diff --git a/deps/Makefile b/deps/Makefile index f1e4bd6ce2..05507915dd 100644 --- a/deps/Makefile +++ b/deps/Makefile @@ -42,6 +42,7 @@ distclean: -(cd jemalloc && [ -f Makefile ] && $(MAKE) distclean) > /dev/null || true -(cd hdr_histogram && $(MAKE) clean) > /dev/null || true -(cd fpconv && $(MAKE) clean) > /dev/null || true + -(cd fast_float && $(MAKE) clean) > /dev/null || true -(rm -f .make-*) .PHONY: distclean @@ -74,6 +75,12 @@ fpconv: .make-prerequisites .PHONY: fpconv +fast_float: .make-prerequisites + @printf '%b %b\n' $(MAKECOLOR)MAKE$(ENDCOLOR) $(BINCOLOR)$@$(ENDCOLOR) + cd fast_float && $(MAKE) + +.PHONY: fast_float + ifeq ($(uname_S),SunOS) # Make isinf() available LUA_CFLAGS= -D__C99FEATURES__=1 diff --git a/deps/fast_float/Makefile b/deps/fast_float/Makefile new file mode 100644 index 0000000000..c0d8fa503f --- /dev/null +++ b/deps/fast_float/Makefile @@ -0,0 +1,23 @@ +# Author: Roshan Swain + +CXX?=g++ +CXXFLAGS=-std=c++11 -O3 -fPIC +AR=ar +ARFLAGS=rcs + +SOURCES=fast_float_strtod.cpp +OBJECTS=$(SOURCES:.cpp=.o) +TARGET=libfast_float.a + +all: $(TARGET) + +$(TARGET): $(OBJECTS) + $(AR) $(ARFLAGS) $@ $^ + +%.o: %.cpp + $(CXX) $(CXXFLAGS) -c $< -o $@ + +clean: + rm -f $(OBJECTS) $(TARGET) + +.PHONY: all clean \ No newline at end of file diff --git a/deps/fast_float/README.md b/deps/fast_float/README.md new file mode 100644 index 0000000000..56dd41fa18 --- /dev/null +++ b/deps/fast_float/README.md @@ -0,0 +1,30 @@ +# FAST_FLOAT + +The fast_float library provides fast header-only implementations for the C++ from_chars +functions for `float` and `double` types as well as integer types. These functions convert ASCII strings representing decimal values (e.g., `1.3e10`) into binary types. We provide exact rounding (including +round to even). In our experience, these `fast_float` functions many times faster than comparable number-parsing functions from existing C++ standard libraries. + +Specifically, `fast_float` provides the following two functions to parse floating-point numbers with a C++17-like syntax (the library itself only requires C++11): + +```C++ +from_chars_result from_chars(const char* first, const char* last, float& value, ...); +from_chars_result from_chars(const char* first, const char* last, double& value, ...); +``` + +## INTEGRATION + +1. `fast_float_strtod` is a wrapper around the `from_chars` function. + +## RESOURCES + +1. fast_float: https://github.com/fastfloat/fast_float + + +...REMOVE THIS LATER... + +- [x] Create the wrapper. +- [] Compile it. +- [] Replace it with strtod. +- [] Benchmark it. +- [] Run it on different platforms. + diff --git a/deps/fast_float/fast_float.h b/deps/fast_float/fast_float.h new file mode 100644 index 0000000000..e0d5dd53f4 --- /dev/null +++ b/deps/fast_float/fast_float.h @@ -0,0 +1,3869 @@ +// fast_float by Daniel Lemire +// fast_float by João Paulo Magalhaes +// +// +// with contributions from Eugene Golushkov +// with contributions from Maksim Kita +// with contributions from Marcin Wojdyr +// with contributions from Neal Richardson +// with contributions from Tim Paine +// with contributions from Fabio Pellacini +// with contributions from Lénárd Szolnoki +// with contributions from Jan Pharago +// with contributions from Maya Warrier +// with contributions from Taha Khokhar +// +// +// MIT License Notice +// +// MIT License +// +// Copyright (c) 2021 The fast_float authors +// +// Permission is hereby granted, free of charge, to any +// person obtaining a copy of this software and associated +// documentation files (the "Software"), to deal in the +// Software without restriction, including without +// limitation the rights to use, copy, modify, merge, +// publish, distribute, sublicense, and/or sell copies of +// the Software, and to permit persons to whom the Software +// is furnished to do so, subject to the following +// conditions: +// +// The above copyright notice and this permission notice +// shall be included in all copies or substantial portions +// of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF +// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED +// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A +// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT +// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY +// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR +// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +// DEALINGS IN THE SOFTWARE. +// + +#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H +#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H + +#ifdef __has_include +#if __has_include() +#include +#endif +#endif + +// Testing for https://wg21.link/N3652, adopted in C++14 +#if __cpp_constexpr >= 201304 +#define FASTFLOAT_CONSTEXPR14 constexpr +#else +#define FASTFLOAT_CONSTEXPR14 +#endif + +#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L +#define FASTFLOAT_HAS_BIT_CAST 1 +#else +#define FASTFLOAT_HAS_BIT_CAST 0 +#endif + +#if defined(__cpp_lib_is_constant_evaluated) && \ + __cpp_lib_is_constant_evaluated >= 201811L +#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 +#else +#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 +#endif + +// Testing for relevant C++20 constexpr library features +#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \ + __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ +#define FASTFLOAT_CONSTEXPR20 constexpr +#define FASTFLOAT_IS_CONSTEXPR 1 +#else +#define FASTFLOAT_CONSTEXPR20 +#define FASTFLOAT_IS_CONSTEXPR 0 +#endif + +#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) +#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 +#else +#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 +#endif + +#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H + +#ifndef FASTFLOAT_FLOAT_COMMON_H +#define FASTFLOAT_FLOAT_COMMON_H + +#include +#include +#include +#include +#include +#include +#ifdef __has_include +#if __has_include() && (__cplusplus > 202002L || _MSVC_LANG > 202002L) +#include +#endif +#endif + +namespace fast_float { + +#define FASTFLOAT_JSONFMT (1 << 5) +#define FASTFLOAT_FORTRANFMT (1 << 6) + +enum chars_format { + scientific = 1 << 0, + fixed = 1 << 2, + hex = 1 << 3, + no_infnan = 1 << 4, + // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 + json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, + // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. + json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, + fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, + general = fixed | scientific +}; + +template struct from_chars_result_t { + UC const *ptr; + std::errc ec; +}; +using from_chars_result = from_chars_result_t; + +template struct parse_options_t { + constexpr explicit parse_options_t(chars_format fmt = chars_format::general, + UC dot = UC('.')) + : format(fmt), decimal_point(dot) {} + + /** Which number formats are accepted */ + chars_format format; + /** The character used as decimal point */ + UC decimal_point; +}; +using parse_options = parse_options_t; + +} // namespace fast_float + +#if FASTFLOAT_HAS_BIT_CAST +#include +#endif + +#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ + defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \ + defined(__MINGW64__) || defined(__s390x__) || \ + (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \ + defined(__PPC64LE__)) || \ + defined(__loongarch64)) +#define FASTFLOAT_64BIT 1 +#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ + defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \ + defined(__MINGW32__) || defined(__EMSCRIPTEN__)) +#define FASTFLOAT_32BIT 1 +#else + // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. +// We can never tell the register width, but the SIZE_MAX is a good +// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max +// portability. +#if SIZE_MAX == 0xffff +#error Unknown platform (16-bit, unsupported) +#elif SIZE_MAX == 0xffffffff +#define FASTFLOAT_32BIT 1 +#elif SIZE_MAX == 0xffffffffffffffff +#define FASTFLOAT_64BIT 1 +#else +#error Unknown platform (not 32-bit, not 64-bit?) +#endif +#endif + +#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \ + (defined(_M_ARM64) && !defined(__MINGW32__)) +#include +#endif + +#if defined(_MSC_VER) && !defined(__clang__) +#define FASTFLOAT_VISUAL_STUDIO 1 +#endif + +#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ +#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) +#elif defined _WIN32 +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#else +#if defined(__APPLE__) || defined(__FreeBSD__) +#include +#elif defined(sun) || defined(__sun) +#include +#elif defined(__MVS__) +#include +#else +#ifdef __has_include +#if __has_include() +#include +#endif //__has_include() +#endif //__has_include +#endif +# +#ifndef __BYTE_ORDER__ +// safe choice +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#endif +# +#ifndef __ORDER_LITTLE_ENDIAN__ +// safe choice +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#endif +# +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ +#define FASTFLOAT_IS_BIG_ENDIAN 0 +#else +#define FASTFLOAT_IS_BIG_ENDIAN 1 +#endif +#endif + +#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \ + (defined(_M_AMD64) || defined(_M_X64) || \ + (defined(_M_IX86_FP) && _M_IX86_FP == 2))) +#define FASTFLOAT_SSE2 1 +#endif + +#if defined(__aarch64__) || defined(_M_ARM64) +#define FASTFLOAT_NEON 1 +#endif + +#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) +#define FASTFLOAT_HAS_SIMD 1 +#endif + +#if defined(__GNUC__) +// disable -Wcast-align=strict (GCC only) +#define FASTFLOAT_SIMD_DISABLE_WARNINGS \ + _Pragma("GCC diagnostic push") \ + _Pragma("GCC diagnostic ignored \"-Wcast-align\"") +#else +#define FASTFLOAT_SIMD_DISABLE_WARNINGS +#endif + +#if defined(__GNUC__) +#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop") +#else +#define FASTFLOAT_SIMD_RESTORE_WARNINGS +#endif + +#ifdef FASTFLOAT_VISUAL_STUDIO +#define fastfloat_really_inline __forceinline +#else +#define fastfloat_really_inline inline __attribute__((always_inline)) +#endif + +#ifndef FASTFLOAT_ASSERT +#define FASTFLOAT_ASSERT(x) \ + { ((void)(x)); } +#endif + +#ifndef FASTFLOAT_DEBUG_ASSERT +#define FASTFLOAT_DEBUG_ASSERT(x) \ + { ((void)(x)); } +#endif + +// rust style `try!()` macro, or `?` operator +#define FASTFLOAT_TRY(x) \ + { \ + if (!(x)) \ + return false; \ + } + +#define FASTFLOAT_ENABLE_IF(...) \ + typename std::enable_if<(__VA_ARGS__), int>::type + +namespace fast_float { + +fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { +#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED + return std::is_constant_evaluated(); +#else + return false; +#endif +} + +template +fastfloat_really_inline constexpr bool is_supported_float_type() { + return std::is_same::value || std::is_same::value +#if __STDCPP_FLOAT32_T__ + || std::is_same::value +#endif +#if __STDCPP_FLOAT64_T__ + || std::is_same::value +#endif + ; +} + +template +fastfloat_really_inline constexpr bool is_supported_char_type() { + return std::is_same::value || std::is_same::value || + std::is_same::value || std::is_same::value; +} + +// Compares two ASCII strings in a case insensitive manner. +template +inline FASTFLOAT_CONSTEXPR14 bool +fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) { + char running_diff{0}; + for (size_t i = 0; i < length; ++i) { + running_diff |= (char(input1[i]) ^ char(input2[i])); + } + return (running_diff == 0) || (running_diff == 32); +} + +#ifndef FLT_EVAL_METHOD +#error "FLT_EVAL_METHOD should be defined, please include cfloat." +#endif + +// a pointer and a length to a contiguous block of memory +template struct span { + const T *ptr; + size_t length; + constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {} + constexpr span() : ptr(nullptr), length(0) {} + + constexpr size_t len() const noexcept { return length; } + + FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + return ptr[index]; + } +}; + +struct value128 { + uint64_t low; + uint64_t high; + constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} + constexpr value128() : low(0), high(0) {} +}; + +/* Helper C++14 constexpr generic implementation of leading_zeroes */ +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int +leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { + if (input_num & uint64_t(0xffffffff00000000)) { + input_num >>= 32; + last_bit |= 32; + } + if (input_num & uint64_t(0xffff0000)) { + input_num >>= 16; + last_bit |= 16; + } + if (input_num & uint64_t(0xff00)) { + input_num >>= 8; + last_bit |= 8; + } + if (input_num & uint64_t(0xf0)) { + input_num >>= 4; + last_bit |= 4; + } + if (input_num & uint64_t(0xc)) { + input_num >>= 2; + last_bit |= 2; + } + if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */ + last_bit |= 1; + } + return 63 - last_bit; +} + +/* result might be undefined when input_num is zero */ +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int +leading_zeroes(uint64_t input_num) { + assert(input_num > 0); + if (cpp20_and_in_constexpr()) { + return leading_zeroes_generic(input_num); + } +#ifdef FASTFLOAT_VISUAL_STUDIO +#if defined(_M_X64) || defined(_M_ARM64) + unsigned long leading_zero = 0; + // Search the mask data from most significant bit (MSB) + // to least significant bit (LSB) for a set bit (1). + _BitScanReverse64(&leading_zero, input_num); + return (int)(63 - leading_zero); +#else + return leading_zeroes_generic(input_num); +#endif +#else + return __builtin_clzll(input_num); +#endif +} + +// slow emulation routine for 32-bit +fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { + return x * (uint64_t)y; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t +umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { + uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); + uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); + uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); + uint64_t adbc_carry = (uint64_t)(adbc < ad); + uint64_t lo = bd + (adbc << 32); + *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + + (adbc_carry << 32) + (uint64_t)(lo < bd); + return lo; +} + +#ifdef FASTFLOAT_32BIT + +// slow emulation routine for 32-bit +#if !defined(__MINGW64__) +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab, + uint64_t cd, + uint64_t *hi) { + return umul128_generic(ab, cd, hi); +} +#endif // !__MINGW64__ + +#endif // FASTFLOAT_32BIT + +// compute 64-bit a*b +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 +full_multiplication(uint64_t a, uint64_t b) { + if (cpp20_and_in_constexpr()) { + value128 answer; + answer.low = umul128_generic(a, b, &answer.high); + return answer; + } + value128 answer; +#if defined(_M_ARM64) && !defined(__MINGW32__) + // ARM64 has native support for 64-bit multiplications, no need to emulate + // But MinGW on ARM64 doesn't have native support for 64-bit multiplications + answer.high = __umulh(a, b); + answer.low = a * b; +#elif defined(FASTFLOAT_32BIT) || \ + (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64)) + answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 +#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__) + __uint128_t r = ((__uint128_t)a) * b; + answer.low = uint64_t(r); + answer.high = uint64_t(r >> 64); +#else + answer.low = umul128_generic(a, b, &answer.high); +#endif + return answer; +} + +struct adjusted_mantissa { + uint64_t mantissa{0}; + int32_t power2{0}; // a negative value indicates an invalid result + adjusted_mantissa() = default; + constexpr bool operator==(const adjusted_mantissa &o) const { + return mantissa == o.mantissa && power2 == o.power2; + } + constexpr bool operator!