forked from sdrangan/wirelesscomm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprob_amc.tex
440 lines (379 loc) · 13.9 KB
/
prob_amc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumitem}
\usetikzlibrary{shapes,arrows}
\usepackage{mdframed}
\usepackage{mcode}
\usepackage{siunitx}
%\usetikzlibrary{dsp,chains}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Ebf}{\mathbf{E}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\def\Rect{\mathop{Rect}}
\def\sinc{\mathop{sinc}}
\def\NF{\mathrm{NF}}
\def\Real{\mathrm{Re}}
\def\Imag{\mathrm{Im}}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
% Solution environment
\definecolor{lightgray}{gray}{0.95}
\newmdenv[linecolor=white,backgroundcolor=lightgray,frametitle=Solution:]{solution}
\begin{document}
\title{Problems: Adaptive Modulation and Coding\\
ECE-GY 6023. Wireless Communications}
\author{Prof.\ Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item \emph{MCS selection:} A system has four MCS selections with minimum required SNRs
as shown:
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{MCS} & 1 & 2 & 3 & 4 \\ \hline
\textbf{Min SNR [dB]} & 0 & 4 & 8 & 12 \\ \hline
\end{tabular}
\end{table}
\begin{enumerate}[label=(\alph*)]
\item Suppose that the SNR in \si{dB}, $\gamma$, is unknown and can be modeled as Gaussian
variable with mean \SI{6}{dB} and standard deviation of \SI{2}{dB}.
What is the probability that $\gamma > 8$\, \si{dB}, the required SNR for MCS 3.
\item The TX attempts MCS 3 and it fails, meaning $\gamma \leq 8$\, \si{dB}.
If it now attempts MCS 2, what is the probability that it will pass assuming the channel has not changed.
\end{enumerate}
\item \emph{Markovian errors:}
In this problem, we will show how to use Markov processes
to model error probabilities on correlated channels.
As a simple example, suppose that a channel in time slot $k$
can be modeled as being in one of two states: a good state ($X_k=1$),
and a bad state ($X_k = 0$).
Assume $X_k$ is Markov with transition probability matrix
\[
P = \begin{bmatrix}
0.8 & 0.2 \\
0.3 & 0.7
\end{bmatrix}.
\]
A transmitter sends packets in each time slot.
Let $Y_k=0$ or $1$ be the indicator that a packet fails or
passes in time slot $k$. Assume,
\[
P(Y_k=1|X_k=1) = 0.8, \quad P(Y_k=1|X_k=0) = 0.4.
\]
Assume that, given the $X_k$'s, the $Y_k$'s are independent.
\begin{enumerate}[label=(\alph*)]
\item Let $\alpha_k(i) = P(X_k=i)$. Find the recursion
for the values $\alpha_{k+1}(i)$ in terms of
the values $\alpha_k(j)$.
\item Let
\[
\alpha^0_k(i) = P(X_k=i|Y_0=0,\ldots,Y_{k-1}=0).
\]
That is, $\alpha^0_k(i)$ is the probability that
$X_k=i$ given that the previous $k-1$ transmissions have failed. Find the recursion for $\alpha^0_{k+1}(i)$ in
terms of the values $\alpha^0_k(i)$.
\item Let $T$ be the time,
\[
T = \min \left\{~k~|Y_k = 1~\right\},
\]
which is the index of the first slot that the packet passes.
Suppose that $X_0=0$.
Write a simple MATLAB program to compute $P(T=k)$ for
$k=0,1,\ldots,9$ using the above recursions.
\end{enumerate}
\item \emph{Multi-Process ARQ timeline:} Suppose that a gNB wants to send $N=10$ packet data units
(PDUs).
The PDUs are indexed $n=0,1,\ldots,N-1$.
In each slot, it attempts to send one PDU beginning in slot $k=0$ starting with PDU 0.
There are $K=4$ parallel HARQ processes.
Suppose that the transmissions fails in slots $k=5, 6$ and 7 and passes in all other slots.
\begin{enumerate}[label=(\alph*)]
\item For each PDU, indicate the fist slot it is correctly decoded at the receiver.
\item Suppose the receiver only releases decoded the PDUs in order to the higher layer.
So, for example, it holds PDU 3 back until it receives PDU 2. Also, there is a fixed delay
of 3 slots from the time of transmission to the PDU being available at the receiver for higher layers.
When do the PDUs arrive at the higher layer?
\end{enumerate}
\item \emph{TB size:} Suppose that a \SI{64}{kbps} voice over IP (VoIP)
system transmits frames once every
\SI{20}{ms}. Each voice frame also requires a \SI{20}{B} IP header, \SI{20}{B} UDP header,
and 24 bits CRC.
\begin{enumerate}[label=(\alph*)]
\item How many bits are in each voice frame?
\item Suppose the data is transmitted in an NR-like system with 14 OFDM symbols and 12 sub-carriers
per RB. In each RB, 14 REs are used for overhead. At a spectral efficiency of 2 bits / RE,
how many RBs are needed to transmit the voice packet.
\item If the system has 51 RBs in bandwidth with one slot every \SI{0.5}{ms}, what is the fraction
of RBs used by the VoIP application?
\end{enumerate}
\item \emph{HARQ Errors:} For each of the following events, state what will occur:
\begin{itemize}
\item The PDU can eventually recovered through HARQ, or
\item The PDU cannot be recovered through HARQ and will need to be recovered from
a high-layer ARQ protocol (e.g.\ at the RLC or TCP layer).
\end{itemize}
\begin{enumerate}[label=(\alph*)]
\item A DL PDCCH for an initial transmission is not seen by the UE, so it does not even
know that there is a DL data transmission.
