-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBest_time_to_buy_and_sell_stock_III
56 lines (50 loc) · 2.28 KB
/
Best_time_to_buy_and_sell_stock_III
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*
Best Time to Buy and Sell Stock III
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
*/
class Solution {
public:
int maxProfit(vector<int> &prices) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int profit = 0, n = prices.size();
if (n == 0) {
return 0;
}
int l[n], r[n];
memset(l, 0, sizeof(int) * n);
memset(r, 0, sizeof(int) * n);
int min = prices[0];
for (int i = 1; i < n; i++) {
l[i] = prices[i] - min > l[i - 1] ? prices[i] - min : l[i - 1];
min = prices[i] < min ? prices[i] : min;
}
int max = prices[n - 1];
for (int i = n - 2; i >= 0; i--) {
r[i] = max - prices[i] > r[i + 1] ? max - prices[i] : r[i + 1];
max = prices[i] > max ? prices[i] : max;
}
for (int i = 0; i < n; i++) {
profit = l[i] + r[i] > profit ? l[i] + r[i] : profit;
}
return profit;
}
};
REMARK:
1 SUPER HARD.Hard for both thinking and coding.
IDEA:One dimensional dynamic planning.
Given an i, split the whole array into two parts:
[0,i] and [i+1, n], it generates two max value based on i, Max(0,i) and Max(i+1,n)
So, we can define the transformation function as:
Maxprofix = max(Max(0,i) + Max(i+1, n)) 0<=i<n
对于点j+1,求price[0..j+1]的最大profit时,很多工作是重复的,在求price[0..j]的最大profit中已经做过了。
类似于Best Time to Buy and Sell Stock,可以在O(1)的时间从price[0..j]推出price[0..j+1]的最大profit。
但是如何从price[j..n-1]推出price[j+1..n-1]?反过来思考,我们可以用O(1)的时间由price[j+1..n-1]推出price[j..n-1]。
最终算法:
数组l[i]记录了price[0..i]的最大profit,
数组r[i]记录了price[i..n]的最大profit。
已知l[i],求l[i+1]是简单的,同样已知r[i],求r[i-1]也很容易。
最后,我们再用O(n)的时间找出最大的l[i]+r[i],即为题目所求。