-
Notifications
You must be signed in to change notification settings - Fork 1
/
functions.py
558 lines (475 loc) · 17.6 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
from heapq import heappop, heappush
from rtree import index
from itertools import count
from collections import deque
from numpy import arccos, pi, percentile
from shapely.ops import unary_union
from shapely.geometry import Point, Polygon
import pickle, json, math, os
from rtree import index
import networkx as nx
import pandas as pd
import geopandas as gp
# Data Loading
def colorize(column):
data = []
p33 = percentile(column.values, 33)
p66 = percentile(column.values, 66)
for x in column.values:
if x > p66:
data.append(3)
continue
elif x > p33:
data.append(2)
continue
else:
data.append(1)
return data
def set_spatial_index(coordinates):
p = index.Property()
p.dimension = 2
ind= index.Index(properties=p)
for x,y in zip(coordinates.keys(),coordinates.values()):
ind.add(x,y)
return ind
def check_point(coordinates):
if border.contains(Point(coordinates)):
return True
else:
return False
def find_nearest_node(coordinates):
nearest = tuple(spatial.nearest(coordinates, 1))
nearest_node = nearest[0]
return nearest_node
path = os.path.dirname(os.path.realpath(__file__))
# with open(path+'/graphs/edges_green_noise_air_restrictions.pickle','r') as f:
# edges = pickle.load(f)
# with open(path+'/graphs/nodes_osm.pickle','r') as f:
# nodes = pickle.load(f)
edges = pd.read_pickle(path+'/graphs/edges_green_noise_air_restrictions.pickle')
edges = gp.GeoDataFrame(edges)
nodes = pd.read_pickle(path+'/graphs/nodes_osm.pickle')
nodes = gp.GeoDataFrame(nodes)
with open(path+'/static/border.pickle','r') as f:
border = pickle.load(f)
steps = json.load(open(path+'/static/steps_in_graph.json'))
edges['steps'] = edges['id'].apply(lambda x: 1 if x in steps else 0)
with open(path+'/graphs/routes_data.json','r') as f:
routes = json.load(f)
with open(path+'/graphs/routes_on_stop_data.json','r') as f:
routes_on_stops = json.load(f)
stops = pd.read_csv(path+'/graphs/stops.txt')
for x,y in routes_on_stops.items():
if type(x)==unicode:
routes_on_stops[int(x)]=y
del routes_on_stops[x]
print 'starting to collect graph'
nodes = nodes[(nodes['id'].isin(edges['source']))|(nodes['id'].isin(edges['target']))]
coords={}
for x in range(nodes.shape[0]):
coord = (nodes['geometry'].values[x].x,nodes['geometry'].values[x].y)
id = nodes['id'].values[x]
coords[id] = coord
spatial = set_spatial_index(coords)
stop_node = {}
node_stop = {}
for x in range(len(stops)):
stop_coordinates = stops['stop_lon'].values[x],stops['stop_lat'].values[x]
if check_point(stop_coordinates):
stop_node[find_nearest_node(stop_coordinates)] = stops['stop_id'].values[x]
node_stop[stops['stop_id'].values[x]]=find_nearest_node(stop_coordinates)
print 'nodes-stops made'
G = nx.Graph()
edges.green_ratio= edges.green_ratio.apply(lambda x: 1 if x>1 else x)
edges['color_air'] = colorize(edges.air_ratio)
edges['color_green'] = colorize(edges.green_ratio)
edges['color_noise'] = colorize(edges.noise_ratio)
for x in range(edges.shape[0]):
a = edges.source.values[x]
b = edges.target.values[x]
w = edges.cost.values[x]
g = 1-edges.green_ratio.values[x]
n = 1-edges.noise_ratio.values[x]
air = 1-edges.air_ratio.values[x]
edge_id = edges.id.values[x]
time = edges.time.values[x]
has_steps = edges['steps'].values[x]
G.add_node(a)
G.add_node(b)
G.add_edge(a,b, {'weight':w, 'green':w*g, 'noise':w*n, 'air':w*air, 'id':edge_id, 'time':time, 'steps':has_steps})
edges = edges[['id','color_green','color_noise','color_air','geometry', 'len', 'time']]
G = G.adj
# Router
def check_similarity(l,l2):
i = len(set(l2)-set(l))
i2 = len(set(l)-set(l2))
