forked from CloudTomography/AT3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
236 lines (214 loc) · 7.89 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import setuptools
from numpy.distutils.core import setup, Extension
import os
import subprocess
NAME = "at3d"
DESCRIPTION = "3D Radiative Transfer Inversion using the SHDOM forward algorithm"
LONG_DESCRIPTION ="""at3d performs 3D reconstruction of cloud/aerosol microphysical properties from multi-angle, multi-spectral solar reflected radiation using a non-linear optimization procedure [[1],[2],[3]]. The core radiative transfer routines are sourced from the Fortran SHDOM (Spherical Harmonic Discrete Ordinate Method for 3D Atmospheric Radiative Transfer) code by Frank K. Evans [[4]]. The python package was created by Aviad Levis [[5]], Amit Aides (Technion - Israel Institute of Technology) and Jesse Loveridge (University of Illinois).
[1]: http://openaccess.thecvf.com/content_iccv_2015/html/Levis_Airborne_Three-Dimensional_Cloud_ICCV_2015_paper.html
[2]: http://openaccess.thecvf.com/content_cvpr_2017/html/Levis_Multiple-Scattering_Microphysics_Tomography_CVPR_2017_paper.html
[3]: https://www.mdpi.com/2072-4292/12/17/2831
[4]: http://coloradolinux.com/~evans/shdom.html
[5] https://www.aviadlevis.com/3d-remote-sensing
"""
MAINTAINER = "Aviad Levis; Jesse Loveridge"
MAINTAINER_EMAIL = "[email protected]; [email protected]"
URL = "https://github.com/CloudTomography/at3d"
LICENSE = "MIT"
VERSION = "4.1.0"
classifiers = ['Development Status :: 4 - Beta',
'Programming Language :: Python',
'License :: OSI Approved :: MIT License',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Operating System :: OS Independent']
#
# Set this to True for compiling the polarized
# version of the SHDOM algorithm.
# Note that the scalar-only version is no longer supported
# so this should always be set to true.
POLARIZED_SHDOM = True
#
# f2py stuff
#
F2PY_CMD = 'f2py'
F2PY_MODULE_NAME = 'core'
F2PY_SRC_PATH = 'src'
F2PY_SIGN_FILE = '{path}/core.pyf'.format(path=F2PY_SRC_PATH)
F2PY_SHDOM_FILES = ['fftpack.f', 'ocean_brdf.f', 'shdom_nompi.f', 'shdomsub5.f', 'surface.f', 'util.f90']
if POLARIZED_SHDOM:
F2PY_SHDOM_FILES.extend(['polarized/shdom90.f90',
'polarized/shdomsub1.f',
'polarized/shdomsub2.f',
'polarized/shdomsub3.f',
'polarized/shdomsub4.f',
'polarized/make_mie_table.f90',
'polarized/miewig.f',
'polarized/indexwatice.f'])
else:
F2PY_SHDOM_FILES.extend(['unpolarized/shdom90.f90',
'unpolarized/shdomsub1.f',
'unpolarized/shdomsub2.f',
'unpolarized/shdomsub3.f',
'unpolarized/shdomsub4.f',
'unpolarized/make_mie_table.f90',
'unpolarized/mieindsub.f'])
F2PY_SHDOM_FILES = [
'{path}/{file_name}'.format(path=F2PY_SRC_PATH, file_name=file_name) for file_name in F2PY_SHDOM_FILES
]
F2PY_CORE_API = [
'get_mie_table',
'get_center_wavelen',
'get_refract_index',
'get_nsize',
'get_sizes',
'compute_mie_all_sizes',
'make_multi_size_dist',
'write_mono_table',
'read_mono_table',
'get_poly_table',
'write_poly_table',
'read_poly_table',
'transform_leg_to_phase',
'rayleigh_extinct',
'rayleigh_phase_function',
'start_mpi',
'end_shdom_mpi',
'check_input_parmeters',
'new_grids',
'init_cell_structure',
'transfer_pa_to_grid',
'init_solution',
'solution_iterations',
'make_direct',
'make_direct_derivative',
'render',
'compute_top_radiances',
'fixed_lambertian_boundary',
'variable_lambertian_boundary',
'levisapprox_gradient',
'space_carve',
