From 45348cb9dd919309f9ec81757badf3eddc5376bf Mon Sep 17 00:00:00 2001 From: mivanit Date: Fri, 26 Jul 2024 15:27:09 -0400 Subject: [PATCH] general dependency housekeeping (#218) * added test for py 3.12, torch 2.4.0 * poetry update * update deps - no longer support torch < 2.0, testing only on torch 2.4.0 - update muutils, zanj, transformer-lens deps to latest versions (this might break things. we will see) * fix @freeze * added test for TRAIN_SAVE_FILES frozen * run format * fix minor pytorch warning * fix old hash keys * update for upstream maze-dataset fixes to tokenizer * fix duplicate 3.10 run in CI * update hash keys in notebooks * re-run and fix notebooks * fix nb * re-run nb, minor fixes to saving data --- .github/workflows/checks.yml | 8 +- maze_transformer/training/config.py | 42 +- maze_transformer/training/train_save_files.py | 31 +- notebooks/demo_dataset.ipynb | 70 +- notebooks/eval_tasks_table.ipynb | 198 +- notebooks/train_model.ipynb | 126 +- poetry.lock | 1896 +++++++++-------- pyproject.toml | 26 +- tests/integration/test_eval_model.py | 2 +- tests/integration/test_train_model.py | 2 +- tests/integration/test_training.py | 5 + .../training/test_model_loading_old.py | 2 +- 12 files changed, 1269 insertions(+), 1139 deletions(-) diff --git a/.github/workflows/checks.yml b/.github/workflows/checks.yml index 68577f72..1a9000ea 100644 --- a/.github/workflows/checks.yml +++ b/.github/workflows/checks.yml @@ -40,11 +40,11 @@ jobs: matrix: versions: - python: "3.10" - torch: "1.13.1" - - python: "3.10" - torch: "2.0.1" + torch: "2.4.0" - python: "3.11" - torch: "2.0.1" + torch: "2.4.0" + - python: "3.12" + torch: "2.4.0" steps: - name: Checkout code uses: actions/checkout@v3 diff --git a/maze_transformer/training/config.py b/maze_transformer/training/config.py index 25c6b1ec..c1c88cb3 100644 --- a/maze_transformer/training/config.py +++ b/maze_transformer/training/config.py @@ -28,6 +28,16 @@ from maze_transformer.tokenizer import HuggingMazeTokenizer +# TODO: replace with muutils +def dynamic_docstring(**doc_params): + def decorator(func): + if func.__doc__: + func.__doc__ = func.__doc__.format(**doc_params) + return func + + return decorator + + @serializable_dataclass(kw_only=True, properties_to_serialize=["n_heads"]) class BaseGPTConfig(SerializableDataclass): """ @@ -528,6 +538,11 @@ def create_model_zanj(self) -> ZanjHookedTransformer: return ZanjHookedTransformer(self) @classmethod + @dynamic_docstring( + dataset_cfg_names=str(list(MAZE_DATASET_CONFIGS.keys())), + model_cfg_names=str(list(GPT_CONFIGS.keys())), + train_cfg_names=str(list(TRAINING_CONFIGS.keys())), + ) def get_config_multisource( cls, cfg: ConfigHolder | None = None, @@ -536,18 +551,14 @@ def get_config_multisource( kwargs_in: dict | None = None, ) -> ConfigHolder: """pass one of cfg object, file, or list of names. Any kwargs will be applied to the config object (and should start with 'cfg.') - + cfg_names should be either `(dataset_cfg_name,model_cfg_name,train_cfg_name)` or the same with collective name at the end valid name keys: - dataset_cfg_name: {dataset_cfg_names} - model_cfg_name: {model_cfg_names} - train_cfg_name: {train_cfg_names} - """.format( - dataset_cfg_names=str(list(MAZE_DATASET_CONFIGS.keys())), - model_cfg_names=str(list(GPT_CONFIGS.keys())), - train_cfg_names=str(list(TRAINING_CONFIGS.keys())), - ) + """ config: ConfigHolder assert ( @@ -573,12 +584,19 @@ def get_config_multisource( name = f"multsrc_{dataset_cfg_name}_{model_cfg_name}_{train_cfg_name}" else: dataset_cfg_name, model_cfg_name, train_cfg_name, name = cfg_names - config = ConfigHolder( - name=name, - dataset_cfg=MAZE_DATASET_CONFIGS[dataset_cfg_name], - model_cfg=GPT_CONFIGS[model_cfg_name], - train_cfg=TRAINING_CONFIGS[train_cfg_name], - ) + try: + config = ConfigHolder( + name=name, + dataset_cfg=MAZE_DATASET_CONFIGS[dataset_cfg_name], + model_cfg=GPT_CONFIGS[model_cfg_name], + train_cfg=TRAINING_CONFIGS[train_cfg_name], + ) + except KeyError as e: + raise KeyError( + "tried to get a config that doesn't exist, check the names.\n", + f"{dataset_cfg_name = }, {model_cfg_name = }, {train_cfg_name = }\n", + ConfigHolder.get_config_multisource.__doc__, + ) from e else: raise ValueError( diff --git a/maze_transformer/training/train_save_files.py b/maze_transformer/training/train_save_files.py index fc1a388a..14cc60aa 100644 --- a/maze_transformer/training/train_save_files.py +++ b/maze_transformer/training/train_save_files.py @@ -1,19 +1,20 @@ from datetime import datetime from typing import Callable -from muutils.misc import freeze, sanitize_fname # type: ignore[import] +from muutils.misc import sanitize_fname # type: ignore[import] from maze_transformer.training.config import ConfigHolder -@freeze -class TRAIN_SAVE_FILES: +class _TRAIN_SAVE_FILES: """namespace for filenames/formats for saving training data""" # old data_cfg: str = "data_config.json" train_cfg: str = "train_config.json" - model_checkpt: Callable[[int], str] = lambda iteration: f"model.iter_{iteration}.pt" + model_checkpt: Callable[[int], str] = ( + lambda _, iteration: f"model.iter_{iteration}.pt" + ) model_final: str = "model.final.pt" # keep these @@ -21,9 +22,27 @@ class TRAIN_SAVE_FILES: checkpoints: str = "checkpoints" log: str = "log.jsonl" model_checkpt_zanj: Callable[[int], str] = ( - lambda iteration: f"model.iter_{iteration}.zanj" + lambda _, iteration: f"model.iter_{iteration}.zanj" ) model_final_zanj: str = "model.final.zanj" model_run_dir: Callable[[ConfigHolder], str] = ( - lambda cfg: f"{sanitize_fname(cfg.name)}_{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}" + lambda _, cfg: f"{sanitize_fname(cfg.name)}_{datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}" ) + + @classmethod + def __class_getitem__(cls, _): + return cls + + def __class_getattribute__(cls, name): + if name.startswith("__"): + return super().__class_getattribute__(name) + attr = cls.__dict__[name] + return attr + + def __setattr__(self, name, value): + raise AttributeError("TRAIN_SAVE_FILES is read-only") + + __delattr__ = __setattr__ + + +TRAIN_SAVE_FILES = _TRAIN_SAVE_FILES() diff --git a/notebooks/demo_dataset.ipynb b/notebooks/demo_dataset.ipynb index 2b81acb9..c5514307 100644 --- a/notebooks/demo_dataset.ipynb +++ b/notebooks/demo_dataset.ipynb @@ -19,7 +19,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "dict_keys(['test-g3-n5-a_dfs-h75556', 'demo_small-g3-n100-a_dfs-h88371', 'demo-g6-n10K-a_dfs-h30615'])\n" + "dict_keys(['test-g3-n5-a_dfs-h73257', 'demo_small-g3-n100-a_dfs-h44636', 'demo-g6-n10K-a_dfs-h50618'])\n" ] } ], @@ -48,7 +48,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You should always see `test-g3-n5-a_dfs-h9136` in the list of available dataset configs above.\n", + "You should always see `test-g3-n5-a_dfs-h73257` in the list of available dataset configs above.