4p2PsjO0IzjnV1mM7gh2xXmbm6TfiRLFobWcdoNE11mE7gnPOsA5QafW5NmcdQBR3ba2efu4IqKXb4z46oNYzbDON08c9nvmUdUAgnEPeUetWeTpXdUArOXesWn02547VWuvpXI68qzpR/K1vYB2gUZ3FOkCLc8jrrPe4NmcdQBR/a9cvtx3BKZuq/O2jg9qwkm2msXprte0I1rAOCObKPEN+dBSQiO0UL5PRMRzq9tIqxkLbZsGh3FC2E7YfJG0ObVvnV1TgqbZw5kD7Qf7aULazGJI7w5srP62yAjtbw9lW0YHE7GHT2gdC3V5K1XB42xxJwEsEzfg8j4PfiFNiGR4FkhKrDsg8M8/+E1D6ionQtpnbmBnKdsL23aQtoW3rhmWVeKo9nLk9/1/e+lC2sxhMV3h1wMSKCjzdlhzKtgoOSSjbCVvW6fDq8/RlY6Fuz5xPvEvfTYR1ALlhuCQZyWnh9F9hyewMtx80SYBJDmeb6f1ToWwnbJGQ/j4ASCs1yDgXTmczsSSUzSyKpMnwOlSJmNC2JyHmCtPImvC+dBivLAx1eyPV4X52CENkhHVAmHiGvKNOtZy1HcEpzb283ErrWA/bTKvN58vUiCiuWlvP2Y7glOY+XtqvdYy1k8qpk6zNiSh+WjlljUpLB49pWic5PaLKyVOszUnnyjxD3gMpqYn1jX+iS03id09abDM9b/dLfiNOFHcpKZ72NwGlJvOYpsU20/F6n2QdQBR3KSnsozVSeExT43tMJ5V1QGyv9xD3MEeVLy+wHcEpVXl5tiM4pzKfbaZVVlFoO4IVnDOOKP6WLcu3HcEpVTn5tiM4pzKXdYCGz7U56wCi+GMdoLOihMc0reVsM5Vl5fm2I1jDOiAYniFPRESx4TfiRERE/mIdQERE5C/WAYHwDHlH7d910nYEpzzXftp2BOc838Y20zqw84TtCETkiX17T9mO4JTnOttsR3DO86ydVPbvZm1ORPHDOkBnVyOPaVq7j7DNNPbu5z5JOhyQd1Td6vDu3uyD9cUltiM4Z10J20yrdt0y2xGsEABiTPDF9h9A5KD6hlLbEZyyvojHNK11S9lmGj7X5qwDiOKvvqHMdgSnrK7iMU1rdTXbTKO+zt/a3EYdICL1IvKMiDSJyE4RWTfPeneKyFEROSYij4hIaqzPhYUD8o7KzEqzHcEp2Wmh7ztXPLaZXmZWuu0IdpgQFiJSycxkHaCRncr20spOZR2g4fU+yTqAKO4yM9lHa2RlsL20MtlmKlmsA+JdBzwM4EvGmAYADwF4dPYKIlID4AEANwKoA1AK4AOxPBcmDsg7auj8qO0IThkYG7cdwTkDY2O2IzhnaNDP/ZI3cSGKv6Hz7KM1BsbZXlqD46ydNHyuzVkHEMXf0BCPaxrnh9leWueHWQdonPd4n4x3HSAiJQC2A3hs+qEnAFSISN2sVW8F8KQxptMYYwB8EcBtMT4XGt7U1VEtzd22Izilsees7QjOaTp7znYE55w8esZ2BCLyxIkTPK5pNPayvbQaz7HNNFqOsTYnovg5cZx9tEbzaX621TrWxveYxokW1gExShOR3FmPjRlj5vqmowJAhzFmEgCMMUZEWgFUAmiesV4lgJk3+WmZfiyW50LDM+QdtW5zhe0ITtlR7ufc3rHYvpxtprV2a5XtCHbwUnWiuFu/YbntCE7ZUcr20trO2kll3SaPa3PWAURxxzpAZ3M9j2lamxrYZhob1q2wHcGecOqAewH0z1rui98fEX88Q56IiGIS6+XmvFSdiIjIXawDiIiI/BVSHfAZAJ+c9dR88wCdAlAuIinGmEkREUTPYG+dtV4rgNoZP1fPWCfoc6HhGfKOOt3aYzuCU0709dmO4JwTvX22IzinvcXTy/p4ZhxR3LW19dqO4JQTA2wvLdZOOqdPeTwdAusAorhjHaDTeqbPdgTnnOrssx3BKW2nPd4nw6kDxo0xA7OWOQfkjTFdAHYBuH36obcDaDPGNM9a9QkAt4hI2fSg/T0AHo/xudBwQJ6IiIiIiIiIiIiIXHA3gLtFpAnARwDcAQAi8mURuQUAjDHHAdwP4GlE55bvBvBwLM+FiQPyjlpeWWg7glNq8vNtR3BOTUG+7QjOWVZdbDuCFfG+qzoRAStWFNiO4JSaXLaXFmsnneUVRbYjWMM6gCj+WAfoVJbm247gnIqyfNsRnLJiub/7pI06wBjTaIy51hjTYIzZbozZP/34XcaYJ2es94gxpnZ6udMYMxHrc2FJqAF5EblPRHaKyKCIdInIt0Vkle1cRER0CbxUnULCOoCIyEGsAygkrAOIiBzEOiCQhBqQB/BqAJ8HcA2AXwWQCuBHIpJtNVUCOrjnlO0ITtnZ0W47gnNeOM020zq066TtCFbwzDgKEeuABTqw/7TtCE7ZeYbtpfUCayeVg3v9rc1ZB1CIWAcsEOsAnT1HeUzT2tvENtPYf7DNdgRrWAcEk1AD8saY1xtjHjXGHDTG7AXwPkTvlLvNbrLEU1231HYEp6wq9HMqkVg0FPt76XVQVfWltiMQOY11wMLV1PC4prGqgO2ltaqIbaZRXcvanChWrAMWrmYl+2iNuuX8bKtVu4LvMY2aatYBpJNiO8Bl5E3/t2euJ0UkHUD6jIdyFj1RgshekmE7glNy09NsR3BObnr65Veil8nO8XS/NCa6xPJ6ormxDphH9hL20Rq5aWwvrZw01k4aXtfmrANo8bAOmEd2No9rGkuy2F5aS7JYB2gs8XmfZB0QSEKdIT+TiCQB+CyAp40xB+ZZ7T4A/TMWb64RGRketx3BKUPjod9/4YrHNtMbGR6zHcEKXqJGi4F1wKWNjLAO0BiaYHtpDU2wDtDweZ9kHUCLgXXApY2MsI/WGB5le2mNsM1UhlkHsA5QStgBeUTnjlsP4N2XWOdBRL81v7CsiEOuhNB8pMN2BKccONtlO4JzDnaxzbSOHfR0nr3L3aBlIQvRK7EOuISjTWdsR3DKgXM8pmkd7GabaXhdm7MOoMXBOuASjjZ12o7glCMneUzTOtLCNtM42uxxbc46IJCEHJAXkc8BeBOA1xpj5v2W2xgzZowZuLAAGIxbSMs2bK2yHcEpVy9bbjuCc65awTbTWr+jxnYEoisC64DL27ipwnYEp1xd5s0YTWiuYu2ksmELa3OisLAOuDzWATpbV/GYprVlNdtMY9MG7pOkk1BzyIuIAPgHAG8F8BpjzAnLkYiI6HIigERiez0RwDqAiMhJrAMoJKwDiIgcxDogkIQakEf0srT3AHgzgEERKZt+vN8YM2