-
Notifications
You must be signed in to change notification settings - Fork 9
/
_Mappings.pde
359 lines (309 loc) · 12.8 KB
/
_Mappings.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/**
* DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND
*
* //\\ //\\ //\\ //\\
* ///\\\ ///\\\ ///\\\ ///\\\
* \\\/// \\\/// \\\/// \\\///
* \\// \\// \\// \\//
*
* EXPERTS ONLY!! EXPERTS ONLY!!
*
* This file implements the mapping functions needed to lay out the physical
* cubes and the output ports on the panda board. It should only be modified
* when physical changes or tuning is being done to the structure.
*/
class TowerMapping {
public final float x, y, z;
public final float[][] cubePositions;
TowerMapping(float x, float y, float z, float[][] cubePositions) {
this.x = x;
this.y = y;
this.z = z;
this.cubePositions = cubePositions;
}
}
public Model buildModel() {
// The model is represented as an array of towers. The cubes in the tower
// are represenented relatively. Each tower has an x, y, z reference position,
// which is typically the base cube's bottom left corner.
//
// Following that is an array of floats. A 2-d array contains an x-offset
// and a z-offset from the reference position. Typically the first cube
// will just be {0, 0}.
//
// A 3-d array contains an x-offset, a z-offset, and a rotation about the
// y-axis.
//
// The cubes automatically increment their y-position by Cube.EDGE_HEIGHT.
final float STACKED_RELATIVE = 1;
final float STACKED_REL_SPIN = 2;
final float BASS_DEPTH = BassBox.EDGE_DEPTH + 4;
TowerMapping[] mapping = new TowerMapping[] {
// Front left cubes
// new TowerMapping(0, 0, 0, new float[][] {
// {STACKED_RELATIVE, 0, 0},
// {STACKED_RELATIVE, 5, -10, 20},
// {STACKED_RELATIVE, 0, -6},
// {STACKED_RELATIVE, -5, -2, -20},
// }),
//
// new TowerMapping(Cube.EDGE_WIDTH + 2, 0, 0, new float[][] {
// {STACKED_RELATIVE, 0, 0},
// {STACKED_RELATIVE, 0, 5, 10},
// {STACKED_RELATIVE, 0, 2, 20},
// {STACKED_RELATIVE, 0, 0, 30},
// }),
// Back Cubes behind DJ platform (in order of increasing x)
new TowerMapping(50, 5, BASS_DEPTH, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 2, 0, 20},
{STACKED_RELATIVE, -2, 10},
{STACKED_RELATIVE, -5, 15, -20},
{STACKED_RELATIVE, -2, 13},
}),
new TowerMapping(79, 5, BASS_DEPTH, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 2, 0, 20},
{STACKED_RELATIVE, 4, 10},
{STACKED_RELATIVE, 2, 15, -20},
{STACKED_RELATIVE, 0, 13},
}),
new TowerMapping(107, 5, BASS_DEPTH, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 4, 0, 20},
{STACKED_RELATIVE, 6, 10},
{STACKED_RELATIVE, 3, 15, -20},
// {STACKED_RELATIVE, 8, 13},
}),
new TowerMapping(133, 5, BASS_DEPTH, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, -2, 0, 20},
{STACKED_RELATIVE, 0, 10},
{STACKED_RELATIVE, 2, 15, -20},
// {STACKED_RELATIVE, 4, 13}
}),
new TowerMapping(165, 5, BASS_DEPTH, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, -1, 20},
{STACKED_RELATIVE, 2, 10},
{STACKED_RELATIVE, -2, 15, -20},
{STACKED_RELATIVE, 3, 13},
}),
// front DJ cubes
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 0, -10, 20},
}),
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + Cube.EDGE_HEIGHT, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] {
{STACKED_RELATIVE, 3, 0},
{STACKED_RELATIVE, 2, -10, 20},
}),
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 2*Cube.EDGE_HEIGHT + 5, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 1, 0, 10},
}),
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 3*Cube.EDGE_HEIGHT + 9, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, -1, 0},
}),
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, -1, 0},
}),
// left dj cubes
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, Cube.EDGE_HEIGHT + 2, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 0, 2, 20},
}),
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 2*Cube.EDGE_HEIGHT + 4, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 0, 2, 20},
