-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhaar.py
151 lines (135 loc) · 4.93 KB
/
haar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#get the features
import cv2
import numpy as np
import pandas as pd
import skimage
from skimage.feature import local_binary_pattern
from skimage.feature import hog
from skimage.io import imread
from sklearn.externals import joblib
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
import argparse as ap
import glob
import os
#model testing
from skimage.transform import pyramid_gaussian
from skimage.io import imread
import cv2
clf = joblib.load('models/halfmodel')
def sliding_window(image, window_size, step_size):
for y in range(0, image.shape[0], step_size[1]):
for x in range(0, image.shape[1], step_size[0]):
yield (x, y, image[y:y + window_size[1], x:x + window_size[0]])
def overlapping_area(detection_1, detection_2):
# Calculate the x-y co-ordinates of the
# rectangles
x1_tl = detection_1[0]
x2_tl = detection_2[0]
x1_br = detection_1[0] + detection_1[3]
x2_br = detection_2[0] + detection_2[3]
y1_tl = detection_1[1]
y2_tl = detection_2[1]
y1_br = detection_1[1] + detection_1[4]
y2_br = detection_2[1] + detection_2[4]
# Calculate the overlapping Area
x_overlap = max(0, min(x1_br, x2_br)-max(x1_tl, x2_tl))
y_overlap = max(0, min(y1_br, y2_br)-max(y1_tl, y2_tl))
overlap_area = x_overlap * y_overlap
area_1 = detection_1[3] * detection_2[4]
area_2 = detection_2[3] * detection_2[4]
total_area = area_1 + area_2 - overlap_area
return overlap_area / float(total_area)
def nms(detections, threshold=.5):
if len(detections) == 0:
return []
# Sort the detections based on confidence score
detections = sorted(detections, key=lambda detections: detections[2],
reverse=True)
# Unique detections will be appended to this list
new_detections=[]
# Append the first detection
new_detections.append(detections[0])
# Remove the detection from the original list
del detections[0]
for index, detection in enumerate(detections):
for new_detection in new_detections:
if overlapping_area(detection, new_detection) > threshold:
del detections[index]
break
else:
new_detections.append(detection)
del detections[index]
return new_detections
import warnings
warnings.filterwarnings('ignore')
import time
filets=[]
for i in glob.glob("Test/*.jpg"):
filets.append(i)
ans=[]
detectors=[]
# f = open('test.txt','a+')
for ima in filets :
im = imread(ima, as_grey=True)
im = cv2.resize(im,(int(im.shape[0]/2),int(im.shape[1]/2)))
min_wdw_sz = (32, 28)
step_size = (5, 5)
downscale = 2
visualize_det =False
# clf = joblib.load()
detections = []
# The current scale of the image
scale = 0
cut=0
start = time.time()
print("hello")
for im_scaled in pyramid_gaussian(im, downscale=downscale):
# detections at the current scale
cd = []
if im_scaled.shape[0] < min_wdw_sz[1] or im_scaled.shape[1] < min_wdw_sz[0]:
break
for (x, y, im_window) in sliding_window(im_scaled, min_wdw_sz, step_size):
if im_window.shape[0] != min_wdw_sz[1] or im_window.shape[1] != min_wdw_sz[0]:
continue
# Calculate the HOG features
fd,hog_image2 = hog(im_window,8,(5,5),(1,1), visualise=True)
# print(fd.50shape)
pred = clf.predict(fd)
if pred == 1:
print ("Detection:: Location -> ({}, {})".format(x, y))
print ("Scale -> {} | Confidence Score {} \n".format(scale,clf.decision_function(fd)))
detections.append((x, y, clf.decision_function(fd),
int(min_wdw_sz[0]*(downscale**scale)),
int(min_wdw_sz[1]*(downscale**scale))))
cd.append(detections[-1])
# if visualize_det:
# clone = im_scaled.copy()
# for x1, y1, _, _, _ in cd:
# cv2.rectangle(clone, (x1, y1), (x1 + im_window.shape[1], y1 +
# im_window.shape[0]), (0, 0, 0), thickness=2)
# cv2.rectangle(clone, (x, y), (x + im_window.shape[1], y +
# im_window.shape[0]), (255, 255, 255), thickness=2)
# cv2.imwrite('bound/'+str(cut)+'.jpg',clone)
# cut+=1
# cv2.waitKey(30)
# Move the the next scale
scale+=1
# Display the results before performing NMS
clone = im.copy()
# for (x_tl, y_tl, _, w, h) in detections:
# # Draw the detections
# cv2.rectangle(im, (x_tl, y_tl), (x_tl+w, y_tl+h), (0, 0, 0), thickness=2)
# cv2.imwrite('bound/'+str(1)+'.jpg', im)
end = time.time()
print(end - start)
# print (detections)
p=nms(detections)
detectors.append((ima,p))
ans.append((ima,p[0]))
joblib.dump(ans,'halfdump')
print(ima)
# f.write(ima)
# f.write(p[0])
# f.write("\n")
# f.close()