-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathmodels.py
568 lines (502 loc) · 19.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
import torchvision.models.detection._utils as det_utils
from torch import nn
from torchvision.models.detection.faster_rcnn import TwoMLPHead
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.ops import MultiScaleRoIAlign
from torchvision.ops import boxes as box_ops
from generalized_rcnn import GeneralizedRCNN
from losses import fastrcnn_loss
from rpn import AnchorGenerator, RegionProposalNetwork, RPNHead
from utils.pose_operations import transform_pose_global_project_bbox
class FastRCNNDoFPredictor(nn.Module):
"""
Standard classification + bounding box regression layers
for Fast R-CNN.
Arguments:
in_channels (int): number of input channels
num_classes (int): number of output classes (including background)
"""
def __init__(self, in_channels, num_classes):
super(FastRCNNDoFPredictor, self).__init__()
hidden_layer = 256
self.dof_pred = nn.Sequential(
nn.Linear(in_channels, hidden_layer),
nn.BatchNorm1d(hidden_layer),
nn.ReLU(),
nn.Linear(hidden_layer, num_classes * 6),
)
def forward(self, x):
if x.dim() == 4:
assert list(x.shape[2:]) == [1, 1]
x = x.flatten(start_dim=1)
dof = self.dof_pred(x)
return dof
class FastRCNNClassPredictor(nn.Module):
"""
Standard classification + bounding box regression layers
for Fast R-CNN.
Arguments:
in_channels (int): number of input channels
num_classes (int): number of output classes (including background)
"""
def __init__(self, in_channels, num_classes):
super(FastRCNNClassPredictor, self).__init__()
self.cls_score = nn.Linear(in_channels, num_classes)
def forward(self, x):
if x.dim() == 4:
assert list(x.shape[2:]) == [1, 1]
x = x.flatten(start_dim=1)
scores = self.cls_score(x)
return scores
class FasterDoFRCNN(GeneralizedRCNN):
def __init__(
self,
backbone,
num_classes=None,
# transform parameters
min_size=800,
max_size=1333,
image_mean=None,
image_std=None,
# RPN parameters
rpn_anchor_generator=None,
rpn_head=None,
rpn_pre_nms_top_n_train=6000,
rpn_pre_nms_top_n_test=6000,
rpn_post_nms_top_n_train=2000,
rpn_post_nms_top_n_test=1000,
rpn_nms_thresh=0.4,
rpn_fg_iou_thresh=0.5,
rpn_bg_iou_thresh=0.3,
rpn_batch_size_per_image=256,
rpn_positive_fraction=0.5,
# Box parameters
box_roi_pool=None,
box_head=None,
box_predictor=None,
box_score_thresh=0.05,
box_nms_thresh=0.5,
box_detections_per_img=1000,
box_fg_iou_thresh=0.5,
box_bg_iou_thresh=0.5,
box_batch_size_per_image=512,
box_positive_fraction=0.25,
bbox_reg_weights=None,
pose_mean=None,
pose_stddev=None,
threed_68_points=None,
threed_5_points=None,
bbox_x_factor=1.1,
bbox_y_factor=1.1,
expand_forehead=0.3,
):
if not hasattr(backbone, "out_channels"):
raise ValueError(
"backbone should contain an attribute out_channels "
"specifying the number of output channels (assumed to be the "
"same for all the levels)"
)
assert isinstance(rpn_anchor_generator, (AnchorGenerator, type(None)))
assert isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None)))
if num_classes is not None:
if box_predictor is not None:
raise ValueError(
"num_classes should be None when box_predictor is specified"
)
else:
if box_predictor is None:
raise ValueError(
"num_classes should not be None when box_predictor "
"is not specified"
)
out_channels = backbone.out_channels
if rpn_anchor_generator is None:
anchor_sizes = ((16,), (32,), (64,), (128,), (256,), (512,))
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
if rpn_head is None:
rpn_head = RPNHead(
out_channels, rpn_anchor_generator.num_anchors_per_location()[0]
)
rpn_pre_nms_top_n = {
"training": rpn_pre_nms_top_n_train,
"testing": rpn_pre_nms_top_n_test,