IvVuLpON1rO4JTTvb3247gnNY+tplW56k57zflB08vM6PQsQ5YoPb2PtsRnHJysM92BOe0DrAO0PC+NmcdQOFgHbBArAN02rp4TNM6zTZTae/osx3BLtYBaok2IP/B6f/+bNbjdwB4NK5JEtzkxJTtCE6ZiHj6lVsM2GZ6vu6Xsd6IxdebuNCcWAcs0OSkn/1NUBNTPKZpsc10fN4nWQdQiFgHLNDkJPtojUke09T4HtOZYB0Q0+t9lFBzyBtjZJ7lUdvZEk1FdbHtCE6pKyiwHcE5tYVsM60VK5fajkDkNNYBC1dZWWQ7glPq8gttR3BOLWsnlYoq1uZEsWIdsHCVlTyuaVSX85imVbWMbaZRVcHanHQS7Qx5IiJyjTHRJZbXExERkZtYBxAREfmLdUAgHJB31OH9895snuawq7PTdgTn7O7osB3BOUf2tNqOYAUvUSOKv0MH221HcMquLh7TtHazdlI5fMDf2px1AFH8sQ7Q2X+MdYDWgWbWARoHD/u7T7IOCCahpqyhhVtRxcthNFbm59uO4JwaXqqutryGl6sTUXysqOCl6hor83hM06ph7aSygtNIEVEcsQ7QqSxjHaBVWZZvO4JTKlbwPUY6PEPeUTm5mbYjOCU/I8N2BOewzfRy8rJsR7DDILa7qnv6jThRLHJz2Udr5KezvbRYB+h4XZuzDiCKO9YBOnnZbC+t3CVsM43cHNYBMb3eQxyQd9To6ITtCE4Znpi0HcE5IxN8j2mNjYzbjmAFL1Ejij/WATojk2wvrZFJ1k4ao6N+1gAA6wAiG0ZH2UdrjIyxDtAaHeN7TMPn2px1QDAckHdU44HTtiM4ZU8X5z/T2tN5xnYE5zTu83T+WN7EhSjujhzmXKgau7tZB2jtOcM202j0eT5n1gFEcXfE4/mqgzh4nJ9ttQ4eYx2gcbjR49qcdUAgnEPeUZu2V9uO4JTrlq+wHcE511awzbQ2Xr3SdgQi8sTmLZW2IzjluvIK2xGccy1rJ5VN26ptRyAij7AO0Nm+hsc0rW1r2WYaWzZxnyQdniFPREQx4SVqRERE/mIdQERE5C/WAcFwQN5RZzr6bEdwStvggO0IzmkbYJtpdZ3utR3BDt7EhSjuOjv7bUdwStt5HtO0TrN2UvG6NmcdQBR3nZ3sozU6zrK9tNhmOp1nPK7NWQcEwgF5R42O+HvDiCCGeYNSNbaZ3ghv6hr49USkwzpAh8c0vSG2mYrP+yTrAKL4G/X0c0dQw7ypq9qIxzcpDcLn9mIdEAznkHdU1cqltiM4paGwyHYE5zQUsc20qupKbUcgIk9U1xTbjuCUhgIe07RYO+mwNieieGIdoFO7nMc0rZUr2GYaNVXcJ0mHZ8gTEVFsIia6xPJ6IiIichPrACIiIn+xDgjkihyQj4yMISIR2zFeJqmtK9TtHe0fQNLgaCjbKk7Q6ySyO7ND21Z3ZgcqRsJ5T0xmpoWyncWQ1h/eZVLdWW1YMRzO9jLbBkPZTujO9oS6uaafDQMh7ZeRsbFQthOmiJnn/cA54yjBRM6fR0QSq69Oawu3vzneN4S08+H0E0uTCkPZTtiyutJD21ZnZhfKR8IpeCYzMkLZzmJIHwyv/u3K7MSykXA66OxTQ6FsJ2zJp8+Gtq3m/vNIPh9ODQAAUwPnQ9tWWFgHkCsG6qeQlDllO8bLZPSEe+x4cbAXQxXhbDP3xHAo2wlb6sBkaNtq7TqJ3OFwpvmZykwOZTuLIXksvPd9a08rckJqs+HS8Gq6MJ1blxratgbSenD+xvD+ztes3x/atsIyfn4cj8/1BOuAQBJ0KJYup7QiMT88J6ryklzbEZxTxjZTK63w87K+C3PGxbIQkU7JigLbEZxSXsxjmlbZUraZRonHtTnrAKL443FNp6wsz3YE57DNdJbn59iOYA3rgGA4IO+ovGJ/d/YgCvKzbEdwDttML28p90siio/8oiW2IzilIC/TdgTnFOSxDtDIL+Y+SUTxU5DL45pGfgGPaVr5HA9QKcpie5HOFTlljQ8mx8O7fMsH4xOJdcmiCybYZmqTY57ul8ZEl1heT0QqE+PsozV4TNObmGSbaUz4XJuzDiCKO/bROqwD9NhmOuNTHrcX64BAOCDvqAO/PGY7glP2HTptO4Jz9h1km2kd+GWz7QhWCGK7zExCS0Lkj4M7T9iO4JQ9je22Izhn72HWARoHnztuO4I1rAOI4o/HNZ39+9psR3DO/v1sM40XTvm7T7IOCIZT1jhq86tW2Y7glO2bKm1HcM62zWwzrc2vXm07gh0mhIWIVDZfX2c7glN2rK+wHcE52zewDtDYfGOD7Qj2sA4girsd63hc09i6rcp2BOds3co207iu2uN9knVAIByQJyIiIiIiIiIiIiKKA05Z46iz7b22Izil6+yg7QjOYZvpnT3t534pxkBimPctltcS+epsR7/tCE45c+687QjO6TrHOkDjbHuf7QjWsA4gir+uHh7XNLq7eEzT6u5mm2l0DPjbXqwDguGAvKMG+4ZtR3DKwPlR2xGcMzg4ZjuCc7zdLyPTSyyvJyKVwX5P+5uABodYB2gNsnZS8bYGAFgHEFkwwOOayuAg20uLbabTP+rx+AnrgEA4ZY2jatYutx3BKXXVS21HcE5tTbHtCM6pWefnfnnhG/FYFiLSqVldbjuCU+oqeUzTqq1i7aRRs3aZ7QjWsA4gir+6Ch7XNFbW8pimtXIl20xjdYm/+yTrgGA4IE9ERERERETOEJF6EXlGRJpEZKeIrJtnvTtF5KiIHBORR0Qkdfrxm0TkeRE5JCIHReRTIsLPxkRERBQXLDoc1bz3lO0ITmlsPmM7gnOa2GZqzXtbbUewg3dVJ4q75gOnbUdwypETXbYjOKfxOOsAjeZ9HtfmduqAhwF8yRjTAOAhAI/OXkFEagA8AOBGAHUASgF8YPrpXgDvNsasBbANwHUA3hsoCZEFR1p4XNNoauIxTYttpnOg0+N9MsHGA0QkSUT+YfrL+GYR+fAl1p33C/7LPPf3ItIiIkZENgfJyQF5RxWV59mO4JTioiW2IzinuCjHdgTnFJXl245ghzGxL0SkUlSaazuCU5YWsA7QWlrINtPwtgYA4l4HiEgJgO0AHpt+6AkAFSJSN2vVWwE8aYzpNMYYAF8EcFs0stltjDk+/e9RAHsAVAdsAaK443FNp7iY7aXFNtMpzcm2HcGexBsPuB3AWgANAK4C8CfzXUmHS3/Bf6nnvgngBgAng4bkgLyjCkr4QVyjqMDjzjGgwoIs2xGcU+DpAJmY2Bci0ilYyi9NNYryeUzTKsxn7aRRUOLvPhlSHZAmIrmzlvR5fmUFgA5jzCQATA+2twKonLVeJV7+QblljnUgImWIDt5/L5Z2IIqnojwe1zQKC3lM02Kb6SzN9re9EnA84F0AHjHGTBljegB8HdNfyL8s9yW+4L/cl//GmJ8bY9piCckBeUdNTU7ZjuCUyUlPb9scg8kptpnW1AT3SyKKjyke11R4TNObnOIxTYO1eczuBdA/a7lvsX+piOQC+C6ATxljXljs30cUFh7XdDgeoMf3mM5khO0VI80X85ezoC/kcekv+Bf65X9gCTUgLyKvEpHvikj79Dw8b7GdKVHtf6bZdgSn7DkY0xdXXtq7n22mtf+Zo7Yj2JF4l6iRo1gHLNz+547bjuCU3Yc5577WnkNsM439zx6zHcGecOqAzwDIm7U8OM9vPAWgXERSAEBEBNEPyLNv5tMKoGrGz9Uz1xGRHAA/APAdY8ynY20Gih3rgIXbfYR9tMY+3oNPjW2m83yrx/tkOHXAgr+YF5FnReTsPEtF3P7uGCXUgDyAbAB7AXzIdpBEt/H6etsRnLJlgzP7ZMLYspFtprXxhgbbEayQSOwL0TTWAQu08Zpa2xGcsm3tCtsRnLN1HdtMY+N1/tbmIdUB48aYgVnL2Fy/zxjTBWAXonPEAsDbAbQZY2afsfQEgFtEpGx60P4eAI8DgIgsQXQw/gfGmL8KvVEoKNYBC7RtDftojc1bQjup1RubN7PNNK6uWm47gjUh1QEL/mLeGHOtMaZ4nuUULvOF/AyX+oJ/oV/+B5YS1obCYIz5PoDvA0D0b6X5JCUn2ncpiS05ie8nrSS2mZq3+2WsZ7nzDHmaxjpg4ZKS2T4aPKbpJSV5ekwLyOt90k4dcDeAR0XkowAGANwBACLyZURv5PqkMea4iNwP4Onp1/wM0Ru0AcDvI3qjt2wRedv0Y98wxnwy2B9BYWAdsHA8rumwvfTYZjrJ4nHdFE4dMG6MGQgp0TcAvF9EvoHowP67ALzplb/WdInIhS/4H8WsL/gv9VwYEmpAXmt6PqGZcwp5czelns5+2xGccrbnvO0IzjnbM2Q7gnO4XxLFl9d1wJmw6lU/nO3lMU3rbC9rJ42eM6wB4skY0wjg2jkev2vWz48AeGSO9T4JgIPvjvO5Djjbx+OaxrmzPKZpnTvHNtPoOs99MoF8FcAOAEcBGACfNsbsBwARuQXALTPqhTm/4L/ccyLyMIA3AigD8EMRGTTG1GlCOj0gj+h8QvfbDmFDb/eg7QhO6ekbth3BOb0cvFDr7fJ0gMxML7G8nigYf+sAfrBU6elnHaDF2knH69qcdQDZ420dwOOaDj/b6rHNdM4OebxPJlgdYIyZwjxTnxljngTw5Iyf5/yCfwHP3R1rTtevqXgQL59fyJuJ1Go3ePOnhqJhZYntCM6pr2WbadV6Ou++wEBMDEuAI7CI1IvIMyLSJCI7RWTdPOvdKSJHReSYiDwiIqnTj98kIs+LyCEROSginxLx+TpDZ/lbB6xbZjuCUxqql9qO4JyGGtYBGrXrvel+XsFGHUA0zds6oKGKxzWNuvpS2xGcU1fHNtNYW+rvPsk6IBinBx+MMWMzb/wDwONTU4iILAnnrupaDwP4kjGmAcBDiM7r9jIiUgPgAQA3AqgDUArgA9NP9wJ4tzFmLYBtAK4D8N4gQcge1gFERAnATh1AxDqAiCgRsA4IxOkBeZ8dP9BmO4JTjh7vsh3BOc3Hu21HcM7x/adsR/CCiJQA2A7gsemHngBQISKz52y7FdEbu3UaYwyALwK4DQCMMbuNMcen/z0KYA+id18ncsLxQ+22Izil6SSPaVpHW1g7aRw/eNp2BCLyCI9rOs3NPKZpNR9jm2kcPsN9knQSakBeRJaIyGYR2Tz9UM30z5U2cyWivKIltiM4JT8vy3YE5+TnZdqO4Jy8Ym/uI/VykRAWIE1Ecmct6ZhbBYAOY8wkAEwPtrcCmH2sqARwcsbPLXOsAxEpQ3Tw/nuaP5vCxzpg4fIKWQdoFOSwDtDKz2WbaXhdm4dTBxCxDlAoYB+tkp/P9tLiGIpOYZbH4yesAwJJqAF5RM943D29AMCnp//9l9YSJaii8nzbEZyy1OcPSQEVs83UfN0vY5ovbnoBcC+A/lnLfYueXSQXwHcBfMoY88Ji/z66LNYBC1RUlms7glOWFmbbjuCcpfzSR6WoLM92BGtCqgOIANYBC7a0gMc1jeJiHtO02GY6pTn+thfrgGBSbAeYyRjzMwBiO4cTPH3DBmXYXmpssgDYaLH4DIBPznpsbJ51TwEoF5EUY8ykiAiiZ763zlqvFUDtjJ+rZ64jIjkAfgDgO8aYT8eQnULCOmDh2N3osL30WDvpsLmIYsc6YOHY5eiwj9Zjk+kYthgpJdoZ8rRAe37RZDuCU17cx7m9tXbtnT22SZez5+eNtiPYYRDjTVwAAOMzb8o1vcw5IG+M6QKwC8Dt0w+9HUCbMaZ51qpPALhFRMqmB+3vAfA4EL0kGtHB+B8YY/4q7CYhWmx7n5n9dqdLeeEg6wCtFw+wzTT2PuVxbR5OHUBECjyu6ezedfLyK9HLsM10nm3x+D6PrAMC4YC8ozZcN/vehXQpm9etsB3BOZs2sM20NlxXbzuCHXbuqn43gLtFpAnARwDcAQAi8mURuSUayxwHcD+ApwE0A+gG8PD0638fwFUA3iYie6aXj8XUDkRxtOHqlbYjOGXLmuW2Izhn81q2mcaGa2svv9KVyk4dQOS1LavZR2ts3FRhO4Jz2GY6V1V6vE+yDggkoaasoYVLTkm2HcEpKSn87kkrJZltppWc6ul+GeuNWAK81hjTCODaOR6/a9bPjwB4ZI71PolXTpFD5IxkHtdUeEzTS0n29JgWkNe1uYU6gMh3PK7pcDxAj+8xnZQkj9uLdUAgHr9j3NbXPWg7glN6+oZtR3BOL9tMra9rwHYEIvJE39nztiM4paefxzStnv4h2xGcwtqciOKJxzWd3l4e07TYZjpnh7hPkg7PkHdU9+le2xGc0nWWH5K0uvjBUq273dP9MtY7o3t6iRpRLLo7+mxHcMqZc/wCQ6uLX/qodLf32Y5gD+sAorg708M+WqO7i59ttbo5HqDSMeBxe7EOCIRnyDuqfnOl7QhOWV1XajuCc1bVs8206jdX2Y5gB+eMI4q7et7nQ2XNyhLbEZyzupZ1gEa9z3Ptsg4girs1NTyuaTSsKrMdwTkNDWwzjQ3lHtdNrAMC4RnyREQUm1gPop4egImIiK4IrAOIiIj8xTogEJ4