-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_load_latency.py
executable file
·268 lines (222 loc) · 7.35 KB
/
plot_load_latency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import argparse
from re import search
from os.path import basename, getsize
COLORS = mcolors.CSS4_COLORS.keys()
# COLORS = [
# 'blue',
# 'cyan',
# 'green',
# 'yellow',
# 'orange',
# 'red',
# 'magenta',
# ]
class LatencyHistogram(object):
_filepath = None
_filename = None
_rate = None
_data = None
_latencies = None
_percentile25 = None
_percentile50 = None
_percentile75 = None
_percentile99 = None
def __init__(self, filepath):
self._filepath = filepath
self._filename = basename(filepath)
self._rate = int(search(r'(\d+?)kpps', self._filename).group(1))
self._data = np.genfromtxt(self._filepath, delimiter=',')
self._data[:, 0] /= 1e6
self._latencies = []
for latency, count in self._data:
self._latencies.extend([latency] * int(count))
self._percentile25 = np.percentile(self._latencies, 25)
self._percentile50 = np.percentile(self._latencies, 50)
self._percentile75 = np.percentile(self._latencies, 75)
self._percentile99 = np.percentile(self._latencies, 99)
def filepath(self):
return self._filepath
def filename(self):
return self._filename
def rate(self):
return self._rate
def percentile25(self):
return self._percentile25
def percentile50(self):
return self._percentile50
def percentile75(self):
return self._percentile75
def percentile99(self):
return self._percentile99
class LoadLatencyPlot(object):
_latency_histograms = None
_name = None
_color = None
_plot25 = None
_plot50 = None
_plot75 = None
_plot99 = None
def __init__(self, histogram_filepaths, name, color):
self._latency_histograms = []
for filepath in histogram_filepaths:
if getsize(filepath) > 0:
self._latency_histograms.append(LatencyHistogram(filepath))
self._name = name
self._color = color
def plot(self):
_x = [hist.rate() for hist in self._latency_histograms]
_y25 = [hist.percentile25() for hist in self._latency_histograms]
_y50 = [hist.percentile50() for hist in self._latency_histograms]
_y75 = [hist.percentile75() for hist in self._latency_histograms]
_y99 = [hist.percentile99() for hist in self._latency_histograms]
order = np.argsort(_x)
x = np.array(_x)[order]
y25 = np.array(_y25)[order]
y50 = np.array(_y50)[order]
y75 = np.array(_y75)[order]
y99 = np.array(_y99)[order]
self._plot25, = plt.plot(
x,
y25,
label=f'{self._name} 25th percentile',
linestyle=':',
color=self._color,
linewidth=1,
)
self._plot50, = plt.plot(
x,
y50,
label=f'{self._name} 50th percentile',
color=self._color,
linestyle='-',
linewidth=1,
marker='x',
)
self._plot75, = plt.plot(
x,
y75,
label=f'{self._name} 75th percentile',
color=self._color,
linestyle='-.',
linewidth=1,
)
self._plot99, = plt.plot(
x,
y99,
label=f'{self._name} 99th percentile',
linestyle='--',
color=self._color,
linewidth=1,
)
def setup_parser():
parser = argparse.ArgumentParser(
description='Plot load latency percentile graph'
)
parser.add_argument('-t',
'--title',
type=str,
help='Title of the plot',
)
parser.add_argument('-W', '--width',
type=float,
default=12,
help='Width of the plot in inches'
)
parser.add_argument('-H', '--height',
type=float,
default=6,
help='Height of the plot in inches'
)
parser.add_argument('-l', '--logarithmic',
action='store_true',
help='Plot logarithmic latency axis',
)
parser.add_argument('-o', '--output',
type=argparse.FileType('w+'),
help='''Path to the output plot
(default: load_latency.pdf)''',
default='load_latency.pdf'
)
parser.add_argument('-c', '--compress',
action='store_true',
help='Compress the legend',
default=False
)
for color in COLORS:
parser.add_argument(f'--{color}',
type=argparse.FileType('r'),
nargs='+',
help=f'''Paths to latency histogram CSVs for
{color} plot''',
)
for color in COLORS:
parser.add_argument(f'--{color}-name',
type=str,
default=color,
help=f'''Name of {color} plot''',
)
return parser
def parse_args(parser):
args = parser.parse_args()
if not any([args.__dict__[color] for color in COLORS]):
parser.error('At least one set of latency histogram paths must be ' +
'provided')
return args
def chain(lst: list[list]) -> list:
return [item for sublist in lst for item in sublist]
def main():
parser = setup_parser()
args = parse_args(parser)
fig = plt.figure(figsize=(args.width, args.height))
ax = fig.add_subplot(1, 1, 1)
ax.set_axisbelow(True)
if args.title:
plt.title(args.title)
plt.xlabel('Load (kpps)')
plt.ylabel('Latency (ms)')
plt.grid()
plots = []
for color in COLORS:
if args.__dict__[color]:
plot = LoadLatencyPlot(
histogram_filepaths=[h.name for h in args.__dict__[color]],
name=args.__dict__[f'{color}_name'],
color=color
)
plot.plot()
plots.append(plot)
ax.set_yscale('log' if args.logarithmic else 'linear')
legend = None
if args.compress:
# empty name1 name2 ...
# 25pctl x x ...
# 50pctl x x ...
# 75pctl x x ...
# 99pctl x x ...
dummy, = plt.plot([0], marker='None', linestyle='None',
label='dummy')
legend = plt.legend(
chain([
[dummy, p._plot25, p._plot50, p._plot75, p._plot99]
for p in plots
]),
chain([
[p._name, '25.pctl', '50.pctl', '75.pctl', '99.pctl']
for p in plots
]),
ncol=len(plots),
prop={'size': 8},
)
else:
legend = plt.legend()
legend.get_frame().set_facecolor('white')
legend.get_frame().set_alpha(0.8)
fig.tight_layout()
plt.savefig(args.output.name)
plt.close()
if __name__ == '__main__':
main()