}
rpn_post_nms_top_n = {
"training": rpn_post_nms_top_n_train,
"testing": rpn_post_nms_top_n_test,
}
rpn = RegionProposalNetwork(
rpn_anchor_generator,
rpn_head,
rpn_fg_iou_thresh,
rpn_bg_iou_thresh,
rpn_batch_size_per_image,
rpn_positive_fraction,
rpn_pre_nms_top_n,
rpn_post_nms_top_n,
rpn_nms_thresh,
)
if box_roi_pool is None:
box_roi_pool = MultiScaleRoIAlign(
featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2
)
if box_head is None:
resolution = box_roi_pool.output_size[0]
representation_size = 1024
box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
if box_predictor is None:
representation_size = 1024
box_predictor = FastRCNNDoFPredictor(representation_size, num_classes)
roi_heads = DOFRoIHeads(
# Box
box_roi_pool,
box_head,
box_predictor,
box_fg_iou_thresh,
box_bg_iou_thresh,
box_batch_size_per_image,
box_positive_fraction,
bbox_reg_weights,
box_score_thresh,
box_nms_thresh,
box_detections_per_img,
out_channels,
pose_mean=pose_mean,
pose_stddev=pose_stddev,
threed_68_points=threed_68_points,
threed_5_points=threed_5_points,
bbox_x_factor=bbox_x_factor,
bbox_y_factor=bbox_y_factor,
expand_forehead=expand_forehead,
)
if image_mean is None:
image_mean = [0.485, 0.456, 0.406]
if image_std is None:
image_std = [0.229, 0.224, 0.225]
transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
super(FasterDoFRCNN, self).__init__(backbone, rpn, roi_heads, transform)
def set_max_min_size(self, max_size, min_size):
self.min_size = (min_size,)
self.max_size = max_size
self.transform.min_size = self.min_size
self.transform.max_size = self.max_size
class DOFRoIHeads(RoIHeads):
def __init__(
self,
box_roi_pool,
box_head,
box_predictor,
# Faster R-CNN training
fg_iou_thresh,
bg_iou_thresh,
batch_size_per_image,
positive_fraction,
bbox_reg_weights,
# Faster R-CNN inference
score_thresh,
nms_thresh,
detections_per_img,
out_channels,
# Mask
mask_roi_pool=None,
mask_head=None,
mask_predictor=None,
keypoint_roi_pool=None,
keypoint_head=None,
keypoint_predictor=None,
pose_mean=None,
pose_stddev=None,
threed_68_points=None,
threed_5_points=None,
bbox_x_factor=1.1,
bbox_y_factor=1.1,
expand_forehead=0.3,
):
super(RoIHeads, self).__init__()
self.box_similarity = box_ops.box_iou
# assign ground-truth boxes for each proposal
self.proposal_matcher = det_utils.Matcher(
fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False
)
self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(
batch_size_per_image, positive_fraction
)
if bbox_reg_weights is None:
bbox_reg_weights = (10.0, 10.0, 5.0, 5.0)
self.box_coder = det_utils.BoxCoder(bbox_reg_weights)
self.box_roi_pool = box_roi_pool
self.box_head = box_head
self.box_predictor = box_predictor
num_classes = 2
self.class_roi_pool = MultiScaleRoIAlign(
featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2
)
resolution = box_roi_pool.output_size[0]
representation_size = 1024
self.class_head = TwoMLPHead(
out_channels * resolution ** 2, representation_size
)
self.class_predictor = FastRCNNClassPredictor(representation_size, num_classes)
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.mask_roi_pool = mask_roi_pool
self.mask_head = mask_head
self.mask_predictor = mask_predictor
self.keypoint_roi_pool = keypoint_roi_pool
self.keypoint_head = keypoint_head
self.keypoint_predictor = keypoint_predictor
self.pose_mean = pose_mean
self.pose_stddev = pose_stddev
self.threed_68_points = threed_68_points
self.threed_5_points = threed_5_points
self.bbox_x_factor = bbox_x_factor
self.bbox_y_factor = bbox_y_factor
self.expand_forehead = expand_forehead
def select_training_samples(
self,
proposals, # type: List[Tensor]
targets, # type: Optional[List[Dict[str, Tensor]]]
):
