-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
50 lines (36 loc) · 1.56 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.python.platform import flags
from tensorflow.contrib import slim
from util import define_flags, pool_size
define_flags()
from model import foward, create_metrics, create_loss
from provider import get_input
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
images, image_widths, labels = get_input()
seq_len_inputs = tf.divide(image_widths, pool_size, name='seq_len_input_op') - 1
logprob = foward(images, is_training=False)
loss_ctc = create_loss(labels, logprob, seq_len_inputs)
loss_summary = tf.summary.scalar('tf-crnn/ctc_loss', loss_ctc)
names_to_values, names_to_updates = create_metrics(logprob, seq_len_inputs, labels)
summary_ops = []
for metric_name, metric_value in names_to_values.iteritems():
op = tf.summary.scalar('tf-crnn/' + metric_name, metric_value)
op = tf.Print(op, [metric_value], metric_name)
summary_ops.append(op)
summary_ops.append(loss_summary)
tf.train.get_or_create_global_step()
slim.evaluation.evaluation_loop(
'',
flags.FLAGS.checkpoint_dir,
flags.FLAGS.eval_dir,
num_evals=10,
eval_op=names_to_updates.values(),
summary_op=tf.summary.merge(summary_ops),
eval_interval_secs=flags.FLAGS.eval_interval_secs)
if __name__ == '__main__':
flags.DEFINE_integer('eval_interval_secs', 60, 'eval_interval_secs')
flags.DEFINE_string('checkpoint_dir', 'logs/train', 'checkpoint_dir')
flags.DEFINE_string('eval_dir', 'logs/eval', 'eval dir')
tf.app.run()