All notable changes to this project will be documented in this file.
-
Logging total number of models to fit in
grid_search_forecaster()
. -
Class
ForecasterAutoregCustom
. -
Method
create_train_X_y()
to facilitate access to the training data matrix created fromy
andexog
.
-
Class
ForecasterCustom
has been renamed toForecasterAutoregCustom
. However,ForecasterCustom
will still remain to keep backward compatibility. -
Argument
metric
incv_forecaster()
,backtesting_forecaster()
,grid_search_forecaster()
andbacktesting_forecaster_intervals()
changed from 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_mean_absolute_percentage_error' to 'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'. -
Check if argument
metric
incv_forecaster()
,backtesting_forecaster()
,grid_search_forecaster()
andbacktesting_forecaster_intervals()
is one of 'mean_squared_error', 'mean_absolute_error', 'mean_absolute_percentage_error'. -
time_series_spliter
doesn't include the remaining observations in the last complete fold but in a new one whenallow_incomplete_fold=True
. Take in consideration that incomplete folds with few observations could overestimate or underestimate the validation metric.
- Update lags of
ForecasterAutoregMultiOutput
aftergrid_search_forecaster()
.
set_out_sample_residuals()
method to store or update out of sample residuals used bypredict_interval()
.
-
backtesting_forecaster_intervals
andbacktesting_forecaster
print number of steps per fold. -
Only stored up to 1000 residuals.
-
Improved verbose in
backtesting_forecaster_intervals
.
-
Warning of inclompleted folds when using
backtesting_forecast()
with aForecasterAutoregMultiOutput
. -
ForecasterAutoregMultiOutput.predict()
allow exog data longer than needed (steps). -
backtesting_forecast()
prints correctly the number of folds when remainder observations are cero. -
Removed named argument X in
self.regressor.predict(X)
to allow using XGBoost regressor. -
Values stored in
self.last_window
when trainingForecasterAutoregMultiOutput
.
- Class
ForecasterAutoregMultiOutput.py
: forecaster with direct multi-step predictions. - Method
ForecasterCustom.predict_interval()
andForecasterAutoreg.predict_interval()
: estimate prediction interval using bootstrapping. skforecast.model_selection.backtesting_forecaster_intervals()
perform backtesting and return prediction intervals.
- Class
ForecasterCustom
: same functionalities asForecasterAutoreg
but allows custom definition of predictors.
grid_search forecaster()
adapted to work with objectsForecasterCustom
in addition toForecasterAutoreg
.
- Method
get_feature_importances()
toskforecast.ForecasterAutoreg
. - Added backtesting strategy in
grid_search_forecaster()
. - Added
backtesting_forecast()
toskforecast.model_selection
.
- Method
create_lags()
return a matrix where the order of columns match the ascending order of lags. For example, column 0 contains the values of the minimum lag used as predictor. - Renamed argument
X
tolast_window
in methodpredict()
. - Renamed
ts_cv_forecaster()
tocv_forecaster()
.
- Method
get_coef()
toskforecast.ForecasterAutoreg
.