h76iWw+22IzjlWMtZ2xGcc5xtptZy6LTtCETkiZbGTtsRnHKs9ZztCM451so6QKPlcIftCETkkWOneFzTOHG823YE55w4wTbTaOxm3UQ6HJB3VHZupu0ITlmSnW47gnPYZnre7pe8RI0o7rJzMmxHcMqSrDTbEZzDNtPJzvV4n2QdQBR37KN1spfws61WNscDVHLSPW4v1gGBcEDeUUuXF9iO4JTSpTm2IzinhG2mtnRFoe0IdhgAkRgWP4+/RDFZuizfdgSnlBbzmKZVWpxrO4JTvK7NWQcQxV1pEY9rGiUlPKZpsc10luV6vE+yDgiEc8gTEVFMJMa7qsd0R3YiIiKyinUAERGRv1gHBMMz5B215+eNtiM45YW9rbYjOOfFPWwzrT3/c8R2BCLyxJ6nm21HcMrOA6dsR3DOC/tZB2js+UWT7QhE5JGdB3lc09j14knbEZyzaxfbTOOZFu6TpMMBeUetvWql7QhO2bBmme0Izlm/lm2mtfbqWtsR7OCccURxt3Zbte0ITtnYUG47gnM2rGIdoLF2R43tCPawDiCKOx7XdNatX247gnPYZjrbVni8T7IOCOSKnLLGTIzDSGL9D4309Ye6vdSp8dC2mTQ2Fsp2wrakPSu0beVlZmDJCyGd6ZWSwLvNxERom8rNzUTW3nC+5TVj46FsJ2wm5Pd+mhiYkdFQt+mEiAFi6XMjidVfk/siwyOIyKTtGC/XdTbUzaWOliAS0jbTRhOzDkgNsQ4ozMhB/q6ucDaWlLjns8h4eHVAQdYS5O7uDGVbZvB8KNsJ21SIuVImlmGqpze07ZmJxKudjJnn/cU6gBJM9opBJGcl1j7UvT0v1O2NVqSgO6QpvsdzssPZUMiyzkZC25aUZGJ0aTg3wjWJWwZgsCK8m/2urMtGV1pmKNsav24wlO2E7U/W/1do2yrP2I6bRl8IbXt35oVTg4VpYDCCx+d6gnVAIAk8skiX0n82MTu0RDXQM2Q7gnPYZnr95zzdL2P9VtvTb8SJYuFtfxPQQM+w7QjOYR2g43VtzjqAKO56RkZsR3BK/yDbS6t3mG2mMRbpsx3BHtYBgSTwd3t0KR3HQzrLyxMdJ8M9M9EHbDO9juPdtiMQkSfY3+h0nOqxHcE5Ha1sM42OE6zNiSh+WvvDvQL/Snf6TJ/tCM5pO8f3mMbgRLvtCOQYDsg7avVVns5VHdCqLVW2IziHbaa3eoen93bgnHFEcedtfxPQqk0rbEdwzqrNFbYjOGX1Do9rc9YBRHG3uazMdgSnrK3zeH7vgDZU8D2mUZy+1nYEe1gHBMIpa4iIKDa8RI2IiMhfrAOIiIj8xTogEA7IO+rkodO2IziltSnxboiR6NhmeicPe3qZGm/iQhR33vY3AbU2czoRrdajZ2xHcMrJwx7X5qwDiOLuaA+nFdNoaTtnO4JzjnXxPabRN3HCdgR7WAcEwilrHJWeGd7ds33A9tJjm+mlZ7HNiCg+2N/opGek2o7gnPQMvsc0WDcRUTxlpvDcSo30NLaXVkYq20wjRTJsRyDHcEDeUWU1S21HcEppRaHtCM5hm+mVVRXbjmCHMYCJxLD4+Y04USy87W8CKl1RYDuCc0or2GYaZdUe1+asA4jibkVuru0ITikvybMdwTnLC/ge01iS4vF9ClgHBMKvvIiIKDacM46IiMhfrAOIiIj8xTogEA7IO2rvzw7bjuCUfc80247gHLaZ3t6fH7EdwQ7OGUcUd972NwHte87jeT0D2vfL47YjOGXv/3hcm7MOIIq7X7a12Y7glF0HT9mO4Jydx/ke0+gc3WU7gj2sAwLhlDWOWrVjpe0ITlm1udJ2BOes2sI201q1vcZ2BCLyBPsbnVUbV9iO4JxVmypsR3AKa3MiiqdNpWW2IzhlbR3bS2t9RantCE4pTl9jOwI5hmfIOyojO912BKfw5nd6vDmZXkaWr/tljJeowc9vxIli4W9/E0x6Jm/qqsU20/F7n2QdQBRvmbzhpkpGOo9pWpmpbDONFMm0HcEi1gFBsBd31GDPedsRnDLYN2w7gnPYZnqDvUO2I9jBOeOI4o51gM5g34jtCM5hHaDj9T7JOoAo7vpGR21HcMrAebaXVv8I20xjLDJgO4I9rAMC4YC8o041dtiO4JS25jO2IzinrbnLdgTnnGrydL/kAZgo7k4d7bQdwSltJ7ptR3BO23G2mYa3NQDAOoDIguO9vbYjOKW1vcd2BOec6OJ7TGNgotV2BHtYBwSSkHPIi8iHRKRFREZF5DkRucp2pkSz9tp62xGcsoZz7aqt2V5tO4Jz1l5dZzsC0RWBdcDlsb/RWcP7oqit2VplO4JT1l7D2pwoDKwBFmZrebntCE5Z37DMdgTnbK7ie0xjafp62xHIMQk3IC8i7wLwaQB/AWArgL0AfigiJVaDERHR3CKR2BeiaawDiIgcwzqAQsIagIjIQQlWB4hIkoj8g4gcE5FmEfnwJdatF5FnRKRJRHaKyLrLPSciGSLy7enH94rIf4mI+myphBuQB/CHAB4xxvyLMeYQgHsADAP4bbuxEgunrNHh9Ct6bcfYZlreXq5+4RK1WBail7AOWABv+5uA2o6ftR3BOZyyRsfrfZJ1AIWHNcACccoaHU5Zo3eim+8xjf6Jk7Yj2JN4dcDtANYCaABwFYA/mTnQPsvDAL5kjGkA8BCARxf43JcArDLGbALwHQBf1oZMqAF5EUkDsA3Af194zBgTmf75Wlu5ElFySkL9r0t4bC+95GS2mVZySrLtCEROYx2wcOxvdHhM02Ob6bC9iGLDGkAnWdjnaCQnsb20UpLEdgSnJAlr8wTyLkS/3J0yxvQA+DqA22avNH311XYAj00/9ASAChGpu9RzxphRY8z/M+biNwm/BFCtDZlovVIxgGQAs+/AeQZA2eyVRSRdRHIvLABy4pAxISyrLbUdwSnl1cW2IziHbaa3bKWnV9Mm3jfi5C7WAQvkbX8TUHlVoe0IzimvKrIdwSle1+asAygcqhoA8LsOqMrPsx3BKcvL8m1HcE5FUb7tCE7JSVlhO4I94dQBaTP78+klPWCiSgAzL1lomX5stgoAHcaYyeifYQyA1ul1L/XcbL+P6FnyKinaFySY+wDcbzvEV49/HmXV0Q/Gv5r0jsuu/6OxrwEAOlu68d5Vf7CY0YiIFl/EAIjhw3SEH8QpsISoAzR+9TdvwB9/8S4AwFf/+tt47MFvW9kGEVFoWAeQPc7VAZ/6tdfh1nXRmz/e9o2v47m2tkuu/39vfSeuqagAANz4T4/g9MDAoubb1