=(const adjusted_mantissa &o) const { + return mantissa != o.mantissa || power2 != o.power2; + } +}; + +// Bias so we can get the real exponent with an invalid adjusted_mantissa. +constexpr static int32_t invalid_am_bias = -0x8000; + +// used for binary_format_lookup_tables::max_mantissa +constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; + +template struct binary_format_lookup_tables; + +template struct binary_format : binary_format_lookup_tables { + using equiv_uint = + typename std::conditional::type; + + static inline constexpr int mantissa_explicit_bits(); + static inline constexpr int minimum_exponent(); + static inline constexpr int infinite_power(); + static inline constexpr int sign_index(); + static inline constexpr int + min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST + static inline constexpr int max_exponent_fast_path(); + static inline constexpr int max_exponent_round_to_even(); + static inline constexpr int min_exponent_round_to_even(); + static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); + static inline constexpr uint64_t + max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST + static inline constexpr int largest_power_of_ten(); + static inline constexpr int smallest_power_of_ten(); + static inline constexpr T exact_power_of_ten(int64_t power); + static inline constexpr size_t max_digits(); + static inline constexpr equiv_uint exponent_mask(); + static inline constexpr equiv_uint mantissa_mask(); + static inline constexpr equiv_uint hidden_bit_mask(); +}; + +template struct binary_format_lookup_tables { + static constexpr double powers_of_ten[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, + 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; + + // Largest integer value v so that (5**index * v) <= 1<<53. + // 0x20000000000000 == 1 << 53 + static constexpr uint64_t max_mantissa[] = { + 0x20000000000000, + 0x20000000000000 / 5, + 0x20000000000000 / (5 * 5), + 0x20000000000000 / (5 * 5 * 5), + 0x20000000000000 / (5 * 5 * 5 * 5), + 0x20000000000000 / (constant_55555), + 0x20000000000000 / (constant_55555 * 5), + 0x20000000000000 / (constant_55555 * 5 * 5), + 0x20000000000000 / (constant_55555 * 5 * 5 * 5), + 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5), + 0x20000000000000 / (constant_55555 * constant_55555), + 0x20000000000000 / (constant_55555 * constant_55555 * 5), + 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5), + 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), + 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555), + 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), + 0x20000000000000 / + (constant_55555 * constant_55555 * constant_55555 * 5 * 5), + 0x20000000000000 / + (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), + 0x20000000000000 / + (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), + 0x20000000000000 / + (constant_55555 * constant_55555 * constant_55555 * constant_55555), + 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * + constant_55555 * 5), + 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * + constant_55555 * 5 * 5), + 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * + constant_55555 * 5 * 5 * 5), + 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * + constant_55555 * 5 * 5 * 5 * 5)}; +}; + +#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE + +template +constexpr double binary_format_lookup_tables::powers_of_ten[]; + +template +constexpr uint64_t binary_format_lookup_tables::max_mantissa[]; + +#endif + +template struct binary_format_lookup_tables { + static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, + 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; + + // Largest integer value v so that (5**index * v) <= 1<<24. + // 0x1000000 == 1<<24 + static constexpr uint64_t max_mantissa[] = { + 0x1000000, + 0x1000000 / 5, + 0x1000000 / (5 * 5), + 0x1000000 / (5 * 5 * 5), + 0x1000000 / (5 * 5 * 5 * 5), + 0x1000000 / (constant_55555), + 0x1000000 / (constant_55555 * 5), + 0x1000000 / (constant_55555 * 5 * 5), + 0x1000000 / (constant_55555 * 5 * 5 * 5), + 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), + 0x1000000 / (constant_55555 * constant_55555), + 0x1000000 / (constant_55555 * constant_55555 * 5)}; +}; + +#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE + +template +constexpr float binary_format_lookup_tables::powers_of_ten[]; + +template +constexpr uint64_t binary_format_lookup_tables::max_mantissa[]; + +#endif + +template <> +inline constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -22; +#endif +} + +template <> +inline constexpr int binary_format::min_exponent_fast_path() { +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return 0; +#else + return -10; +#endif +} + +template <> +inline constexpr int binary_format::mantissa_explicit_bits() { + return 52; +} +template <> +inline constexpr int binary_format::mantissa_explicit_bits() { + return 23; +} + +template <> +inline constexpr int binary_format::max_exponent_round_to_even() { + return 23; +} + +template <> +inline constexpr int binary_format::max_exponent_round_to_even() { + return 10; +} + +template <> +inline constexpr int binary_format::min_exponent_round_to_even() { + return -4; +} + +template <> +inline constexpr int binary_format::min_exponent_round_to_even() { + return -17; +} + +template <> inline constexpr int binary_format::minimum_exponent() { + return -1023; +} +template <> inline constexpr int binary_format::minimum_exponent() { + return -127; +} + +template <> inline constexpr int binary_format::infinite_power() { + return 0x7FF; +} +template <> inline constexpr int binary_format::infinite_power() { + return 0xFF; +} + +template <> inline constexpr int binary_format::sign_index() { + return 63; +} +template <> inline constexpr int binary_format::sign_index() { + return 31; +} + +template <> +inline constexpr int binary_format::max_exponent_fast_path() { + return 22; +} +template <> +inline constexpr int binary_format::max_exponent_fast_path() { + return 10; +} + +template <> +inline constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} +template <> +inline constexpr uint64_t +binary_format::max_mantissa_fast_path(int64_t power) { + // caller is responsible to ensure that + // power >= 0 && power <= 22 + // + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)max_mantissa[0], max_mantissa[power]; +} +template <> +inline constexpr uint64_t binary_format::max_mantissa_fast_path() { + return uint64_t(2) << mantissa_explicit_bits(); +} +template <> +inline constexpr uint64_t +binary_format::max_mantissa_fast_path(int64_t power) { + // caller is responsible to ensure that + // power >= 0 && power <= 10 + // + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)max_mantissa[0], max_mantissa[power]; +} + +template <> +inline constexpr double +binary_format::exact_power_of_ten(int64_t power) { + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)powers_of_ten[0], powers_of_ten[power]; +} +template <> +inline constexpr float binary_format::exact_power_of_ten(int64_t power) { + // Work around clang bug https://godbolt.org/z/zedh7rrhc + return (void)powers_of_ten[0], powers_of_ten[power]; +} + +template <> inline constexpr int binary_format::largest_power_of_ten() { + return 308; +} +template <> inline constexpr int binary_format::largest_power_of_ten() { + return 38; +} + +template <> +inline constexpr int binary_format::smallest_power_of_ten() { + return -342; +} +template <> inline constexpr int binary_format::smallest_power_of_ten() { + return -64; +} + +template <> inline constexpr size_t binary_format::max_digits() { + return 769; +} +template <> inline constexpr size_t binary_format::max_digits() { + return 114; +} + +template <> +inline constexpr binary_format::equiv_uint +binary_format::exponent_mask() { + return 0x7F800000; +} +template <> +inline constexpr binary_format::equiv_uint +binary_format::exponent_mask() { + return 0x7FF0000000000000; +} + +template <> +inline constexpr binary_format::equiv_uint +binary_format::mantissa_mask() { + return 0x007FFFFF; +} +template <> +inline constexpr binary_format::equiv_uint +binary_format::mantissa_mask() { + return 0x000FFFFFFFFFFFFF; +} + +template <> +inline constexpr binary_format::equiv_uint +binary_format::hidden_bit_mask() { + return 0x00800000; +} +template <> +inline constexpr binary_format::equiv_uint +binary_format::hidden_bit_mask() { + return 0x0010000000000000; +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +to_float(bool negative, adjusted_mantissa am, T &value) { + using fastfloat_uint = typename binary_format::equiv_uint; + fastfloat_uint word = (fastfloat_uint)am.mantissa; + word |= fastfloat_uint(am.power2) + << binary_format::mantissa_explicit_bits(); + word |= fastfloat_uint(negative) << binary_format::sign_index(); +#if FASTFLOAT_HAS_BIT_CAST + value = std::bit_cast(word); +#else + ::memcpy(&value, &word, sizeof(T)); +#endif +} + +#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default +template struct space_lut { + static constexpr bool value[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; +}; + +#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE + +template constexpr bool space_lut::value[]; + +#endif + +inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } +#endif + +template static constexpr uint64_t int_cmp_zeros() { + static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), + "Unsupported character size"); + return (sizeof(UC) == 1) ? 0x3030303030303030 + : (sizeof(UC) == 2) + ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | + uint64_t(UC('0')) << 16 | UC('0')) + : (uint64_t(UC('0')) << 32 | UC('0')); +} +template static constexpr int int_cmp_len() { + return sizeof(uint64_t) / sizeof(UC); +} +template static constexpr UC const *str_const_nan() { + return nullptr; +} +template <> constexpr char const *str_const_nan() { return "nan"; } +template <> constexpr wchar_t const *str_const_nan() { return L"nan"; } +template <> constexpr char16_t const *str_const_nan() { + return u"nan"; +} +template <> constexpr char32_t const *str_const_nan() { + return U"nan"; +} +template static constexpr UC const *str_const_inf() { + return nullptr; +} +template <> constexpr char const *str_const_inf() { return "infinity"; } +template <> constexpr wchar_t const *str_const_inf() { + return L"infinity"; +} +template <> constexpr char16_t const *str_const_inf() { + return u"infinity"; +} +template <> constexpr char32_t const *str_const_inf() { + return U"infinity"; +} + +template struct int_luts { + static constexpr uint8_t chdigit[] = { + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, + 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, + 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, + 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255}; + + static constexpr size_t maxdigits_u64[] = { + 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16, + 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13}; + + static constexpr uint64_t min_safe_u64[] = { + 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, + 7450580596923828125, 4738381338321616896, 3909821048582988049, + 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, + 5559917313492231481, 2218611106740436992, 8650415919381337933, + 2177953337809371136, 6568408355712890625, 1152921504606846976, + 2862423051509815793, 6746640616477458432, 15181127029874798299ull, + 1638400000000000000, 3243919932521508681, 6221821273427820544, + 11592836324538749809ull, 876488338465357824, 1490116119384765625, + 2481152873203736576, 4052555153018976267, 6502111422497947648, + 10260628712958602189ull, 15943230000000000000ull, 787662783788549761, + 1152921504606846976, 1667889514952984961, 2386420683693101056, + 3379220508056640625, 4738381338321616896}; +}; + +#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE + +template constexpr uint8_t int_luts::chdigit[]; + +template constexpr size_t int_luts::maxdigits_u64[]; + +template constexpr uint64_t int_luts::min_safe_u64[]; + +#endif + +template +fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) { + return int_luts<>::chdigit[static_cast(c)]; +} + +fastfloat_really_inline constexpr size_t max_digits_u64(int base) { + return int_luts<>::maxdigits_u64[base - 2]; +} + +// If a u64 is exactly max_digits_u64() in length, this is +// the value below which it has definitely overflowed. +fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) { + return int_luts<>::min_safe_u64[base - 2]; +} + +} // namespace fast_float + +#endif + + +#ifndef FASTFLOAT_FAST_FLOAT_H +#define FASTFLOAT_FAST_FLOAT_H + + +namespace fast_float { +/** + * This function parses the character sequence [first,last) for a number. It + * parses floating-point numbers expecting a locale-indepent format equivalent + * to what is used by std::strtod in the default ("C") locale. The resulting + * floating-point value is the closest floating-point values (using either float + * or double), using the "round to even" convention for values that would + * otherwise fall right in-between two values. That is, we provide exact parsing + * according to the IEEE standard. + * + * Given a successful parse, the pointer (`ptr`) in the returned value is set to + * point right after the parsed number, and the `value` referenced is set to the + * parsed value. In case of error, the returned `ec` contains a representative + * error, otherwise the default (`std::errc()`) value is stored. + * + * The implementation does not throw and does not allocate memory (e.g., with + * `new` or `malloc`). + * + * Like the C++17 standard, the `fast_float::from_chars` functions take an + * optional last argument of the type `fast_float::chars_format`. It is a bitset + * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt & + * fast_float::chars_format::scientific` are set to determine whether we allow + * the fixed point and scientific notation respectively. The default is + * `fast_float::chars_format::general` which allows both `fixed` and + * `scientific`. + */ +template ())> +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars(UC const *first, UC const *last, T &value, + chars_format fmt = chars_format::general) noexcept; + +/** + * Like from_chars, but accepts an `options` argument to govern number parsing. + */ +template +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars_advanced(UC const *first, UC const *last, T &value, + parse_options_t options) noexcept; +/** + * from_chars for integer types. + */ +template ())> +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept; + +} // namespace fast_float +#endif // FASTFLOAT_FAST_FLOAT_H + +#ifndef FASTFLOAT_ASCII_NUMBER_H +#define FASTFLOAT_ASCII_NUMBER_H + +#include +#include +#include +#include +#include +#include + + +#ifdef FASTFLOAT_SSE2 +#include +#endif + +#ifdef FASTFLOAT_NEON +#include +#endif + +namespace fast_float { + +template fastfloat_really_inline constexpr bool has_simd_opt() { +#ifdef FASTFLOAT_HAS_SIMD + return std::is_same::value; +#else + return false; +#endif +} + +// Next function can be micro-optimized, but compilers are entirely +// able to optimize it well. +template +fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { + return !(c > UC('9') || c < UC('0')); +} + +fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { + return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | + (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | + (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | + (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; +} + +// Read 8 UC into a u64. Truncates UC if not char. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t +read8_to_u64(const UC *chars) { + if (cpp20_and_in_constexpr() || !std::is_same::value) { + uint64_t val = 0; + for (int i = 0; i < 8; ++i) { + val |= uint64_t(uint8_t(*chars)) << (i * 8); + ++chars; + } + return val; + } + uint64_t val; + ::memcpy(&val, chars, sizeof(uint64_t)); +#if FASTFLOAT_IS_BIG_ENDIAN == 1 + // Need to read as-if the number was in little-endian order. + val = byteswap(val); +#endif + return val; +} + +#ifdef FASTFLOAT_SSE2 + +fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) { + FASTFLOAT_SIMD_DISABLE_WARNINGS + const __m128i packed = _mm_packus_epi16(data, data); +#ifdef FASTFLOAT_64BIT + return uint64_t(_mm_cvtsi128_si64(packed)); +#else + uint64_t value; + // Visual Studio + older versions of GCC don't support _mm_storeu_si64 + _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); + return value; +#endif + FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { + FASTFLOAT_SIMD_DISABLE_WARNINGS + return simd_read8_to_u64( + _mm_loadu_si128(reinterpret_cast(chars))); + FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +#elif defined(FASTFLOAT_NEON) + +fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) { + FASTFLOAT_SIMD_DISABLE_WARNINGS + uint8x8_t utf8_packed = vmovn_u16(data); + return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); + FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { + FASTFLOAT_SIMD_DISABLE_WARNINGS + return simd_read8_to_u64( + vld1q_u16(reinterpret_cast(chars))); + FASTFLOAT_SIMD_RESTORE_WARNINGS +} + +#endif // FASTFLOAT_SSE2 + +// MSVC SFINAE is broken pre-VS2017 +#if defined(_MSC_VER) && _MSC_VER <= 1900 +template +#else +template ()) = 0> +#endif +// dummy for compile +uint64_t simd_read8_to_u64(UC const *) { + return 0; +} + +// credit @aqrit +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t +parse_eight_digits_unrolled(uint64_t val) { + const uint64_t mask = 0x000000FF000000FF; + const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) + const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) + val -= 0x3030303030303030; + val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; + val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; + return uint32_t(val); +} + +// Call this if chars are definitely 8 digits. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t +parse_eight_digits_unrolled(UC const *chars) noexcept { + if (cpp20_and_in_constexpr() || !has_simd_opt()) { + return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay + } + return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); +} + +// credit @aqrit +fastfloat_really_inline constexpr bool +is_made_of_eight_digits_fast(uint64_t val) noexcept { + return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & + 0x8080808080808080)); +} + +#ifdef FASTFLOAT_HAS_SIMD + +// Call this if chars might not be 8 digits. +// Using this style (instead of is_made_of_eight_digits_fast() then +// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice. +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool +simd_parse_if_eight_digits_unrolled(const char16_t *chars, + uint64_t &i) noexcept { + if (cpp20_and_in_constexpr()) { + return false; + } +#ifdef FASTFLOAT_SSE2 + FASTFLOAT_SIMD_DISABLE_WARNINGS + const __m128i data = + _mm_loadu_si128(reinterpret_cast(chars)); + + // (x - '0') <= 9 + // http://0x80.pl/articles/simd-parsing-int-sequences.html + const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); + const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); + + if (_mm_movemask_epi8(t1) == 0) { + i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); + return true; + } else + return false; + FASTFLOAT_SIMD_RESTORE_WARNINGS +#elif defined(FASTFLOAT_NEON) + FASTFLOAT_SIMD_DISABLE_WARNINGS + const uint16x8_t data = vld1q_u16(reinterpret_cast(chars)); + + // (x - '0') <= 9 + // http://0x80.pl/articles/simd-parsing-int-sequences.html + const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); + const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); + + if (vminvq_u16(mask) == 0xFFFF) { + i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); + return true; + } else + return false; + FASTFLOAT_SIMD_RESTORE_WARNINGS +#else + (void)chars; + (void)i; + return false; +#endif // FASTFLOAT_SSE2 +} + +#endif // FASTFLOAT_HAS_SIMD + +// MSVC SFINAE is broken pre-VS2017 +#if defined(_MSC_VER) && _MSC_VER <= 1900 +template +#else +template ()) = 0> +#endif +// dummy for compile +bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { + return 0; +} + +template ::value) = 0> +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) { + if (!has_simd_opt()) { + return; + } + while ((std::distance(p, pend) >= 8) && + simd_parse_if_eight_digits_unrolled( + p, i)) { // in rare cases, this will overflow, but that's ok + p += 8; + } +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +loop_parse_if_eight_digits(const char *&p, const char *const pend, + uint64_t &i) { + // optimizes better than parse_if_eight_digits_unrolled() for UC = char. + while ((std::distance(p, pend) >= 8) && + is_made_of_eight_digits_fast(read8_to_u64(p))) { + i = i * 100000000 + + parse_eight_digits_unrolled(read8_to_u64( + p)); // in rare cases, this will overflow, but that's ok + p += 8; + } +} + +enum class parse_error { + no_error, + // [JSON-only] The minus sign must be followed by an integer. + missing_integer_after_sign, + // A sign must be followed by an integer or dot. + missing_integer_or_dot_after_sign, + // [JSON-only] The integer part must not have leading zeros. + leading_zeros_in_integer_part, + // [JSON-only] The integer part must have at least one digit. + no_digits_in_integer_part, + // [JSON-only] If there is a decimal point, there must be digits in the + // fractional part. + no_digits_in_fractional_part, + // The mantissa must have at least one digit. + no_digits_in_mantissa, + // Scientific notation requires an exponential part. + missing_exponential_part, +}; + +template struct parsed_number_string_t { + int64_t exponent{0}; + uint64_t mantissa{0}; + UC const *lastmatch{nullptr}; + bool negative{false}; + bool valid{false}; + bool too_many_digits{false}; + // contains the range of the significant digits + span integer{}; // non-nullable + span fraction{}; // nullable + parse_error error{parse_error::no_error}; +}; + +using byte_span = span; +using parsed_number_string = parsed_number_string_t; + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t +report_parse_error(UC const *p, parse_error error) { + parsed_number_string_t answer; + answer.valid = false; + answer.lastmatch = p; + answer.error = error; + return answer; +} + +// Assuming that you use no more than 19 digits, this will +// parse an ASCII string. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t +parse_number_string(UC const *p, UC const *pend, + parse_options_t options) noexcept { + chars_format const fmt = options.format; + UC const decimal_point = options.decimal_point; + + parsed_number_string_t answer; + answer.valid = false; + answer.too_many_digits = false; + answer.negative = (*p == UC('-')); +#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default + if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { +#else + if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here +#endif + ++p; + if (p == pend) { + return report_parse_error( + p, parse_error::missing_integer_or_dot_after_sign); + } + if (fmt & FASTFLOAT_JSONFMT) { + if (!is_integer(*p)) { // a sign must be followed by an integer + return report_parse_error(p, + parse_error::missing_integer_after_sign); + } + } else { + if (!is_integer(*p) && + (*p != + decimal_point)) { // a sign must be followed by an integer or the dot + return report_parse_error( + p, parse_error::missing_integer_or_dot_after_sign); + } + } + } + UC const *const start_digits = p; + + uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) + + while ((p != pend) && is_integer(*p)) { + // a multiplication by 10 is cheaper than an arbitrary integer + // multiplication + i = 10 * i + + uint64_t(*p - + UC('0')); // might overflow, we will handle the overflow later + ++p; + } + UC const *const end_of_integer_part = p; + int64_t digit_count = int64_t(end_of_integer_part - start_digits); + answer.integer = span(start_digits, size_t(digit_count)); + if (fmt & FASTFLOAT_JSONFMT) { + // at least 1 digit in integer part, without leading zeros + if (digit_count == 0) { + return report_parse_error(p, parse_error::no_digits_in_integer_part); + } + if ((start_digits[0] == UC('0') && digit_count > 1)) { + return report_parse_error(start_digits, + parse_error::leading_zeros_in_integer_part); + } + } + + int64_t exponent = 0; + const bool has_decimal_point = (p != pend) && (*p == decimal_point); + if (has_decimal_point) { + ++p; + UC const *before = p; + // can occur at most twice without overflowing, but let it occur more, since + // for integers with many digits, digit parsing is the primary bottleneck. + loop_parse_if_eight_digits(p, pend, i); + + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - UC('0')); + ++p; + i = i * 10 + digit; // in rare cases, this will overflow, but that's ok + } + exponent = before - p; + answer.fraction = span(before, size_t(p - before)); + digit_count -= exponent; + } + if (fmt & FASTFLOAT_JSONFMT) { + // at least 1 digit in fractional part + if (has_decimal_point && exponent == 0) { + return report_parse_error(p, + parse_error::no_digits_in_fractional_part); + } + } else if (digit_count == + 0) { // we must have encountered at least one integer! + return report_parse_error(p, parse_error::no_digits_in_mantissa); + } + int64_t exp_number = 0; // explicit exponential part + if (((fmt & chars_format::scientific) && (p != pend) && + ((UC('e') == *p) || (UC('E') == *p))) || + ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) && + ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || + (UC('D') == *p)))) { + UC const *location_of_e = p; + if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || + (UC('D') == *p)) { + ++p; + } + bool neg_exp = false; + if ((p != pend) && (UC('-') == *p)) { + neg_exp = true; + ++p; + } else if ((p != pend) && + (UC('+') == + *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) + ++p; + } + if ((p == pend) || !is_integer(*p)) { + if (!(fmt & chars_format::fixed)) { + // The exponential part is invalid for scientific notation, so it must + // be a trailing token for fixed notation. However, fixed notation is + // disabled, so report a scientific notation error. + return report_parse_error(p, parse_error::missing_exponential_part); + } + // Otherwise, we will be ignoring the 'e'. + p = location_of_e; + } else { + while ((p != pend) && is_integer(*p)) { + uint8_t digit = uint8_t(*p - UC('0')); + if (exp_number < 0x10000000) { + exp_number = 10 * exp_number + digit; + } + ++p; + } + if (neg_exp) { + exp_number = -exp_number; + } + exponent += exp_number; + } + } else { + // If it scientific and not fixed, we have to bail out. + if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { + return report_parse_error(p, parse_error::missing_exponential_part); + } + } + answer.lastmatch = p; + answer.valid = true; + + // If we frequently had to deal with long strings of digits, + // we could extend our code by using a 128-bit integer instead + // of a 64-bit integer. However, this is uncommon. + // + // We can deal with up to 19 digits. + if (digit_count > 19) { // this is uncommon + // It is possible that the integer had an overflow. + // We have to handle the case where we have 0.0000somenumber. + // We need to be mindful of the case where we only have zeroes... + // E.g., 0.000000000...000. + UC const *start = start_digits; + while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { + if (*start == UC('0')) { + digit_count--; + } + start++; + } + + if (digit_count > 19) { + answer.too_many_digits = true; + // Let us start again, this time, avoiding overflows. + // We don't need to check if is_integer, since we use the + // pre-tokenized spans from above. + i = 0; + p = answer.integer.ptr; + UC const *int_end = p + answer.integer.len(); + const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; + while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { + i = i * 10 + uint64_t(*p - UC('0')); + ++p; + } + if (i >= minimal_nineteen_digit_integer) { // We have a big integers + exponent = end_of_integer_part - p + exp_number; + } else { // We have a value with a fractional component. + p = answer.fraction.ptr; + UC const *frac_end = p + answer.fraction.len(); + while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { + i = i * 10 + uint64_t(*p - UC('0')); + ++p; + } + exponent = answer.fraction.ptr - p + exp_number; + } + // We have now corrected both exponent and i, to a truncated value + } + } + answer.exponent = exponent; + answer.mantissa = i; + return answer; +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t +parse_int_string(UC const *p, UC const *pend, T &value, int base) { + from_chars_result_t answer; + + UC const *const first = p; + + bool negative = (*p == UC('-')); + if (!std::is_signed::value && negative) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } +#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default + if ((*p == UC('-')) || (*p == UC('+'))) { +#else + if (*p == UC('-')) { +#endif + ++p; + } + + UC const *const start_num = p; + + while (p != pend && *p == UC('0')) { + ++p; + } + + const bool has_leading_zeros = p > start_num; + + UC const *const start_digits = p; + + uint64_t i = 0; + if (base == 10) { + loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible + } + while (p != pend) { + uint8_t digit = ch_to_digit(*p); + if (digit >= base) { + break; + } + i = uint64_t(base) * i + digit; // might overflow, check this later + p++; + } + + size_t digit_count = size_t(p - start_digits); + + if (digit_count == 0) { + if (has_leading_zeros) { + value = 0; + answer.ec = std::errc(); + answer.ptr = p; + } else { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + } + return answer; + } + + answer.ptr = p; + + // check u64 overflow + size_t max_digits = max_digits_u64(base); + if (digit_count > max_digits) { + answer.ec = std::errc::result_out_of_range; + return answer; + } + // this check can be eliminated for all other types, but they will all require + // a max_digits(base) equivalent + if (digit_count == max_digits && i < min_safe_u64(base)) { + answer.ec = std::errc::result_out_of_range; + return answer; + } + + // check other types overflow + if (!std::is_same::value) { + if (i > uint64_t(std::numeric_limits::max()) + uint64_t(negative)) { + answer.ec = std::errc::result_out_of_range; + return answer; + } + } + + if (negative) { +#ifdef FASTFLOAT_VISUAL_STUDIO +#pragma warning(push) +#pragma warning(disable : 4146) +#endif + // this weird workaround is required because: + // - converting unsigned to signed when its value is greater than signed max + // is UB pre-C++23. + // - reinterpret_casting (~i + 1) would work, but it is not constexpr + // this is always optimized into a neg instruction (note: T is an integer + // type) + value = T(-std::numeric_limits::max() - + T(i - uint64_t(std::numeric_limits::max()))); +#ifdef FASTFLOAT_VISUAL_STUDIO +#pragma warning(pop) +#endif + } else { + value = T(i); + } + + answer.ec = std::errc(); + return answer; +} + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_FAST_TABLE_H +#define FASTFLOAT_FAST_TABLE_H + +#include + +namespace fast_float { + +/** + * When mapping numbers from decimal to binary, + * we go from w * 10^q to m * 2^p but we have + * 10^q = 5^q * 2^q, so effectively + * we are trying to match + * w * 2^q * 5^q to m * 2^p. Thus the powers of two + * are not a concern since they can be represented + * exactly using the binary notation, only the powers of five + * affect the binary significand. + */ + +/** + * The smallest non-zero float (binary64) is 2^-1074. + * We take as input numbers of the form w x 10^q where w < 2^64. + * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. + * However, we have that + * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. + * Thus it is possible for a number of the form w * 10^-342 where + * w is a 64-bit value to be a non-zero floating-point number. + ********* + * Any number of form w * 10^309 where w>= 1 is going to be + * infinite in binary64 so we never need to worry about powers + * of 5 greater than 308. + */ +template struct powers_template { + + constexpr static int smallest_power_of_five = + binary_format::smallest_power_of_ten(); + constexpr static int largest_power_of_five = + binary_format::largest_power_of_ten(); + constexpr static int number_of_entries = + 2 * (largest_power_of_five - smallest_power_of_five + 1); + // Powers of five from 5^-342 all the way to 5^308 rounded toward one. + constexpr static uint64_t power_of_five_128[number_of_entries] = { + 0xeef453d6923bd65a, 0x113faa2906a13b3f, + 0x9558b4661b6565f8, 0x4ac7ca59a424c507, + 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, + 0xe95a99df8ace6f53, 0xf4d82c2c107973dc, + 0x91d8a02bb6c10594, 0x79071b9b8a4be869, + 