if i/len(l2) > 0.9 or i2/len(l2) > 0.9:
return True
return False
def vector_dist(vector):
d = vector[0]**2+vector[1]**2
return d**0.5
def get_circ(vector1, vector2):
scal = vector1[0]*vector2[0]+vector1[1]*vector2[1]
evklid1,evklid2 = [vector_dist(vect) for vect in (vector1, vector2)]
total_evklid = evklid1*evklid2
answer = scal/total_evklid
return arccos(answer)
def get_vector(node1, node2):
coords1 = coords[node1]
coords2 = coords[node2]
x = coords1[0]-coords2[0]
y = coords1[1]-coords2[1]
return (x,y)
def bigger_bbox(bb):
diff_v = (bb[2]- bb[0])*0.5
diff = (bb[3]- bb[1])
diff_g =diff*0.1
diff_g_kosyak =diff*0.4
d = -1
bb= list(bb)
for x in range(len(bb)):
if x%2==0:
bb[x] = bb[x]+diff_v*d
else:
if x == 1:
bb[x] = bb[x]+diff_g_kosyak*d
d = 1
else:
bb[x] = bb[x]+diff_g*d
return tuple(bb)
def get_path(list_of_edges, param):
if param != 'weight':
data = edges[edges['id'].isin(list_of_edges)]
data = data.rename(columns={'color_%s'%param:'color'})
data = data[['geometry','color']]
return data.to_json()
else:
data = edges[edges['id'].isin(list_of_edges)]
return data.to_json()
def get_response(list_of_edges, start, param):
data = edges[edges['id'].isin(list_of_edges)]
if param != 'weight':
data = data.rename(columns={'color_%s'%param:'color'})
length = round(data['len'].values.sum()/1000,2)
time = int(data['time'].values.sum())
data = data[['geometry','color']]
bbox = data.total_bounds
bbox = bigger_bbox(bbox)
data = data.to_json()
json_completer = start+(length,time,param)+bbox+(data,)
answer = """{"start":[%f,%f],"length":%f,"time":%i,"type":"%s","zoom":{"sw":[%f,%f],"ne":[%f,%f]},"geom":%s}"""%json_completer
return answer
else:
length = round(data['len'].values.sum()/1000,2)
time = int(data['time'].values.sum())
bbox = data.total_bounds
bbox = bigger_bbox(bbox)
data = data.to_json()
json_completer = start+(length,time,param)+bbox+(data,)
answer = """{"start":[%f,%f],"length":%f,"time":%i,"type":"%s","zoom":{"sw":[%f,%f],"ne":[%f,%f]},"geom":%s}"""%json_completer
return answer
def distance(p1, p2):
x1,y1 = coords[p1]
x2,y2 = coords[p2]
return (((x2-x1)**2+(y2-y1)**2)**0.5)*10
def neighs_iter(key):
for x in G[key].items():
yield x
def bidirectional_astar(source_coords, target_coords, additional_param='weight', step_mode=False):
nod = tuple([find_nearest_node(x) for x in [source_coords, target_coords]])
source,target = nod
start = coords[source]
queue = [[(0, source, 0, None, None)], [(0, target, 0, None, None)]]
enqueued = [{},{}]
explored = [{}, {}]
edge_parent = [{}, {}]
heu = [target,source]
d=1
while queue[0] and queue[1]:
d = 1-d
_, v, dist, parent, edge = heappop(queue[d])
if v in explored[1-d]:
if v is not None and explored[1-d][v] is not None:
path1 = deque([edge])
w = G[explored[1-d][v]][v]
path2 = deque([w.get('id',1)])
else:
path1 = deque([edge])
path2 = deque([])
node1 = parent
node2 = explored[1-d][v]
while node1 is not None:
path1.appendleft(edge_parent[d][node1])
node1 = explored[d][node1]
while node2 is not None:
path2.append(edge_parent[1-d][node2])
node2 = explored[1-d][node2]
finalpath = list(path1)+list(path2)
return get_response(finalpath, start, additional_param)
if v in explored[d]:
continue
explored[d][v] = parent
edge_parent[d][v] = edge
for neighbor, w in neighs_iter(v):
if step_mode:
if w.get('steps',None) == 1:
continue
if len(G[neighbor])==1:
continue
if neighbor in explored[d]:
continue
ncost = dist + w.get(additional_param,1)
if neighbor in enqueued[d]:
qcost, h = enqueued[d][neighbor]
if qcost <= ncost:
continue
else:
h = distance(neighbor, heu[d])
enqueued[d][neighbor] = ncost, h
e = w.get('id',1)
heappush(queue[d], (ncost+h, neighbor, ncost, v, e))
raise Exception('Path between given nodes does not exist.')
