-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhubutils.go
309 lines (282 loc) · 8.07 KB
/
hubutils.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
package main
// client functions for ML backends
//
// Copyright (c) 2023 - Valentin Kuznetsov <[email protected]>
//
import (
"bytes"
"errors"
"fmt"
"io"
"log"
"mime/multipart"
"net/http"
"os"
"path/filepath"
"time"
"github.com/gomarkdown/markdown"
mhtml "github.com/gomarkdown/markdown/html"
"github.com/gomarkdown/markdown/parser"
"github.com/uptrace/bunrouter"
)
// Predict function fetches prediction for given uri, model and client's
// HTTP request. Code is based on the following example:
// https://golangbyexample.com/http-mutipart-form-body-golang/
func Predict(uri string, rec Record, r *http.Request) ([]byte, error) {
// parse incoming HTTP request multipart form
err := r.ParseMultipartForm(32 << 20) // maxMemory
// new multipart writer.
body := &bytes.Buffer{}
writer := multipart.NewWriter(body)
// create new field
for k, vals := range r.MultipartForm.Value {
for _, v := range vals {
writer.WriteField(k, v)
}
}
// add mandatory model field
writer.WriteField("model", rec.Model)
// parse and recreate file form
for k, vals := range r.MultipartForm.File {
for _, fh := range vals {
fname := fh.Filename
fw, err := writer.CreateFormFile(k, fname)
if err != nil {
log.Printf("ERROR: unable to create form file for key=%s fname=%s", k, fname)
break
}
file, err := fh.Open()
if err != nil {
log.Printf("ERROR: unable to open fname=%s", fname)
break
}
_, err = io.Copy(fw, file)
if err != nil {
log.Printf("ERROR: unable to copy fname=%s to multipart writer", fname)
break
}
}
}
writer.Close()
// for TFaaS we need additional end-point path if we query image prediction
if r.FormValue("name") != "image" && rec.Type == "TensorFlow" {
uri += "/image"
}
if Config.Verbose > 0 {
log.Printf("Predict uri=%s HTTP request %+v", uri, r)
}
// form HTTP request
var data []byte
client := &http.Client{
Timeout: time.Second * 10,
}
if Config.Verbose > 0 {
log.Printf("POST request to %s with body\n%v", uri, string(body.Bytes()))
}
req, err := http.NewRequest("POST", uri, bytes.NewReader(body.Bytes()))
if err != nil {
return data, err
}
req.Header.Set("Content-Type", writer.FormDataContentType())
rsp, err := client.Do(req)
if rsp.StatusCode != http.StatusOK {
log.Printf("Request failed with response code: %d", rsp.StatusCode)
}
defer rsp.Body.Close()
data, err = io.ReadAll(rsp.Body)
return data, err
}
// Upload function uploads record to MetaData database, then
// uploads file to server storage, and finally to ML backend
func Upload(rec Record, r *http.Request) error {
err := uploadRecord(rec)
if err != nil {
return err
}
err = uploadStorage(rec, r)
if err != nil {
return err
}
err = uploadBundle(rec, r)
if err != nil {
return err
}
return nil
}
// helper function to upload bundle tarball to ML backend
func uploadRecord(rec Record) error {
// insert record into MetaData database
if Config.Verbose > 0 {
log.Printf("uploadRecord %+v", rec)
}
err := metadata.Insert(rec)
return err
}
// helper function to upload bundle to server storage
func uploadStorage(rec Record, r *http.Request) error {
if Config.Verbose > 0 {
log.Printf("uploadStorage %+v", rec)
}
// parse incoming HTTP request multipart form
err := r.ParseMultipartForm(32 << 20) // maxMemory
if err != nil {
return err
}
// extract file from HTTP request form
file, handler, err := r.FormFile("file")
if err != nil {
return err
}
defer file.Close()
modelDir := fmt.Sprintf("%s/%s/%s/%s", Config.StorageDir, rec.Type, rec.Model, rec.Version)
err = os.MkdirAll(modelDir, 0755)
if err != nil {
return err
}
fname := filepath.Join(modelDir, handler.Filename)
dst, err := os.Create(fname)
if err != nil {
return err
}
defer dst.Close()
if _, err := io.Copy(dst, file); err != nil {
return err
}
return nil
}
// helper function to upload bundle tarball to ML backend
func uploadBundle(rec Record, r *http.Request) error {
if rec.Type == "TensorFlow" {
return uploadBundleTFaaS(rec, r)