'precompute_phase_check',
'precompute_phase_check_grad',
'optical_depth',
'prep_surface',
'read_properties',
'compute_netfluxdiv',
'compute_sh',
'min_optical_depth',
'gradient_l2_old',
'average_subpixel_rays',
#'pencil_beam_prop',
'project',
'util_integrate_rays',
'util_locate_point',
'util_get_interp_kernel2',
'check_property_input',
'nearest_binary',
'cell_average',
'update_costfunction',
'output_cell_split',
'compute_radiance_grid',
'compute_source_grid',
'traverse_grid',
'read_property_size',
'adjoint_linear_interpolation',
'get_shadow',
'transmission_integral',
'quicksort_new',
'construct_ptr',
'ssort',
'compute_dir_source',
#'pencil_beam_prop2',
'eddrtf',
'phase_function_mixing',
'prepare_deriv_interps',
'planck_function',
'planck_derivative',
'compute_gradient_oneproppoint',
'compute_direct_beam_deriv',
'extinction_derivative_point',
'interpolate_point',
'divide_cell',
'grid_smoothing',
'ylmall',
'transmission_integral',
'test_source',
'wigner_transform'
]
def _run_command(cmd):
proc = subprocess.Popen(cmd, shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE)
out_file = proc.stdout.read()
err_file = proc.stderr.read()
output = out_file + err_file
proc.stdout.close()
proc.stderr.close()
# need this hack to get the exit status
print('running ' + cmd)
out_file = os.popen(cmd)
if out_file.close():
# close returns exit status of command.
return ''
else:
# no errors, out_file.close() returns None.
# no errors, out_file.close() returns None.
return output
def createSignatureFile():
"""Create the signature file for the f2py file."""
signature_cmd = "{cmd} -h {sign} --overwrite-signature -m {module} {files} only: {api}".format(
cmd=F2PY_CMD,
sign=F2PY_SIGN_FILE,
module=F2PY_MODULE_NAME,
files=' '.join(F2PY_SHDOM_FILES),
api=' '.join(F2PY_CORE_API)
)
_run_command(signature_cmd)
def configuration(parent_package='',top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration(
NAME,
parent_package,
top_path,
package_path='at3d',
version = VERSION,
maintainer = MAINTAINER,
maintainer_email = MAINTAINER_EMAIL,
description = DESCRIPTION,
license = LICENSE,
url = URL,
long_description = LONG_DESCRIPTION
)
config.add_extension(
name=F2PY_MODULE_NAME,
sources=[F2PY_SIGN_FILE] + F2PY_SHDOM_FILES,
# The '-fallow-argument-mismatch' is an option to the fortran compiler
# that is required for GCC version 11 (and likely all versions over 10)
# This is because GCC's fortran compiler raises an error rather than a
# warning for type mismatches (e.g. casting REAL(4) to INTEGER(4)
# in a subroutine call) for GCC version 10+.
# SHDOM is primarily written in F77 before allocatable arrays.
# Working arrays are defined that are cast to different types
# rather than allocating more memory.
# Additionally, scalars cannot be interpreted as rank-1 arrays
# in GCC v11, (possibly v10+) this flag also fixes that.
# IF YOU ARE USING AN EARLIER VERSION OF GCC OR OTHER COMPILER
# AND INSTALLATION FAILS THEN TRY COMMENTING THESE FLAGS OUT.
# -JRLoveridge 2021/07/26
#extra_f90_compile_args=["-fallow-argument-mismatch"],
extra_f77_compile_args=["-fallow-argument-mismatch"],
)
return config
if __name__ == "__main__":
from numpy.distutils.core import setup
createSignatureFile()
setup(
configuration=configuration,
packages=setuptools.find_packages(),
include_package_data=True,
platforms=["any"],
requires=["numpy", "scipy"],
tests_require=['nose2',],
zip_safe=True,
classifiers=classifiers
)