-
Notifications
You must be signed in to change notification settings - Fork 0
/
attendance_project.py
106 lines (74 loc) · 2.84 KB
/
attendance_project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 14 10:18:27 2021
@author: VISHWESH
"""
#import tensorflow as tf
import dlib, cmake
import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime
path = "G:/ML 2.0/face recognition/images" #specify the path of images to be detected
images = []
classNames = []
myList = os.listdir(path)
#print(myList)
for cl in myList:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
#%%
def findEncodings(images):
encodeList=[]
for img in images:
#img = cv2.resize(img, (540, 270),interpolation = cv2.INTER_NEAREST)
img =cv2.cvtColor(img,cv2.COLOR_BGR2RGB) # openncv used bgr color formatting, hence convert it to rgb
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
def markAttendance(name):
with open('attendance.csv','r+') as f: #write a new csv file in the path
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now =datetime.now()
dtsring = now.strftime('%H:%M:%S')
f.writelines(f'\n{name},{dtsring}')
encodedListKnown = findEncodings(images)
print('Encoding complete!')
#%%
cap =cv2.VideoCapture(0)
while True:
success, img =cap.read()
imgS = cv2.resize(img,(0,0),None,fx=0.25,fy=0.25) #img is reduced to 1/4 of its size
imgS =cv2.cvtColor(imgS,cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
matches = face_recognition.compare_faces(encodedListKnown,encodeFace)
faceDis = face_recognition.face_distance(encodedListKnown,encodeFace)
print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
print(name)
y1,x2,y2,x1 = faceLoc
y1,x2,y2,x1 = y1*4,x2*4,y2*4,x1*4
cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
cv2.putText(img,name,(x1+6,y2-6),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
markAttendance(name)
cv2.imshow('webcam',img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# After the loop release the cap object
cap.release()
# Destroy all the windows
cv2.destroyAllWindows()
#%%