Skip to content

Latest commit

 

History

History
49 lines (39 loc) · 1.62 KB

README.md

File metadata and controls

49 lines (39 loc) · 1.62 KB

PPON

Pytorch implemention of "Progressive Perception-Oriented Network for Single Image Super-Resolution"

[arXiv]


The schematics of the Progressive Perception-Oriented Network


The example results


Visualization of intermediate feature maps

Testing

Pytorch 1.1

  • Download PIRM_dataset and unzip it into folder Test_Datasets
  • Download Checkpoint and put them into folder ckpt
  • Run testing:
python test_PPON.py --test_hr_folder Test_Datasets/PIRM_Val/ --test_lr_folder Test_Datasets/PIRM_Val_LR/

PI VS LPIPS

PI-VS-LPIPS As illustrated in the above picture, we can obviously see that the PI score of EPSR3 (2.2666) is even better than HR (2.3885), but EPSR3 shows unnatural and lacks proper texture and structure.

Example Results

Perceptual-results-1 Perceptual-results-2

Citation

If you find PPON useful in your research, please consider citing:

@article{Hui-PPON-2019,
  title={Progressive Perception-Oriented Network for Single Image Super-Resolution},
  author={Hui, Zheng and Li, Jie and Gao, Xinbo and Wang, Xiumei},
  booktitle={arXiv:1907.10399v1},
  year={2019}
}