0xb64ec836a47146f9, 0x9748e2826cdee284, + 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, + 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, + 0xb208ef855c969f4f, 0xbdbd2d335e51a935, + 0xde8b2b66b3bc4723, 0xad2c788035e61382, + 0x8b16fb203055ac76, 0x4c3bcb5021afcc31, + 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, + 0xd953e8624b85dd78, 0xd71d6dad34a2af0d, + 0x87d4713d6f33aa6b, 0x8672648c40e5ad68, + 0xa9c98d8ccb009506, 0x680efdaf511f18c2, + 0xd43bf0effdc0ba48, 0x212bd1b2566def2, + 0x84a57695fe98746d, 0x14bb630f7604b57, + 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, + 0xcf42894a5dce35ea, 0x52064cac828675b9, + 0x818995ce7aa0e1b2, 0x7343efebd1940993, + 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, + 0xca66fa129f9b60a6, 0xd41a26e077774ef6, + 0xfd00b897478238d0, 0x8920b098955522b4, + 0x9e20735e8cb16382, 0x55b46e5f5d5535b0, + 0xc5a890362fddbc62, 0xeb2189f734aa831d, + 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, + 0x9a6bb0aa55653b2d, 0x47b233c92125366e, + 0xc1069cd4eabe89f8, 0x999ec0bb696e840a, + 0xf148440a256e2c76, 0xc00670ea43ca250d, + 0x96cd2a865764dbca, 0x380406926a5e5728, + 0xbc807527ed3e12bc, 0xc605083704f5ecf2, + 0xeba09271e88d976b, 0xf7864a44c633682e, + 0x93445b8731587ea3, 0x7ab3ee6afbe0211d, + 0xb8157268fdae9e4c, 0x5960ea05bad82964, + 0xe61acf033d1a45df, 0x6fb92487298e33bd, + 0x8fd0c16206306bab, 0xa5d3b6d479f8e056, + 0xb3c4f1ba87bc8696, 0x8f48a4899877186c, + 0xe0b62e2929aba83c, 0x331acdabfe94de87, + 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, + 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, + 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, + 0x892731ac9faf056e, 0xbe311c083a225cd2, + 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, + 0xd64d3d9db981787d, 0x92cbbccdad5b108, + 0x85f0468293f0eb4e, 0x25bbf56008c58ea5, + 0xa76c582338ed2621, 0xaf2af2b80af6f24e, + 0xd1476e2c07286faa, 0x1af5af660db4aee1, + 0x82cca4db847945ca, 0x50d98d9fc890ed4d, + 0xa37fce126597973c, 0xe50ff107bab528a0, + 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, + 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, + 0x9faacf3df73609b1, 0x77b191618c54e9ac, + 0xc795830d75038c1d, 0xd59df5b9ef6a2417, + 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, + 0x9becce62836ac577, 0x4ee367f9430aec32, + 0xc2e801fb244576d5, 0x229c41f793cda73f, + 0xf3a20279ed56d48a, 0x6b43527578c1110f, + 0x9845418c345644d6, 0x830a13896b78aaa9, + 0xbe5691ef416bd60c, 0x23cc986bc656d553, + 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, + 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, + 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, + 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, + 0x91376c36d99995be, 0x23100809b9c21fa1, + 0xb58547448ffffb2d, 0xabd40a0c2832a78a, + 0xe2e69915b3fff9f9, 0x16c90c8f323f516c, + 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, + 0xb1442798f49ffb4a, 0x99cd11cfdf41779c, + 0xdd95317f31c7fa1d, 0x40405643d711d583, + 0x8a7d3eef7f1cfc52, 0x482835ea666b2572, + 0xad1c8eab5ee43b66, 0xda3243650005eecf, + 0xd863b256369d4a40, 0x90bed43e40076a82, + 0x873e4f75e2224e68, 0x5a7744a6e804a291, + 0xa90de3535aaae202, 0x711515d0a205cb36, + 0xd3515c2831559a83, 0xd5a5b44ca873e03, + 0x8412d9991ed58091, 0xe858790afe9486c2, + 0xa5178fff668ae0b6, 0x626e974dbe39a872, + 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, + 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, + 0xa139029f6a239f72, 0x1c1fffc1ebc44e80, + 0xc987434744ac874e, 0xa327ffb266b56220, + 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, + 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, + 0xc4ce17b399107c22, 0xcb550fb4384d21d3, + 0xf6019da07f549b2b, 0x7e2a53a146606a48, + 0x99c102844f94e0fb, 0x2eda7444cbfc426d, + 0xc0314325637a1939, 0xfa911155fefb5308, + 0xf03d93eebc589f88, 0x793555ab7eba27ca, + 0x96267c7535b763b5, 0x4bc1558b2f3458de, + 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, + 0xea9c227723ee8bcb, 0x465e15a979c1cadc, + 0x92a1958a7675175f, 0xbfacd89ec191ec9, + 0xb749faed14125d36, 0xcef980ec671f667b, + 0xe51c79a85916f484, 0x82b7e12780e7401a, + 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, + 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, + 0xdfbdcece67006ac9, 0x67a791e093e1d49a, + 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, + 0xaecc49914078536d, 0x58fae9f773886e18, + 0xda7f5bf590966848, 0xaf39a475506a899e, + 0x888f99797a5e012d, 0x6d8406c952429603, + 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, + 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, + 0x855c3be0a17fcd26, 0x5cf2eea09a55067f, + 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, + 0xd0601d8efc57b08b, 0xf13b94daf124da26, + 0x823c12795db6ce57, 0x76c53d08d6b70858, + 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, + 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, + 0xfe5d54150b090b02, 0xd3f93b35435d7c4c, + 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, + 0xc6b8e9b0709f109a, 0x359ab6419ca1091b, + 0xf867241c8cc6d4c0, 0xc30163d203c94b62, + 0x9b407691d7fc44f8, 0x79e0de63425dcf1d, + 0xc21094364dfb5636, 0x985915fc12f542e4, + 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, + 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, + 0xbd8430bd08277231, 0x50c6ff782a838353, + 0xece53cec4a314ebd, 0xa4f8bf5635246428, + 0x940f4613ae5ed136, 0x871b7795e136be99, + 0xb913179899f68584, 0x28e2557b59846e3f, + 0xe757dd7ec07426e5, 0x331aeada2fe589cf, + 0x9096ea6f3848984f, 0x3ff0d2c85def7621, + 0xb4bca50b065abe63, 0xfed077a756b53a9, + 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, + 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, + 0xb080392cc4349dec, 0xbd8d794d96aacfb3, + 0xdca04777f541c567, 0xecf0d7a0fc5583a0, + 0x89e42caaf9491b60, 0xf41686c49db57244, + 0xac5d37d5b79b6239, 0x311c2875c522ced5, + 0xd77485cb25823ac7, 0x7d633293366b828b, + 0x86a8d39ef77164bc, 0xae5dff9c02033197, + 0xa8530886b54dbdeb, 0xd9f57f830283fdfc, + 0xd267caa862a12d66, 0xd072df63c324fd7b, + 0x8380dea93da4bc60, 0x4247cb9e59f71e6d, + 0xa46116538d0deb78, 0x52d9be85f074e608, + 0xcd795be870516656, 0x67902e276c921f8b, + 0x806bd9714632dff6, 0xba1cd8a3db53b6, + 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, + 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, + 0xfad2a4b13d1b5d6c, 0x796b805720085f81, + 0x9cc3a6eec6311a63, 0xcbe3303674053bb0, + 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, + 0xf4f1b4d515acb93b, 0xee92fb5515482d44, + 0x991711052d8bf3c5, 0x751bdd152d4d1c4a, + 0xbf5cd54678eef0b6, 0xd262d45a78a0635d, + 0xef340a98172aace4, 0x86fb897116c87c34, + 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, + 0xbae0a846d2195712, 0x8974836059cca109, + 0xe998d258869facd7, 0x2bd1a438703fc94b, + 0x91ff83775423cc06, 0x7b6306a34627ddcf, + 0xb67f6455292cbf08, 0x1a3bc84c17b1d542, + 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, + 0x8e938662882af53e, 0x547eb47b7282ee9c, + 0xb23867fb2a35b28d, 0xe99e619a4f23aa43, + 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, + 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, + 0xae0b158b4738705e, 0x9624ab50b148d445, + 0xd98ddaee19068c76, 0x3badd624dd9b0957, + 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, + 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, + 0xd47487cc8470652b, 0x7647c3200069671f, + 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, + 0xa5fb0a17c777cf09, 0xf468107100525890, + 0xcf79cc9db955c2cc, 0x7182148d4066eeb4, + 0x81ac1fe293d599bf, 0xc6f14cd848405530, + 0xa21727db38cb002f, 0xb8ada00e5a506a7c, + 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, + 0xfd442e4688bd304a, 0x908f4a166d1da663, + 0x9e4a9cec15763e2e, 0x9a598e4e043287fe, + 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, + 0xf7549530e188c128, 0xd12bee59e68ef47c, + 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, + 0xc13a148e3032d6e7, 0xe36a52363c1faf01, + 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, + 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, + 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, + 0xebdf661791d60f56, 0x111b495b3464ad21, + 0x936b9fcebb25c995, 0xcab10dd900beec34, + 0xb84687c269ef3bfb, 0x3d5d514f40eea742, + 0xe65829b3046b0afa, 0xcb4a5a3112a5112, + 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, + 0xb3f4e093db73a093, 0x59ed216765690f56, + 0xe0f218b8d25088b8, 0x306869c13ec3532c, + 0x8c974f7383725573, 0x1e414218c73a13fb, + 0xafbd2350644eeacf, 0xe5d1929ef90898fa, + 0xdbac6c247d62a583, 0xdf45f746b74abf39, + 0x894bc396ce5da772, 0x6b8bba8c328eb783, + 0xab9eb47c81f5114f, 0x66ea92f3f326564, + 0xd686619ba27255a2, 0xc80a537b0efefebd, + 0x8613fd0145877585, 0xbd06742ce95f5f36, + 0xa798fc4196e952e7, 0x2c48113823b73704, + 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, + 0x82ef85133de648c4, 0x9a984d73dbe722fb, + 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, + 0xcc963fee10b7d1b3, 0x318df905079926a8, + 0xffbbcfe994e5c61f, 0xfdf17746497f7052, + 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, + 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, + 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, + 0x9c1661a651213e2d, 0x6bea10ca65c084e, + 0xc31bfa0fe5698db8, 0x486e494fcff30a62, + 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, + 0x986ddb5c6b3a76b7, 0xf89629465a75e01c, + 0xbe89523386091465, 0xf6bbb397f1135823, + 0xee2ba6c0678b597f, 0x746aa07ded582e2c, + 0x94db483840b717ef, 0xa8c2a44eb4571cdc, + 0xba121a4650e4ddeb, 0x92f34d62616ce413, + 0xe896a0d7e51e1566, 0x77b020baf9c81d17, + 0x915e2486ef32cd60, 0xace1474dc1d122e, + 0xb5b5ada8aaff80b8, 0xd819992132456ba, + 0xe3231912d5bf60e6, 0x10e1fff697ed6c69, + 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, + 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, + 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, + 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, + 0xad4ab7112eb3929d, 0x86c16c98d2c953c6, + 0xd89d64d57a607744, 0xe871c7bf077ba8b7, + 0x87625f056c7c4a8b, 0x11471cd764ad4972, + 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, + 0xd389b47879823479, 0x4aff1d108d4ec2c3, + 0x843610cb4bf160cb, 0xcedf722a585139ba, + 0xa54394fe1eedb8fe, 0xc2974eb4ee658828, + 0xce947a3da6a9273e, 0x733d226229feea32, + 0x811ccc668829b887, 0x806357d5a3f525f, + 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, + 0xc9bcff6034c13052, 0xfc89b393dd02f0b5, + 0xfc2c3f3841f17c67, 0xbbac2078d443ace2, + 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, + 0xc5029163f384a931, 0xa9e795e65d4df11, + 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, + 0x99ea0196163fa42e, 0x504bced1bf8e4e45, + 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, + 0xf07da27a82c37088, 0x5d767327bb4e5a4c, + 0x964e858c91ba2655, 0x3a6a07f8d510f86f, + 0xbbe226efb628afea, 0x890489f70a55368b, + 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, + 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, + 0xb77ada0617e3bbcb, 0x9ce6ebb40173744, + 0xe55990879ddcaabd, 0xcc420a6a101d0515, + 0x8f57fa54c2a9eab6, 0x9fa946824a12232d, + 0xb32df8e9f3546564, 0x47939822dc96abf9, + 0xdff9772470297ebd, 0x59787e2b93bc56f7, + 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, + 0xaefae51477a06b03, 0xede622920b6b23f1, + 0xdab99e59958885c4, 0xe95fab368e45eced, + 0x88b402f7fd75539b, 0x11dbcb0218ebb414, + 0xaae103b5fcd2a881, 0xd652bdc29f26a119, + 0xd59944a37c0752a2, 0x4be76d3346f0495f, + 0x857fcae62d8493a5, 0x6f70a4400c562ddb, + 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, + 0xd097ad07a71f26b2, 0x7e2000a41346a7a7, + 0x825ecc24c873782f, 0x8ed400668c0c28c8, + 0xa2f67f2dfa90563b, 0x728900802f0f32fa, + 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, + 0xfea126b7d78186bc, 0xe2f610c84987bfa8, + 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, + 0xc6ede63fa05d3143, 0x91503d1c79720dbb, + 0xf8a95fcf88747d94, 0x75a44c6397ce912a, + 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, + 0xc24452da229b021b, 0xfbe85badce996168, + 0xf2d56790ab41c2a2, 0xfae27299423fb9c3, + 0x97c560ba6b0919a5, 0xdccd879fc967d41a, + 0xbdb6b8e905cb600f, 0x5400e987bbc1c920, + 0xed246723473e3813, 0x290123e9aab23b68, + 0x9436c0760c86e30b, 0xf9a0b6720aaf6521, + 0xb94470938fa89bce, 0xf808e40e8d5b3e69, + 0xe7958cb87392c2c2, 0xb60b1d1230b20e04, + 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, + 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, + 0xe2280b6c20dd5232, 0x25c6da63c38de1b0, + 0x8d590723948a535f, 0x579c487e5a38ad0e, + 0xb0af48ec79ace837, 0x2d835a9df0c6d851, + 0xdcdb1b2798182244, 0xf8e431456cf88e65, + 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, + 0xac8b2d36eed2dac5, 0xe272467e3d222f3f, + 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, + 0x86ccbb52ea94baea, 0x98e947129fc2b4e9, + 0xa87fea27a539e9a5, 0x3f2398d747b36224, + 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, + 0x83a3eeeef9153e89, 0x1953cf68300424ac, + 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, + 0xcdb02555653131b6, 0x3792f412cb06794d, + 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, + 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, + 0xc8de047564d20a8b, 0xf245825a5a445275, + 0xfb158592be068d2e, 0xeed6e2f0f0d56712, + 0x9ced737bb6c4183d, 0x55464dd69685606b, + 0xc428d05aa4751e4c, 0xaa97e14c3c26b886, + 0xf53304714d9265df, 0xd53dd99f4b3066a8, + 0x993fe2c6d07b7fab, 0xe546a8038efe4029, + 0xbf8fdb78849a5f96, 0xde98520472bdd033, + 0xef73d256a5c0f77c, 0x963e66858f6d4440, + 0x95a8637627989aad, 0xdde7001379a44aa8, + 0xbb127c53b17ec159, 0x5560c018580d5d52, + 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, + 0x9226712162ab070d, 0xcab3961304ca70e8, + 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, + 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, + 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, + 0xb267ed1940f1c61c, 0x55f038b237591ed3, + 0xdf01e85f912e37a3, 0x6b6c46dec52f6688, + 0x8b61313bbabce2c6, 0x2323ac4b3b3da015, + 0xae397d8aa96c1b77, 0xabec975e0a0d081a, + 0xd9c7dced53c72255, 0x96e7bd358c904a21, + 0x881cea14545c7575, 0x7e50d64177da2e54, + 0xaa242499697392d2, 0xdde50bd1d5d0b9e9, + 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, + 0x84ec3c97da624ab4, 0xbd5af13bef0b113e, + 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, + 0xcfb11ead453994ba, 0x67de18eda5814af2, + 0x81ceb32c4b43fcf4, 0x80eacf948770ced7, + 0xa2425ff75e14fc31, 0xa1258379a94d028d, + 0xcad2f7f5359a3b3e, 0x96ee45813a04330, + 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, + 0x9e74d1b791e07e48, 0x775ea264cf55347e, + 0xc612062576589dda, 0x95364afe032a819e, + 0xf79687aed3eec551, 0x3a83ddbd83f52205, + 0x9abe14cd44753b52, 0xc4926a9672793543, + 0xc16d9a0095928a27, 0x75b7053c0f178294, + 0xf1c90080baf72cb1, 0x5324c68b12dd6339, + 0x971da05074da7bee, 0xd3f6fc16ebca5e04, + 0xbce5086492111aea, 0x88f4bb1ca6bcf585, + 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, + 0x9392ee8e921d5d07, 0x3aff322e62439fd0, + 0xb877aa3236a4b449, 0x9befeb9fad487c3, + 0xe69594bec44de15b, 0x4c2ebe687989a9b4, + 0x901d7cf73ab0acd9, 0xf9d37014bf60a11, + 0xb424dc35095cd80f, 0x538484c19ef38c95, + 0xe12e13424bb40e13, 0x2865a5f206b06fba, + 0x8cbccc096f5088cb, 0xf93f87b7442e45d4, + 0xafebff0bcb24aafe, 0xf78f69a51539d749, + 0xdbe6fecebdedd5be, 0xb573440e5a884d1c, + 0x89705f4136b4a597, 0x31680a88f8953031, + 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, + 0xd6bf94d5e57a42bc, 0x3d32907604691b4d, + 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, + 0xa7c5ac471b478423, 0xfcf80dc33721d54, + 0xd1b71758e219652b, 0xd3c36113404ea4a9, + 0x83126e978d4fdf3b, 0x645a1cac083126ea, + 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, + 0xcccccccccccccccc, 0xcccccccccccccccd, + 0x8000000000000000, 0x0, + 0xa000000000000000, 0x0, + 0xc800000000000000, 0x0, + 0xfa00000000000000, 0x0, + 0x9c40000000000000, 0x0, + 0xc350000000000000, 0x0, + 0xf424000000000000, 0x0, + 0x9896800000000000, 0x0, + 0xbebc200000000000, 0x0, + 0xee6b280000000000, 0x0, + 0x9502f90000000000, 0x0, + 0xba43b74000000000, 0x0, + 0xe8d4a51000000000, 0x0, + 0x9184e72a00000000, 0x0, + 0xb5e620f480000000, 0x0, + 0xe35fa931a0000000, 0x0, + 0x8e1bc9bf04000000, 0x0, + 0xb1a2bc2ec5000000, 0x0, + 0xde0b6b3a76400000, 0x0, + 0x8ac7230489e80000, 0x0, + 0xad78ebc5ac620000, 