rACX/7DdwIAnnz2IO7/yg8X9fcR0RUgnDrgXgB/OuuZvwDwidmri8izAOrn2dqW4EH0ROSjAOoA/Ir2tYk2IH8WwBSA2aeYlALonGP9BxG96csFOQDmPaIVLy/Eb93/Dmy9eSOKlhVifGQcfd0DaD3chqYXjuGxB74Za/642f+LRtsRnHLguWO2IziHbaa3/+km2xGsMCaC6BXFwV9PNG1R64Df+vN34L33v/TF+Yv/tRcfef0nX7ZO/dYafGHnQy977A1Zv4mJsYkFxKdEdWBni+0Izjnw/AnbEZyy/yl/a3PWARQSbQ0AKOuA31n1WvzOqte+7LHJyBT6J0ZwuL8Djx3/JZ7qOqoObsPzp0/bjuCUvYcv/cUHvdKLJ/ge0zgzutd2BGtCqgM+A+CTs54am3t9c8lpzESkFUAVgGenH6pG9Oz22U4BKBeRFGPMpIgIomfAtwIYuMRzF37PHwN4G4CbjTHDl/wj55BQU9YYY8YBvIgZ3yyISNL0z8/Osf6YMWbgwgJgcL5tF5Tm43PPPYg33HUzyqpLkJqWguy8LCyvK8O1v7Edt3/81kX4i+Z272v/Ave+9i/wwG3/J/A2ajdVhZjoyle7zuPLhwJim+nVbpzr6iUiWqjFrAPmsvmmDSipfPn0XG+46+Yg0SnB1a4ptx3BObVrl9mO4JTaTawBiGKhrQGmXxNTHQAAKUnJKEpfghtK6vGFq38Try1bHfAvWJgvPP8c3vn1x/HOrz+OQ11dgbezdunSEFNd+eqrOdWf1uplfI9pFKbV2Y7guvGZ/fn0MueA/AJ8A8D7RSRZRAoRnVP+67NXMsZ0AdiF6E1gAeDtANqMMc2Xeg4AROQPEZ2X/leNMX1BQibaGfJA9Bvur4jICwCeB/AHALIB/EssG33L7/46ipZF5w/d9d/78OQXfoiR86MorV6K1VfV4bo3XxVj7IU7+EzsZ9Fm5WaEkMQfmUuCTj3lL7aZXlaOp/slL1WncC1KHTCX5OQk/Ppv34SvfOLfAQAZWel47W3Xh/1rKAHwmKbHNtPJysm0HcEe1gEUnrjVAD8/04RHjv4cBWlZ+J1Vr8XqvHIkSRLeU3M1ftp5JOxfd1FLXx9a+vpi3s6StLTYw3gkK5PtpZWdzjbTSE3Kth3BnsSrA74KYAeAo4gG+7QxZj8AiMgtAG4xxtw1ve7dAB6dnnpmAMAdM7Yz53MisgLA/wZwHMBPoyfPY8wYc7UmZMINyBtjvi4iSwH8JaI3b9kD4PXGmNk3d1Gp21Jz8d//+IdfQcuBl65W+P6Xf4wv/P5Lx/i/+8knsOk16wAAt9f8Ds6c7AYA/Nb978B774/Op/a3d3weP/rKz17xe3KLcnD3370X196yHUlJSfjl917EF//wUfT3jV5cZ6455H/1t16FP/ny3QCArz7wBPrODuId974R+UtzsO8XR/B/PvRP6OsexF1//W7c9O7rkZ6Vhl/+5278w+/+MwZ7hy5u+11//BvY/msbsay2DLlFS2CMwZmTZ/H0t3fi3x76DsZGxl+W9zfuvhlvv/eNKCrLR8uhNvzzXzyBm999HX71PdEBiT9906ewb8YluOuurcc7fu/1WL2jFtm5mTjX0Ytnvrcb//dT38X5fvUVGnEzPDh6+ZXoZdhmekMDI7Yj2GEQ2w3Z+DmcZlisOmC2oYFhZOdm4dfe9xr86198A8YYvPpd1yE7N+vic3O58e1X45YPvg51W2qQlpmGc6d78Pz3d+P//vW30NPZ97J1N792He568DdRs6ESZ9v78K3P/RCjw/Of6FFaVYzb/vg3sPWmdSgozcPwwAj2/vwwvvrgt3GqsSPMP987w4NBT7DxF+sAnWFfawCAdQCFJl41AAD0jA1hd090TCBJBJ/dcRsAoCzz5TdLbcgtxV11N2JHcQ3y0zLRMzaMp7qO4guNP8WZ0Zfmc09PSsGHV9+Em8rWoDwzD5Mmgp6xIRwZ6MB3T+3Fd4+1A5h/DvkkEfzu1dfgXRs2IC89A3s6O/DAz342Z/arV6zAV2+Njkt88+AB/OmPXprn/fi9fwQAaOvvx6v++csAgNLsJfjD667H+tISlC7JQU5aGoYmxnGoqxtf2bMbzzdefqrSvOwMfPjN1+P6dTUozsvG+OQUzvYP4XDrGXzz5/vw4tHEnhJm6BL1F83t/Nj45VeiiyYiQ5df6UqVYHWAMWYKwIfmee5JAE/O+LkRwJxT4Mz3nDGmDYDEmjPhBuQBwBjzOQCfC3ObI4MvFcl3PPBu/PvfPYnG55sxOTEJAK8YqA7qU//956jdVH3x51/5zRtRvb4Cv3fD/ZgYn1zQNm56z/VYXvvSjeSvev1m/OV//DE6T3Th+jfvuPj4a95xDaYmJvHQHf948bFfe++rULHq5ZcYV61Zjqo1y7H2mnr86ev/+uLjb/u91+Oev/2tiz+v2rYSf/XNe9F+bO565/W/dSN+97PvRXLySzMdlVUtxds+9GvY8asbcO+v/nXCDsqfONRuO4Jz2GZ6Jw6csh3BDhMBIjHM/8q5Y2mWxagDZnvqW8/hpvfciJKKYux4/WY8//3deONd0avkf/r403jTB371Fa+568HfxLv+9M0ve6x8ZSne/KHX44a3XY0/uOHP0NkS/RJ/7bUN+OR/fhRp6akAgGUrS/DhT/8Wju+fa/pCoG5TFf7mu3+KnIKXzq5JW5qKV7/9auz4tY34yG98Co0vck7voE40zjf9MM3nxBG2mcZ8+7YXWAdQiOJRA7zSS+Mq3aMvzXpzQ0k9/s+OdyM9OfXiY6WZuXh71Ta8qrQBtz/1CE4P9wEAPrbhjXhb1baL66UByEpJw4rsAoxOTeC7uPRnqz9/zWvx3s0v3Yvw2opKfP2d70LfaOxfjpbn5OAd69e/7LH85ExcV1mJ6yor8fFz38f3njt8yW089P434erVL03NlZqSjOyMNFSVFuBUd1/CD8g3t561HcE5TR1sM42e8WbbEexhHRBIQs0hv5h2/Xj/xX9f9+Yd+OwvHsB3Bv4Vn/n5A7j1D9+EjKxwLsvNXJKBB971aXzqfZ9DX3f0G/PaTdV4w103LXgby2vL8PW/+y7+/O3/G91tPdFtbKzC1W/Ygof/v6/hr3/rcxgfjd5c7jXvvBZZuS9dIvu9R36Mh973BXzslk/hj25+AH/+tr/Dc9/fDSB6pt7aa6I3Is7Oy8L7PvHSje2++8hP8PF3fBZPfecFVK1Z/opMReX5+J2//U0kJydhaGAEn/+Tr+Gjb/00fvjYUwCAioZyvO/P36Zpqrhad/VK