\item The UE decodes the DL data and sends an ACK to the gNB. But, the gNB mistakes the
ACK for a NACK.
\item The UE fails to decode the DL data and sends a NACK to the gNB. But, the gNB mistakes the
NACK for an ACK.
\end{enumerate}
\item \emph{Power and SNR estimation:} Suppose that
we have two groups of reference symbols:
\begin{itemize}
\item Zero-power RS that contain noise only,
\[
r_k = w_k, \quad w_k \sim C{\mathcal N}(0,N).
\]
On these symbols, we compute a noise estimate,
\[
\widehat{N} = \frac{1}{K} \sum_{k=1}^K |r_k|^2,
\]
where $K$ is the number of symbols over which we average.
\item Non zero-power RS with signal and noise,
\[
r_k = h_kx_k + w_k, \quad
h_k \sim C{\mathcal N}(0,E_s), \quad
w_k \sim C{\mathcal N}(0,N),
\]
and $|x_k|=1$ is known to the receiver.
On these symbols, we compute a signal power estimate
\[
\widehat{S} = \frac{1}{M} \sum_{k=1}^K |r_k|^2,
\]
where $M$ is the number of symbols over which we average.
\end{itemize}
\begin{enumerate}[label=(\alph*)]
\item Show that $\widehat{N}$ and $\widehat{S}$
can be written as a scaled chi-squared
distributions with a certain number of degrees of freedom.
You can look up this distribution in any source.
\item Show that the ratio $\widehat{S}/\widehat{N}$ can be written as a scaled $F$-distribution
distribution with a certain number of degrees of freedom.
You can look up this distribution in any source.
\item Suppose we use
\[
\widehat{\gamma} = \max\left\{ 0, \frac{\widehat{S}}{\widehat{N}} - 1\right\}
\]
as the estimate of the true SNR $\gamma = E_s/N$.
Plot the probability that the SNR is accurate within \SI{0.5}{dB} as a function of $K$ with $K=M$.
You can use the MATLAB function \mcode{fcdf}.
Assume the true SNR is, $\gamma = $\, \SI{3}{dB}.
\end{enumerate}
\item \emph{CSI estimation bias:} Suppose that in a group of $K$ symbols,
reference symbols $x_k$ are received as
\[
r_k = hx_k + w_k, \quad w_k \sim {\mathcal CN}(0,N),
\quad |hx_k|^2 = E_s,
\]
where $h$ is an unknown channel, $N$ is the noise power, and $E_s$ is the received signal energy.
We channel and noise estimates via
\[
\widehat{h} = \frac{ \sum_{k=1}^K x_k^*r_k } {\sum_{k=1}^K |x_k|^2 },
\quad
\widehat{N} = \frac{\alpha }{K} \sum_{k=1}^K |r_k - \widehat{h}x_k|^2.
\]
\begin{enumerate}[label=(\alph*)]
\item Find the constant $\alpha$ such that the noise estimate is unbiased. That is,
\[
\Exp\left[ \widehat{N} \right] = N.
\]
\item Suppose that you obtain an accurate estimate of the noise $\widehat{N}=N$
(for example, by averaging over large numbers of groups). How would you get an unbiased
estimate of $E_s$?
\end{enumerate}
\item \emph{Rate matching:} Suppose you send 200 bits with a rate $1/2$ convolutional code
with constraint length $K=7$.
\begin{enumerate}[label=(\alph*)]
\item How many coded bits are output from the convolutional encoder? Remember to include
the tail bits.
\item Suppose you want to send the data on 150 QPSK symbols. How many bits should be punctured or
repeated?
\end{enumerate}
\item \emph{Comparing Chase and IR:}
Suppose that a TX can create mother codes
that, on an AWGN channel, require an SNR $\gamma$
and provide a rate per symbol of
\[
R(\gamma)
= \min\{ \rho_{\rm max}, \alpha \log_2(1+\gamma) \},
\]
where $\rho_{\rm max}$ is the maximum spectral efficiency
and $\alpha$ is the fraction that the code achieves within
the Shannon rate.
Now suppose we use this code for HARQ with $K$ transmissions.
Suppose that all the symbols in transmission $k$ experience
some SNR $\gamma_k$, $k=1,\ldots,K$.
\begin{enumerate}[label=(\alph*)]
\item Suppose, we use Chase combining where we
create a packet from the mother code and retransmit it
in each of the $K$ transmissions. For each target $\gamma$,
find the condition on $\gamma_1,\ldots,\gamma_K$ that the
packet will pass. Also, find the rate, $R_{\rm chase}(\gamma)$ that will be achieved if
the packet passes after $K$ transmissions.
\item Next, suppose we use IR where we create a longer packet
and transmit a fraction $1/K$ symbols in each transmission.
For each target $\gamma$,
find the condition on $\gamma_1,\ldots,\gamma_K$ that the
packet will pass. Also, find the rate, $R_{\rm IR}(\gamma)$ that will be achieved if
the packet passes after $K$ transmissions.
\item Set $K=3$ and generate random i.i.d.\ $\gamma_k$
that are exponentially distributed with an average of \SI{3}{dB} (i.e.\ independent Rayleigh fading).
Generate $n=1000$ instances of this channel
using MATLAB.
By varying the target SNR $\gamma$,
plot the probability that the packet the packet passes
after $K$ transmissions,
vs.\ the rates $R_{\rm chase}(\gamma)$ and
$R_{\rm IR}(\gamma)$, for both Chase and IR combining.
\end{enumerate}
\end{enumerate}
\end{document}