diff --git a/SOURCES.md b/SOURCES.md index 0481ad14..0e0a6516 100644 --- a/SOURCES.md +++ b/SOURCES.md @@ -313,6 +313,25 @@ S&P 500 index values from 2000 to 2020, retrieved from [Yahoo Finance](https ## `unemployment-across-industries.json` +Industry-level unemployment statistics from the [Current Population Survey](https://www.census.gov/programs-surveys/cps.html) (CPS), published monthly by the U.S. Bureau of Labor Statistics. Includes unemployed persons and unemployment rate across 11 private industries, as well as agricultural, government, and self-employed workers. Covers January 2000 through February 2010. Industry classification follows format of CPS [Table A-31](https://www.bls.gov/web/empsit/cpseea31.htm). + +### Data Structure +Each entry in the JSON file contains: +- `series`: Industry name +- `year`: Year (2000-2010) +- `month`: Month (1-12) +- `count`: Number of unemployed persons (in thousands) +- `rate`: Unemployment rate (percentage) +- `date`: [ISO 8601](https://www.iso.org/iso-8601-date-and-time-format.html)-formatted date string (e.g., "2000-01-01T08:00:00.000Z") + +The dataset can be replicated using the BLS API. For more, see the `scripts` folder of this repository. + +### Citing Data +The BLS Web site states: +> "Users of the public API should cite the date that data were accessed or retrieved using the API. Users must clearly state that “BLS.gov cannot vouch for the data or analyses derived from these data after the data have been retrieved from BLS.gov.” The BLS.gov logo may not be used by persons who are not BLS employees or on products (including web pages) that are not BLS-sponsored." + +See full BLS [terms of service](https://www.bls.gov/developers/termsOfService.htm). + ## `unemployment.tsv` ## `us-10m.json` diff --git a/scripts/make-unemployment-across-industries.py b/scripts/make-unemployment-across-industries.py new file mode 100644 index 00000000..f2e6e469 --- /dev/null +++ b/scripts/make-unemployment-across-industries.py @@ -0,0 +1,196 @@ +import requests +import json +from datetime import datetime, timedelta +import os +import argparse +from pytz import timezone + +""" +make-unemployment-across-industries.py for vega-datasets + +This script fetches unemployment data across industries from the Bureau of Labor Statistics (BLS) API +and processes it into a structured JSON format for use in the vega-datasets repository, replicating +the originally uploaded version of the dataset. The timestamp for each data point is adjusted +based on Daylight Saving Time (DST) in the United States to match the original json file's timestamps. +By default the script will output to unemployment-across-industries.json in the `data` folder. + +Usage: + python make-unemployment-across-industries.py --api_key YOUR_API_KEY [--output_file OUTPUT_FILE] + +Requirements: + - A BLS API key (v2.0, obtain from https://www.bls.gov/developers/) + - Python 3.6+ + - requests library (install with 'pip install requests') + - pytz library (install with 'pip install pytz') + +BLS Series IDs: + Government: rate: LNU04028615, count: LNU03028615 + Mining and Extraction: rate: LNU04032230, count: LNU03032230 + Construction: rate: LNU04032231, count: LNU03032231 + Manufacturing: rate: LNU04032232, count: LNU03032232 + Wholesale and Retail Trade: rate: LNU04032235, count: LNU03032235 + Transportation and Utilities:rate: LNU04032236, count: LNU03032236 + Information: rate: LNU04032237, count: LNU03032237 + Finance: rate: LNU04032238, count: LNU03032238 + Business services: rate: LNU04032239, count: LNU03032239 + Education and Health: rate: LNU04032240, count: LNU03032240 + Leisure and hospitality: rate: LNU04032241, count: LNU03032241 + Other: rate: LNU04032242, count: LNU03032242 + Agriculture: rate: LNU04035109, count: LNU03035109 + Self-employed: rate: LNU04035181, count: LNU03035181 +""" + +# Constants +API_URL = 'https://api.bls.gov/publicAPI/v2/timeseries/data/' +START_YEAR = 2000 +END_YEAR = 2010 +END_MONTH = 2 # February + +# Series order +series_order = ['Government', 'Mining and Extraction', 'Construction', 'Manufacturing', + 'Wholesale and Retail Trade', 'Transportation and Utilities', 'Information', + 'Finance', 'Business services', 'Education and Health', 'Leisure and hospitality', + 'Other', 'Agriculture', 'Self-employed'] + +# Updated mapping with separate rate and count codes +bls_mapping = { + 'Government': {'rate': 'LNU04028615', 'count': 'LNU03028615'}, + 'Mining and Extraction': {'rate': 'LNU04032230', 'count': 'LNU03032230'}, + 'Construction': {'rate': 'LNU04032231', 'count': 'LNU03032231'}, + 'Manufacturing': {'rate': 'LNU04032232', 'count': 'LNU03032232'}, + 'Wholesale and Retail Trade': {'rate': 'LNU04032235', 'count': 'LNU03032235'}, + 'Transportation and Utilities': {'rate': 'LNU04032236', 'count': 'LNU03032236'}, + 'Information': {'rate': 'LNU04032237', 'count': 'LNU03032237'}, + 'Finance': {'rate': 'LNU04032238', 'count': 'LNU03032238'}, + 'Business services': {'rate': 'LNU04032239', 'count': 'LNU03032239'}, + 'Education and Health': {'rate': 'LNU04032240', 'count': 'LNU03032240'}, + 'Leisure and hospitality': {'rate': 'LNU04032241', 'count': 'LNU03032241'}, + 'Other': {'rate': 'LNU04032242', 'count': 'LNU03032242'}, + 'Agriculture': {'rate': 'LNU04035109', 'count': 'LNU03035109'}, + 'Self-employed': {'rate': 'LNU04035181', 'count': 'LNU03035181'} +} + +def is_dst(dt): + eastern = timezone('US/Eastern') + aware_dt = eastern.localize(dt) + return aware_dt.dst() != timedelta(0) + +def fetch_bls_data(series_ids, api_key): + headers = {'Content-Type': 'application/json'} + data = json.dumps({ + "seriesid": series_ids, + "startyear": str(START_YEAR), + "endyear": str(END_YEAR), + "registrationkey": api_key + }) + + response = requests.post(API_URL, data=data, headers=headers) + return json.loads(response.text) + +def process_bls_data(json_data): + processed_data = {} + for series in json_data['Results']['series']: + series_id = series['seriesID'] + + # Find the corresponding series name + for series_name, codes in bls_mapping.items(): + if series_id in codes.values(): + data_type = 'rate' if series_id == codes['rate'] else 'count' + break + else: + continue # Skip if series_id not found in mapping + + for item in series['data']: + year = int(item['year']) + month = int(item['period'][1:]) # Convert 'M01' to 1, 'M02' to 2, etc. + + # Only process data up to February 2010 + if year == END_YEAR and month > END_MONTH: + continue + + value = float(item['value']) + + # Determine the correct hour based on DST + dt = datetime(year, month, 1) + hour = 7 if is_dst(dt) else 8 + date = dt.replace(hour=hour).isoformat() + '.000Z' + + key = (series_name, year, month) + if key not in processed_data: + processed_data[key] = { + "series": series_name, + "year": year, + "month": month, + "date": date + } + + if data_type == 'rate': + value = int(value) if value.is_integer() else value + else: # count + value = int(value) + + processed_data[key][data_type] = value + + return list(processed_data.values()) + +def order_data(data): + series_order_dict = {series: index for index, series in enumerate(series_order)} + return sorted(data, key=lambda x: (series_order_dict[x['series']], x['year'], x['month'])) + +def main(api_key, output_file): + # Get all series IDs from the mapping + series_ids = [code for codes in bls_mapping.values() for code in codes.values()] + + # Fetch data from BLS API + print("Fetching data from BLS API...") + raw_data = fetch_bls_data(series_ids, api_key) + + # Process the raw data + print("Processing raw data...") + processed_data = process_bls_data(raw_data) + + # Order the processed data + print("Ordering processed data...") + ordered_data = order_data(processed_data) + + # Reorder the data to match the specified order + reordered_data = [] + for item in ordered_data: + reordered_item = { + "series": item["series"], + "year": item["year"], + "month": item["month"], + "count": item.get("count", None), # Use get() to handle missing keys + "rate": item.get("rate", None), # Use get() to handle missing keys + "date": item["date"] + } + reordered_data.append(reordered_item) + + # Construct the path to the data folder + script_dir = os.path.dirname(os.path.abspath(__file__)) + root_dir = os.path.dirname(script_dir) + data_dir = os.path.join(root_dir, 'data') + + # Ensure the data directory exists + os.makedirs(data_dir, exist_ok=True) + + # Construct the full path for the output file + output_path = os.path.join(data_dir, output_file) + + # Write to JSON file + print(f"Creating JSON file: {output_path}") + json_output = json.dumps(reordered_data, separators=(',', ':')) + + # Save JSON file + with open(output_path, 'w', newline='') as f: + f.write(json_output + '\n') + + print(f"Data has been processed and saved to '{output_path}'") + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Generate unemployment across industries data for vega-datasets") + parser.add_argument("--api_key", required=True, help="BLS API key") + parser.add_argument("--output_file", default="unemployment-across-industries.json", help="Output JSON file name") + args = parser.parse_args() + + main(args.api_key, args.output_file) \ No newline at end of file