\n", "\n", "Now, let's set up our initial config and dataset:" ] @@ -62,7 +62,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "test-g5-n4-a_dfs-h84708\n" + "test-g5-n4-a_dfs-h23076\n" ] } ], @@ -90,7 +90,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "trying to get the dataset 'test-g5-n4-a_dfs-h84708'\n", + "trying to get the dataset 'test-g5-n4-a_dfs-h23076'\n", "generating dataset...\n" ] }, @@ -98,14 +98,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "generating & solving mazes: 100%|██████████| 4/4 [00:00<00:00, 181.81maze/s]" + "generating & solving mazes: 100%|██████████| 4/4 [00:00<00:00, 571.49maze/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "saving dataset to ..\\data\\maze_dataset\\test-g5-n4-a_dfs-h84708.zanj\n" + "saving dataset to ..\\data\\maze_dataset\\test-g5-n4-a_dfs-h23076.zanj\n", + "Got dataset test with 4 items. output.cfg.to_fname() = 'test-g5-n4-a_dfs-h23076'\n" ] }, { @@ -114,13 +115,6 @@ "text": [ "\n" ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Got dataset test with 4 items. output.cfg.to_fname() = 'test-g5-n4-a_dfs-h84708'\n" - ] } ], "source": [ @@ -166,7 +160,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfVUlEQVR4nO3dfVRU1foH8O+AAsOgCIYLBmxAIi0xLbVrCSJqvoCKoaJeXYHeMtN8IRU1615RxBdKTVtmXbx6RU0rX2++m9iLmuWVfCu9mOLS1EQxFVNQeH5/+OMstzPAwAAD+v2sNWvBnn3O3rMPzHP2OfvsrRMRARER0f9zsHcFiIioemFgICIiBQMDEREpGBiIiEjBwEBERAoGBiIiUjAwEBGRgoGBiIgUDAxERKRgYCCy0dKlS6HT6ZCVlaWkp6SkoFGjRnB0dESLFi0qpIwDBw7YtB8iazAw2MnevXsxZcoU/PHHH5VWRnJyMtavX18p+/b394dOpzN7DRs2rFLKK/Ldd99pZV2+fLlSy7LF9u3bkZCQgLZt22LJkiVITk6u0vI/++wztGnTBvXq1UP9+vURFhaGTZs2lbjNihUroNPp4ObmZvaepWNd9HrppZeUvIWFhZg9ezYCAgLg4uKCZ555Bp9++mmF1ZMqXy17V+BRtXfvXiQmJiIuLg716tWrlDKSk5PRp08f9OrVq1L236JFC4wdO1ZJe/LJJyulLODeF87IkSNhMBhw8+bNSiunIuzatQsODg5YvHgxnJycqrTsBQsWYNSoUYiMjMTMmTNx+/ZtLF26FN27d8eaNWsQHR1ttk1ubi4SEhJgMBgs7jMtLc0s7cCBA/jggw/QuXNnJX3y5MmYOXMmXnvtNbRu3RobNmzAX//6V+h0OvTv39+melIVEbKLlJQUASCnT5+utDIMBoPExsZWyr5NJpNERkZWyr6L89FHH0n9+vVl9OjRAkCys7OrtPziLFmyxOxYDh48WAwGQ4WX8eOPP5aaNygoSFq3bi2FhYVa2rVr18TNzU169uxpcZsJEyZI48aNZeDAgVbX+29/+5vodDo5e/aslnbu3DmpXbu2jBgxQksrLCyU0NBQ8fPzk7t379pUT6oavJRkB1OmTMH48eMBAAEBAVqXvOga9fLly9GyZUvo9Xp4enqif//+OHv2rLKPzMxM9O7dG97e3nBxcYGfnx/69++Pa9euAbjX9b958yb+/e9/a/uPi4srtW6ff/45nn76abi4uCA4OBjr1q1DXFwc/P39LebPz88v19l7+/btERwcjJ9//hnh4eFwdXWFr68vZs+ebTF/Tk4O3nnnHUydOrXMPawNGzYgMjISRqMRzs7OCAwMxLRp01BQUFDmeh87dgwdOnSAXq+Hn58fkpKSUFhYqOTR6XRYsmQJbt68qbX90qVLAQA7duxASEgI6tWrBzc3NzRu3Bhvv/221eXn5eXhrbfegpeXFwwGA15++WVkZ2crea5fv44GDRpAp9NpaXXr1oWbmxv0er3ZPjMzMzF37lzMmTMHtWpZdxEhLy8Pa9asQVhYGPz8/LT0DRs24M6dOxg+fLjSHm+88QbOnTuHffv2lbueVIXsHZkeRYcOHZIBAwYIAJk7d66kpaVJWlqa5ObmSlJSkuh0OunXr58sXLhQEhMT5bHHHhN/f3+5evWqiIjk5eVJQECAGI1GSUpKktTUVElMTJTWrVtLVlaWiIikpaWJs7OzhIaGavvfu3dvifX68ssvRafTyTPPPCNz5syRd999Vzw8PCQ4OFhMJpOS12QyiV6vF0dHRwEgJpNJ5s2bZ3UbhIWFidFolIYNG8ro0aNl4cKF0qFDBwEgmzdvNss/fPhwadq0qdy9e1f+8Y9/lKnH0KtXL4mJiZGUlBT56KOPpG/fvgJAxo0bZ3V9RUQuXLggXl5e4uHhIVOmTJGUlBQJCgqSZ555RukxpKWlSWhoqDg7O2tt/+uvv8rRo0fFyclJWrVqJR988IEsWrRIxo0bJ+3atSu17KIew7PPPisdOnSQBQsWyNixY8XR0VFiYmKUvP369RNHR0eZP3++nD59Wn755RcZPny46PV6i38DERER0qVLFxERiY2NtarHsHbtWgEg//znP5X0V199VQwGg9ILEBE5efKkAJD58+eXu55UdRgY7MTSpaSsrCxxdHSU6dOnK3mPHDkitWrV0tIzMjIEgHz++eclllHWS0nNmjUTPz8/uXHjhpa2e/du7Yv/fj169JBZs2bJ+vXrZfHixRIaGioAJCEhwaqywsLCBIAsW7ZMS8vLyxNvb2/p3bu3kvfQoUPi6Ogo27ZtExEpc2D4888/zdJef/11cXV1ldu3b1u1DxGRMWPGCADZv3+/lnbp0iVxd3c3O5aWvmDnzp1b7ktgRYGhU6dOypdufHy8ODo6yh9//KGl/f7779KxY0cBoL0ee+wxi1+2X375pdSqVUuOHTtWbL0t6d27tzg7O2snK0UiIyOlUaNGZvlv3rwpAGTixInlqidVLV5KqkbWrl2LwsJCxMTE4PLly9rL29sbQUFBSE9PBwC4u7sDALZt24Y///yzQso+f/48jhw5gldeeUUZlRIWFoZmzZqZ5d+4cSMSEhIQFRWFIUOG4Ouvv0aXLl0wZ84cnDt3zqoy3dzcMGjQIO13JycnPP/88zh16pSSb9SoUejWrZvZTU5r3X9Z4saNG7h8+TJCQ0Px559/4vjx41bvZ/PmzWjTpg2ef/55Lc3LywsDBw60avuiS2AbNmwwu/xkraFDhyqXXkJDQ1FQUIAzZ85oaa6urmjcuDFiY2Px+eef41//+hd8fHwQHR2NkydPavny8/MRHx+PYcOG4emnn7a6DtevX8emTZsQERFhdlnv1q1bcHZ2NtvGxcVFe7+s9aSqx1FJ1UhmZiZEBEFBQRbfr127NoB79yXeeustzJkzBytWrEBoaCh69uyJQYMGaUGjOPn5+cjJyVHSvLy8tC+WJ554wmybJ554AgcPHixxvzqdDvHx8di2bRt2796NQYMG4datW9o9jyLe3t7az35+fsqXHAB4eHjg8OHD2u+rV6/G3r17cfTo0RLLz83NRW5urva7o6MjvLy8ANy7L/DOO+9g165duH79urLdg/UryZkzZ/CXv/zFLL1x48ZWbd+vXz+kpqbi1VdfxcSJE9GxY0dER0ejT58+cHC4d4528eJFZRt3d3clsD3++OPK+x4eHgCAq1evaml9+/ZFrVq18J///EdLi4qKQlBQECZPnozVq1cDAObOnYvLly8jMTHRqvoXWbNmDW7fvm0xIOr1euTl5Zml3759W3u/rPWkqsfAUI0UFhZCp9Nhy5YtcHR0NHv//jP5999/H3FxcdiwYQO2b9+OUaNGYcaMGfj++++Vm4EP2rt3L8LDw5W006dPV0j9GzZsCABa4Fm9ejUGDx6s5JH7VpK19BkfzDN+/Hj07dsXTk5O2s35omc/zp49i/z8fBiNRrz33nvKF5zJZEJWVhb++OMPhIWFoW7dupg6dSoCAwPh4uKCgwcPYsKECeU+cy8PvV6Pb775Bunp6di0aRO2bt2K1atXo0OHDti+fTscHR3h4+OjbLNkyRJl0EBpbXbq1Cls3boVn3zyifK+p6cnQkJCsGfPHgD3AmJSUhKGDx+O69evawEzNzcXIoKsrCy4urqiQYMGZmWtWLEC7u7u6N69u9l7Pj4+SE9Ph4goQf/ChQsAAKPRWKZ6kn0wMNjJg2fKABAYGAgRQUBAgFXPAzRr1gzNmjXDO++8g71796Jt27ZYtGgRkpKSii2jefPm2LFjh5Lm7e2tjbW31IW3tltfdAmo6Ey9S5cuZmWV1dmzZ7Fy5UqsXLnS7L3nnnsOzZs3x08//YRXXnkFISEh2ntFZ6a7d+/GlStXsHbtWrRr1057vzzB0GQyITMz0yz9xIkTVu/DwcEBHTt2RMeOHTFnzhwkJydj8uTJSE9PR6dOnczaq2nTpmWq4++//w4AFkdc3blzB3fv3gVwr4eRm5uL2bNnWxwJFhAQgKioKLMHJC9cuID09HTExcVZvGTUokULpKam4pdfflEuT+3fv197vyz1JPtgYLCTogeJ7n/yOTo6GpMmTUJiYiKWL1+ufLGLCHJyclC/fn1cv34drq6uytDCZs2awcHBQenGGwwGsyerPTw80KlTJ7P6GI1GBAcHY9myZZg0aZLWO/n6669x5MgRmEwmLW9OTg7c3d2Vs9c7d+5g5syZcHJy0nokPj4+ZmfAZbVu3TqztFWrVmH16tVYtmyZ1jtq1KgRGjVqZJa3qI7390Ly8/OxcOHCMtclIiIC8+bNww8//KDdZ8jOzsaKFSus2j4nJweenp5KWtEXZdFxs3RsyuKJJ56Ag4MDVq9ejddff137Gzp37hy+/fZbLXg2aNDAYtvOnz8f+/btw6effmrx2K1atQqFhYXF3leJiopCfHw8Fi5ciA8//BDAvbZftGgRfH198eKLL5apnmQfDAx20rJlSwD3nhLt378/ateujR49eiApKQmTJk1CVlYWevXqhTp16uD06dNYt24dhg4dinHjxmHXrl1488030bdvXzz55JO4e/cu0tLS4OjoiN69eytl7Ny5E3PmzIHRaERAQIDFa+RFkpOTERUVhbZt22Lw4MG4evUqPvzwQwQHByvX7zdu3IikpCT06dMHAQEByMnJwcqVK3H06FEkJycr9xFsZemp7Z9++gkA0K1bNzz22GMlbv/iiy/Cw8MDsbGxGDVqFHQ6HdLS0pRAYa2EhASkpaWha9euGD16NAwGAz755BOYTCblvkhxpk6dim+++QaRkZEwmUy4dOkSFi5cCD8/vwr7IvTy8sKQIUOQmpqq3cO4ceMGFi5ciFu3bmHSpEkA7t34tdS269evxw8//FDs0/IrVqyA0WhE+/btLb7v5+eHMWPGICUlBXfu3EHr1q2xfv16fPvtt1ixYoUWqK2tJ9mJnUZDkYhMmzZNfH19xcHBQRnuuGbNGgkJCRGDwSAGg0GaNGkiI0aMkBMnToiIyKlTp2TIkCESGBgoLi4u4unpKeHh4bJz505l/8ePH5d27dqJXq8XAFYNXV21apU0adJEnJ2dJTg4WDZu3Ci9e/eWJk2aaHkOHDggPXr0EF9fX3FychI3NzcJCQmRzz77zOrPHhYWJk2bNjVLj42NNRsa+6CyDlfds2ePtGnTRvR6vRiNRklISJBt27YJAElPT7e6ziIihw8flrCwMHFxcRFfX1+ZNm2aLF682Krhql999ZVERUWJ0WgUJycnMRqNMmDAAPnf//5XarnFPfmcnp5u9jnu3LkjCxYskBYtWoibm5u4ublJeHi47Nq1q9RyShquevz4cQEgb731Von7KCgokOTkZDGZTOLk5CRNmzaV5cuXm+WzpZ5UuXQi5Th1okdKixYt4OXlZfP9AiKqGfgcA2ks3fTbvXs3Dh06VOylAyJ6+LDHQJqsrCx06tQJgwYNgtFoxPHjx7Fo0SK4u7vj6NGjqF+/vr2rWCksPW/xIE9PzyqfJZXIXnjzmTQeHh5o2bIlUlNTkZ2dDYPBoE2J/LAGBcDy8xYPSk9PZ6+JHhnsMdAj78KFCzh27FiJeVq2bKk9ZUz0sGNgICIiBW8+ExGRgoGBqh1/f3+zRYUyMzPRuXNnuLu7Q6fTlXkt64iICLz22msVV8n/Z6mulixdulRZjKmmmThxYokPR9LDhYGBaoTY2FgcOXIE06dPR1paGlq1amX1tnv27MH27dsxYcKESqxhzeTv76+tMnf/a9iwYUq+MWPG4NChQ9i4caOdakpViaOSqNq