-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
102 lines (78 loc) · 2.91 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from lmfit import Model
from numpy import exp, loadtxt, pi, sqrt
# import matplotlib.pyplot as plt
# from matplotlib.dates import (DateFormatter, WeekdayLocator, MO)
import pandas as pd
import numpy as np
import sys
import json
from json import JSONEncoder
class NumpyArrayEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return JSONEncoder.default(self, obj)
country = sys.argv[1]
province = sys.argv[2]
data = pd.read_csv('covid-19.csv')
data = data[['Date', 'Country/Region',
'Province/State', 'Confirmed', 'Recovered', 'Deaths']]
data['Date'] = pd.to_datetime(data['Date'])
if country != "China":
data = data[data['Date'] > '2020-03-01']
if country != "":
data = data[data["Country/Region"] == country]
if province != "":
data = data[data["Province/State"] == province]
data = data.groupby('Date').sum().reset_index()
data['DeathsRate'] = data['Deaths'].diff()
data['Active'] = data['Confirmed'] - data['Recovered']
data = data.fillna(0)
x_date = data['Date'].to_numpy()
x = np.arange(x_date.size)
x_date_pred = pd.date_range(np.datetime64(
'today'), periods=30, freq='D').to_numpy()
x_pred = np.arange(x[-1] + 1, x[-1] + 1 + x_date_pred.size)
y_inf = data['Active'].to_numpy()
y_death = data['DeathsRate'].to_numpy()
def gaussian(x, amp, cen, wid):
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
return (amp / (sqrt(2*pi) * wid)) * exp(-(x-cen)**2 / (2*wid**2))
gmodel = Model(gaussian)
result_inf = gmodel.fit(y_inf, x=x, amp=5, cen=5, wid=1)
y_inf_pred = result_inf.eval(x=x_pred)
result_death = gmodel.fit(y_death, x=x, amp=5, cen=5, wid=1)
y_death_pred = result_death.eval(x=x_pred)
response = {}
response['inf_data'] = {}
response['inf_data']['date'] = x_date
response['inf_data']['y'] = y_inf
response['death_data'] = {}
response['death_data']['date'] = x_date
response['death_data']['y'] = y_death
response['inf_pred'] = {}
response['inf_pred']['date'] = x_date_pred
response['inf_pred']['y'] = y_inf_pred
response['death_pred'] = {}
response['death_pred']['date'] = x_date_pred
response['death_pred']['y'] = y_death_pred
print(json.dumps(response, cls=NumpyArrayEncoder))
# Needed only for print
# loc = WeekdayLocator(byweekday=MO)
# formatter = DateFormatter('%d-%m')
# fig, ax = plt.subplots()
# # Plot previous values
# plt.plot_date(x_date, y_inf, 'yo')
# plt.plot_date(x_date, y_death, 'ro')
# # Plot predictions
# plt.plot_date(x_date,
# result_inf.best_fit, 'k-', label='inf: best fit')
# plt.plot_date(x_date,
# result_death.best_fit, 'r-', label='death: best fit')
# plt.plot_date(x_date_pred, y_inf_pred, 'co', label='inf_predictions')
# plt.plot_date(x_date_pred, y_death_pred, 'mo', label='death_predictions')
# plt.legend(loc='best')
# ax.xaxis.set_major_locator(loc)
# ax.xaxis.set_major_formatter(formatter)
# ax.xaxis.set_tick_params(rotation=30, labelsize=10)
# plt.show()