-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
135 lines (107 loc) · 6.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow import logging
from tensorflow.python.platform import flags
from tensorflow.contrib import slim
from tensorflow.contrib.rnn import BasicLSTMCell
def vgg_net(inputs,
scope='vgg', is_training=True):
batch_norm_params = {
'is_training': is_training
}
with tf.variable_scope(scope):
with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME'):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
net = slim.repeat(
inputs, 1, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 1, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 2, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], stride=[2, 1], scope='pool3')
net = slim.repeat(net, 2, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], stride=[2, 1], scope='pool4')
net = slim.repeat(net, 1, slim.conv2d, 512, [3, 3], scope='conv5')
return net
def foward(images, is_training=True):
tf.summary.image('tf-crnn/images', images)
dropout_keep_prob = 0.7 if is_training else 1.0
cnn_net = vgg_net(images, is_training=is_training)
logging.info('cnn_net shape: %s' % cnn_net.get_shape())
with tf.variable_scope('Reshaping_cnn'):
shape = cnn_net.get_shape().as_list() # [batch, height, width, features]
transposed = tf.transpose(cnn_net, perm=[0, 2, 1, 3],
name='transposed') # [batch, width, height, features]
conv_reshaped = tf.reshape(transposed, [shape[0], -1, shape[1] * shape[3]],
name='reshaped') # [batch, width, height x features]
logging.info('after reshape cnn, shape: %s' % conv_reshaped.shape)
list_n_hidden = [256, 256]
with tf.name_scope('deep_bidirectional_lstm'):
# Forward direction cells
fw_cell_list = [BasicLSTMCell(nh, forget_bias=1.0) for nh in list_n_hidden]
# Backward direction cells
bw_cell_list = [BasicLSTMCell(nh, forget_bias=1.0) for nh in list_n_hidden]
lstm_net, _, _ = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(fw_cell_list,
bw_cell_list,
conv_reshaped,
dtype=tf.float32
)
# Dropout layer
lstm_net = tf.nn.dropout(lstm_net, keep_prob=dropout_keep_prob)
logging.info('after lstm shape: %s' % lstm_net.shape)
with tf.variable_scope('fully_connected'):
shape = lstm_net.get_shape().as_list() # [batch, width, 2*n_hidden]
fc_out = slim.layers.linear(lstm_net, flags.FLAGS.n_classes) # [batch x width, n_class]
logging.info('fc_out shape: %s' % fc_out.shape)
lstm_out = tf.reshape(fc_out, [shape[0], -1, flags.FLAGS.n_classes],
name='lstm_out') # [batch, width, n_classes]
logging.info('lstm_out shape: %s' % lstm_out.shape)
# Swap batch and time axis
logprob = tf.transpose(lstm_out, [1, 0, 2], name='transpose_time_major') # [width(time), batch, n_classes]
return logprob
def create_loss(sparse_code_target, logprob, seq_len_inputs):
with tf.control_dependencies(
[tf.less_equal(sparse_code_target.dense_shape[1], tf.reduce_max(tf.cast(seq_len_inputs, tf.int64)))]):
loss_ctc = tf.nn.ctc_loss(labels=sparse_code_target,
inputs=logprob,
sequence_length=tf.cast(seq_len_inputs, tf.int32),
preprocess_collapse_repeated=False,
ctc_merge_repeated=True,
ignore_longer_outputs_than_inputs=True,
# returns zero gradient in case it happens -> ema loss = NaN
time_major=True)
loss_ctc = tf.reduce_mean(loss_ctc)
return loss_ctc
def create_train_op(sparse_code_target, seq_len_inputs, logprob):
loss_ctc = create_loss(sparse_code_target, logprob, seq_len_inputs)
tf.losses.add_loss(loss_ctc)
global_step = tf.train.get_or_create_global_step()
# Train op
# --------
learning_rate = tf.train.exponential_decay(flags.FLAGS.learning_rate, global_step,
flags.FLAGS.learning_decay_steps, flags.FLAGS.learning_decay_rate,
staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.5)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
train_op = slim.learning.create_train_op(total_loss=tf.losses.get_total_loss(), optimizer=optimizer,
update_ops=update_ops)
tf.summary.scalar('tf-crnn/ctc_loss', loss_ctc)
return train_op
def create_metrics(logprob, seq_len_inputs, sparse_code_target):
with tf.name_scope('decode_conversion'):
sparse_code_pred, log_probability = tf.nn.ctc_greedy_decoder(logprob,
sequence_length=tf.cast(
seq_len_inputs,
tf.int32))
sparse_code_pred = sparse_code_pred[0]
with tf.name_scope('evaluation'):
sparse_code_target = tf.cast(sparse_code_target, dtype=tf.int64)
edit_distance = tf.edit_distance(sparse_code_pred, sparse_code_target)
CER = tf.metrics.mean(edit_distance, name='CER')
sequence_accuracy = tf.metrics.mean(tf.cast(tf.equal(edit_distance, 0), tf.float32))
eval_metric_ops = {
'CER': CER,
'SequenceAccuracy': sequence_accuracy
}
return slim.metrics.aggregate_metric_map(eval_metric_ops)