def composite_request(source_coords, target_coords):
try:
green_route = bidirectional_astar(source_coords, target_coords, additional_param = 'green')
noisy_route = bidirectional_astar(source_coords, target_coords, additional_param = 'noise')
air_route = bidirectional_astar(source_coords, target_coords, additional_param = 'air')
answer = """[%s, %s, %s]"""%(green_route, noisy_route, air_route)
return answer
except Exception as e:
return '''{"error":0}'''
def _connect_paths(source_coords, target_coords, avoid, additional_param='weight'):
nod = tuple([find_nearest_node(x) for x in [source_coords, target_coords]])
source,target = nod
queue = [[(0, source, 0, None, None)], [(0, target, 0, None, None)]]
enqueued = [{},{}]
explored = [{}, {}]
edge_parent = [{}, {}]
heu = [target,source]
d=1
while queue[0] and queue[1]:
d = 1-d
_, v, dist, parent, edge = heappop(queue[d])
if v in explored[1-d]:
if v is not None and explored[1-d][v] is not None:
path1 = deque([edge])
w = G[explored[1-d][v]][v]
path2 = deque([w.get('id',1)])
else:
path1 = deque([edge])
path2 = deque([])
node1 = parent
node2 = explored[1-d][v]
while node1 is not None:
path1.appendleft(edge_parent[d][node1])
node1 = explored[d][node1]
while node2 is not None:
path2.append(edge_parent[1-d][node2])
node2 = explored[1-d][node2]
finalpath = list(path1)+list(path2)
return finalpath
if v in explored[d]:
continue
explored[d][v] = parent
edge_parent[d][v] = edge
for neighbor, w in neighs_iter(v):
if len(G[neighbor])==1:
continue
if neighbor in explored[d]:
continue
if neighbor in avoid:
continue
ncost = dist + w.get(additional_param,1)
if neighbor in enqueued[d]:
qcost, h = enqueued[d][neighbor]
if qcost <= ncost:
continue
else:
h = distance(neighbor, heu[d])
enqueued[d][neighbor] = ncost, h
e = w.get('id',1)
heappush(queue[d], (ncost+h, neighbor, ncost, v, e))
raise Exception('Path between given nodes does not exist.')
def beautiful_path(source_coords, cutoff, additional_param = 'weight', avoid = None, first_step = None):
source = find_nearest_node(source_coords)
start = coords[source]
dist = {}
paths = {source:[]}
node_paths = {source:[source]}
fringe = []
seen = {source:0}
heappush(fringe, (0, 0, 0, source))
finalpath = []
weights = {}
params = {}
while fringe:
(d, k, p, v) = heappop(fringe)
if v in dist:
continue
dist[v] = d
weights[v] = k
params[v] = p
for neighbor, w in neighs_iter(v):
if avoid is not None:
if neighbor in avoid:
continue
cost = w.get('time',None)
additional = w.get(additional_param,1)
if cost is None:
continue
vu_dist = dist[v] + additional
real_weight = weights[v] + cost
param = params[v] + additional
if real_weight > cutoff:
continue
if neighbor in dist:
if vu_dist < dist[neighbor]:
raise ValueError('Contradictory paths found:',
'negative weights?')
