-
Notifications
You must be signed in to change notification settings - Fork 13
/
faceswap.py
executable file
·224 lines (174 loc) · 6.67 KB
/
faceswap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/python
"""
@Krishna Somandepalli
Part of the following functions are taken from:
http://matthewearl.github.io/2015/07/28/switching-eds-with-python/
Courtesy: Matthew Earl - 2015
"""
import sys
import cv2
import dlib
import numpy
from pylab import *
PREDICTOR_PATH = "/data/workspace/mica/race/scripts/shape_predictor_68_face_landmarks.dat"
SCALE_FACTOR = 1
FEATHER_AMOUNT = 11
# google sdk lmarks
# FACE_POINTS = list(range(17, 68))
MOUTH_POINTS = [2, 13, 14, 15, 16] # list(range(48, 68))
RIGHT_BROW_POINTS = [3, 4] # list(range(17, 22))
LEFT_BROW_POINTS = [5, 6] # list(range(22, 27))
RIGHT_EYE_POINTS = [0] # list(range(36, 42))
LEFT_EYE_POINTS = [1] # list(range(42, 48))
NOSE_POINTS = [7, 8, 9, 10, 11, 12] # list(range(27, 35))
# JAW_POINTS = #list(range(0, 17))
# DEFINE SOMETHING CALLED "STABLE POINTS" - eye corners and nose region
# STABLE_POINTS = [36,39,42,45,28,29,30]
# Points used to line up the images.
ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +
RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)
# Points from the second image to overlay on the first. The convex hull of each
# element will be overlaid.
OVERLAY_POINTS = [
LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS,
NOSE_POINTS + MOUTH_POINTS,
]
# Amount of blur to use during colour correction, as a fraction of the
# pupillary distance.
COLOUR_CORRECT_BLUR_FRAC = 0.6
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(PREDICTOR_PATH)
class TooManyFaces(Exception):
pass
class NoFaces(Exception):
pass
def get_landmarks(im):
rects = detector(im, 1)
print len(rects)
if len(rects) == 0:
raise NoFaces
all_lmarks = []
all_bbox = []
for d in rects:
# d = rects[0]
bbox = [d.left(), d.top(), d.right(), d.bottom()] # for d in rects])
lmarks = numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])
all_lmarks.append(lmarks.tolist())
all_bbox.append(bbox)
return all_lmarks, all_bbox
def get_landmarks_one_face(im):
rects = detector(im, 1)
if len(rects) > 1:
raise TooManyFaces
if len(rects) == 0:
raise NoFaces
d = rects[0]
bbox = [d.left(), d.top(), d.right(), d.bottom()] # for d in rects])
lmarks = numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])
return lmarks, bbox
def annotate_landmarks(im, landmarks):
im = im.copy()
for idx, point in enumerate(landmarks):
pos = (point[0, 0], point[0, 1])
cv2.putText(im, str(idx), pos,
fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
fontScale=0.4,
color=(0, 0, 255))
cv2.circle(im, pos, 3, color=(0, 255, 255))
return im
def draw_convex_hull(im, points, color):
points = cv2.convexHull(points)
cv2.fillConvexPoly(im, points, color=color)
def get_face_mask(im, landmarks):
im = numpy.zeros(im.shape[:2], dtype=numpy.float64)
for group in OVERLAY_POINTS:
draw_convex_hull(im,
landmarks[group],
color=1)
im = numpy.array([im, im, im]).transpose((1, 2, 0))
im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0
im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0)
return im
def transformation_from_points(points1, points2):
"""
Return an affine transformation [s * R | T] such that:
sum ||s*R*p1,i + T - p2,i||^2
is minimized.
"""
# Solve the procrustes problem by subtracting centroids, scaling by the
# standard deviation, and then using the SVD to calculate the rotation. See
# the following for more details:
# https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
points1 = points1.astype(numpy.float64)
points2 = points2.astype(numpy.float64)
c1 = numpy.mean(points1, axis=0)
c2 = numpy.mean(points2, axis=0)
points1 -= c1
points2 -= c2
s1 = numpy.std(points1)
s2 = numpy.std(points2)
points1 /= s1
points2 /= s2
U, S, Vt = numpy.linalg.svd(points1.T * points2)
# The R we seek is in fact the transpose of the one given by U * Vt. This
# is because the above formulation assumes the matrix goes on the right
# (with row vectors) where as our solution requires the matrix to be on the
# left (with column vectors).
R = (U * Vt).T
return numpy.vstack([numpy.hstack(((s2 / s1) * R,
c2.T - (s2 / s1) * R * c1.T)),
numpy.matrix([0., 0., 1.])])
def read_im_and_landmarks(fname):
im = cv2.imread(fname) # , cv2.IMREAD_COLOR)
im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR,
im.shape[0] * SCALE_FACTOR))
s, b = get_landmarks(im)
return im, s, b
def warp_im(im, M, dshape):
output_im = numpy.zeros(dshape, dtype=im.dtype)
cv2.warpAffine(im,
M[:2],
(dshape[1], dshape[0]),
dst=output_im,
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output_im
def correct_colours(im1, im2, landmarks1):
blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
blur_amount = int(blur_amount)
if blur_amount % 2 == 0:
blur_amount += 1
im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
# Avoid divide-by-zero errors.
im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /
im2_blur.astype(numpy.float64))
# im1, l1,b1 = read_im_and_landmarks(sys.argv[1])
# im2, l2,b2 = read_im_and_landmarks(sys.argv[2])
##
# M = transformation_from_points(l1[ALIGN_POINTS],
# l2[ALIGN_POINTS])
##
##mask = get_face_mask(im2, landmarks2)
##warped_mask = warp_im(mask, M, im1.shape)
##combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],
## axis=0)
##
# warped_im2 = warp_im(im2, M, im1.shape)
# print warped_im2.shape
# l_w, b_w = get_landmarks(warped_im2)
##warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1)
##
##output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask
# x1,y1,x2,y2 = b1
# cv2.imshow('input1',im1[y1:y2, x1:x2,:])
# x1,y1,x2,y2 = b2
# cv2.imshow('input2',im2[y1:y2, x1:x2,:])
# x1,y1,x2,y2 = b1
# cv2.imshow('output',warped_im2[y1:y2, x1:x2,:])
# cv2.imwrite('output.png',warped_im2)
# cv2.waitKey(0)
#