-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
170 lines (135 loc) · 5.38 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# -*- coding: utf-8 -*-
# @Time : 6/10/21 11:00 PM
# @Author : Yuan Gong
# @Affiliation : Massachusetts Institute of Technology
# @Email : [email protected]
# @File : traintest.py
import sys
import os
import datetime
sys.path.append(os.path.dirname(os.path.dirname(sys.path[0])))
import time
import torch
from torch import nn
import numpy as np
import pickle
from torch.cuda.amp import autocast,GradScaler
from utils.optims import *
from utils.registry import registry
def init_optimizer(model, run_cfg, logger):
weight_decay = run_cfg.weight_decay
lr_scale = run_cfg.lr_layer_decay
optim_params = model.get_optimizer_params(weight_decay, lr_scale)
num_params = 0
for p_group in optim_params:
for p in p_group['params']:
num_params += p.data.nelement()
print('number of trainable parameters: {} million'.format(num_params/1e6))
beta2 = run_cfg.beta2
opt = torch.optim.AdamW(
optim_params,
lr=float(run_cfg.init_lr),
betas=(0.9, beta2),
)
return opt
def train(model, config, logger, train_loader, val_loader, test_loader=None):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('running on ' + str(device))
torch.set_grad_enabled(True)
run_cfg = config.run
global_step = 0
max_epoch = run_cfg.max_epoch
batch_size = run_cfg.batch_size
n_iter = len(train_loader)
scaler = torch.cuda.amp.GradScaler() if run_cfg.amp else None
use_amp = scaler is not None
accum_grad_iters = run_cfg.accum_grad_iters
optimizer = init_optimizer(model, run_cfg, logger)
scheduler_cls = registry.get_lr_scheduler_class(run_cfg.lr_sched)
scheduler = scheduler_cls(
optimizer=optimizer,
max_epoch=run_cfg.max_epoch,
min_lr=run_cfg.min_lr,
init_lr=run_cfg.init_lr,
decay_rate=run_cfg.lr_decay_rate,
warmup_start_lr=run_cfg.warmup_lr,
warmup_steps=run_cfg.warmup_steps
)
if run_cfg.save_iters > 0:
save_iter = run_cfg.save_iters
else:
save_iter = len(train_loader)
model = torch.nn.DataParallel(model)
model.to(device)
print("start training...")
for epoch in range(max_epoch):
begin_time = time.time()
end_time = time.time()
model.train()
print('---------------')
print(datetime.datetime.now())
print("current #epochs=%s, #steps=%s" % (epoch, global_step))
for i, (audio_input, caption) in enumerate(train_loader):
audio_input = audio_input.to(device, non_blocking=True)
samples = {
'spectrogram': audio_input,
'caption': caption,
'epoch': epoch,
'num_iters_per_epoch': n_iter,
'iters': i
}
scheduler.step(cur_epoch=epoch, cur_step=i)
with torch.cuda.amp.autocast(enabled=use_amp):
output = model(samples)
loss_dict = {k: v for k,v in output.items() if 'loss' in k}
loss = output['loss']
loss /= accum_grad_iters
if use_amp:
scaler.scale(loss).backward()
else:
loss.backward()
if (i + 1) % accum_grad_iters == 0:
if use_amp:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
# record loss
logger.update(loss_dict)
print_step = global_step % run_cfg.n_print_steps == 0
early_print_step = epoch == 0 and global_step % (run_cfg.n_print_steps/10) == 0
print_step = (print_step or early_print_step) and global_step > 0
if print_step:
logger.print_stats(epoch, i)
global_step += 1
if global_step % save_iter == 0:
valid_loss = evaluate(model, val_loader)
logger.print_validation_stats(model, valid_loss, epoch, global_step)
logger.epoch_end(model, epoch)
if test_loader is not None:
pass
def evaluate(model, eval_loader):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
loss = {}
with torch.no_grad():
for i, (audio_input, caption) in enumerate(eval_loader):
audio_input = audio_input.to(device)
samples = {
'spectrogram': audio_input,
'caption': caption,
'epoch': 10,
'num_iters_per_epoch': 100,
'iters': 0
}
# compute output
output = model(samples)
loss_dict = {k: v.item() for k,v in output.items() if 'loss' in k}
for k, v in loss_dict.items():
if k not in loss:
loss[k] = [v]
else:
loss[k].append(v)
loss = {k: np.mean(v) for k, v in loss.items()}
return loss