-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathlosses.py
129 lines (107 loc) · 4.31 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from itertools import chain, repeat
import torch
import torch.nn.functional as F
from utils.pose_operations import plot_3d_landmark_torch, pose_full_image_to_bbox
def fastrcnn_loss(
class_logits,
class_labels,
dof_regression,
labels,
dof_regression_targets,
proposals,
image_shapes,
pose_mean=None,
pose_stddev=None,
threed_points=None,
):
# # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
"""
Computes the loss for Faster R-CNN.
Arguments:
class_logits (Tensor)
dof_regression (Tensor)
labels (list[BoxList])
regression_targets (Tensor)
Returns:
classification_loss (Tensor)
dof_loss (Tensor)
points_loss (Tensor)
"""
img_size = [
(boxes_in_image.shape[0], image_shapes[i])
for i, boxes_in_image in enumerate(proposals)
]
img_size = list(chain.from_iterable(repeat(j, i) for i, j in img_size))
labels = torch.cat(labels, dim=0)
class_labels = torch.cat(class_labels, dim=0)
dof_regression_targets = torch.cat(dof_regression_targets, dim=0)
proposals = torch.cat(proposals, dim=0)
classification_loss = F.cross_entropy(class_logits, class_labels)
# get indices that correspond to the regression targets for
# the corresponding ground truth labels, to be used with
# advanced indexing
sampled_pos_inds_subset = torch.nonzero(labels > 0).squeeze(1)
labels_pos = labels[sampled_pos_inds_subset]
N = dof_regression.shape[0]
dof_regression = dof_regression.reshape(N, -1, 6)
dof_regression = dof_regression[sampled_pos_inds_subset, labels_pos]
prop_regression = proposals[sampled_pos_inds_subset]
dof_regression_targets = dof_regression_targets[sampled_pos_inds_subset]
all_target_calibration_points = None
all_pred_calibration_points = None
for i in range(prop_regression.shape[0]):
(h, w) = img_size[i]
global_intrinsics = torch.Tensor(
[[w + h, 0, w // 2], [0, w + h, h // 2], [0, 0, 1]]
).to(proposals[0].device)
threed_points = threed_points.to(proposals[0].device)
h = prop_regression[i, 3] - prop_regression[i, 1]
w = prop_regression[i, 2] - prop_regression[i, 0]
local_intrinsics = torch.Tensor(
[[w + h, 0, w // 2], [0, w + h, h // 2], [0, 0, 1]]
).to(proposals[0].device)
# calibration points projection
local_dof_regression = (
dof_regression[i, :] * pose_stddev.to(proposals[0].device)
) + pose_mean.to(proposals[0].device)
pred_calibration_points = plot_3d_landmark_torch(
threed_points, local_dof_regression.float(), local_intrinsics
).unsqueeze(0)
# pose convertion for pose loss
dof_regression_targets[i, :] = torch.from_numpy(
pose_full_image_to_bbox(
dof_regression_targets[i, :].cpu().numpy(),
global_intrinsics.cpu().numpy(),
prop_regression[i, :].cpu().numpy(),
)
).to(proposals[0].device)
# target calibration points projection
target_calibration_points = plot_3d_landmark_torch(
threed_points, dof_regression_targets[i, :], local_intrinsics
).unsqueeze(0)
if all_target_calibration_points is None:
all_target_calibration_points = target_calibration_points
else:
all_target_calibration_points = torch.cat(
(all_target_calibration_points, target_calibration_points)
)
if all_pred_calibration_points is None:
all_pred_calibration_points = pred_calibration_points
else:
all_pred_calibration_points = torch.cat(
(all_pred_calibration_points, pred_calibration_points)
)
if pose_mean is not None:
dof_regression_targets[i, :] = (
dof_regression_targets[i, :] - pose_mean.to(proposals[0].device)
) / pose_stddev.to(proposals[0].device)
points_loss = F.l1_loss(all_target_calibration_points, all_pred_calibration_points)
dof_loss = (
F.mse_loss(
dof_regression,
dof_regression_targets,
reduction="sum",
)
/ dof_regression.shape[0]
)
return classification_loss, dof_loss, points_loss