forked from SEMCOG/semcog_urbansim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Simulation_no_scaling.py
64 lines (57 loc) · 2.53 KB
/
Simulation_no_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import orca
import shutil
import os
import models, utils
from urbansim.utils import misc, networks
import output_indicators
data_out = utils.get_run_filename()
print data_out
orca.run(["refiner",
'build_networks',
"neighborhood_vars"] +
orca.get_injectable('repm_step_names')) # + # In place of ['nrh_simulate', 'rsh_simulate']
# ["increase_property_values"]) # Hack to make more feasibility
orca.run([
"neighborhood_vars",
"households_transition",
"fix_lpr",
"households_relocation",
"jobs_transition",
"jobs_relocation",
"scheduled_demolition_events",
"random_demolition_events",
"scheduled_development_events",
"feasibility",
"residential_developer",
"non_residential_developer"] +
orca.get_injectable('repm_step_names') + # In place of ['nrh_simulate', 'rsh_simulate']
# ["increase_property_values"] + # Hack to make more feasibility
orca.get_injectable('hlcm_step_names') +
orca.get_injectable('elcm_step_names') +
["elcm_home_based",
"jobs_scaling_model",
"gq_pop_scaling_model",
"refiner",
# "travel_model", Fixme: on hold
],
iter_vars=range(2016, 2045 + 1),
data_out=data_out,
out_base_tables=['jobs', 'base_job_space', 'base_job_space', 'employment_sectors', 'annual_relocation_rates_for_jobs',
'households', 'persons', 'annual_relocation_rates_for_households',
'buildings', 'parcels', 'zones', 'semmcds', 'counties',
'target_vacancies', 'building_sqft_per_job',
'annual_employment_control_totals',
'travel_data', 'zoning', 'large_areas', 'building_types', 'land_use_types',
'workers_labor_participation_rates', 'workers_employment_rates_by_large_area_age',
'workers_employment_rates_by_large_area',
'transit_stops', 'crime_rates', 'schools', 'poi',
'group_quarters', 'group_quarters_control_totals',
'annual_household_control_totals',
'events_addition', 'events_deletion', 'refiner_events'],
out_run_tables=['buildings', 'jobs', 'base_job_space', 'base_job_space', 'parcels', 'households', 'persons', 'group_quarters', 'dropped_buildings'],
out_interval=1,
compress=True)
output_indicators.main(data_out)
dir_out = data_out.replace('.h5', '')
shutil.copytree(dir_out, '/mnt/hgfs/U/RDF2045/model_runs/' + os.path.basename(os.path.normpath(dir_out)))
shutil.copy(data_out, '/mnt/hgfs/J')