-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim_ray_client_proxy.py
169 lines (146 loc) · 5.4 KB
/
sim_ray_client_proxy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2020 Adap GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Ray-based Flower ClientProxy implementation."""
from logging import DEBUG
from typing import Callable, Dict, Optional, cast
import ray
from flwr import common
from flwr.client import Client, ClientLike, to_client
from flwr.client.client import (
maybe_call_evaluate,
maybe_call_fit,
maybe_call_get_parameters,
maybe_call_get_properties,
)
from flwr.common.logger import log
from flwr.server.client_proxy import ClientProxy
ClientFn = Callable[[str], ClientLike]
class RayClientProxy(ClientProxy):
"""Flower client proxy which delegates work using Ray."""
def __init__(self, client_fn: ClientFn, cid: str, resources: Dict[str, float]):
super().__init__(cid)
self.client_fn = client_fn
self.resources = resources
def get_properties(
self, ins: common.GetPropertiesIns, timeout: Optional[float]
) -> common.GetPropertiesRes:
"""Returns client's properties."""
future_get_properties_res = launch_and_get_properties.options( # type: ignore
**self.resources,
).remote(self.client_fn, self.cid, ins)
try:
res = ray.get(future_get_properties_res, timeout=timeout)
except Exception as ex:
log(DEBUG, ex)
raise ex
return cast(
common.GetPropertiesRes,
res,
)
def get_parameters(
self, ins: common.GetParametersIns, timeout: Optional[float]
) -> common.GetParametersRes:
"""Return the current local model parameters."""
future_paramseters_res = launch_and_get_parameters.options( # type: ignore
**self.resources,
).remote(self.client_fn, self.cid, ins)
try:
res = ray.get(future_paramseters_res, timeout=timeout)
except Exception as ex:
log(DEBUG, ex)
raise ex
return cast(
common.GetParametersRes,
res,
)
def fit(self, ins: common.FitIns, timeout: Optional[float]) -> common.FitRes:
"""Train model parameters on the locally held dataset."""
future_fit_res = launch_and_fit.options( # type: ignore
**self.resources,
).remote(self.client_fn, self.cid, ins)
try:
res = ray.get(future_fit_res, timeout=timeout)
except Exception as ex:
log(DEBUG, ex)
raise ex
return cast(
common.FitRes,
res,
)
def evaluate(
self, ins: common.EvaluateIns, timeout: Optional[float]
) -> common.EvaluateRes:
"""Evaluate model parameters on the locally held dataset."""
future_evaluate_res = launch_and_evaluate.options( # type: ignore
**self.resources,
).remote(self.client_fn, self.cid, ins)
try:
res = ray.get(future_evaluate_res, timeout=timeout)
except Exception as ex:
log(DEBUG, ex)
raise ex
return cast(
common.EvaluateRes,
res,
)
def reconnect(
self, ins: common.ReconnectIns, timeout: Optional[float]
) -> common.DisconnectRes:
"""Disconnect and (optionally) reconnect later."""
return common.DisconnectRes(reason="") # Nothing to do here (yet)
@ray.remote(max_calls = 1)
def launch_and_get_properties(
client_fn: ClientFn, cid: str, get_properties_ins: common.GetPropertiesIns
) -> common.GetPropertiesRes:
"""Exectue get_properties remotely."""
client: Client = _create_client(client_fn, cid)
return maybe_call_get_properties(
client=client,
get_properties_ins=get_properties_ins,
)
@ray.remote(max_calls = 1)
def launch_and_get_parameters(
client_fn: ClientFn, cid: str, get_parameters_ins: common.GetParametersIns
) -> common.GetParametersRes:
"""Exectue get_parameters remotely."""
client: Client = _create_client(client_fn, cid)
return maybe_call_get_parameters(
client=client,
get_parameters_ins=get_parameters_ins,
)
@ray.remote(max_calls = 1)
def launch_and_fit(
client_fn: ClientFn, cid: str, fit_ins: common.FitIns
) -> common.FitRes:
"""Exectue fit remotely."""
client: Client = _create_client(client_fn, cid)
return maybe_call_fit(
client=client,
fit_ins=fit_ins,
)
@ray.remote(max_calls = 1)
def launch_and_evaluate(
client_fn: ClientFn, cid: str, evaluate_ins: common.EvaluateIns
) -> common.EvaluateRes:
"""Exectue evaluate remotely."""
client: Client = _create_client(client_fn, cid)
return maybe_call_evaluate(
client=client,
evaluate_ins=evaluate_ins,
)
def _create_client(client_fn: ClientFn, cid: str) -> Client:
"""Create a client instance."""
client_like: ClientLike = client_fn(cid)
return to_client(client_like=client_like)