-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunbenannt0.py
43 lines (34 loc) · 1.36 KB
/
unbenannt0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import neptune
from config import EnvConfig
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pickle
comet_cfg = EnvConfig()
session = neptune.Session(api_token=comet_cfg.neptune_token)
project = session.get_project(project_qualified_name=comet_cfg.neptune_project_name)
experiments = project.get_experiments(state='succeeded')
print(experiments)
#params = []
#lyap_inter = []
lyap_intra_large = []
#neg_intra = []
for exp in experiments:
print(exp.id)
# properties = exp.get_properties()
#
# model_update = properties['target_model_update']
# mem_len = properties['memory_limit']
# alpha = properties['learning_rate']
# lyap_inter.append(exp.get_numeric_channels_values('lyap_exp_inter_ins_0','lyap_exp_inter_ins_1','lyap_exp_inter_ins_2').to_numpy()[0][1:])
lyap_intra = exp.get_numeric_channels_values('lyap_exp_intra_ins_0','lyap_exp_intra_ins_1','lyap_exp_intra_ins_2').to_numpy()[:,1:]
# neg_intra.append(sum(sum(lyap_intra<0))/600)
lyap_intra_large.append(lyap_intra)
# print(lyap)
# params.append([model_update, mem_len, alpha])
#params = np.array(params).astype(np.float)
#lyap_inter = np.min(np.array(lyap_inter).astype(np.float), axis=1)
#lyap_intra = np.array(lyap_intra).astype(np.float)
with open('dumps/lyap_intra.p','wb') as f:
pickle.dump(lyap_intra_large,f)