elif neighbor not in seen or vu_dist < seen[neighbor]:
seen[neighbor] = vu_dist
heappush(fringe, (vu_dist, real_weight, param, neighbor))
node_paths[neighbor] = node_paths[v] + [neighbor]
paths[neighbor] = paths[v] + [w.get('id',1)]
params[neighbor] = params[v] + additional
er = 0.8*cutoff
par = {}
for x in paths.keys():
if weights[x] > er:
#del paths[x]
#del node_paths[x]
#else:
par[x] = params[x]
par = sorted(par, key=par.get, reverse = False)
if first_step == None:
best = par.pop()
path1 = paths[best]
#av1 = int(len(node_paths[best])*0.02)
first = get_vector(source, best)
second_step = beautiful_path(coords[best], cutoff, additional_param, avoid = node_paths[best][:-7], first_step = first)
target_coords = coords[second_step[1]]
path2 = second_step[0]
second_step = second_step[2]
#av2 = int(len(second_step)*0.02)
to_avoid = node_paths[best][7:]+second_step[:-7]
path3 = _connect_paths(target_coords, source_coords, to_avoid, additional_param)
return get_response(path1+
path2+
path3, start, additional_param)
else:
del params[source]
while params:
best = par.pop()
best_vect = get_vector(source, best)
if pi*0.15 < get_circ(best_vect, first_step):
break
return paths[best], best, node_paths[best]
def beautiful_composite_request(source_coords, cutoff):
try:
green_route = beautiful_path(source_coords, cutoff, additional_param = 'green')
noisy_route = beautiful_path(source_coords, cutoff, additional_param = 'noise')
air_route = beautiful_path(source_coords, cutoff, additional_param = 'air')
answer = """[%s, %s, %s]"""%(green_route,noisy_route,air_route)
return answer
except Exception as e:
return '''{"error":0}'''
# isochrones functions
def transform_time(x):
hour, minute, _ = x.split(':')
if hour[0]=='0':
hour = int(hour[1])
else:
hour = int(hour)
if minute[0]=='0':
minute = int(minute[1])
else:
minute = int(minute)
return hour+minute/60.0
def get_polygon(points):
if len(points)<3:
return None
convex_hull = nodes[nodes['id'].isin(points)]['geometry'].values
pp = [(x.x,x.y) for x in convex_hull]
cent=(sum([p[0] for p in pp])/len(pp),sum([p[1] for p in pp])/len(pp))
pp = sorted(pp, key=lambda p: math.atan2(p[1]-cent[1],p[0]-cent[0]))
if len(pp)<3:
return None
poly = Polygon(pp)
return poly
def find_next_stops(stop_id, start_time, current_time, cutoff):
routes_to_observe = routes_on_stops[stop_id]
response = {}
end_time = start_time+cutoff
for route_id, data in routes_to_observe.items():
departure = data['time']
if departure<current_time or departure>end_time:
continue
route_data = routes[route_id]
stop_sequence = data['sequence']
for sequence_id, stop_data in route_data.items():
if sequence_id<=stop_sequence:
continue
stop_id = stop_data['stop_id']
departure_time = stop_data['departure_time']
if departure_time<departure:
continue
if departure_time>end_time:
break
weight = departure_time-start_time
response[stop_id] = weight
return response
def collect_polygons(list_of_polygons):
geoms = []
for poly_points in list_of_polygons:
poly = get_polygon(poly_points)
if poly is not None:
geoms.append(poly)
geoms = unary_union(geoms)
g = gp.GeoDataFrame()
g['geometry'] = [geoms]
g = g.simplify(0.001)
return g.to_json()
def isochrone_from_point(source_coords, start_time, cutoff):
source = find_nearest_node(source_coords)
start_time = transform_time(start_time)
dist = {}
fringe = []
seen = {source:0}
c = count()
heappush(fringe, (0, next(c), source))
polygons = []
stops_to_observe=[]
get_weight = lambda x: x.get('time', 1)/60.0
get_stop = lambda x: stop_node.get(x, False)
get_node = lambda x: node_stop.get(x, False)
while True:
polygon_points = []
while fringe:
d, _, v = heappop(fringe)
if v in dist:
continue # already searched this node.
dist[v] = d
for u, e in neighs_iter(v):
cost = get_weight(e)
vu_dist = dist[v] + get_weight(e)
if vu_dist > cutoff:
polygon_points.append(u)
continue
stop_id = get_stop(u)
if stop_id:
current_time = start_time+vu_dist
next_stops= find_next_stops(stop_id, start_time, current_time, cutoff)
for stop_id, distance in next_stops.items():
w = get_node(stop_id)
if w:
stops_to_observe.append((w, distance))
elif u not in seen or vu_dist < seen[u]:
seen[u] = vu_dist
heappush(fringe, (vu_dist, next(c), u))
polygons.append(polygon_points)
if stops_to_observe==[]:
return collect_polygons(polygons)
else:
s,d = stops_to_observe.pop(0)
heappush(fringe, (d, next(c), s))