-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathConclusion_Overall_acm_paper.tex
58 lines (47 loc) · 2.72 KB
/
Conclusion_Overall_acm_paper.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
\section{Conclusion}
Computation of midsurface is one of the popular simplification techniques for CAE analysis of thin-walled models. In-spite of good demand, current methods (especially the popular Midsurface Abstraction - MA) suffer from problems such as gaps, overlaps, not lying midway, improper connections, etc. In MA, these failures are due to complexities of face-pair detection and interactions. In our approach uses feature simplification and abstraction to resolve face-pair detection problems and cellular decomposition to develop a generic logic to address interaction problems amongst midsurface patches.
%\vspace{-5mm}
\begin{figure}[htp]
\centering %%% not \center
\subfloat[Original Part]{\label{fig_orig}\includegraphics[width=0.23\linewidth,valign=t]{images/nonCellularBracket}} \quad
\subfloat[Decomposition]{\label{fig_cd}\includegraphics[width=0.23\linewidth,valign=t]{images/CellularBracket}}\quad
\subfloat[Graph]{\label{fig_cg}\includegraphics[width=0.175\linewidth,valign=t]{images/CellGraphBracket.pdf}} \quad
\subfloat[Midsurface]{\label{fig_mids}\includegraphics[width=0.23\linewidth,valign=t]{images/MidsurfAfterDormant}}
\end{figure}
Following is a comparative analysis of some relevant approaches vis-a-vis our approach:
\begin{table}[htp]
%\tiny
\centering
\resizebox{0.8\linewidth}{!}{
\begin{tabular}[htp]{@{} p{0.1\linewidth} p{0.2\linewidth} p{0.2\linewidth} p{0.2\linewidth} p{0.2\linewidth}@{}}
\toprule
\textbf{Researcher} & \textbf{Method} & \textbf{Shortcomings} & \textbf{Our Approach}\\ \midrule
\textbf{Chong et al.} \cite{Chong2004} &
Uses concave edge decomposition. Midcurves by collapsing edge pairs. If they form a loop, creates a midsurface patch &
Hard-coded inequalities/values to detect edge-pairs. Connection logic is not generic and comprehensive &
A generic treatment for the computation of midcurves, midsurface patches and their connections
\\ \midrule
\textbf{Boussuge et al.} \cite{Boussuge2014} &
Generative decomposition. Recognizes Extrudes of each sub-volume. Creates midsurface patches in each and connects them together. &
\begin{itemize}[noitemsep,nosep,leftmargin=*]
\item No fillets/chamfers.
\item Only Additive cells.
\item Only Extrudes with Analytical surfaces
\item Expensive MAT to detect thin profiles
\item Works only on Parallel and Orthogonal connections.
\end{itemize}
&
\begin{itemize}[noitemsep,nosep,leftmargin=*]
\item No such restriction
\item Re-inserts -ve cells
\item Generic Sweep extend-able to Loft
\item Simple rules of size of profile/guide
\item Generic logic for any numbers/types of connections.
\end{itemize}
\\ \midrule
\end{tabular}
}
% \caption{Comparison with Other Simplification Methods}
% \label{tab:defeat_test}
\end{table}
%\vspace{-8mm}