}),
// right dj cubes
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, Cube.EDGE_HEIGHT + 2, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 0, 2, 20},
}),
new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 2*Cube.EDGE_HEIGHT + 4, new float[][] {
{STACKED_RELATIVE, 0, 0},
{STACKED_RELATIVE, 0, 2, 20},
}),
// new TowerMapping(200, 0, 0, new float[][] {
// {STACKED_RELATIVE, 0, 10},
// {STACKED_RELATIVE, 5, 0, 20},
// {STACKED_RELATIVE, 0, 4},
// {STACKED_RELATIVE, -5, 8, -20},
// {STACKED_RELATIVE, 0, 3},
// }),
// new TowerMapping(0, 0, Cube.EDGE_HEIGHT + 10, new float[][] {
// {STACKED_RELATIVE, 10, 0, 40},
// {STACKED_RELATIVE, 3, -2, 20},
// {STACKED_RELATIVE, 0, 0, 40},
// {STACKED_RELATIVE, 0, 0, 60},
// {STACKED_RELATIVE, 0, 0, 40},
// }),
new TowerMapping(20, 0, 2*Cube.EDGE_HEIGHT + 18, new float[][] {
{STACKED_RELATIVE, 0, 0, 40},
{STACKED_RELATIVE, 10, 0, 20},
{STACKED_RELATIVE, 5, 0, 40},
{STACKED_RELATIVE, 10, 0, 60},
{STACKED_RELATIVE, 12, 0, 40},
}),
// new TowerMapping(210, 0, Cube.EDGE_HEIGHT + 15, new float[][] {
// {STACKED_RELATIVE, 0, 0, 40},
// {STACKED_RELATIVE, 5, 0, 20},
// {STACKED_RELATIVE, 8, 0, 40},
// {STACKED_RELATIVE, 3, 0, 60},
// {STACKED_RELATIVE, 0, 0, 40},
// }),
new TowerMapping(210, 0, 2*Cube.EDGE_HEIGHT + 25, new float[][] {
{STACKED_RELATIVE, 0, 0, 40},
{STACKED_RELATIVE, 5, 0, 20},
{STACKED_RELATIVE, 2, 0, 40},
{STACKED_RELATIVE, 5, 0, 60},
{STACKED_RELATIVE, 0, 0, 40},
}),
};
ArrayList<Tower> towerList = new ArrayList<Tower>();
ArrayList<Cube> tower;
Cube[] cubes = new Cube[79];
int cubeIndex = 1;
float tx, ty, tz, px, pz, ny, dx, dz, ry;
for (TowerMapping tm : mapping) {
tower = new ArrayList<Cube>();
px = tx = tm.x;
ny = ty = tm.y;
pz = tz = tm.z;
int ti = 0;
for (float[] cp : tm.cubePositions) {
float mode = cp[0];
if (mode == STACKED_RELATIVE) {
dx = cp[1];
dz = cp[2];
ry = (cp.length >= 4) ? cp[3] : 0;
tower.add(cubes[cubeIndex++] = new Cube(px = tx + dx, ny, pz = tz + dz, 0, ry, 0));
ny += Cube.EDGE_HEIGHT;
} else if (mode == STACKED_REL_SPIN) {
// Same as above but the front left of this cube is actually its back right for wiring
// TODO(mcslee): implement this
}
}
towerList.add(new Tower(tower));
}
BassBox bassBox = new BassBox(56, 0, 2);
List<Speaker> speakers = new ArrayList<Speaker>();
speakers.add(new Speaker(-12, 6, 0, 15));
speakers.add(new Speaker(TRAILER_WIDTH - Speaker.EDGE_WIDTH, 6, 6, -15));
return new Model(towerList, cubes, bassBox, speakers);
}
public PandaMapping[] buildPandaList() {
return new PandaMapping[] {
new PandaMapping(
"10.200.1.28", new ChannelMapping[] {
new ChannelMapping(ChannelMapping.MODE_BASS),
new ChannelMapping(ChannelMapping.MODE_FLOOR),
new ChannelMapping(ChannelMapping.MODE_SPEAKER, 0),
new ChannelMapping(ChannelMapping.MODE_SPEAKER, 1),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 5, 6, 7, 8 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 9, 10, 11, 12 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 13, 14, 15, 16 }),
}),
new PandaMapping(
"10.200.1.29", new ChannelMapping[] {
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 17, 18, 19, 20 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 21, 22, 23, 24 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 25, 26, 27, 28 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 29, 30, 31, 32 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 33, 34, 35, 36 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 37, 38, 39, 40 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 41, 42, 43, 44 }),
new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 45, 46, 47, 48 }),
}),
};
}
/**
* Each panda board has an IP address and a fixed number of channels. The channels
* each have a fixed number of pixels on them. Whether or not that many physical
* pixels are connected to the channel, we still send it that much data.