# type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
self.check_targets(targets)
assert targets is not None
dtype = proposals[0].dtype
device = proposals[0].device
gt_boxes = [t["boxes"].to(dtype) for t in targets]
gt_labels = [t["labels"] for t in targets]
gt_dofs = [t["dofs"] for t in targets]
# append ground-truth bboxes to propos
proposals = self.add_gt_proposals(proposals, gt_boxes)
# get matching gt indices for each proposal
matched_idxs, labels = self.assign_targets_to_proposals(
proposals, gt_boxes, gt_labels
)
# sample a fixed proportion of positive-negative proposals
sampled_inds = self.subsample(labels)
matched_gt_boxes = []
matched_gt_dofs = []
num_images = len(proposals)
for img_id in range(num_images):
img_sampled_inds = sampled_inds[img_id]
proposals[img_id] = proposals[img_id][img_sampled_inds]
labels[img_id] = labels[img_id][img_sampled_inds]
matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
gt_boxes_in_image = gt_boxes[img_id]
gt_dofs_in_image = gt_dofs[img_id]
if gt_boxes_in_image.numel() == 0:
gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
if gt_dofs_in_image.numel() == 0:
gt_dofs_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
matched_gt_dofs.append(gt_dofs_in_image[matched_idxs[img_id]])
# regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
dof_regression_targets = matched_gt_dofs
box_regression_targets = matched_gt_boxes
return (
proposals,
matched_idxs,
labels,
dof_regression_targets,
box_regression_targets,
)
def decode(self, rel_codes, boxes):
# type: (Tensor, List[Tensor]) -> Tensor
assert isinstance(boxes, (list, tuple))
assert isinstance(rel_codes, torch.Tensor)
boxes_per_image = [b.size(0) for b in boxes]
concat_boxes = torch.cat(boxes, dim=0)
box_sum = 0
for val in boxes_per_image:
box_sum += val
pred_boxes = self.decode_single(rel_codes.reshape(box_sum, -1), concat_boxes)
return pred_boxes.reshape(box_sum, -1, 6)
def postprocess_detections(
self,
class_logits, # type: Tensor
dof_regression, # type: Tensor
proposals, # type: List[Tensor]
image_shapes, # type: List[Tuple[int, int]]
):
# type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
device = class_logits.device
num_classes = class_logits.shape[-1]
boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
pred_boxes = torch.cat(proposals, dim=0)
N = dof_regression.shape[0]
pred_boxes = pred_boxes.reshape(N, -1, 4)
pred_dofs = dof_regression.reshape(N, -1, 6)
pred_scores = F.softmax(class_logits, -1)
pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
pred_scores_list = pred_scores.split(boxes_per_image, 0)
pred_dofs_list = pred_dofs.split(boxes_per_image, 0)
all_boxes = []
all_scores = []
all_labels = []
all_dofs = []
for boxes, dofs, scores, image_shape in zip(
pred_boxes_list, pred_dofs_list, pred_scores_list, image_shapes
):
boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
# create labels for each prediction
labels = torch.arange(num_classes, device=device)
labels = labels.view(1, -1).expand_as(scores)
# remove predictions with the background label
dofs = dofs[:, 1:]
scores = scores[:, 1:]
labels = labels[:, 1:]
# batch everything, by making every class prediction be a separate instance
boxes = boxes.reshape(-1, 4)
dofs = dofs.reshape(-1, 6)
scores = scores.reshape(-1)
labels = labels.reshape(-1)
# remove low scoring boxes
inds = torch.nonzero(scores > self.score_thresh).squeeze(1)
boxes, dofs, scores, labels = (
boxes[inds],
dofs[inds],
scores[inds],
labels[inds],
)
# remove empty boxes
keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
boxes, dofs, scores, labels = (
boxes[keep],
dofs[keep],
scores[keep],
labels[keep],
)
# create boxes from the predicted poses
boxes, dofs = transform_pose_global_project_bbox(
