-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
86 lines (74 loc) · 2.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torch.nn as nn
from torch.nn import functional as F
class InConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class Down(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.down = nn.Sequential(
nn.MaxPool2d(2),
InConv(in_channels, out_channels)
)
def forward(self, x):
return self.down(x)
class Up(nn.Module):
def __init__(self, in_channels, out_channels, bilinear=False):
super().__init__()
if bilinear:
self.up = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
nn.Conv2d(in_channels, in_channels // 2, 1))
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, 2, stride=2)
self.conv = InConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 1)
def forward(self, x):
return self.conv(x)
class Unet(nn.Module):
def __init__(self, in_channels, classes):
super(Unet, self).__init__()
self.n_channels = in_channels
self.n_classes = classes
self.inc = InConv(in_channels, 64) #[1, 64, 256, 256]
self.down1 = Down(64, 128) #[1, 128, 128, 128]
self.down2 = Down(128, 256) #[1, 256, 64, 64]
self.down3 = Down(256, 512) #[1, 512, 32, 32]
self.down4 = Down(512, 1024) #[1, 1024, 16, 16]
self.up1 = Up(1024, 512) #[1, 512, 32, 32]
self.up2 = Up(512, 256) #[1, 256, 64, 64]
self.up3 = Up(256, 128) #[1, 128, 128, 128]
self.up4 = Up(128, 64) #[1, 64, 256, 256]
self.outc = OutConv(64, classes) #[1, 1, 256, 256]
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = self.outc(x)
return x