*/
class PandaMapping {
// How many channels are on the panda board
public final static int CHANNELS_PER_BOARD = 8;
// How many total pixels on the whole board
public final static int PIXELS_PER_BOARD = ChannelMapping.PIXELS_PER_CHANNEL * CHANNELS_PER_BOARD;
final String ip;
final ChannelMapping[] channelList = new ChannelMapping[CHANNELS_PER_BOARD];
PandaMapping(String ip, ChannelMapping[] rawChannelList) {
this.ip = ip;
// Ensure our array is the right length and has all valid items in it
for (int i = 0; i < channelList.length; ++i) {
channelList[i] = (i < rawChannelList.length) ? rawChannelList[i] : new ChannelMapping();
if (channelList[i] == null) {
channelList[i] = new ChannelMapping();
}
}
}
}
/**
* Each channel on a pandaboard can be mapped in a number of modes. The typial is
* to a series of connected cubes, but we also have special mappings for the bass box,
* the speaker enclosures, and the DJ booth floor.
*
* This class is just the mapping meta-data. It sanitizes the input to make sure
* that the cubes and objects being referenced actually exist in the model.
*
* The logic for how to encode the pixels is contained in the PandaDriver.
*/
class ChannelMapping {
// How many cubes per channel xc_PB is configured for
public final static int CUBES_PER_CHANNEL = 4;
// How many total pixels on each channel
public final static int PIXELS_PER_CHANNEL = Cube.POINTS_PER_CUBE * CUBES_PER_CHANNEL;
public static final int MODE_NULL = 0;
public static final int MODE_CUBES = 1;
public static final int MODE_BASS = 2;
public static final int MODE_SPEAKER = 3;
public static final int MODE_FLOOR = 4;
public static final int MODE_INVALID = 5;
public static final int NO_OBJECT = -1;
final int mode;
final int[] objectIndices = new int[CUBES_PER_CHANNEL];
ChannelMapping() {
this(MODE_NULL);
}
ChannelMapping(int mode) {
this(mode, new int[]{});
}
ChannelMapping(int mode, int rawObjectIndex) {
this(mode, new int[]{ rawObjectIndex });
}
ChannelMapping(int mode, int[] rawObjectIndices) {
if (mode < 0 || mode >= MODE_INVALID) {
throw new RuntimeException("Invalid channel mapping mode: " + mode);
}
if (mode == MODE_SPEAKER) {
if (rawObjectIndices.length != 1) {
throw new RuntimeException("Speaker channel mapping mode must specify one speaker index");
}
int speakerIndex = rawObjectIndices[0];
if (speakerIndex < 0 || speakerIndex >= glucose.model.speakers.size()) {
throw new RuntimeException("Invalid speaker channel mapping: " + speakerIndex);
}
} else if ((mode == MODE_FLOOR) || (mode == MODE_BASS) || (mode == MODE_NULL)) {
if (rawObjectIndices.length > 0) {
throw new RuntimeException("Bass/floor/null mappings cannot specify object indices");
}
} else if (mode == MODE_CUBES) {
for (int rawCubeIndex : rawObjectIndices) {
if (glucose.model.getCubeByRawIndex(rawCubeIndex) == null) {
throw new RuntimeException("Non-existing cube specified in cube mapping: " + rawCubeIndex);
}
}
}
this.mode = mode;
for (int i = 0; i < objectIndices.length; ++i) {
objectIndices[i] = (i < rawObjectIndices.length) ? rawObjectIndices[i] : NO_OBJECT;
}
}
}