boxes,
dofs,
self.pose_mean,
self.pose_stddev,
image_shape,
self.threed_68_points,
bbox_x_factor=self.bbox_x_factor,
bbox_y_factor=self.bbox_y_factor,
expand_forehead=self.expand_forehead,
)
# non-maximum suppression, independently done per class
keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
boxes, dofs, scores, labels = (
boxes[keep],
dofs[keep],
scores[keep],
labels[keep],
)
# keep only topk scoring predictions
keep = keep[: self.detections_per_img]
all_boxes.append(boxes)
all_scores.append(scores)
all_labels.append(labels)
all_dofs.append(dofs)
return all_boxes, all_dofs, all_scores, all_labels
def forward(
self,
features, # type: Dict[str, Tensor]
proposals, # type: List[Tensor]
image_shapes, # type: List[Tuple[int, int]]
targets=None, # type: Optional[List[Dict[str, Tensor]]]
):
# type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
"""
Arguments:
features (List[Tensor])
proposals (List[Tensor[N, 4]])
image_shapes (List[Tuple[H, W]])
targets (List[Dict])
"""
if targets is not None:
for t in targets:
floating_point_types = (torch.float, torch.double, torch.half)
assert (
t["boxes"].dtype in floating_point_types
), "target boxes must of float type"
assert (
t["labels"].dtype == torch.int64
), "target labels must of int64 type"
if self.training or targets is not None:
(
proposals,
matched_idxs,
labels,
regression_targets,
regression_targets_box,
) = self.select_training_samples(proposals, targets)
else:
labels = None
regression_targets = None
matched_idxs = None
if self.training or targets is not None:
num_images = len(proposals)
dof_proposals = []
dof_regression_targets = []
box_regression_targets = []
dof_labels = []
pos_matched_idxs = []
for img_id in range(num_images):
pos = torch.nonzero(labels[img_id] > 0).squeeze(1)
dof_proposals.append(proposals[img_id][pos])
dof_regression_targets.append(regression_targets[img_id][pos])
box_regression_targets.append(regression_targets_box[img_id][pos])
dof_labels.append(labels[img_id][pos])
pos_matched_idxs.append(matched_idxs[img_id][pos])
box_features = self.box_roi_pool(features, dof_proposals, image_shapes)
box_features = self.box_head(box_features)
dof_regression = self.box_predictor(box_features)
class_features = self.class_roi_pool(features, proposals, image_shapes)
class_features = self.class_head(class_features)
class_logits = self.class_predictor(class_features)
result = torch.jit.annotate(List[Dict[str, torch.Tensor]], [])
else:
num_images = len(proposals)
box_features = self.box_roi_pool(features, proposals, image_shapes)
box_features = self.box_head(box_features)
dof_regression = self.box_predictor(box_features)
class_features = self.class_roi_pool(features, proposals, image_shapes)
class_features = self.class_head(class_features)
class_logits = self.class_predictor(class_features)
result = torch.jit.annotate(List[Dict[str, torch.Tensor]], [])
losses = {}
if self.training or targets is not None:
assert labels is not None and regression_targets is not None
# assert matched_idxs is not None
loss_classifier, loss_dof_reg, loss_points = fastrcnn_loss(
class_logits,
labels,
dof_regression,
dof_labels,
dof_regression_targets,
dof_proposals,
image_shapes,
self.pose_mean,
self.pose_stddev,
self.threed_5_points,
)
losses = {
"loss_classifier": loss_classifier,
"loss_dof_reg": loss_dof_reg,
"loss_points": loss_points,
}
else:
boxes, dofs, scores, labels = self.postprocess_detections(
class_logits, dof_regression, proposals, image_shapes
)
num_images = len(boxes)
for i in range(num_images):
result.append(
{
"boxes": boxes[i],
"labels": labels[i],
"scores": scores[i],
"dofs": dofs[i],
}
)
return result, losses