2xGcwzbTW39dg+0IRLRAvWf68dx/vggA+PU7b0L1+gqsuSa6D3//n37yivVXX1V3cTB+bGQcD//xv+Ljb34Iu39yAABQVF6A3/38XRfXv/tv33txMP7F/96HP3/HZ/DoXz4x5zEWAP744bsuDsZ/8++/j/tu+Vt8+eNfx9TkFLJyMvFH/3jXnK+jhVm3nffe0Vq3o9p2BKesv36V7QhEpFCYno0thZW4qWw17ml49cXHv9GyEwCQkZyKT255K9KTUzERmcL/OfzfeP+zX8E/Hf0FAGBpRg7+bMNvXHzdhbnnTw/34g92Po73P/sVfHz3f+A7p3ajf/zSV9CsLCjE7Zs2AwCmIhF89tlncOe3v4VdHe2oyMu75GsXont4CA/94uf44He/g9u/+Q3c9o2v449+8H2cHY6eTHfXG6655Ouz0lOxo6ECAHC49Qx+//Pfxof+/lv4q6/9F/57VxNGHbjx/abVc9dfNL+t1byXjEZpxibbEcgxCXmG/GL4wT/9BBtuXIObb3/VxcfS0lOx/obVWH/Darzpntfhw1d9BOf7YrvM5LP3fAm7pwf/U1KT8YePfBAAcN0t2/CdL/xoQds4+EwT/uljjwMAtt28AW/+4K8BAH769WfxxGf/HwDgrb/7Oqy5qh7JKckoq1p68aycXf+9H++57y1Yf90q5JfmITXt5f+LG7atxKFfHsW2mzcgIzs633XT7hZ8/k+i0+i8+JODWH9tA5auKHzZ6258y3akZUQHFp568sWLv+9HX3sKr37rDmRkp+M1t16Nz//x12BiuVSFiNxjYpwzjn0GWfL9f/oJbnjr1bj6jdswOTEFADi2twVNL7zy0u2bbrvh4r+f/MIP8c3PfA8AcOjZJvxb6z8iLSMN239tE3IKspGckoy110YH98dHx/HJd38GQ2MGz/1gLyoayvEr777uZdteuaESNeuiH3Sb957EM9/bFd32c81ofPE41l5dj6o1y1G3uQrNe06G3xBERLFgHUAOelVpA15V+tLJNOfGzuN/H/whvt8e/aL9uqW1KEpfAgB4tvsYXjjXAgD42ZlGvG7ZeqzILsD1JbXIT8tC3/gwJqfP8BycGMWpoR4cP9+NicgU/uPU7unfMP/A+s21tUiKzkGMHzQfxd//MnoP2xdOn8azH7gHWamp8752IU4PDKB7eAh3bNmGVcXFyElPv/j7AKCqtADZGWkYGp171oCpiIGBASDoOz+CU919aO3qxVTE4Ilf7J/zNUTkEdYBgXgzIB+JRPDQe/8B3/nc9/Gqd1yLza9dj5Wbqi9Ov7K8rgzv/JNb8M8f+7eYfs+R546+9O/nX7pkpbxm4Xf1bpwxEDDYc/7iv4/ueulS9bNtPcD0fWiz86Pz3JZUFuOz//MJZOfNPe8tgIvPzczT+MLxi/+OTEXQtPvEKwbkZ06h87rbb8Drbr8Bsy3Jy0JReT7Otvde8u+zof1Et+0Izmk/wUvUtE7PM93TFS8SgRFeokbu2fmDPehqPYuSymK85p3RQfLvf/nHc667vKH84r+PPP/SsX7g3CA6jnehau0KJCUlYVldGZKSXroAsf3YGQz2DiEpK3r8bXzx+CsG5FfUlV78d92mKnz6Rx+bM0PlqmUckA+o/eQ52xGc097CNtNob/a0BgBYB9AVoSAtC7U5L31GrlpSfPHfswfvL0iSJNQsKcbunlZ8q3UX7m54NVbnleOJ1/wOJiNTODl0Dk91NeNfmp/CpSa1qpxxFvy+zpemCxscH8fxnh6sLy2d62UL9ttbtuLPXvPaS66Tk5k+74D82MQkfrCzEW+8eg2uXVuNb33ifZiYnMKx9nP4+f7j+Op/vYDz87w2UbR1Jt4YRaJrPddnO4JTBicTe9qmRcU6IBBvBuQvOPJ888WB8vySPPze5+/CjW+PXqJVtyU6RcfMM7yTZsyXnlecq/pdQb/kGZoxD7uZcbfhmTeMnLnt6Tv64ldvv/HigPvBZ5vw7//7exg4N4hr3rgV7/rj6OV0SUmvvO9AmGe0Z2Ql5p24Tfh3bb7isc30vG0zfiNOjjLG4IeP/hS/9efRKdzGRsbx31/7RaDtLHxd9eYvCmt6PR952z/HgG2mE/H0wyQA1gHkpG+37sb9e7+Dq4tX4rM73o2slDTcWX8jdvW04n/ONC54O5nJ0c+//3Dkx2geOINfKV+LhtxSVGQXojanBLU5Jbh2aS3eePhrmArwXp/rFTM3kzzjJICCjMw51gbeu+Wluekf3vk8fn6yBRNTEfzlTb+C1UuXAgBkjnGCmT7xlR9i19E23LihBivLi7G8OBerK0uwurIE66rL8OF/+NbC/ygLYpne2lcR9s0qhnVAjK/3jzcD8htuXIOju05gdOilm6L0dfXjv/71fy4OyF8YfJ85IF5Ylo+O42cgIth688bL/p7VV9VdnE92zdV1Fx/vONEVyt9xwcx54y8oXl5w8d+Pf+pJPPf/opfH/cp7Xnk2e/vxl87iadhac/HfSclJaNhS84r1Tx976Zv6x/7mO3jsb558xTrpmWmh3Rw3bMtrS9Dd3mc7hlOW1y5FdwJe7ZDIVtSXXbzvAxG54Qf/8lO852NvR3JyEn7xredeVgPMdLqpA3h99APtqh11+Pk3fwkAyClcgmW10TPXIpEI2ps7kZz6UnlVvrIUS/KzMTweLTRXb3/l/TnaZpxZu/cXR/Cnb/ibV6yTyMdYFyyvKUZ3R7/tGE5ZvrIY3R19tmM4Y0V9ObpPsQYgcsmUieCZ7ugZ7B9aHb3n2++uvgn/c6YRJ8+/dLXwt1t348/2/McrXp+RnIrRqZfmT/9++4GLU96kJaXgwa1vw+uWrUdDbilqCgrQ3DN3H9Ha/9LxaUPpS1em56SlYWVBwSvWHxwfu/jvpVkv3Qz+VdXVc26/NDs69U7PyAgeeip64kFmSgpKlyyZc/25TEYi+NZT+/Gtp6JT1GRnpOFzv/tWbK5djmvXVCEjLQWj45ML3l68VS4rQNe5wcuvSBdVFxegs+/85VckAEBuaiWGpsId96MrmzcD8m94/824+o1b8fNv/hL7/ucgzrX3oqA0D7fd99KNSJteiJ453z5j8PlDf//b+P4//RjXvHEbKlZd/qYWv//Fu/HPH/0a0jLScMdf3Xbx8We/uyvEv2ZuZ06+VDS85UOvw+T4JFbvqMXr3/fqV6y768cHMDo0iozsDKzevhJ3P/huvPjjA/iVd137iulqAOCp77yI377/VqRlpOKdf/AGGAMcfv4Y0rPSUFZVjE03rkZaRio++tZPL+rfSEQJKGIA4Tfi5Kau1rP43O/+EwpK8/GLJ34573o/ffxpvPX33gAAePOHXo9z7b043dyBt/3eG5CWET077oUf7cVgb/ReNId/2YQ11zQgPTMNH/u338d3vvRTrNxQgdfcevUrtn18fytOHDyFmnUV2HTjavzJw+/Hz7+9E1MTUyitLMaq7TW47k3bcGvlhxahBYiIYsQ6gBz3tRPP4Y66G5CVkobVeeW4bmktnu0+hnNj51GUvgS3VGxC/8QInu0+hmQRLMvMx5bCSqzKK8Obf/o5AMBjN9yFw/0d2N93Gl0jA8hOSUftkpemwElLnn/o5cfHj+EjN0bvdff6+np8+OprcODMGbx382Zkp73yCvS2/n5ETARJkoRrKyrwx9ffgKHxcdyz46o5t98+OICagkIUZmbinh1X4Uh3N963ZSsKMuc+o34u333gt/Hj3c1oautGd/95FOZkYXlRdKqdpCRBWkpiD8gT0SJiHRCINwPyAJBTsARvfP/NeOP7b37Fc+c6evEff/99ANEbwL7tD96E5OQk1G9difqt0bPZWg+3oXLNikv+DhOJ4OP//kcve+zE/lb855d/EtJfEdXXPfCKx378b0/jPR95MzKyM7Dt5g3YdvMGAMCBpxux/vpVL1t3qH8Yj37iG7jn/2/v3oOrrO88jn++CRFvwIot0lVKFUSrYqFFreDd4k5bu667s2qtXdc6u67XdbTita7VaUVrWW9spy7jZZSxyOpWpau2VZly8xJIFEE03BRCAkIwhJycW/LbPxKQSyDnd86T55Lzfs2ciefk4ck3X895nk9+z/P8nl/9WJJ0/pUTdf6VE5XL5vXpR+v01V0OPmxct1n/ddN0XfvgP2mffav041vP2+3nvz93WVC/XuCWvruq54WwE3rmb8lbdT0v1Be5DknMGYfkmvXbP/W4zIdv12nG/S/qwknnqf9+++jKKZfu9P1NDZv1yNXTtj9/7OZndP+f7lTVPv007pwxGnfOGEnS2uWNOmzkUO3qgSumafLLkzTgoAP0nYsn6DsXTyjtl8JOli7a2+y96M7ShdyvwMeSBWWaASRyABJvS65Nv19To4sP7zxoftnIUzR/wVO6o+Z/9eAJF6l/ZZUuHTFel47Y+R4w9akvriYe3P8A/fDwk/RD7W75lg1atnHP9zRb0dSk6e/V6kffGKN+FRW6YXxnBmjL5dTQ0qKvDBiw0/It2az+7+M6nXvUUaqsqNBVJ3bWXbdpkwb03316u2cXL9Ztp3WepDfplFMlSZtSKa1oatKIwbufjNedoYMH6tJzxnX7vXlLVmtLKt3t9+Ji8Ufroi4hcWo+aYi6hETZkCnjGxyTA4pS0fMifcMzd8/UY5OeVvVrtapf3qi2rWllMznVL2/US795TVefcIs2r/9ckvTpsnpNvuQh1dc1KJvJadXiT3XPBb/W7Ofm9/hzfnrmXZo9Y75am1Nq3ZLSm8/O1aSJdyuXyfX4b30c2M2NWz9bs0m3fP8+LXtnudKpjOpXNOrhax/XK0/M7nYdLzz8qh657gk1rP5M2XROdbWrdecFD2lN3RdXCKRTX1we/+rTc3TT9+7T3JcWqml9s/K5vJrWN2tZ9UpNv/8lPXrjM4H+jkEaPmr3wQ/sHT3zN/zoQ6MuIRKuw5X8AJJg2q3Tdc+FU/Te7CVqbU4pl82rYdUGvTj1VV017mY1rv7ij+0P5i7T7efeq48XrlQ2k1PjJxs17WczNOPXs7pd9/L3PtFVE+7UrGlvaN3KDcpmcmrZ3KpVS9Zo1rQ3NOn794X1a/ZJw0cO6Xkh7GT4kfTMx/Cvl2cGkMgB6BueXrlA7V2DQid/eYSOHjhUczbU6cK//FYvralVY1uzch15NWVa9WFzg55cMU83Vs/Y/u+n1c3R6w0fqj61Wal8VrmOvNa2btaM1e/o8gVP9Dgf911vvqGH31qg9Vu3Kp3Pqbq+Xpc8P1OffP55t8v/7v1a/eHjj9SazWpLOq3nly7RRc/N6HbZxxct1APz5mptc7NSuZwWrPlUl/zPTH3W2lpwfx59ca7mLVmtxqYWZXJ5ZXJ5rWps0pN/fFeTHnu54PVE5WvdzAKAvRtxCD3z8VdVX4u6hMiQA4pjQd7QM2pmNlBS8xk6T/2sKupydmJVwd7sdOzZx6rm9SWBrKtiv323/3e/qko9vuheDRl2sDo6OnThiOu3X34fNjtg94MOxRpz6ijVzvk4mJX1i/GFJbngDvwE2TOXiee8xy6T6XkhD2PPPEY1by4NZF2uvT2Q9QQp73J6M/OcJA1yzm2RJDMbfEa/v99UZcXfbDLnMpqdf+Fg5xyT76Ik23OA/V3sckDF/sHt06RgtzcVAwf0vFAE3IEB5oDxI1Q7f0UwK6uI7/kslg0wB0wYqdp5ywNZl2uJ5xy0HQHWNfasY1XzRjDZXAo+owQh73KarRclcgBialsOOPrZSaqM2Y3QUysGBbq+CcOGad6aNYGsa9BHe7+ha1T23xjcWbPjRn9V1YuDuVrOxTcGqGVYZWDr+vbIYXpreTDvsez4eM7f/9Pjer5KtlBf2XecGtLVga3v8kGNPS8Usi0tHTpo1EqJHBCIGI8sYm/SW0sP6WddNF7Hjh+lObNqtG7lBg0eMkj/+O/f1ZBhB0uSamZ/GNlgfNB2PNMfhaFn/tpa4/fHcyi4RA0IXdlub4rEPs0fPfOTLufPJDkACF0qwBOxykFbmn2ar1SAB/nLQd61RV1CdMgBRWFAPqE+Xlj6/N6VVf30gysm6gdXTNzte02Nn+vRG54u+WfERd17zB3ri575q1tUnvPuuw4nV8JNXPrSlVpAWMp1e1Osug/qoy4hceoWr426hEQJIpsnFTkACN/iDRuiLiFRlq2kX76WrKVnPjZm4ntPxd5GDihOjC+2wd4cf/rRJa9jec0qzXnhHa1fs0nZdE7pVEarl9Zr5kOv6MpT7lLD6j3feCZpRp88MuoSEoee+Tv+1NI/l4nkXOdR7aIf5bkDBkpRttubIo0+8fCoS0ic0ScdEXUJiXL8aWX8mSQHAKE76dDyvW9FMcYec1jUJSTOCUfwHvMxdN+xUZcQHXJAUfrkGfJ55aSY/f80F+y8bJlcWnlX2iVEdYtX6j8uekAV+8Vrfr1trCO4t2cm16Z8R0CXqXXEb27v7Tryga0qk0sH1jPn4nmJYNB1dX4ug+pZ/C7b2tM2J6dsSdvcnOL5/kBylbp/7A0VMd7eVAS1fwyYaw9uHtRMtk359oCmFInx5LHWEdx7P5NtU74jmJ65mL7HOgLcVgSRzXfkYrgdy4scgGRoT8VvCqmOdDrQ9WVTqcDW2Z6N5xzy+Vxwfw9l0inlc8H0K8YxQO2Z4LJTti2l9kxA77FUsO//oLRtDW78JJXLqC0T3Pq2VMRvPGDL1u5rIgcUp6/d1PVQSVxfCwC96zDnXL0kmZlJOiiAdW52fWmHhEiQAwAgFOQAxBI5AABCQQ4IQF8bkDdJfy0piFs4D1DnzvywgNYXtHcknRh1EbuIc8/i2C+JnvmKc7+k8ujZAEnrym1niWQgB0Quzj2LY78keuaLfvkjB6BskAMiF+ee0S9/9MxPHPslkQNiq09NWdP1hgjkrl2d+3JJUotzbksQ6wySmXXEra449yyO/ZLoma8490sqm57F6vcDdkQOiFacexbHfkn0zBf98kcOQDkhB0Qrzj2jX/7omZ849ksiB8RZjGe/Qg+mRl1AwtAvf/TMHz0DEBa2N37olz965od+AQgT2xw/9MsfPfNDv+ClT01ZEyQzGyipWdKgOB7liiN65o+e+aFf/ugZUBw+O/7omT965od++aNnQHH47PijZ37olz965o+exRdnyO9ZRtLPu76iMPTMHz3zQ7/80TOgOHx2/NEzf/TMD/3yR8+A4vDZ8UfP/NAvf/TMHz2LKc6QBwAAAAAAAAAgBJwhDwAAAAAAAABACBiQBwAAAAAAAAAgBAzIAwAAAAAAAAAQAgbkAQAAAAAAAAAIAQPye2BmV5vZajNLm9nbZnZi1DXFlZndambvmlmLmW0ws9+b2VFR15UUZnaLmTkzezDqWuLMzA41s2fMbJOZtZnZYjMbF3VdcWRmlWZ2j5mt6urVCjP7mZlZ1LUBSUEOKBw5oDTkgMKQAwpHDgBKRw4oDBmgdOSAwpADCkcOSAYG5LthZhdKmiLp55K+Kek9Sa+Z2ZBIC4uv0yVNlfRtSRMlVUn6o5kdEGlVCWBmJ0i6QtL7UdcSZ2Z2kKR5knKSvivpGEk3StocZV0xdrOkKyVdI+nrXc8nSbo2yqKApCAHeCMHFIkcUBhygDdyAFACcoAXMkAJyAGFIQd4IwckgDnnoq4hdszsbUnvOueu6XpeIWmNpEecc5MjLS4BzOzLkjZIOt0595eo64krMztQ0iJJV0m6Q1Ktc+76SIuKKTObLGmCc+7UqGtJAjObJWm9c+7yHV57XlKbc+6S6CoDkoEcUBpyQGHIAYUjB/ghBwClIQcUjwxQOHJA4cgBfsgBycAZ8rsws30kfUvSn7e95pzr6Hp+clR1Jcygrq9NkVYRf1Ml/cE59+cel8TfSqo2s5ldl0LWmNm/RF1UjM2XdLaZjZIkM/uGpFMkvRJpVUACkAMCQQ4oDDmgcOQAP+QAoEjkgJKRAQpHDigcOcAPOSAB+kVdQAx9SVKlpPW7vL5e0tHhl5MsXWcPPChpnnPug4jLiS0zu0idlz+eEHUtCXGEOi+5miLpl+rs28NmlnXOPRVpZfE0WdJAScvMrF2d27TbnXPToy0LSARyQAnIAYUhB3gjB/ghBwDFIwcUiQxQOHKAN3KAH3JAAjAgj6BNlXScOo++oRtmNkzSQ5ImOufSUdeTEBWSqp1zt3U9rzGz4yT9myR2wLu7QNKPJF0saYmkMZIeNLN1BBYAvYwc0ANyQFHIAX7IAQCiQAYoADmgKOQAP+SABGBAfncbJbVLOmSX1w+R1Bh+OclhZo9KOlfSac65tVHXE2PfkjRE0qIdbnJdKek0M7tGUn/nXHtUxcVUg6Slu7z2oaR/iKCWJPiVpMnOud91PV9sZsMl3SoCC9ATckCRyAEFIwf4Iwf4IQcAxSMHFIEM4IUc4I8c4IcckADMIb8L51xW0kJJZ297revSq7MlLYiqrjizTo9KOl/SWc65VVHXFHOvSxqtzqOU2x7VkqZLGsPOt1vzJB21y2ujJH0SQS1JsL+kjl1eaxfbfKBH5AB/5ABv5AB/5AA/5ACgSOQAP2SAopAD/JED/JADEoAz5Ls3RdJTZlYt6R1J10s6QNITURYVY1PVeSnMeZJazGxo1+vNzrm26MqKJ+dci6Sd5tQzs1ZJm5hrb4/+U9J8M7tN0nOSTpT0r10P7O5lSbeb2afqvERtrKQbJD0eaVVAcpAD/JADPJADikIO8EMOAEpDDigcGcATOaAo5AA/5IAEMOdc1DXEUtelQjdJGiqpVtJ1zrm3Iy0qpsxsT2+iy5xzT4ZZS1KZ2WxJtc656yMuJbbM7FxJ90o6UtIqSVOcc/8dbVXxZGYDJN2jzjNVhkhaJ+lZSXd3nfUDoAfkgMKRA0pHDugZOaBw5ACgdOSAwpABgkEO6Bk5oHDkgGRgQB4AAAAAAAAAgBAwfxAAAAAAAAAAACFgQB4AAAAAAAAAgBAwIA8AAAAAAAAAQAgYkAcAAAAAAAAAIAQMyAMAAAAAAAAAEAIG5AEAAAAAAAAACAED8gAAAAAAAAAAhIABeQAAAAAAAAAAQsCAPAAAAAAAAAAAIWBAHgAAAAAAAACAEDAgDwAAAAAAAABACBiQB0JkZvuZ2bKux347vD7YzBrMbL6ZVUZZIwAA6B3kAAAAyhc5AMA2DMgDIXLOtUm6VNJISb/Y4VtTJQ2S9M/OufYoagMAAL2LHAAAQPkiBwDYxpxzUdcAlB0z+6WkmyWdIekQSTMlXe+ceyjKugAAQO8jBwAAUL7IAQAYkAciYGb7SKqWdGDXY6mkMx0fSAAA+jxyAAAA5YscAIABeSAiZjZO0ruS0pKOcc6tirgkAAAQEnIAAADlixwAlDfmkAei8zddX/eVdGSUhQAAgNCRAwAAKF/kAKCMcYY8EAEzO16dR8OnSxoj6UuSRjvnmqOsCwAA9D5yAAAA5YscAIABeSBkZlYl6W1JB0k6XtLh6toZO+d+EmVtAACgd5EDAAAoX+QAABJT1gBRuEOdR8F/4pxrcc69L+luSZeZ2fcirQwAAPQ2cgAAAOWLHACAM+SBMJnZN9V5NPw3zrnrdni9UtICSYdKOtY593k0FQIAgN5CDgAAoHyRAwBsw4A8AAAAAAAAAAAhYMoaAAAAAAAAAABCwIA8AAAAAAAAAAAhYEAeAAAAAAAAAIAQMCAPAAAAAAAAAEAIGJAHAAAAAAAAACAEDMgDAAAAAAAAABACBuQBAAAAAAAAAAgBA/IAAAAAAAAAAISAAXkAAAAAAAAAAELAgDwAAAAAAAAAACFgQB4AAAAAAAAAgBAwIA8AAAAAAAAAQAgYkAcAAAAAAAAAIAT/D7e2uRODWUN+AAAAAElFTkSuQmCC",
- "text/plain": [
- "