Create a MySQL database server or cluster, or launch managed one (e.g., AWS RDS). Connect to your database with a MySQL client:
mysql --database <datababse> -u <user> -p
Enter your password. Then use the following SQL script to create the table customers
and populate data into it:
CREATE TABLE IF NOT EXISTS customers (
id INT NOT NULL,
name VARCHAR(255),
country VARCHAR(255),
zipcode VARCHAR(255),
status VARCHAR(255),
updatedAt VARCHAR(255),
PRIMARY KEY (id)
);
INSERT INTO customers VALUES (1, "Flink", "Germany", "10115", "free", "2024-10-01 10:01:00.000");
UPDATE customers SET status="basic", updatedAt="2024-10-01 10:04:00.000" WHERE id=1;
UPDATE customers SET status="business", updatedAt="2024-10-01 10:06:00.000" WHERE id=1;
UPDATE customers SET status="enterprise", updatedAt="2024-10-01 10:08:00.000" WHERE id=1;
Verify your data with:
SELECT * FROM customers;
Create a Kafka cluster or launch a managed one (e.g., AWS MSK). Use a Kafka client
(e.g., download Apache Kafka, or
use kafka-ui)
to connect to your Kafka cluster and
create the Kafka topic orders
. Then ingest the following messages into the created topic:
{
"id": 2,
"customerId": 1,
"amount": 12.0,
"timestamp": "2024-10-01 10:02:00.000"
}
{
"id": 3,
"customerId": 1,
"amount": 13.0,
"timestamp": "2024-10-01 10:03:00.000"
}
{
"id": 5,
"customerId": 1,
"amount": 15.0,
"timestamp": "2024-10-01 10:05:00.000"
}
{
"id": 7,
"customerId": 1,
"amount": 17.0,
"timestamp": "2024-10-01 10:07:00.000"
}
{
"id": 9,
"customerId": 1,
"amount": 19.0,
"timestamp": "2024-10-01 10:09:00.000"
}