} else if rec.Type == "PyTorch" {
return uploadBundleTorch(rec, r)
} else if rec.Type == "ScikitLearn" {
return uploadBundleScikit(rec, r)
}
msg := fmt.Sprintf("upload for %s backend is not implemented", rec.Type)
return errors.New(msg)
}
// helper functiont to upload bundle to TFaaS backend
func uploadBundleTFaaS(rec Record, r *http.Request) error {
// curl -v -X POST -H"Content-Encoding: gzip" -H"content-type: application/octet-stream" --data-binary @$model_tarball $turl/upload
backend, ok := Config.MLBackends[rec.Type]
if !ok {
msg := fmt.Sprintf("upload for %s backend is not implemented", rec.Type)
return errors.New(msg)
}
// form backe URI
uri := fmt.Sprintf("%s/upload", backend.URI)
if Config.Verbose > 0 {
log.Printf("upload model %s bundle to %s", rec.Model, uri)
}
// parse incoming HTTP request multipart form
err := r.ParseMultipartForm(32 << 20) // maxMemory
// construct proper request body
var body io.Reader
for _, vals := range r.MultipartForm.File {
for _, fh := range vals {
file, err := fh.Open()
if err != nil {
return err
}
body = io.NopCloser(file)
}
}
// make HTTP request to remote TFaaS server
client := &http.Client{
Timeout: time.Second * 10,
}
req, err := http.NewRequest("POST", uri, body)
if err != nil {
return err
}
req.Header.Set("Content-Encoding", "gzip")
req.Header.Set("Content-Type", "application/octet-stream")
if Config.Verbose > 0 {
log.Printf("New request %+v", req)
}
rsp, err := client.Do(req)
if Config.Verbose > 0 {
log.Println("TFaaS response", rsp)
}
if err == nil {
// check response status code
if rsp.StatusCode != http.StatusOK {
msg := fmt.Sprintf("TFaaS response status %s", rsp.Status)
err = errors.New(msg)
}
}
return err
}
// helper functiont to upload bundle to Torch backend
func uploadBundleTorch(rec Record, r *http.Request) error {
return errors.New("upload for TorchServer backend is not implemented")
}
// helper functiont to upload bundle to Scikit backend
func uploadBundleScikit(rec Record, r *http.Request) error {
return errors.New("upload for ScikitLearn backend is not implemented")
}
// helper function to get ML record for given HTTP request
func modelRecord(r *http.Request) (Record, error) {
var rec Record
// look-up model from HTTP request parameters
params := bunrouter.ParamsFromContext(r.Context())
model, _ := params.Map()["model"]
// final try from the web form (HTTP POST request)
if model == "" {
model = r.FormValue("model")
}
if model == "" {
msg := fmt.Sprintf("Unable to find model in MetaData database")
log.Printf("ERROR: %s, HTTP request %+v", msg, r)
return rec, errors.New(msg)
}
version, _ := params.Map()["version"]
if version == "" {
version = r.FormValue("version")
}
mtype, _ := params.Map()["type"]
if mtype == "" {
mtype = r.FormValue("mtype")
}
if Config.Verbose > 0 {
log.Printf("get meta-data for model=%s type=%s version=%s", model, mtype, version)
}
// get ML meta-data
records, err := metadata.Records(model, mtype, version)
if err != nil {
msg := fmt.Sprintf("unable to get meta-data, error=%v", err)
return rec, errors.New(msg)
}
// we should have only one record from MetaData
if len(records) != 1 {
msg := fmt.Sprintf("Incorrect number of MetaData records %+v", records)
return rec, errors.New(msg)
}
rec = records[0]
return rec, nil
}
// helper function to parse given markdown file and return HTML content
func mdToHTML(fname string) (string, error) {
file, err := os.Open(fname)
if err != nil {
log.Fatal(err)
}
defer file.Close()
var md []byte
md, err = io.ReadAll(file)
if err != nil {
return "", err
}
// create markdown parser with extensions
extensions := parser.CommonExtensions | parser.AutoHeadingIDs | parser.NoEmptyLineBeforeBlock
p := parser.NewWithExtensions(extensions)
doc := p.Parse(md)
// create HTML renderer with extensions
htmlFlags := mhtml.CommonFlags | mhtml.HrefTargetBlank
opts := mhtml.RendererOptions{Flags: htmlFlags}
renderer := mhtml.NewRenderer(opts)
content := markdown.Render(doc, renderer)
// return html.EscapeString(string(content)), nil
return string(content), nil
}