0x0, + 0xd8d726b7177a8000, 0x0, + 0x878678326eac9000, 0x0, + 0xa968163f0a57b400, 0x0, + 0xd3c21bcecceda100, 0x0, + 0x84595161401484a0, 0x0, + 0xa56fa5b99019a5c8, 0x0, + 0xcecb8f27f4200f3a, 0x0, + 0x813f3978f8940984, 0x4000000000000000, + 0xa18f07d736b90be5, 0x5000000000000000, + 0xc9f2c9cd04674ede, 0xa400000000000000, + 0xfc6f7c4045812296, 0x4d00000000000000, + 0x9dc5ada82b70b59d, 0xf020000000000000, + 0xc5371912364ce305, 0x6c28000000000000, + 0xf684df56c3e01bc6, 0xc732000000000000, + 0x9a130b963a6c115c, 0x3c7f400000000000, + 0xc097ce7bc90715b3, 0x4b9f100000000000, + 0xf0bdc21abb48db20, 0x1e86d40000000000, + 0x96769950b50d88f4, 0x1314448000000000, + 0xbc143fa4e250eb31, 0x17d955a000000000, + 0xeb194f8e1ae525fd, 0x5dcfab0800000000, + 0x92efd1b8d0cf37be, 0x5aa1cae500000000, + 0xb7abc627050305ad, 0xf14a3d9e40000000, + 0xe596b7b0c643c719, 0x6d9ccd05d0000000, + 0x8f7e32ce7bea5c6f, 0xe4820023a2000000, + 0xb35dbf821ae4f38b, 0xdda2802c8a800000, + 0xe0352f62a19e306e, 0xd50b2037ad200000, + 0x8c213d9da502de45, 0x4526f422cc340000, + 0xaf298d050e4395d6, 0x9670b12b7f410000, + 0xdaf3f04651d47b4c, 0x3c0cdd765f114000, + 0x88d8762bf324cd0f, 0xa5880a69fb6ac800, + 0xab0e93b6efee0053, 0x8eea0d047a457a00, + 0xd5d238a4abe98068, 0x72a4904598d6d880, + 0x85a36366eb71f041, 0x47a6da2b7f864750, + 0xa70c3c40a64e6c51, 0x999090b65f67d924, + 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, + 0x82818f1281ed449f, 0xbff8f10e7a8921a4, + 0xa321f2d7226895c7, 0xaff72d52192b6a0d, + 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, + 0xfee50b7025c36a08, 0x2f236d04753d5b4, + 0x9f4f2726179a2245, 0x1d762422c946590, + 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, + 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, + 0x9b934c3b330c8577, 0x63cc55f49f88eb2f, + 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, + 0xf316271c7fc3908a, 0x8bef464e3945ef7a, + 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, + 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, + 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, + 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, + 0xb975d6b6ee39e436, 0xb3e2fd538e122b44, + 0xe7d34c64a9c85d44, 0x60dbbca87196b616, + 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, + 0xb51d13aea4a488dd, 0x6babab6398bdbe41, + 0xe264589a4dcdab14, 0xc696963c7eed2dd1, + 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, + 0xb0de65388cc8ada8, 0x3b25a55f43294bcb, + 0xdd15fe86affad912, 0x49ef0eb713f39ebe, + 0x8a2dbf142dfcc7ab, 0x6e3569326c784337, + 0xacb92ed9397bf996, 0x49c2c37f07965404, + 0xd7e77a8f87daf7fb, 0xdc33745ec97be906, + 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, + 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, + 0xd2d80db02aabd62b, 0xf50a3fa490c30190, + 0x83c7088e1aab65db, 0x792667c6da79e0fa, + 0xa4b8cab1a1563f52, 0x577001b891185938, + 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, + 0x80b05e5ac60b6178, 0x544f8158315b05b4, + 0xa0dc75f1778e39d6, 0x696361ae3db1c721, + 0xc913936dd571c84c, 0x3bc3a19cd1e38e9, + 0xfb5878494ace3a5f, 0x4ab48a04065c723, + 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, + 0xc45d1df942711d9a, 0x3ba5d0bd324f8394, + 0xf5746577930d6500, 0xca8f44ec7ee36479, + 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, + 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, + 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, + 0x95d04aee3b80ece5, 0xbba1f1d158724a12, + 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, + 0xea1575143cf97226, 0xf52d09d71a3293bd, + 0x924d692ca61be758, 0x593c2626705f9c56, + 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, + 0xe498f455c38b997a, 0xb6dfb9c0f956447, + 0x8edf98b59a373fec, 0x4724bd4189bd5eac, + 0xb2977ee300c50fe7, 0x58edec91ec2cb657, + 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, + 0x8b865b215899f46c, 0xbd79e0d20082ee74, + 0xae67f1e9aec07187, 0xecd8590680a3aa11, + 0xda01ee641a708de9, 0xe80e6f4820cc9495, + 0x884134fe908658b2, 0x3109058d147fdcdd, + 0xaa51823e34a7eede, 0xbd4b46f0599fd415, + 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, + 0x850fadc09923329e, 0x3e2cf6bc604ddb0, + 0xa6539930bf6bff45, 0x84db8346b786151c, + 0xcfe87f7cef46ff16, 0xe612641865679a63, + 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, + 0xa26da3999aef7749, 0xe3be5e330f38f09d, + 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, + 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, + 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, + 0xc646d63501a1511d, 0xb281e1fd541501b8, + 0xf7d88bc24209a565, 0x1f225a7ca91a4226, + 0x9ae757596946075f, 0x3375788de9b06958, + 0xc1a12d2fc3978937, 0x52d6b1641c83ae, + 0xf209787bb47d6b84, 0xc0678c5dbd23a49a, + 0x9745eb4d50ce6332, 0xf840b7ba963646e0, + 0xbd176620a501fbff, 0xb650e5a93bc3d898, + 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, + 0x93ba47c980e98cdf, 0xc66f336c36b10137, + 0xb8a8d9bbe123f017, 0xb80b0047445d4184, + 0xe6d3102ad96cec1d, 0xa60dc059157491e5, + 0x9043ea1ac7e41392, 0x87c89837ad68db2f, + 0xb454e4a179dd1877, 0x29babe4598c311fb, + 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, + 0x8ce2529e2734bb1d, 0x1899e4a65f58660c, + 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, + 0xdc21a1171d42645d, 0x76707543f4fa1f73, + 0x899504ae72497eba, 0x6a06494a791c53a8, + 0xabfa45da0edbde69, 0x487db9d17636892, + 0xd6f8d7509292d603, 0x45a9d2845d3c42b6, + 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, + 0xa7f26836f282b732, 0x8e6cac7768d7141e, + 0xd1ef0244af2364ff, 0x3207d795430cd926, + 0x8335616aed761f1f, 0x7f44e6bd49e807b8, + 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, + 0xcd036837130890a1, 0x36dba887c37a8c0f, + 0x802221226be55a64, 0xc2494954da2c9789, + 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, + 0xc83553c5c8965d3d, 0x6f92829494e5acc7, + 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, + 0x9c69a97284b578d7, 0xff2a760414536efb, + 0xc38413cf25e2d70d, 0xfef5138519684aba, + 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, + 0x98bf2f79d5993802, 0xef2f773ffbd97a61, + 0xbeeefb584aff8603, 0xaafb550ffacfd8fa, + 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, + 0x952ab45cfa97a0b2, 0xdd945a747bf26183, + 0xba756174393d88df, 0x94f971119aeef9e4, + 0xe912b9d1478ceb17, 0x7a37cd5601aab85d, + 0x91abb422ccb812ee, 0xac62e055c10ab33a, + 0xb616a12b7fe617aa, 0x577b986b314d6009, + 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, + 0x8e41ade9fbebc27d, 0x14588f13be847307, + 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, + 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, + 0x8aec23d680043bee, 0x25de7bb9480d5854, + 0xada72ccc20054ae9, 0xaf561aa79a10ae6a, + 0xd910f7ff28069da4, 0x1b2ba1518094da04, + 0x87aa9aff79042286, 0x90fb44d2f05d0842, + 0xa99541bf57452b28, 0x353a1607ac744a53, + 0xd3fa922f2d1675f2, 0x42889b8997915ce8, + 0x847c9b5d7c2e09b7, 0x69956135febada11, + 0xa59bc234db398c25, 0x43fab9837e699095, + 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, + 0x8161afb94b44f57d, 0x1d1be0eebac278f5, + 0xa1ba1ba79e1632dc, 0x6462d92a69731732, + 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, + 0xfcb2cb35e702af78, 0x5cda735244c3d43e, + 0x9defbf01b061adab, 0x3a0888136afa64a7, + 0xc56baec21c7a1916, 0x88aaa1845b8fdd0, + 0xf6c69a72a3989f5b, 0x8aad549e57273d45, + 0x9a3c2087a63f6399, 0x36ac54e2f678864b, + 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, + 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, + 0x969eb7c47859e743, 0x9f644ae5a4b1b325, + 0xbc4665b596706114, 0x873d5d9f0dde1fee, + 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, + 0x9316ff75dd87cbd8, 0x9a7f12442d588f2, + 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, + 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, + 0x8fa475791a569d10, 0xf96e017d694487bc, + 0xb38d92d760ec4455, 0x37c981dcc395a9ac, + 0xe070f78d3927556a, 0x85bbe253f47b1417, + 0x8c469ab843b89562, 0x93956d7478ccec8e, + 0xaf58416654a6babb, 0x387ac8d1970027b2, + 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, + 0x88fcf317f22241e2, 0x441fece3bdf81f03, + 0xab3c2fddeeaad25a, 0xd527e81cad7626c3, + 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, + 0x85c7056562757456, 0xf6872d5667844e49, + 0xa738c6bebb12d16c, 0xb428f8ac016561db, + 0xd106f86e69d785c7, 0xe13336d701beba52, + 0x82a45b450226b39c, 0xecc0024661173473, + 0xa34d721642b06084, 0x27f002d7f95d0190, + 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, + 0xff290242c83396ce, 0x7e67047175a15271, + 0x9f79a169bd203e41, 0xf0062c6e984d386, + 0xc75809c42c684dd1, 0x52c07b78a3e60868, + 0xf92e0c3537826145, 0xa7709a56ccdf8a82, + 0x9bbcc7a142b17ccb, 0x88a66076400bb691, + 0xc2abf989935ddbfe, 0x6acff893d00ea435, + 0xf356f7ebf83552fe, 0x583f6b8c4124d43, + 0x98165af37b2153de, 0xc3727a337a8b704a, + 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, + 0xeda2ee1c7064130c, 0x1162def06f79df73, + 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, + 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, + 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, + 0x910ab1d4db9914a0, 0x1d9c9892400a22a2, + 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, + 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, + 0x8da471a9de737e24, 0x5ceaecfed289e5d2, + 0xb10d8e1456105dad, 0x7425a83e872c5f47, + 0xdd50f1996b947518, 0xd12f124e28f77719, + 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, + 0xace73cbfdc0bfb7b, 0x636cc64d1001550b, + 0xd8210befd30efa5a, 0x3c47f7e05401aa4e, + 0x8714a775e3e95c78, 0x65acfaec34810a71, + 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, + 0xd31045a8341ca07c, 0x1ede48111209a050, + 0x83ea2b892091e44d, 0x934aed0aab460432, + 0xa4e4b66b68b65d60, 0xf81da84d5617853f, + 0xce1de40642e3f4b9, 0x36251260ab9d668e, + 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, + 0xa1075a24e4421730, 0xb24cf65b8612f81f, + 0xc94930ae1d529cfc, 0xdee033f26797b627, + 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, + 0x9d412e0806e88aa5, 0x8e1f289560ee864e, + 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, + 0xf5b5d7ec8acb58a2, 0xae10af696774b1db, + 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, + 0xbff610b0cc6edd3f, 0x17fd090a58d32af3, + 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, + 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, + 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, + 0xea53df5fd18d5513, 0x84c86189216dc5ed, + 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, + 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, + 0xe4d5e82392a40515, 0xfabaf3feaa5334a, + 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, + 0xb2c71d5bca9023f8, 0x743e20e9ef511012, + 0xdf78e4b2bd342cf6, 0x914da9246b255416, + 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, + 0xae9672aba3d0c320, 0xa184ac2473b529b1, + 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, + 0x8865899617fb1871, 0x7e2fa67c7a658892, + 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, + 0xd51ea6fa85785631, 0x552a74227f3ea565, + 0x8533285c936b35de, 0xd53a88958f87275f, + 0xa67ff273b8460356, 0x8a892abaf368f137, + 0xd01fef10a657842c, 0x2d2b7569b0432d85, + 0x8213f56a67f6b29b, 0x9c3b29620e29fc73, + 0xa298f2c501f45f42, 0x8349f3ba91b47b8f, + 0xcb3f2f7642717713, 0x241c70a936219a73, + 0xfe0efb53d30dd4d7, 0xed238cd383aa0110, + 0x9ec95d1463e8a506, 0xf4363804324a40aa, + 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, + 0xf81aa16fdc1b81da, 0xdd94b7868e94050a, + 0x9b10a4e5e9913128, 0xca7cf2b4191c8326, + 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, + 0xf24a01a73cf2dccf, 0xbc633b39673c8cec, + 0x976e41088617ca01, 0xd5be0503e085d813, + 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, + 0xec9c459d51852ba2, 0xddf8e7d60ed1219e, + 0x93e1ab8252f33b45, 0xcabb90e5c942b503, + 0xb8da1662e7b00a17, 0x3d6a751f3b936243, + 0xe7109bfba19c0c9d, 0xcc512670a783ad4, + 0x906a617d450187e2, 0x27fb2b80668b24c5, + 0xb484f9dc9641e9da, 0xb1f9f660802dedf6, + 0xe1a63853bbd26451, 0x5e7873f8a0396973, + 0x8d07e33455637eb2, 0xdb0b487b6423e1e8, + 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, + 0xdc5c5301c56b75f7, 0x7641a140cc7810fb, + 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, + 0xac2820d9623bf429, 0x546345fa9fbdcd44, + 0xd732290fbacaf133, 0xa97c177947ad4095, + 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, + 0xa81f301449ee8c70, 0x5c68f256bfff5a74, + 0xd226fc195c6a2f8c, 0x73832eec6fff3111, + 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, + 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, + 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, + 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, + 0xa0555e361951c366, 0xd7e105bcc332621f, + 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, + 0xfa856334878fc150, 0xb14f98f6f0feb951, + 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, + 0xc3b8358109e84f07, 0xa862f80ec4700c8, + 0xf4a642e14c6262c8, 0xcd27bb612758c0fa, + 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, + 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, + 0xeeea5d5004981478, 0x1858ccfce06cac74, + 0x95527a5202df0ccb, 0xf37801e0c43ebc8, + 0xbaa718e68396cffd, 0xd30560258f54e6ba, + 0xe950df20247c83fd, 0x47c6b82ef32a2069, + 0x91d28b7416cdd27e, 0x4cdc331d57fa5441, + 0xb6472e511c81471d, 0xe0133fe4adf8e952, + 0xe3d8f9e563a198e5, 0x58180fddd97723a6, + 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, + }; +}; + +#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE + +template +constexpr uint64_t + powers_template::power_of_five_128[number_of_entries]; + +#endif + +using powers = powers_template<>; + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H +#define FASTFLOAT_DECIMAL_TO_BINARY_H + +#include +#include +#include +#include +#include +#include + +namespace fast_float { + +// This will compute or rather approximate w * 5**q and return a pair of 64-bit +// words approximating the result, with the "high" part corresponding to the +// most significant bits and the low part corresponding to the least significant +// bits. +// +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 +compute_product_approximation(int64_t q, uint64_t w) { + const int index = 2 * int(q - powers::smallest_power_of_five); + // For small values of q, e.g., q in [0,27], the answer is always exact + // because The line value128 firstproduct = full_multiplication(w, + // power_of_five_128[index]); gives the exact answer. + value128 firstproduct = + full_multiplication(w, powers::power_of_five_128[index]); + static_assert((bit_precision >= 0) && (bit_precision <= 64), + " precision should be in (0,64]"); + constexpr uint64_t precision_mask = + (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) + : uint64_t(0xFFFFFFFFFFFFFFFF); + if ((firstproduct.high & precision_mask) == + precision_mask) { // could further guard with (lower + w < lower) + // regarding the second product, we only need secondproduct.high, but our + // expectation is that the compiler will optimize this extra work away if + // needed. + value128 secondproduct = + full_multiplication(w, powers::power_of_five_128[index + 1]); + firstproduct.low += secondproduct.high; + if (secondproduct.high > firstproduct.low) { + firstproduct.high++; + } + } + return firstproduct; +} + +namespace detail { +/** + * For q in (0,350), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * floor(p) + q + * where + * p = log(5**q)/log(2) = q * log(5)/log(2) + * + * For negative values of q in (-400,0), we have that + * f = (((152170 + 65536) * q ) >> 16); + * is equal to + * -ceil(p) + q + * where + * p = log(5**-q)/log(2) = -q * log(5)/log(2) + */ +constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { + return (((152170 + 65536) * q) >> 16) + 63; +} +} // namespace detail + +// create an adjusted mantissa, biased by the invalid power2 +// for significant digits already multiplied by 10 ** q. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa +compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { + int hilz = int(w >> 63) ^ 1; + adjusted_mantissa answer; + answer.mantissa = w << hilz; + int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); + answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + + invalid_am_bias); + return answer; +} + +// w * 10 ** q, without rounding the representation up. +// the power2 in the exponent will be adjusted by invalid_am_bias. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa +compute_error(int64_t q, uint64_t w) noexcept { + int lz = leading_zeroes(w); + w <<= lz; + value128 product = + compute_product_approximation(q, w); + return compute_error_scaled(q, product.high, lz); +} + +// w * 10 ** q +// The returned value should be a valid ieee64 number that simply need to be +// packed. However, in some very rare cases, the computation will fail. In such +// cases, we return an adjusted_mantissa with a negative power of 2: the caller +// should recompute in such cases. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa +compute_float(int64_t q, uint64_t w) noexcept { + adjusted_mantissa answer; + if ((w == 0) || (q < binary::smallest_power_of_ten())) { + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + if (q > binary::largest_power_of_ten()) { + // we want to get infinity: + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + return answer; + } + // At this point in time q is in [powers::smallest_power_of_five, + // powers::largest_power_of_five]. + + // We want the most significant bit of i to be 1. Shift if needed. + int lz = leading_zeroes(w); + w <<= lz; + + // The required precision is binary::mantissa_explicit_bits() + 3 because + // 1. We need the implicit bit + // 2. We need an extra bit for rounding purposes + // 3. We might lose a bit due to the "upperbit" routine (result too small, + // requiring a shift) + + value128 product = + compute_product_approximation(q, w); + // The computed 'product' is always sufficient. + // Mathematical proof: + // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to + // appear) See script/mushtak_lemire.py + + // The "compute_product_approximation" function can be slightly slower than a + // branchless approach: value128 product = compute_product(q, w); but in + // practice, we can win big with the compute_product_approximation if its + // additional branch is easily predicted. Which is best is data specific. + int upperbit = int(product.high >> 63); + int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; + + answer.mantissa = product.high >> shift; + + answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - + binary::minimum_exponent()); + if (answer.power2 <= 0) { // we have a subnormal? + // Here have that answer.power2 <= 0 so -answer.power2 >= 0 + if (-answer.power2 + 1 >= + 64) { // if we have more than 64 bits below the minimum exponent, you + // have a zero for sure. + answer.power2 = 0; + answer.mantissa = 0; + // result should be zero + return answer; + } + // next line is safe because -answer.power2 + 1 < 64 + answer.mantissa >>= -answer.power2 + 1; + // Thankfully, we can't have both "round-to-even" and subnormals because + // "round-to-even" only occurs for powers close to 0. + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + // There is a weird scenario where we don't have a subnormal but just. + // Suppose we start with 2.2250738585072013e-308, we end up + // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal + // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round + // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer + // subnormal, but we can only know this after rounding. + // So we only declare a subnormal if we are smaller than the threshold. + answer.power2 = + (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) + ? 0 + : 1; + return answer; + } + + // usually, we round *up*, but if we fall right in between and and we have an + // even basis, we need to round down + // We are only concerned with the cases where 5**q fits in single 64-bit word. + if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && + (q <= binary::max_exponent_round_to_even()) && + ((answer.mantissa & 3) == 1)) { // we may fall between two floats! + // To be in-between two floats we need that in doing + // answer.mantissa = product.high >> (upperbit + 64 - + // binary::mantissa_explicit_bits() - 3); + // ... we dropped out only zeroes. But if this happened, then we can go + // back!!! + if ((answer.mantissa << shift) == product.high) { + answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up + } + } + + answer.mantissa += (answer.mantissa & 1); // round up + answer.mantissa >>= 1; + if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { + answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); + answer.power2++; // undo previous addition + } + + answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); + if (answer.power2 >= binary::infinite_power()) { // infinity + answer.power2 = binary::infinite_power(); + answer.mantissa = 0; + } + return answer; +} + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_BIGINT_H +#define FASTFLOAT_BIGINT_H + +#include +#include +#include +#include + + +namespace fast_float { + +// the limb width: we want efficient multiplication of double the bits in +// limb, or for 64-bit limbs, at least 64-bit multiplication where we can +// extract the high and low parts efficiently. this is every 64-bit +// architecture except for sparc, which emulates 128-bit multiplication. +// we might have platforms where `CHAR_BIT` is not 8, so let's avoid +// doing `8 * sizeof(limb)`. +#if defined(FASTFLOAT_64BIT) && !defined(__sparc) +#define FASTFLOAT_64BIT_LIMB 1 +typedef uint64_t limb; +constexpr size_t limb_bits = 64; +#else +#define FASTFLOAT_32BIT_LIMB +typedef uint32_t limb; +constexpr size_t limb_bits = 32; +#endif + +typedef span limb_span; + +// number of bits in a bigint. this needs to be at least the number +// of bits required to store the largest bigint, which is +// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or +// ~3600 bits, so we round to 4000. +constexpr size_t bigint_bits = 4000; +constexpr size_t bigint_limbs = bigint_bits / limb_bits; + +// vector-like type that is allocated on the stack. the entire +// buffer is pre-allocated, and only the length changes. +template struct stackvec { + limb data[size]; + // we never need more than 150 limbs + uint16_t length{0}; + + stackvec() = default; + stackvec(const stackvec &) = delete; + stackvec &operator=(const stackvec &) = delete; + stackvec(stackvec &&) = delete; + stackvec &operator=(stackvec &&other) = delete; + + // create stack vector from existing limb span. + FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { + FASTFLOAT_ASSERT(try_extend(s)); + } + + FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + return data[index]; + } + FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + return data[index]; + } + // index from the end of the container + FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { + FASTFLOAT_DEBUG_ASSERT(index < length); + size_t rindex = length - index - 1; + return data[rindex]; + } + + // set the length, without bounds checking. + FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { + length = uint16_t(len); + } + constexpr size_t len() const noexcept { return length; } + constexpr bool is_empty() const noexcept { return length == 0; } + constexpr size_t capacity() const noexcept { return size; } + // append item to vector, without bounds checking + FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { + data[length] = value; + length++; + } + // append item to vector, returning if item was added + FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { + if (len() < capacity()) { + push_unchecked(value); + return true; + } else { + return false; + } + } + // add items to the vector, from a span, without bounds checking + FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { + limb *ptr = data + length; + std::copy_n(s.ptr, s.len(), ptr); + set_len(len() + s.len()); + } + // try to add items to the vector, returning if items were added + FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { + if (len() + s.len() <= capacity()) { + extend_unchecked(s); + return true; + } else { + return false; + } + } + // resize the vector, without bounds checking + // if the new size is longer than the vector, assign value to each + // appended item. + FASTFLOAT_CONSTEXPR20 + void resize_unchecked(size_t new_len, limb value) noexcept { + if (new_len > len()) { + size_t count = new_len - len(); + limb *first = data + len(); + limb *last = first + count; + ::std::fill(first, last, value); + set_len(new_len); + } else { + set_len(new_len); + } + } + // try to resize the vector, returning if the vector was resized. + FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { + if (new_len > capacity()) { + return false; + } else { + resize_unchecked(new_len, value); + return true; + } + } + // check if any limbs are non-zero after the given index. + // this needs to be done in reverse order, since the index + // is relative to the most significant limbs. + FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { + while (index < len()) { + if (rindex(index) != 0) { + return true; + } + index++; + } + return false; + } + // normalize the big integer, so most-significant zero limbs are removed. + FASTFLOAT_CONSTEXPR14 void normalize() noexcept { + while (len() > 0 && rindex(0) == 0) { + length--; + } + } +}; + +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t +empty_hi64(bool &truncated) noexcept { + truncated = false; + return 0; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t +uint64_hi64(uint64_t r0, bool &truncated) noexcept { + truncated = false; + int shl = leading_zeroes(r0); + return r0 << shl; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t +uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { + int shl = leading_zeroes(r0); + if (shl == 0) { + truncated = r1 != 0; + return r0; + } else { + int shr = 64 - shl; + truncated = (r1 << shl) != 0; + return (r0 << shl) | (r1 >> shr); + } +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t +uint32_hi64(uint32_t r0, bool &truncated) noexcept { + return uint64_hi64(r0, truncated); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t +uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { + uint64_t x0 = r0; + uint64_t x1 = r1; + return uint64_hi64((x0 << 32) | x1, truncated); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t +uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept { + uint64_t x0 = r0; + uint64_t x1 = r1; + uint64_t x2 = r2; + return uint64_hi64(x0, (x1 << 32) | x2, truncated); +} + +// add two small integers, checking for overflow. +// we want an efficient operation. for msvc, where +// we don't have built-in intrinsics, this is still +// pretty fast. +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb +scalar_add(limb x, limb y, bool &overflow) noexcept { + limb z; +// gcc and clang +#if defined(__has_builtin) +#if __has_builtin(__builtin_add_overflow) + if (!cpp20_and_in_constexpr()) { + overflow = __builtin_add_overflow(x, y, &z); + return z; + } +#endif +#endif + + // generic, this still optimizes correctly on MSVC. + z = x + y; + overflow = z < x; + return z; +} + +// multiply two small integers, getting both the high and low bits. +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb +scalar_mul(limb x, limb y, limb &carry) noexcept { +#ifdef FASTFLOAT_64BIT_LIMB +#if defined(__SIZEOF_INT128__) + // GCC and clang both define it as an extension. + __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); + carry = limb(z >> limb_bits); + return limb(z); +#else + // fallback, no native 128-bit integer multiplication with carry. + // on msvc, this optimizes identically, somehow. + value128 z = full_multiplication(x, y); + bool overflow; + z.low = scalar_add(z.low, carry, overflow); + z.high += uint64_t(overflow); // cannot overflow + carry = z.high; + return z.low; +#endif +#else + uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); + carry = limb(z >> limb_bits); + return limb(z); +#endif +} + +// add scalar value to bigint starting from offset. +// used in grade school multiplication +template +inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec &vec, limb y, + size_t start) noexcept { + size_t index = start; + limb carry = y; + bool overflow; + while (carry != 0 && index < vec.len()) { + vec[index] = scalar_add(vec[index], carry, overflow); + carry = limb(overflow); + index += 1; + } + if (carry != 0) { + FASTFLOAT_TRY(vec.try_push(carry)); + } + return true; +} + +// add scalar value to bigint. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool +small_add(stackvec &vec, limb y) noexcept { + return small_add_from(vec, y, 0); +} + +// multiply bigint by scalar value. +template +inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec &vec, + limb y) noexcept { + limb carry = 0; + for (size_t index = 0; index < vec.len(); index++) { + vec[index] = scalar_mul(vec[index], y, carry); + } + if (carry != 0) { + FASTFLOAT_TRY(vec.try_push(carry)); + } + return true; +} + +// add bigint to bigint starting from index. +// used in grade school multiplication +template +FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec &x, limb_span y, + size_t start) noexcept { + // the effective x buffer is from `xstart..x.len()`, so exit early + // if we can't get that current range. + if (x.len() < start || y.len() > x.len() - start) { + FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); + } + + bool carry = false; + for (size_t index = 0; index < y.len(); index++) { + limb xi = x[index + start]; + limb yi = y[index]; + bool c1 = false; + bool c2 = false; + xi = scalar_add(xi, yi, c1); + if (carry) { + xi = scalar_add(xi, 1, c2); + } + x[index + start] = xi; + carry = c1 | c2; + } + + // handle overflow + if (carry) { + FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); + } + return true; +} + +// add bigint to bigint. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool +large_add_from(stackvec &x, limb_span y) noexcept { + return large_add_from(x, y, 0); +} + +// grade-school multiplication algorithm +template +FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec &x, limb_span y) noexcept { + limb_span xs = limb_span(x.data, x.len()); + stackvec z(xs); + limb_span zs = limb_span(z.data, z.len()); + + if (y.len() != 0) { + limb y0 = y[0]; + FASTFLOAT_TRY(small_mul(x, y0)); + for (size_t index = 1; index < y.len(); index++) { + limb yi = y[index]; + stackvec zi; + if (yi != 0) { + // re-use the same buffer throughout + zi.set_len(0); + FASTFLOAT_TRY(zi.try_extend(zs)); + FASTFLOAT_TRY(small_mul(zi, yi)); + limb_span zis = limb_span(zi.data, zi.len()); + FASTFLOAT_TRY(large_add_from(x, zis, index)); + } + } + } + + x.normalize(); + return true; +} + +// grade-school multiplication algorithm +template +FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec &x, limb_span y) noexcept { + if (y.len() == 1) { + FASTFLOAT_TRY(small_mul(x, y[0])); + } else { + FASTFLOAT_TRY(long_mul(x, y)); + } + return true; +} + +template struct pow5_tables { + static constexpr uint32_t large_step = 135; + static constexpr uint64_t small_power_of_5[] = { + 1UL, + 5UL, + 25UL, + 125UL, + 625UL, + 3125UL, + 15625UL, + 78125UL, + 390625UL, + 1953125UL, + 9765625UL, + 48828125UL, + 244140625UL, + 1220703125UL, + 6103515625UL, + 30517578125UL, + 152587890625UL, + 762939453125UL, + 3814697265625UL, + 19073486328125UL, + 95367431640625UL, + 476837158203125UL, + 2384185791015625UL, + 11920928955078125UL, + 59604644775390625UL, + 298023223876953125UL, + 1490116119384765625UL, + 7450580596923828125UL, + }; +#ifdef FASTFLOAT_64BIT_LIMB + constexpr static limb large_power_of_5[] = { + 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, + 10482974169319127550UL, 198276706040285095UL}; +#else + constexpr static limb large_power_of_5[] = { + 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, + 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; +#endif +}; + +#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE + +template constexpr uint32_t pow5_tables::large_step; + +template constexpr uint64_t pow5_tables::small_power_of_5[]; + +template constexpr limb pow5_tables::large_power_of_5[]; + +#endif + +// big integer type. implements a small subset of big integer +// arithmetic, using simple algorithms since asymptotically +// faster algorithms are slower for a small number of limbs. +// all operations assume the big-integer is normalized. +struct bigint : pow5_tables<> { + // storage of the limbs, in little-endian order. + stackvec vec; + + FASTFLOAT_CONSTEXPR20 bigint() : vec() {} + bigint(const bigint &) = delete; + bigint &operator=(const bigint &) = delete; + bigint(bigint &&) = delete; + bigint &operator=(bigint &&other) = delete; + + FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { +#ifdef FASTFLOAT_64BIT_LIMB + vec.push_unchecked(value); +#else + vec.push_unchecked(uint32_t(value)); + vec.push_unchecked(uint32_t(value >> 32)); +#endif + vec.normalize(); + } + + // get the high 64 bits from the vector, and if bits were truncated. + // this is to get the significant digits for the float. + FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { +#ifdef FASTFLOAT_64BIT_LIMB + if (vec.len() == 0) { + return empty_hi64(truncated); + } else if (vec.len() == 1) { + return uint64_hi64(vec.rindex(0), truncated); + } else { + uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); + truncated |= vec.nonzero(2); + return result; + } +#else + if (vec.len() == 0) { + return empty_hi64(truncated); + } else if (vec.len() == 1) { + return uint32_hi64(vec.rindex(0), truncated); + } else if (vec.len() == 2) { + return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); + } else { + uint64_t result = + uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); + truncated |= vec.nonzero(3); + return result; + } +#endif + } + + // compare two big integers, returning the large value. + // assumes both are normalized. if the return value is + // negative, other is larger, if the return value is + // positive, this is larger, otherwise they are equal. + // the limbs are stored in little-endian order, so we + // must compare the limbs in ever order. + FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept { + if (vec.len() > other.vec.len()) { + return 1; + } else if (vec.len() < other.vec.len()) { + return -1; + } else { + for (size_t index = vec.len(); index > 0; index--) { + limb xi = vec[index - 1]; + limb yi = other.vec[index - 1]; + if (xi > yi) { + return 1; + } else if (xi < yi) { + return -1; + } + } + return 0; + } + } + + // shift left each limb n bits, carrying over to the new limb + // returns true if we were able to shift all the digits. + FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { + // Internally, for each item, we shift left by n, and add the previous + // right shifted limb-bits. + // For example, we transform (for u8) shifted left 2, to: + // b10100100 b01000010 + // b10 b10010001 b00001000 + FASTFLOAT_DEBUG_ASSERT(n != 0); + FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); + + size_t shl = n; + size_t shr = limb_bits - shl; + limb prev = 0; + for (size_t index = 0; index < vec.len(); index++) { + limb xi = vec[index]; + vec[index] = (xi << shl) | (prev >> shr); + prev = xi; + } + + limb carry = prev >> shr; + if (carry != 0) { + return vec.try_push(carry); + } + return true; + } + + // move the limbs left by `n` limbs. + FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { + FASTFLOAT_DEBUG_ASSERT(n != 0); + if (n + vec.len() > vec.capacity()) { + return false; + } else if (!vec.is_empty()) { + // move limbs + limb *dst = vec.data + n; + const limb *src = vec.data; + std::copy_backward(src, src + vec.len(), dst + vec.len()); + // fill in empty limbs + limb *first = vec.data; + limb *last = first + n; + ::std::fill(first, last, 0); + vec.set_len(n + vec.len()); + return true; + } else { + return true; + } + } + + // move the limbs left by `n` bits. + FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { + size_t rem = n % limb_bits; + size_t div = n / limb_bits; + if (rem != 0) { + FASTFLOAT_TRY(shl_bits(rem)); + } + if (div != 0) { + FASTFLOAT_TRY(shl_limbs(div)); + } + return true; + } + + // get the number of leading zeros in the bigint. + FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { + if (vec.is_empty()) { + return 0; + } else { +#ifdef FASTFLOAT_64BIT_LIMB + return leading_zeroes(vec.rindex(0)); +#else + // no use defining a specialized leading_zeroes for a 32-bit type. + uint64_t r0 = vec.rindex(0); + return leading_zeroes(r0 << 32); +#endif + } + } + + // get the number of bits in the bigint. + FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { + int lz = ctlz(); + return int(limb_bits * vec.len()) - lz; + } + + FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); } + + FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); } + + // multiply as if by 2 raised to a power. + FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); } + + // multiply as if by 5 raised to a power. + FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { + // multiply by a power of 5 + size_t large_length = sizeof(large_power_of_5) / sizeof(limb); + limb_span large = limb_span(large_power_of_5, large_length); + while (exp >= large_step) { + FASTFLOAT_TRY(large_mul(vec, large)); + exp -= large_step; + } +#ifdef FASTFLOAT_64BIT_LIMB + uint32_t small_step = 27; + limb max_native = 7450580596923828125UL; +#else + uint32_t small_step = 13; + limb max_native = 1220703125U; +#endif + while (exp >= small_step) { + FASTFLOAT_TRY(small_mul(vec, max_native)); + exp -= small_step; + } + if (exp != 0) { + // Work around clang bug https://godbolt.org/z/zedh7rrhc + // This is similar to https://github.com/llvm/llvm-project/issues/47746, + // except the workaround described there don't work here + FASTFLOAT_TRY(small_mul( + vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))); + } + + return true; + } + + // multiply as if by 10 raised to a power. + FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { + FASTFLOAT_TRY(pow5(exp)); + return pow2(exp); + } +}; + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_DIGIT_COMPARISON_H +#define FASTFLOAT_DIGIT_COMPARISON_H + +#include +#include +#include +#include + + +namespace fast_float { + +// 1e0 to 1e19 +constexpr static uint64_t powers_of_ten_uint64[] = {1UL, + 10UL, + 100UL, + 1000UL, + 10000UL, + 100000UL, + 1000000UL, + 10000000UL, + 100000000UL, + 1000000000UL, + 10000000000UL, + 100000000000UL, + 1000000000000UL, + 10000000000000UL, + 100000000000000UL, + 1000000000000000UL, + 10000000000000000UL, + 100000000000000000UL, + 1000000000000000000UL, + 10000000000000000000UL}; + +// calculate the exponent, in scientific notation, of the number. +// this algorithm is not even close to optimized, but it has no practical +// effect on performance: in order to have a faster algorithm, we'd need +// to slow down performance for faster algorithms, and this is still fast. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t +scientific_exponent(parsed_number_string_t &num) noexcept { + uint64_t mantissa = num.mantissa; + int32_t exponent = int32_t(num.exponent); + while (mantissa >= 10000) { + mantissa /= 10000; + exponent += 4; + } + while (mantissa >= 100) { + mantissa /= 100; + exponent += 2; + } + while (mantissa >= 10) { + mantissa /= 10; + exponent += 1; + } + return exponent; +} + +// this converts a native floating-point number to an extended-precision float. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa +to_extended(T value) noexcept { + using equiv_uint = typename binary_format::equiv_uint; + constexpr equiv_uint exponent_mask = binary_format::exponent_mask(); + constexpr equiv_uint mantissa_mask = binary_format::mantissa_mask(); + constexpr equiv_uint hidden_bit_mask = binary_format::hidden_bit_mask(); + + adjusted_mantissa am; + int32_t bias = binary_format::mantissa_explicit_bits() - + binary_format::minimum_exponent(); + equiv_uint bits; +#if FASTFLOAT_HAS_BIT_CAST + bits = std::bit_cast(value); +#else + ::memcpy(&bits, &value, sizeof(T)); +#endif + if ((bits & exponent_mask) == 0) { + // denormal + am.power2 = 1 - bias; + am.mantissa = bits & mantissa_mask; + } else { + // normal + am.power2 = int32_t((bits & exponent_mask) >> + binary_format::mantissa_explicit_bits()); + am.power2 -= bias; + am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; + } + + return am; +} + +// get the extended precision value of the halfway point between b and b+u. +// we are given a native float that represents b, so we need to adjust it +// halfway between b and b+u. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa +to_extended_halfway(T value) noexcept { + adjusted_mantissa am = to_extended(value); + am.mantissa <<= 1; + am.mantissa += 1; + am.power2 -= 1; + return am; +} + +// round an extended-precision float to the nearest machine float. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am, + callback cb) noexcept { + int32_t mantissa_shift = 64 - binary_format::mantissa_explicit_bits() - 1; + if (-am.power2 >= mantissa_shift) { + // have a denormal float + int32_t shift = -am.power2 + 1; + cb(am, std::min(shift, 64)); + // check for round-up: if rounding-nearest carried us to the hidden bit. + am.power2 = (am.mantissa < + (uint64_t(1) << binary_format::mantissa_explicit_bits())) + ? 0 + : 1; + return; + } + + // have a normal float, use the default shift. + cb(am, mantissa_shift); + + // check for carry + if (am.mantissa >= + (uint64_t(2) << binary_format::mantissa_explicit_bits())) { + am.mantissa = (uint64_t(1) << binary_format::mantissa_explicit_bits()); + am.power2++; + } + + // check for infinite: we could have carried to an infinite power + am.mantissa &= ~(uint64_t(1) << binary_format::mantissa_explicit_bits()); + if (am.power2 >= binary_format::infinite_power()) { + am.power2 = binary_format::infinite_power(); + am.mantissa = 0; + } +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void +round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, + callback cb) noexcept { + const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; + const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); + uint64_t truncated_bits = am.mantissa & mask; + bool is_above = truncated_bits > halfway; + bool is_halfway = truncated_bits == halfway; + + // shift digits into position + if (shift == 64) { + am.mantissa = 0; + } else { + am.mantissa >>= shift; + } + am.power2 += shift; + + bool is_odd = (am.mantissa & 1) == 1; + am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void +round_down(adjusted_mantissa &am, int32_t shift) noexcept { + if (shift == 64) { + am.mantissa = 0; + } else { + am.mantissa >>= shift; + } + am.power2 += shift; +} +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +skip_zeros(UC const *&first, UC const *last) noexcept { + uint64_t val; + while (!cpp20_and_in_constexpr() && + std::distance(first, last) >= int_cmp_len()) { + ::memcpy(&val, first, sizeof(uint64_t)); + if (val != int_cmp_zeros()) { + break; + } + first += int_cmp_len(); + } + while (first != last) { + if (*first != UC('0')) { + break; + } + first++; + } +} + +// determine if any non-zero digits were truncated. +// all characters must be valid digits. +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool +is_truncated(UC const *first, UC const *last) noexcept { + // do 8-bit optimizations, can just compare to 8 literal 0s. + uint64_t val; + while (!cpp20_and_in_constexpr() && + std::distance(first, last) >= int_cmp_len()) { + ::memcpy(&val, first, sizeof(uint64_t)); + if (val != int_cmp_zeros()) { + return true; + } + first += int_cmp_len(); + } + while (first != last) { + if (*first != UC('0')) { + return true; + } + ++first; + } + return false; +} +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool +is_truncated(span s) noexcept { + return is_truncated(s.ptr, s.ptr + s.len()); +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +parse_eight_digits(const UC *&p, limb &value, size_t &counter, + size_t &count) noexcept { + value = value * 100000000 + parse_eight_digits_unrolled(p); + p += 8; + counter += 8; + count += 8; +} + +template +fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void +parse_one_digit(UC const *&p, limb &value, size_t &counter, + size_t &count) noexcept { + value = value * 10 + limb(*p - UC('0')); + p++; + counter++; + count++; +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +add_native(bigint &big, limb power, limb value) noexcept { + big.mul(power); + big.add(value); +} + +fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void +round_up_bigint(bigint &big, size_t &count) noexcept { + // need to round-up the digits, but need to avoid rounding + // ....9999 to ...10000, which could cause a false halfway point. + add_native(big, 10, 1); + count++; +} + +// parse the significant digits into a big integer +template +inline FASTFLOAT_CONSTEXPR20 void +parse_mantissa(bigint &result, parsed_number_string_t &num, + size_t max_digits, size_t &digits) noexcept { + // try to minimize the number of big integer and scalar multiplication. + // therefore, try to parse 8 digits at a time, and multiply by the largest + // scalar value (9 or 19 digits) for each step. + size_t counter = 0; + digits = 0; + limb value = 0; +#ifdef FASTFLOAT_64BIT_LIMB + size_t step = 19; +#else + size_t step = 9; +#endif + + // process all integer digits. + UC const *p = num.integer.ptr; + UC const *pend = p + num.integer.len(); + skip_zeros(p, pend); + // process all digits, in increments of step per loop + while (p != pend) { + while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && + (max_digits - digits >= 8)) { + parse_eight_digits(p, value, counter, digits); + } + while (counter < step && p != pend && digits < max_digits) { + parse_one_digit(p, value, counter, digits); + } + if (digits == max_digits) { + // add the temporary value, then check if we've truncated any digits + add_native(result, limb(powers_of_ten_uint64[counter]), value); + bool truncated = is_truncated(p, pend); + if (num.fraction.ptr != nullptr) { + truncated |= is_truncated(num.fraction); + } + if (truncated) { + round_up_bigint(result, digits); + } + return; + } else { + add_native(result, limb(powers_of_ten_uint64[counter]), value); + counter = 0; + value = 0; + } + } + + // add our fraction digits, if they're available. + if (num.fraction.ptr != nullptr) { + p = num.fraction.ptr; + pend = p + num.fraction.len(); + if (digits == 0) { + skip_zeros(p, pend); + } + // process all digits, in increments of step per loop + while (p != pend) { + while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && + (max_digits - digits >= 8)) { + parse_eight_digits(p, value, counter, digits); + } + while (counter < step && p != pend && digits < max_digits) { + parse_one_digit(p, value, counter, digits); + } + if (digits == max_digits) { + // add the temporary value, then check if we've truncated any digits + add_native(result, limb(powers_of_ten_uint64[counter]), value); + bool truncated = is_truncated(p, pend); + if (truncated) { + round_up_bigint(result, digits); + } + return; + } else { + add_native(result, limb(powers_of_ten_uint64[counter]), value); + counter = 0; + value = 0; + } + } + } + + if (counter != 0) { + add_native(result, limb(powers_of_ten_uint64[counter]), value); + } +} + +template +inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa +positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { + FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); + adjusted_mantissa answer; + bool truncated; + answer.mantissa = bigmant.hi64(truncated); + int bias = binary_format::mantissa_explicit_bits() - + binary_format::minimum_exponent(); + answer.power2 = bigmant.bit_length() - 64 + bias; + + round(answer, [truncated](adjusted_mantissa &a, int32_t shift) { + round_nearest_tie_even( + a, shift, + [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { + return is_above || (is_halfway && truncated) || + (is_odd && is_halfway); + }); + }); + + return answer; +} + +// the scaling here is quite simple: we have, for the real digits `m * 10^e`, +// and for the theoretical digits `n * 2^f`. Since `e` is always negative, +// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. +// we then need to scale by `2^(f- e)`, and then the two significant digits +// are of the same magnitude. +template +inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( + bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { + bigint &real_digits = bigmant; + int32_t real_exp = exponent; + + // get the value of `b`, rounded down, and get a bigint representation of b+h + adjusted_mantissa am_b = am; + // gcc7 buf: use a lambda to remove the noexcept qualifier bug with + // -Wnoexcept-type. + round(am_b, + [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); }); + T b; + to_float(false, am_b, b); + adjusted_mantissa theor = to_extended_halfway(b); + bigint theor_digits(theor.mantissa); + int32_t theor_exp = theor.power2; + + // scale real digits and theor digits to be same power. + int32_t pow2_exp = theor_exp - real_exp; + uint32_t pow5_exp = uint32_t(-real_exp); + if (pow5_exp != 0) { + FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); + } + if (pow2_exp > 0) { + FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); + } else if (pow2_exp < 0) { + FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); + } + + // compare digits, and use it to director rounding + int ord = real_digits.compare(theor_digits); + adjusted_mantissa answer = am; + round(answer, [ord](adjusted_mantissa &a, int32_t shift) { + round_nearest_tie_even( + a, shift, [ord](bool is_odd, bool _, bool __) -> bool { + (void)_; // not needed, since we've done our comparison + (void)__; // not needed, since we've done our comparison + if (ord > 0) { + return true; + } else if (ord < 0) { + return false; + } else { + return is_odd; + } + }); + }); + + return answer; +} + +// parse the significant digits as a big integer to unambiguously round the +// the significant digits. here, we are trying to determine how to round +// an extended float representation close to `b+h`, halfway between `b` +// (the float rounded-down) and `b+u`, the next positive float. this +// algorithm is always correct, and uses one of two approaches. when +// the exponent is positive relative to the significant digits (such as +// 1234), we create a big-integer representation, get the high 64-bits, +// determine if any lower bits are truncated, and use that to direct +// rounding. in case of a negative exponent relative to the significant +// digits (such as 1.2345), we create a theoretical representation of +// `b` as a big-integer type, scaled to the same binary exponent as +// the actual digits. we then compare the big integer representations +// of both, and use that to direct rounding. +template +inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa +digit_comp(parsed_number_string_t &num, adjusted_mantissa am) noexcept { + // remove the invalid exponent bias + am.power2 -= invalid_am_bias; + + int32_t sci_exp = scientific_exponent(num); + size_t max_digits = binary_format::max_digits(); + size_t digits = 0; + bigint bigmant; + parse_mantissa(bigmant, num, max_digits, digits); + // can't underflow, since digits is at most max_digits. + int32_t exponent = sci_exp + 1 - int32_t(digits); + if (exponent >= 0) { + return positive_digit_comp(bigmant, exponent); + } else { + return negative_digit_comp(bigmant, am, exponent); + } +} + +} // namespace fast_float + +#endif + +#ifndef FASTFLOAT_PARSE_NUMBER_H +#define FASTFLOAT_PARSE_NUMBER_H + + +#include +#include +#include +#include +namespace fast_float { + +namespace detail { +/** + * Special case +inf, -inf, nan, infinity, -infinity. + * The case comparisons could be made much faster given that we know that the + * strings a null-free and fixed. + **/ +template +from_chars_result_t FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, + UC const *last, + T &value) noexcept { + from_chars_result_t answer{}; + answer.ptr = first; + answer.ec = std::errc(); // be optimistic + bool minusSign = false; + if (*first == + UC('-')) { // assume first < last, so dereference without checks; + // C++17 20.19.3.(7.1) explicitly forbids '+' here + minusSign = true; + ++first; + } +#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default + if (*first == UC('+')) { + ++first; + } +#endif + if (last - first >= 3) { + if (fastfloat_strncasecmp(first, str_const_nan(), 3)) { + answer.ptr = (first += 3); + value = minusSign ? -std::numeric_limits::quiet_NaN() + : std::numeric_limits::quiet_NaN(); + // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, + // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). + if (first != last && *first == UC('(')) { + for (UC const *ptr = first + 1; ptr != last; ++ptr) { + if (*ptr == UC(')')) { + answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) + break; + } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || + (UC('A') <= *ptr && *ptr <= UC('Z')) || + (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) + break; // forbidden char, not nan(n-char-seq-opt) + } + } + return answer; + } + if (fastfloat_strncasecmp(first, str_const_inf(), 3)) { + if ((last - first >= 8) && + fastfloat_strncasecmp(first + 3, str_const_inf() + 3, 5)) { + answer.ptr = first + 8; + } else { + answer.ptr = first + 3; + } + value = minusSign ? -std::numeric_limits::infinity() + : std::numeric_limits::infinity(); + return answer; + } + } + answer.ec = std::errc::invalid_argument; + return answer; +} + +/** + * Returns true if the floating-pointing rounding mode is to 'nearest'. + * It is the default on most system. This function is meant to be inexpensive. + * Credit : @mwalcott3 + */ +fastfloat_really_inline bool rounds_to_nearest() noexcept { + // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ +#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) + return false; +#endif + // See + // A fast function to check your floating-point rounding mode + // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ + // + // This function is meant to be equivalent to : + // prior: #include + // return fegetround() == FE_TONEAREST; + // However, it is expected to be much faster than the fegetround() + // function call. + // + // The volatile keywoard prevents the compiler from computing the function + // at compile-time. + // There might be other ways to prevent compile-time optimizations (e.g., + // asm). The value does not need to be std::numeric_limits::min(), any + // small value so that 1 + x should round to 1 would do (after accounting for + // excess precision, as in 387 instructions). + static volatile float fmin = std::numeric_limits::min(); + float fmini = fmin; // we copy it so that it gets loaded at most once. +// +// Explanation: +// Only when fegetround() == FE_TONEAREST do we have that +// fmin + 1.0f == 1.0f - fmin. +// +// FE_UPWARD: +// fmin + 1.0f > 1 +// 1.0f - fmin == 1 +// +// FE_DOWNWARD or FE_TOWARDZERO: +// fmin + 1.0f == 1 +// 1.0f - fmin < 1 +// +// Note: This may fail to be accurate if fast-math has been +// enabled, as rounding conventions may not apply. +#ifdef FASTFLOAT_VISUAL_STUDIO +#pragma warning(push) +// todo: is there a VS warning? +// see +// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 +#elif defined(__clang__) +#pragma clang diagnostic push +#pragma clang diagnostic ignored "-Wfloat-equal" +#elif defined(__GNUC__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wfloat-equal" +#endif + return (fmini + 1.0f == 1.0f - fmini); +#ifdef FASTFLOAT_VISUAL_STUDIO +#pragma warning(pop) +#elif defined(__clang__) +#pragma clang diagnostic pop +#elif defined(__GNUC__) +#pragma GCC diagnostic pop +#endif +} + +} // namespace detail + +template struct from_chars_caller { + template + FASTFLOAT_CONSTEXPR20 static from_chars_result_t + call(UC const *first, UC const *last, T &value, + parse_options_t options) noexcept { + return from_chars_advanced(first, last, value, options); + } +}; + +#if __STDCPP_FLOAT32_T__ == 1 +template <> struct from_chars_caller { + template + FASTFLOAT_CONSTEXPR20 static from_chars_result_t + call(UC const *first, UC const *last, std::float32_t &value, + parse_options_t options) noexcept { + // if std::float32_t is defined, and we are in C++23 mode; macro set for + // float32; set value to float due to equivalence between float and + // float32_t + float val; + auto ret = from_chars_advanced(first, last, val, options); + value = val; + return ret; + } +}; +#endif + +#if __STDCPP_FLOAT64_T__ == 1 +template <> struct from_chars_caller { + template + FASTFLOAT_CONSTEXPR20 static from_chars_result_t + call(UC const *first, UC const *last, std::float64_t &value, + parse_options_t options) noexcept { + // if std::float64_t is defined, and we are in C++23 mode; macro set for + // float64; set value as double due to equivalence between double and + // float64_t + double val; + auto ret = from_chars_advanced(first, last, val, options); + value = val; + return ret; + } +}; +#endif + +template +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars(UC const *first, UC const *last, T &value, + chars_format fmt /*= chars_format::general*/) noexcept { + return from_chars_caller::call(first, last, value, + parse_options_t(fmt)); +} + +/** + * This function overload takes parsed_number_string_t structure that is created + * and populated either by from_chars_advanced function taking chars range and + * parsing options or other parsing custom function implemented by user. + */ +template +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars_advanced(parsed_number_string_t &pns, T &value) noexcept { + + static_assert(is_supported_float_type(), + "only some floating-point types are supported"); + static_assert(is_supported_char_type(), + "only char, wchar_t, char16_t and char32_t are supported"); + + from_chars_result_t answer; + + answer.ec = std::errc(); // be optimistic + answer.ptr = pns.lastmatch; + // The implementation of the Clinger's fast path is convoluted because + // we want round-to-nearest in all cases, irrespective of the rounding mode + // selected on the thread. + // We proceed optimistically, assuming that detail::rounds_to_nearest() + // returns true. + if (binary_format::min_exponent_fast_path() <= pns.exponent && + pns.exponent <= binary_format::max_exponent_fast_path() && + !pns.too_many_digits) { + // Unfortunately, the conventional Clinger's fast path is only possible + // when the system rounds to the nearest float. + // + // We expect the next branch to almost always be selected. + // We could check it first (before the previous branch), but + // there might be performance advantages at having the check + // be last. + if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { + // We have that fegetround() == FE_TONEAREST. + // Next is Clinger's fast path. + if (pns.mantissa <= binary_format::max_mantissa_fast_path()) { + value = T(pns.mantissa); + if (pns.exponent < 0) { + value = value / binary_format::exact_power_of_ten(-pns.exponent); + } else { + value = value * binary_format::exact_power_of_ten(pns.exponent); + } + if (pns.negative) { + value = -value; + } + return answer; + } + } else { + // We do not have that fegetround() == FE_TONEAREST. + // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's + // proposal + if (pns.exponent >= 0 && + pns.mantissa <= + binary_format::max_mantissa_fast_path(pns.exponent)) { +#if defined(__clang__) || defined(FASTFLOAT_32BIT) + // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD + if (pns.mantissa == 0) { + value = pns.negative ? T(-0.) : T(0.); + return answer; + } +#endif + value = T(pns.mantissa) * + binary_format::exact_power_of_ten(pns.exponent); + if (pns.negative) { + value = -value; + } + return answer; + } + } + } + adjusted_mantissa am = + compute_float>(pns.exponent, pns.mantissa); + if (pns.too_many_digits && am.power2 >= 0) { + if (am != compute_float>(pns.exponent, pns.mantissa + 1)) { + am = compute_error>(pns.exponent, pns.mantissa); + } + } + // If we called compute_float>(pns.exponent, pns.mantissa) + // and we have an invalid power (am.power2 < 0), then we need to go the long + // way around again. This is very uncommon. + if (am.power2 < 0) { + am = digit_comp(pns, am); + } + to_float(pns.negative, am, value); + // Test for over/underflow. + if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || + am.power2 == binary_format::infinite_power()) { + answer.ec = std::errc::result_out_of_range; + } + return answer; +} + +template +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars_advanced(UC const *first, UC const *last, T &value, + parse_options_t options) noexcept { + + static_assert(is_supported_float_type(), + "only some floating-point types are supported"); + static_assert(is_supported_char_type(), + "only char, wchar_t, char16_t and char32_t are supported"); + + from_chars_result_t answer; +#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default + while ((first != last) && fast_float::is_space(uint8_t(*first))) { + first++; + } +#endif + if (first == last) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } + parsed_number_string_t pns = + parse_number_string(first, last, options); + if (!pns.valid) { + if (options.format & chars_format::no_infnan) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } else { + return detail::parse_infnan(first, last, value); + } + } + + // call overload that takes parsed_number_string_t directly. + return from_chars_advanced(pns, value); +} + +template +FASTFLOAT_CONSTEXPR20 from_chars_result_t +from_chars(UC const *first, UC const *last, T &value, int base) noexcept { + static_assert(is_supported_char_type(), + "only char, wchar_t, char16_t and char32_t are supported"); + + from_chars_result_t answer; +#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default + while ((first != last) && fast_float::is_space(uint8_t(*first))) { + first++; + } +#endif + if (first == last || base < 2 || base > 36) { + answer.ec = std::errc::invalid_argument; + answer.ptr = first; + return answer; + } + return parse_int_string(first, last, value, base); +} + +} // namespace fast_float + +#endif + diff --git a/deps/fast_float/fast_float_strtod.cpp b/deps/fast_float/fast_float_strtod.cpp new file mode 100644 index 0000000000..c594b5c2c2 --- /dev/null +++ b/deps/fast_float/fast_float_strtod.cpp @@ -0,0 +1,51 @@ +#include "fast_float.h" +#include "fast_float_strtod.h" +#include + +/** + * @brief Converts a null-terminated byte string to a double using the fast_float library. + * + * This function provides a C-compatible wrapper around the fast_float library's string-to-double + * conversion functionality. It aims to offer a faster alternative to the standard strtod function. + * + * @param nptr A pointer to the null-terminated byte string to be converted. + * @param endptr If not NULL, a pointer to a pointer to char will be stored with the address + * of the first invalid character in nptr. If the function returns successfully, + * this will point to the null terminator or any extra characters after the number. + * + * @return On success, returns the converted double value. + * On failure, returns 0.0 and sets errno to ERANGE (if result is out of range) + * or EINVAL (for invalid input). + * + * @note This function uses the fast_float library (https://github.com/fastfloat/fast_float) + * for the actual conversion, which can be significantly faster than standard library functions. + * + * @see https://github.com/fastfloat/fast_float for more information on the underlying library. + */ + +extern "C" +{ + double fast_float_strtod(const char *nptr, char **endptr) + { + double result; + auto answer = fast_float::from_chars(nptr, nptr + strlen(nptr), result); + + if (answer.ec == std::errc()) + { + if (endptr) + { + *endptr = const_cast(answer.ptr); + } + return result; + } + else + { + if (endptr) + { + *endptr = const_cast(answer.ptr); + } + errno = (answer.ec == std::errc::result_out_of_range) ? ERANGE : EINVAL; + return 0.0; + } + } +} diff --git a/deps/fast_float/fast_float_strtod.h b/deps/fast_float/fast_float_strtod.h new file mode 100644 index 0000000000..baac522bee --- /dev/null +++ b/deps/fast_float/fast_float_strtod.h @@ -0,0 +1,15 @@ +#ifndef FAST_FLOAT_STRTOD_H +#define FAST_FLOAT_STRTOD_H + +#ifdef __cplusplus +extern "C" +{ +#endif + + double fast_float_strtod(const char *nptr, char **endptr); + +#ifdef __cplusplus +} +#endif + +#endif // FAST_FLOAT_STRTOD_H