diff --git a/doc/user_guide/encodings/index.rst b/doc/user_guide/encodings/index.rst index b147aaaa9..87fa7c3e7 100644 --- a/doc/user_guide/encodings/index.rst +++ b/doc/user_guide/encodings/index.rst @@ -198,44 +198,50 @@ Effect of Data Type on Axis Scales ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Similarly, for x and y axis encodings, the type used for the data will affect the scales used and the characteristics of the mark. For example, here is the -difference between a ``quantitative`` , ``ordinal`` and ``temporal`` scale for an column +difference between a ``ordinal``, ``quantitative``, and ``temporal`` scale for an column that contains integers specifying a year: .. altair-plot:: pop = data.population() - # Convert interger to string data type - pop.year = pop.year.astype(str) - base = alt.Chart(pop).mark_line().encode( - alt.Y('mean(people):Q').title('total population') + base = alt.Chart(pop).mark_bar().encode( + alt.Y('mean(people):Q').title('Total population') ).properties( - width=150, - height=200 + width=140, + height=140 ) alt.hconcat( - base.encode(x='year:Q').properties(title='year=quantitative'), - base.encode(x='year:O').properties(title='year=ordinal'), - base.encode(x='year:T').properties(title='year=temporal') + base.encode(x='year:O').properties(title='ordinal'), + base.encode(x='year:Q').properties(title='quantitative'), + base.encode(x='year:T').properties(title='temporal') ) -Because quantitative values do not have an inherent width, the bars do not +Because values on quantitative and temporal scales do not have an inherent width, the bars do not fill the entire space between the values. -This view also makes clear the missing year of data that was not immediately -apparent when we treated the years as categories. +These scales clearly show the missing year of data that was not immediately +apparent when we treated the years as ordinal data, +but the axis formatting is undesirable in both cases. -To plot the year data as four digit format; i.e. without thousand separator, -we recommend converting integer to string data type first, then storing the data as temporal, -since directly convert integer to temporal data type would result in an error. +To plot four digit integers as years with proper axis formatting, +i.e. without thousands separator, +we recommend converting the integers to strings first, +and the specifying a temporal data type in Altair. +While it is also possible to change the axis format with ``.axis(format='i')``, +it is preferred to specify the appropriate data type to Altair. +.. altair-plot:: + + pop['year'] = pop['year'].astype(str) + + base.mark_bar().encode(x='year:T').properties(title='temporal') This kind of behavior is sometimes surprising to new users, but it emphasizes the importance of thinking carefully about your data types when visualizing data: a visual encoding that is suitable for categorical data may not be suitable for quantitative data or temporal data, and vice versa. - .. _shorthand-description: Encoding Shorthands diff --git a/doc/user_guide/times_and_dates.rst b/doc/user_guide/times_and_dates.rst index 372b68617..066e4d032 100644 --- a/doc/user_guide/times_and_dates.rst +++ b/doc/user_guide/times_and_dates.rst @@ -50,14 +50,12 @@ example, we'll limit ourselves to the first two weeks of data: y='temp:Q' ) -(notice that for date/time values we use the ``T`` to indicate a temporal +Notice that for date/time values we use the ``T`` to indicate a temporal encoding: while this is optional for pandas datetime input, it is good practice to specify a type explicitly; see :ref:`encoding-data-types` for more discussion. - -If you want to plot integers as four digit year format stored as temporal data, -please see the :ref:`type-axis-scale`). - - +If you want Altair to plot four digit integers as years, +you need to cast them as strings before changing the data type to temporal, +please see the :ref:`type-axis-scale` for details. For date-time inputs like these, it can sometimes be useful to extract particular time units (e.g. hours of the day, dates of the month, etc.).