-
Notifications
You must be signed in to change notification settings - Fork 1
/
re_rank.py
100 lines (85 loc) · 4.13 KB
/
re_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from scipy.spatial.distance import cdist
def k_reciprocal(probFea,galFea,k1=20,k2=6,lambda_value=0.3, MemorySave = False, Minibatch = 2000):
query_num = probFea.shape[0]
all_num = query_num + galFea.shape[0]
feat = np.append(probFea,galFea,axis = 0)
feat = feat.astype(np.float16)
#print('computing original distance')
if MemorySave:
original_dist = np.zeros(shape = [all_num,all_num],dtype = np.float16)
i = 0
while True:
it = i + Minibatch
if it < np.shape(feat)[0]:
original_dist[i:it,] = np.power(cdist(feat[i:it,],feat),2).astype(np.float16)
else:
original_dist[i:,:] = np.power(cdist(feat[i:,],feat),2).astype(np.float16)
break
i = it
else:
original_dist = cdist(feat,feat).astype(np.float16)
original_dist = np.power(original_dist,2).astype(np.float16)
del feat
gallery_num = original_dist.shape[0]
original_dist = np.transpose(original_dist/np.max(original_dist,axis = 0))
V = np.zeros_like(original_dist).astype(np.float16)
initial_rank = np.argsort(original_dist).astype(np.int32)
#print('starting re_ranking')
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i,:k1+1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index,:k1+1]
fi = np.where(backward_k_neigh_index==i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate,:int(np.around(k1/2))+1]
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,:int(np.around(k1/2))+1]
fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate]
if len(np.intersect1d(candidate_k_reciprocal_index,k_reciprocal_index))> 2/3*len(candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index,candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i,k_reciprocal_expansion_index])
V[i,k_reciprocal_expansion_index] = weight/np.sum(weight)
original_dist = original_dist[:query_num,]
if k2 != 1:
V_qe = np.zeros_like(V,dtype=np.float16)
for i in range(all_num):
V_qe[i,:] = np.mean(V[initial_rank[i,:k2],:],axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(gallery_num):
invIndex.append(np.where(V[:,i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist,dtype = np.float16)
for i in range(query_num):
temp_min = np.zeros(shape=[1,gallery_num],dtype=np.float16)
indNonZero = np.where(V[i,:] != 0)[0]
indImages = []
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0,indImages[j]] = temp_min[0,indImages[j]]+ np.minimum(V[i,indNonZero[j]],V[indImages[j],indNonZero[j]])
jaccard_dist[i] = 1-temp_min/(2-temp_min)
final_dist = jaccard_dist*(1-lambda_value) + original_dist*lambda_value
del original_dist
del V
del jaccard_dist
final_dist = final_dist[:query_num,query_num:]
return final_dist
def random_walk(query_feat, gall_feat, alpha = 0.95):
pg_sim = torch.from_numpy(np.matmul(query_feat, np.transpose(gall_feat)))
gg_sim = torch.from_numpy(np.matmul(gall_feat, np.transpose(gall_feat)))
one_diag = torch.eye(gg_sim.size(0), dtype=torch.double)
# row normalization
zeros_diag = gg_sim - gg_sim.diag().diag()
A = F.softmax(zeros_diag, dim=1)
A = (1-alpha) * torch.inverse(one_diag - alpha * A)
pg_sim = torch.matmul(pg_sim, A.t())
return -pg_sim.numpy()