forked from pkmital/tensorflow_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_logistic_regression.py
122 lines (100 loc) · 4.27 KB
/
04_logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""Simple tutorial using code from the TensorFlow example for Regression.
Parag K. Mital, Jan. 2016"""
# pip3 install --upgrade
# https://storage.googleapis.com/tensorflow/mac/tensorflow-0.6.0-py3-none-any.whl
# %%
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import numpy as np
import matplotlib.pyplot as plt
# %%
# get the classic mnist dataset
# one-hot means a sparse vector for every observation where only
# the class label is 1, and every other class is 0.
# more info here:
# https://www.tensorflow.org/versions/0.6.0/tutorials/mnist/download/index.html#dataset-object
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
# %%
# mnist is now a DataSet with accessors for:
# 'train', 'test', and 'validation'.
# within each, we can access:
# images, labels, and num_examples
print(mnist.train.num_examples,
mnist.test.num_examples,
mnist.validation.num_examples)
# %% the images are stored as:
# n_observations x n_features tensor (n-dim array)
# the labels are stored as n_observations x n_labels,
# where each observation is a one-hot vector.
print(mnist.train.images.shape, mnist.train.labels.shape)
# %% the range of the values of the images is from 0-1
print(np.min(mnist.train.images), np.max(mnist.train.images))
# %% we can visualize any one of the images by reshaping it to a 28x28 image
plt.imshow(np.reshape(mnist.train.images[100, :], (28, 28)), cmap='gray')
# %% We can create a container for an input image using tensorflow's graph:
# We allow the first dimension to be None, since this will eventually
# represent our mini-batches, or how many images we feed into a network
# at a time during training/validation/testing.
# The second dimension is the number of features that the image has.
n_input = 784
n_output = 10
net_input = tf.placeholder(tf.float32, [None, n_input])
# %% We can write a simple regression (y = W*x + b) as:
W = tf.Variable(tf.zeros([n_input, n_output]))
b = tf.Variable(tf.zeros([n_output]))
net_output = tf.nn.softmax(tf.matmul(net_input, W) + b)
# %% We'll create a placeholder for the true output of the network
y_true = tf.placeholder(tf.float32, [None, 10])
# %% And then write our loss function:
cross_entropy = -tf.reduce_sum(y_true * tf.log(net_output))
# %% This would equate each label in our one-hot vector between the
# prediction and actual using the argmax as the predicted label
correct_prediction = tf.equal(
tf.argmax(net_output, 1), tf.argmax(y_true, 1))
# %% And now we can look at the mean of our network's correct guesses
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# %% We can tell the tensorflow graph to train w/ gradient descent using
# our loss function and an input learning rate
optimizer = tf.train.GradientDescentOptimizer(
0.01).minimize(cross_entropy)
# %% We now create a new session to actually perform the initialization the
# variables:
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# %% Now actually do some training:
batch_size = 100
n_epochs = 10
for epoch_i in range(n_epochs):
for batch_i in range(mnist.train.num_examples // batch_size):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={
net_input: batch_xs,
y_true: batch_ys
})
print(sess.run(accuracy,
feed_dict={
net_input: mnist.validation.images,
y_true: mnist.validation.labels
}))
# %% Print final test accuracy:
print(sess.run(accuracy,
feed_dict={
net_input: mnist.test.images,
y_true: mnist.test.labels
}))
# %%
"""
# We could do the same thing w/ Keras like so:
from keras.models import Sequential
model = Sequential()
from keras.layers.core import Dense, Activation
model.add(Dense(output_dim=10, input_dim=784, init='zero'))
model.add(Activation("softmax"))
from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy',
optimizer=SGD(lr=learning_rate))
model.fit(mnist.train.images, mnist.train.labels, nb_epoch=n_epochs,
batch_size=batch_size, show_accuracy=True)
objective_score = model.evaluate(mnist.test.images, mnist.test.labels,
batch_size=100, show_accuracy=True)
"""