7desW9u3bh8mTJ+PNN98s8/YpKSno2LGjxSnFbXXixAltyuyaqkWLFhg7dqyS9uAkjt7e3oiKisJ7772Hnj17VmX1yA4YGKjaK1rTuKxrPQPApUuXsGnTJixatKjC6iMiuH37NvR6vcUZRmsaX19fZcGk4sTExKBv3744deqUxQkL6eFRs091yCq7d+9Gq1at4OLigsDAQHz88ceYMmWK2bTcy5cvR8uWLaHX6+Hp6Yn+/fvj7NmzSp727dsjODgYP//8M8LDw+Hq6gpfX1+LUzeXRkSQlJQEPz8/uLq6Ijw83GzY6JQpU7SZXcePHw+dTgd/f38A91ZjGzNmDPz9/eHs7IwGDRrgpZdeUhYV2rRpE+7evWtx1tLDhw8jLCwMer0efn5+SEpKwpIlS8zuBfj7+6N79+7Ytm0bWrVqBb1ej48//lh778F7DMeOHUOHDh2U/ZZn3YeiY3Ty5EnExcWhXr16cHd3x+DBgyts5b4i+fn5uHnzZol5itpww4YNFVo2VT/sMTzkMjIy0LVrV/j4+CAxMREFBQWYOnWqtmZCkenTp+Pdd99FTEwMXn31VWRnZ2PBggVo164dMjIylLP1q1evomvXroiOjkZMTAy++OILTJgwAc2aNUO3bt2srtvf//53JCUlISIiAhERETh48CA6d+6M/Px8LU90dDTq1auH+Ph4DBgwABEREdqU4MOGDcMXX3yBN998E08//TSuXLmC7777Dr/88guee+45APcWJqpfv74ybTgA/PbbbwgPD4dOp8OkSZNgMBiQmppabA/gxIkTGDBgAF5//XW89tprxa7advHiRYSHh+Pu3buYOHGiNgPr/SuXlVVMTAwCAgIwY8YMHDx4EKmpqWjQoAFmzZql5bl27Rru3LlT6r5cXFyUBZ8AYNeuXXB1dUVBQQFMJhPi4+MxevRos23d3d0RGBiIPXv2ID4+vtyfh2oAe83eR1WjR48e4urqKr/99puWlpmZKbVq1ZKiw5+VlSWOjo4yffp0ZdsjR45IrVq1lPSwsDABIMuWLdPS8vLyxNvbW3r37m11vS5duiROTk4SGRmpLG7/9ttvm80Ee/r0aQEgKSkpyj7c3d1lxIgRJZYTEhIiLVu2NEsfOXKk6HQ6ycjI0NKuXLkinp6eZjOlmkwmASBbt24124/JZFLqOmbMGAEg+/fvVz6ru7u72X5LUzSL7JAhQ5T0l19+WerXr6+kFR2X0l4PzrDbo0cPmTVrlqxfv14WL14soaGhAkASEhIs1qlz587y1FNPWf0ZqGZij+EhVlBQgJ07d+Lll1/WllQE7i2S0q1bN22t3bVr16KwsBAxMTG4fPmyls/b2xtBQUFIT0/H22+/raW7ubkp16SdnJzw/PPPayu4WWPnzp3Iz8/HyJEjlUtaY8aMQXJyslX7qFevHvbv34/z588rn+9+V65cga+vr1n61q1b8cILL2gL5QD35kMaOHAgFixYYJY/ICAAXbp0KbVOmzdvRps2bbSFfIB7aw8MHDiwXIsDATAbIRQaGop169bh+vXrqFu3LoB7S73ev+5zcR5spwdHGQ0ePBjdunXDnDlzMHLkSLNlYj08PJCRkVGej0E1CAPDQ+zSpUu4deuWxdE496dlZmZCRBAUFGRxP7Vr11Z+9/PzM7s/4eHhYdViNUXOnDkDAGZlenl5WT31xOzZsxEbG4uGDRuiZcuWiIiIwCuvvGJ2Y1QsPNx/5swZvPDCC2bpxY1cCggIsKpOZ86csTjev7hLT9Z4/PHHld+L2ufq1ataYCha+MlWOp0O8fHx2LZtG3bv3m12U1oeWMuZHk4MDITCwkLodDps2bLF4mLzD16TLm1B+qoSExOjnT1v374dKSkpmDVrFtauXavd66hfv75VZ9KlseUega2sae+cnBzl3kxx9Ho93N3dS8zTsGFDbZ8Punr1aqmr5lHNx8DwEGvQoAFcXFxw8uRJs/fuTwsMDISIICAgwGz8emUpuhmcmZmpnOFnZ2eX6Yvcx8cHw4cPx/Dhw3Hp0iU899xzmD59uhYYmjRpgjVr1lgsv7R2KQ+TyYTMzEyz9BMnTti039JER0fj66+/LjVfbGwsli5dWmKeokuCDw5QAIDTp0+jefPm5aoj1RwcrvoQc3R0RKdOnbB+/XqcP39eSz958iS2bNmi/R4dHQ1HR0ckJiaanfWLCK5cuVLhdevUqRNq166NBQsWKGXOmzfPqu0LCgrM1lBo0KABjEYj8vLytLQXXngBV69eNbv/0aVLF+zbt09bPxq4d4a8YsWKsn+Y+0REROD777/HDz/8oKVlZ2fbvN/SvP/++9ixY0epr4SEBG2bnJwcFBQUKPu5c+cOZs6cCScnJ4SHhyvvXbt2Db/++itefPHFSv0sZH/sMTzkpkyZgu3bt6Nt27Z44403UFBQgA8//BDBwcHal2JgYCCSkpIwadIkZGVloVevXqhTpw5Onz6NdevWYejQoRg3blyF1svLywvjxo3DjBkz0L17d0RERCAjIwNbtmyx6lLFjRs34Ofnhz59+qB58+Zwc3PDzp078eOPP+L999/X8kVGRqJWrVrYuXMnhg4dqqUnJCRg+fLleOmllzBy5EhtuOrjjz+OnJyccl9HT0hIQFpaGrp27YrRo0drw1VNJlOZ7sGUVXnuMWzcuBFJSUno06cPAgICkJOTg5UrV+Lo0aNITk6Gt7e3kn/nzp0QEURFRVVUtam6stdwKKo6X331lTz77LPi5OQkgYGBkpqaKmPHjhUXFxcl35o1ayQkJEQMBoMYDAZp0qSJjBgxQk6cOKHlCQsLk6ZNm5qVERsbKyaTqUz1KigokMTERPHx8RG9Xi/t27eXo0ePmg0BtTRcNS8vT8aPHy/NmzeXOnXqiMFgkObNm8vChQvNyunZs6d07NjRLD0jI0NCQ0PF2dlZ/Pz8ZMaMGTJ//nwBIBcvXtTymUwmiYyMtPgZHqyriMjhw4clLCxMXFxcxNfXV6ZNmyaLFy8u93DV7OxsJX3JkiVl3pclBw4ckB49eoivr684OTmJm5ubhISEyGeffWYxf79+/SQkJMSmMqlm4HoMj6hevXrh2LFjFq+HP2y+/fZbtG/fHsePHy925FWRMWPG4OOPP0Zubm6xN30fRRcvXkRAQABWrVrFHsMjgPcYHgG3bt1Sfs/MzMTmzZsfmaUqQ0ND0blzZ7NpOx5slytXriAtLQ0hISEMCg+YN28emjVrxqDwiGCP4RHg4+ODuLg4NGrUCGfOnMFHH32EvLw8ZGRklHoGXR7Z2dlmNzXv5+TkBE9Pzwovt6xatGiB9u3b46mnnsLvv/+OxYsX4/z58/jqq6/Qrl27Sis3NzcXubm5Jebx8vJicCL7se+VLKoKcXFxYjKZxNnZWerWrStdunSR//73v5VWXtEUEsW9wsLCKq3sspg0aZIEBQWJXq8XV1dXCQkJkR07dlR6uUX3Dkp62Xr/gMgW7DFQhduzZ4/ZZZr7eXh4VNiTujXRqVOnSp0+JCQkBC4uLlVUIyIVAwMRESl485mIiBQMDEREpGBgICIiBQMDEREpGBiIiEjBwEBERAqrZlctLCzE+fPnUadOHa7eVE4ighs3bsBoNMLBoWzxmO1vO1vaH+AxqAj8H7CvMrW/NU/BnT171qqFxvkq/XX27NkyP4XI9rdv+/MY2P8YsP2rtv2tCtt16tSxJhtZoTxtyfavOOVtSx6DisP/Afuypi2tCgzsulWc8rQl27/ilLcteQwqDv8H7MuatuTNZyIiUjAwEBGRgoGBiIgUVg1XLY3YaYLWyr3sWPzOS/u8VX09tDLbv6TPUl3Ltcv16FKaQkrLUAJ7HQNbVP0xsKEdpOS62nLs7MXW9mePgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISMHAQERECgYGIiJSVMhzDKWpvDHNpY0vLqncmjc2ubyq47MIDx1dKc9WlPi3aEOxNrSxLc+DVNfnJ4pXQjuV0oQlHbtq+UxNBWCPgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISMHAQEREiioZrmrL0LZKG+71EE61W93UvCGNlclebVEzh0uWlZT2Oavhd1B1HirOHgMRESkYGIiISMHAQERECgYGIiJSMDAQEZGCgYGIiBQMDEREpKiQ5xhq5NSyNky1+zCx5djZ67hXz+cj7PX3Uv3G59tFDZxCvDKnTLcVewxERKRgYCAiIgUDAxERKRgYiIhIwcBAREQKBgYiIlJU0LTb1XH4YMlKq7HOps9UxcMASx32Vv7PYsuouOo4RLCylPZ5Sh6aaJ+2eNiOQU1TndufPQYiIlIwMBARkYKBgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISFFBzzGUpnLG9Zc+dryE90rde/Ubd16s0sZD2zCG3l7PIjxUU0LbzD5t8Sg9h1Jelfl3as//AfYYiIhIwcBAREQKBgYiIlIwMBARkYKBgYiIFAwMRESkqKLhqsWrzGFvtuybwyXtq6Rjpytt+OYjdOhs+v/h37jN7DVs17Zp3kvHHgMRESkYGIiISMHAQERECgYGIiJSMDAQEZGCgYGIiBQMDEREpLD7cwx8XqDmsuXY2XbcSxs7/uj8TbEdq7ea+v3GHgMRESkYGIiISMHAQERECgYGIiJSMDAQEZGCgYGIiBRVNFzVPlPTUkXgsasIJU4jXuqIRh4De7Jlam17TcttK/YYiIhIwcBAREQKBgYiIlIwMBARkYKBgYiIFAwMRESkYGAgIiJFBT3HUDOnln1Y2Da1L49dRaip0yuXV3X7vPabAv7hxB4DEREpGBiIiEjBwEBERAoGBiIiUjAwEBGRwqrAUFNnCKyOytOWbP+KU9625DGoOPwfsC9r2tKqwHDjxg2bK0P3lKct2f4Vp7xtyWNQcfg/YF/WtKVOrAgfhYWFOH/+POrUqcMxv+UkIrhx4waMRiMcHMp2BY/tbztb2h/gMagI/B+wr7K0v1WBgYiIHh28+UxERAoGBiIiUjAwEBGRgoGBiIgUDAxERKRgYCAiIgUDAxERKf4PWd5HMJ2ycjcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgNElEQVR4nO3de1hU1f4/8PeADgwDIiCKgA6IliWEiXksQUDxBpE3RD11xEuZlddUSrOTKKJmmh07iufBR4+ox1veSk3BSxft2EXylnowxeNJDRQqSEKFz+8Pv+wfmwFmuA7g+/U88zywZu291l57Zj77svZaGhEREBER/R8rS1eAiIjqFwYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgaialq3bh00Gg0yMjJU6UuWLEG7du1gbW2Nzp0710gZ3377bbXWQ2QOBgYLOX78OObOnYtffvml1spISEjArl27amXdXl5e0Gg0Rq8JEybUSnnFvvzyS6WsW7du1WpZ1XHw4EHExsaiR48eWLt2LRISEuqk3KKiIqxbtw7PPfcc2rRpA71eD19fX8THx+OPP/5Q5c3Pz8e4cePg6+sLR0dH2Nvbw9/fHx988AHu3btntO5ffvkF48ePh6urK/R6PUJDQ3Hy5ElVnqNHj5b5uSh+LViwwGi9qamp6NWrFxwdHeHg4ICAgABs2bKlZhuGKqWJpSvwsDp+/Dji4uIwevRoNG/evFbKSEhIQFRUFAYNGlQr6+/cuTOmT5+uSnvkkUdqpSzgwY/epEmToNfr8fvvv9daOTXh8OHDsLKywpo1a6DVauus3Dt37mDMmDHo3r07JkyYgJYtW+Krr77CO++8g0OHDuHw4cPQaDQAHgSGc+fOITw8HF5eXrCyssLx48cxbdo0nDhxAps2bVLWW1RUhIiICJw6dQozZ85EixYtsHLlSoSEhOC7775Dhw4dAACPPfYYkpOTjeqVnJyMgwcPom/fvqr0tWvXYty4cejTpw8SEhJgbW2Nixcv4tq1a7XYSmSSkEUsWbJEAMiVK1dqrQy9Xi8xMTG1sm6DwSARERG1su7yrFq1SlxcXGTKlCkCQLKysuq0/PKsXbvWaF+OGTNG9Hp9jZfxzTffVJivoKBAjh07ZpQeFxcnACQlJcVkWRMnThQAcuPGDSVty5YtAkC2bdumpGVmZkrz5s1l5MiRJtfZvn176dChgyrtypUrotPpZPLkySaXp7rFS0kWMHfuXMycORMA4O3trZxmF1+j3rBhAwICAqDT6eDs7IwRI0YYHUGlp6dj6NChcHNzg62tLTw9PTFixAj8+uuvAACNRoPff/8d//znP5X1jx492mTdtm3bhscffxy2trbw9fXFzp07MXr0aHh5eZWZ/+7du1U6eg8JCYGvry9++OEHhIaGws7ODh4eHnj33XfLzJ+dnY05c+Zg3rx5lT7D2r17NyIiIuDu7g4bGxv4+Phg/vz5KCwsrHS9z507h169ekGn08HT0xPx8fEoKipS5dFoNFi7di1+//13pe3XrVsHAEhJSUFgYCCaN28Oe3t7PProo5g9e7bZ5RcUFOD1119XLucMHjwYWVlZyvtarRbPPPOM0XKDBw8GAJw/f95kGcX7uuRlzu3bt6NVq1YYMmSIkubq6oro6Gjs3r0bBQUF5a7v66+/xqVLl/D888+r0hMTE1FYWIh58+YBAPLy8iAc7Ll+sHRkehidOnVKRo4cKQDk/fffl+TkZElOTpa8vDyJj48XjUYjw4cPl5UrV0pcXJy0aNFCvLy8JCcnR0QeHBV6e3uLu7u7xMfHS1JSksTFxclTTz0lGRkZIiKSnJwsNjY2EhQUpKz/+PHjFdbrk08+EY1GI0888YQsW7ZM3n77bXFychJfX18xGAyqvAaDQXQ6nVhbWwsAMRgMsnz5crPbIDg4WNzd3aVNmzYyZcoUWblypfTq1UsAyL59+4zyv/rqq9KpUye5f/++vPPOO5U6Yxg0aJBER0fLkiVLZNWqVTJs2DABIDNmzDC7viIiN27cEFdXV3FycpK5c+fKkiVLpEOHDvLEE0+ozhiSk5MlKChIbGxslLb/8ccf5ezZs6LVaqVr167ywQcfSGJiosyYMUN69uxpsuziM4Ynn3xSevXqJStWrJDp06eLtbW1REdHm1z+4MGDAkA2bdpk9F5BQYFkZWXJf//7X9mxY4e4ubmJwWCQe/fuKXnat28vAwYMMFo2KSlJAMjp06fLLXvy5MkCQNLT01XpAQEB8sQTT8imTZvEw8NDAIiTk5PMmTNHCgsLTW4T1R4GBgsp61JSRkaGWFtby4IFC1R5z5w5I02aNFHS09LSjE7ry1LZS0l+fn7i6ekpubm5StrRo0eVH/6SIiMjZfHixbJr1y5Zs2aNBAUFCQCJjY01q6zg4GABIOvXr1fSCgoKxM3NTYYOHarKe+rUKbG2tpYDBw6IiFQ6MNy5c8co7eWXXxY7Ozv5448/zFqHiMjUqVMFgJw4cUJJy8zMFEdHR6N9GRMTY3Qp6f3336/yJbDiwBAWFiZFRUVK+rRp08Ta2lp++eWXCpcPCwuTZs2aKQcXJf3rX/8SAMqra9euRj/0er1exo4da7Ts3r17BYB8+umnZZZ7//59adWqlXTr1s3ovWbNmomTk5PY2NjI22+/Ldu3b5c///nPAkDefPPNCreHahcvJdUjO3bsQFFREaKjo3Hr1i3l5ebmhg4dOuDIkSMAAEdHRwDAgQMHcOfOnRop+/r16zhz5gxGjRoFe3t7JT04OBh+fn5G+ffs2YPY2FgMHDgQY8eOxWeffYZ+/fph2bJl+N///mdWmfb29njhhReU/7VaLbp164bLly+r8k2ePBkDBgwwunFpLp1Op/ydm5uLW7duISgoCHfu3MGFCxfMXs++ffvQvXt3dOvWTUlzdXU1ukRSnuJLYLt37za6/GSu8ePHKzePASAoKAiFhYW4evVqucskJCQgNTUVixYtKvMyXGhoKFJSUrBt2zZMmDABTZs2Nbo8mJ+fDxsbG6NlbW1tlffLcujQIfz8889ltlFeXh5ycnIQFxeHefPmYejQodi4cSP69++PDz74ALm5ueVuE9UuBoZ6JD09HSKCDh06wNXVVfU6f/48MjMzATy4L/H6668jKSkJLVq0QL9+/fD3v/9dub9Qkbt37+LmzZuqV8kflvbt2xstU1ZaaRqNBtOmTcP9+/dx9OhRAA9+LEqXVZKnp6fqRw4AnJyckJOTo/y/ZcsWHD9+HEuXLq2w/Ly8PFU5Ja+7nzt3DoMHD4ajoyOaNWsGV1dXJSCZ02bFrl69qvS+KenRRx81a/nhw4ejR48eePHFF9GqVSuMGDECW7duVQWJ0u1V+ge3bdu2qv+dnJwAQNVmJW3ZsgVz5szBuHHj8Morr5SZp1WrVggLC0NUVBRWrVqFZ599Fn369FHtL51OV+Z9hOIusCWDb0kbN26EtbU1hg8fbvRe8TIjR45UpY8cORL5+flIS0src51U+xgY6pGioiJoNBp8+umnSElJMXqtXr1aybt06VKcPn0as2fPRn5+PiZPnoxOnTqZPFo/fvw4WrdurXrVVNfANm3aAHhwoxh48KNUuqySrK2ty1yPlLgBOXPmTAwbNgxarRYZGRnIyMhQbopeu3YN169fBwC89957qnKeeuopAA9uoAYHB+PUqVOYN28ePv74Y6SkpGDx4sUAUOUj96rQ6XT4/PPPkZqair/85S84ffo0hg8fjj59+ig3wku3V+n+/Oa0WbGUlBSMGjUKERERSExMNLueUVFRyMvLw+7du5W01q1b48aNG0Z5i9Pc3d2N3svPz8fOnTsRFhaGVq1aGb1fvEzp91q2bAmg/GBHtY/PMVhI6SNlAPDx8YGIwNvb26znAfz8/ODn54c5c+bg+PHj6NGjBxITExEfH19uGf7+/khJSVGlubm5KX3tL126ZLRMWWllKb4E5OrqCgDo16+fUVmVde3aNWzatEnVp75Yly5d4O/vj++//x6jRo1CYGCg8l7x0ejRo0dx+/Zt7NixAz179lTev3LlSqXrYjAYkJ6ebpR+8eJFs9dhZWWF3r17o3fv3li2bBkSEhLw1ltv4ciRIwgLCzNqr06dOlW6ngBw4sQJDB48GF27dsXWrVvRpIn5X/Xis5SSZ1OdO3fGF198gaKiIlhZ/f/jyRMnTsDOzq7Mz+uePXuQm5tb7qW2gIAApKen46effkK7du2U9OJgX/w5orrHwGAher0egLpL4JAhQzBr1izExcVhw4YNqh92EUF2djZcXFzw22+/wc7OTvVl9/Pzg5WVlep0X6/XGz1Z7eTkhLCwMKP6uLu7w9fXF+vXr8esWbOU+wyfffYZzpw5A4PBoOTNzs6Go6Oj6uj13r17WLRoEbRaLUJDQwGgzLOEytq5c6dR2ubNm7FlyxasX78enp6eAIB27dqpflyKFdex5BH13bt3sXLlykrXJTw8HMuXL8fXX3+t3GfIysrCxo0bzVo+Ozsbzs7OqrTioTKK91tZ+6ayzp8/j4iICHh5eeGTTz4p9zLPrVu34OLiYnQAkZSUBADo2rWrkhYVFYXt27djx44diIqKUpbftm0bIiMjy7z/sGnTJtjZ2SldZUsbPnw4Nm/ejDVr1ihPRBcVFWHt2rVwdnZGQEBA5TeeagQDg4UUf+jfeustjBgxAk2bNkVkZCTi4+Mxa9YsZGRkYNCgQXBwcMCVK1ewc+dOjB8/HjNmzMDhw4cxceJEDBs2DI888gju37+P5ORkWFtbY+jQoaoyUlNTsWzZMri7u8Pb2xt/+tOfyq1TQkICBg4ciB49emDMmDHIycnBhx9+CF9fX+Tl5Sn59uzZg/j4eERFRcHb2xvZ2dnYtGkTzp49i4SEBLi5udVYO5X11Pb3338PABgwYABatGhR4fLPPPMMnJycEBMTg8mTJ0Oj0SA5OblK/eVjY2ORnJyM/v37Y8qUKdDr9fjHP/4Bg8GA06dPm1x+3rx5+PzzzxEREQGDwYDMzEysXLkSnp6eqrOd6sjNzUW/fv2Qk5ODmTNnYu/evar3fXx88PTTTwN48LxMYmIiBg0ahHbt2iE3NxcHDhxASkoKIiMj0atXL2W5qKgodO/eHWPGjMEPP/ygPPlcWFiIuLg4o3pkZ2dj//79GDp0qKozQ0kDBw5E7969sXDhQty6dQv+/v7YtWsXvvzyS6xevbrMYEN1xII9oh568+fPFw8PD7GyslJ1d/zoo48kMDBQ9Hq96PV66dixo7z22mty8eJFERG5fPmyjB07Vnx8fMTW1lacnZ0lNDRUUlNTVeu/cOGC9OzZU3Q6nQAwq+vq5s2bpWPHjmJjYyO+vr6yZ88eGTp0qHTs2FHJ8+2330pkZKR4eHiIVqsVe3t7CQwMlK1bt5q97cHBwdKpUyej9JiYGKOusaVVtrvqsWPHpHv37qLT6cTd3V1iY2PlwIEDAkCOHDlidp1FRE6fPi3BwcFia2srHh4eMn/+fFmzZo1Z3VUPHTokAwcOFHd3d9FqteLu7i4jR46U//znPybLLe/J5yNHjqi248qVK6qup6VfJT8D33zzjQwbNkzatm0rNjY2otfrpUuXLrJs2TLVMwzFsrOzZdy4ceLi4iJ2dnYSHBxc7pPYiYmJAkD27NlT4Xbl5ubKlClTxM3NTbRarfj5+cmGDRtMtgfVLo0IHzWkinXu3Bmurq7Vvl9ARA0DeyWR4t69e7h//74q7ejRozh16hRCQkIsUykiqnM8YyBFRkYGwsLC8MILL8Dd3R0XLlxAYmIiHB0dcfbsWbi4uFi6irUiPz/f5PMMzs7OdTpKKpEl8eYzKZycnBAQEICkpCRkZWVBr9cjIiICixYtarRBAXjwvMWYMWMqzHPkyBGeNdFDg2cM9NC7ceMGzp07V2GegIAA5SljosaOgYGIiFR485mIiFQYGKje8fLyMppUKD09HX379oWjoyM0Gk2l57IODw/HSy+9VHOV/D9l1bUs69atU03G1NC8+eabFT4cSY0LAwM1CDExMThz5gwWLFiA5ORk1XANphw7dgwHDx7EG2+8UYs1bJi8vLyUWeZKviZMmKDKN3XqVJw6dQp79uyxUE2pLrFXEtV7+fn5+Oqrr/DWW29h4sSJlV5+yZIl6N27t1nDh1fWxYsXVYPKNUSdO3fG9OnTVWmlB8Vzc3PDwIED8d577+G5556ry+qRBTAwUL1XPLdCZed6BoDMzEzs3bu3UsNOmyIi+OOPP6DT6RrFeD4eHh6qCZPKEx0djWHDhuHy5ctlDlhIjUfDPtQhsxw9ehRdu3aFra0tfHx8sHr1asydO9doVM0NGzYgICAAOp0Ozs7OGDFihNFcDSEhIfD19cUPP/yA0NBQ2NnZwcPDA++++26l6yUiiI+Ph6enJ+zs7BAaGmrUbXTu3LnKyK4zZ86ERqNRJqvPzc3F1KlT4eXlBRsbG7Rs2RJ9+vTByZMnleX37t2L+/fvlzlq6enTpxEcHAydTgdPT0/Ex8dj7dq1RvcCvLy88Oyzz+LAgQPo2rUrdDqdMjdGWfcYzp07h169eqnWW5V5H4r30aVLlzB69Gg0b94cjo6OGDNmTI3N3Ffs7t27RrO2lVbchiXnaaDGiWcMjVxaWhr69++P1q1bIy4uDoWFhZg3b57RWPcLFizA22+/jejoaLz44ovIysrCihUr0LNnT6SlpamO1nNyctC/f38MGTIE0dHR2L59O9544w34+flhwIABZtftr3/9K+Lj4xEeHo7w8HCcPHkSffv2xd27d5U8Q4YMQfPmzTFt2jSMHDkS4eHhymidEyZMwPbt2zFx4kQ8/vjjuH37Nr788kucP38eXbp0AfBgYiIXFxfVsOEA8NNPPyE0NBQajQazZs2CXq9HUlJSuWcAFy9exMiRI/Hyyy/jpZdeKnfWtps3byI0NBT379/Hm2++qYzAWt7Q1+aIjo6Gt7c3Fi5ciJMnTyIpKQktW7ZUJhsCHsydcO/ePZPrsrW1NRrt9PDhw7Czs0NhYSEMBgOmTZuGKVOmGC3r6OgIHx8fHDt2DNOmTavy9lADYKnR+6huREZGip2dnfz0009KWnp6ujRp0kSKd39GRoZYW1vLggULVMueOXNGmjRpokoPDg4WALJ+/XolraCgQNzc3GTo0KFm1yszM1O0Wq1ERESoJrefPXu20SigxSOGLlmyRLUOR0dHee211yosJzAwUAICAozSJ02aJBqNRtLS0pS027dvi7Ozs9FIqQaDodwJ7w0Gg6quU6dOFQBy4sQJ1bY6OjoardeU4lFkx44dq0ofPHiwuLi4qNKK94upV+kRdiMjI2Xx4sWya9cuWbNmjQQFBQkAiY2NLbNOffv2lccee8zsbaCGiWcMjVhhYSFSU1MxePBg1dSL7du3x4ABA/Dxxx8DAHbs2IGioiJER0fj1q1bSj43Nzd06NABR44cwezZs5V0e3t71TVprVaLbt26KTO4mSM1NRV3797FpEmTVJe0pk6dioSEBLPW0bx5c5w4cQLXr18vc2pJALh9+zY8PDyM0j/99FM8/fTTykQ5wIPxkJ5//nmsWLHCKL+3tzf69etnsk779u1D9+7dlYl8gAczkT3//PNVmhwIgFEPoaCgIOzcuRO//fYbmjVrBuDBVK/mTIVZup1K9zIaM2YMBgwYgGXLlmHSpEnKREjFnJycOBfzQ4CBoRHLzMxEfn5+mb1xSqalp6dDRMqc6B4AmjZtqvrf09PT6P6Ek5OTWZPVFLt69SoAGJXp6upq9tAT7777LmJiYtCmTRsEBAQgPDwco0aNMroxKmU83H/16lVlwpqSyuu55O3tbVadrl69WmZ///IuPZmjbdu2qv+L2ycnJ0cJDDU125lGo8G0adNw4MABHD161OimtIiUOWUsNS4MDISioiJoNBrs37+/zMnmS1+TrsyE9LUpOjpaOXo+ePAglixZgsWLF2PHjh3KvQ4XF5camVS+OvcIqsuc9s7OzlbdmymPTqeDo6NjhXnatGmjrLO0nJwck7PmUcPHwNCItWzZEra2trh06ZLReyXTfHx8ICLw9vYuc1L32lB8Mzg9PV11hJ+VlVWpH/LWrVvj1VdfxauvvorMzEx06dIFCxYsUAJDx44d8dFHH5VZvql2qQqDwYD09HSj9IsXL1ZrvaYMGTIEn332mcl8MTExWLduXYV5ii8Jlu6gAABXrlyBv79/lepIDQe7qzZi1tbWCAsLw65du3D9+nUl/dKlS9i/f7/y/5AhQ2BtbY24uDijo34Rwe3bt2u8bmFhYWjatClWrFihKnP58uVmLV9YWGg0h0LLli3h7u6OgoICJe3pp59GTk6O0f2Pfv364auvvlLmjwYeHCFv3Lix8htTQnh4OP7973/j66+/VtKysrKqvV5Tli5dipSUFJOv2NhYZZns7GwUFhaq1nPv3j0sWrQIWq0WoaGhqvd+/fVX/Pjjj3jmmWdqdVvI8njG0MjNnTsXBw8eRI8ePfDKK6+gsLAQH374IXx9fZUfRR8fH8THx2PWrFnIyMjAoEGD4ODggCtXrmDnzp0YP348ZsyYUaP1cnV1xYwZM7Bw4UI8++yzCA8PR1paGvbv32/WpYrc3Fx4enoiKioK/v7+sLe3R2pqKr755hssXbpUyRcREYEmTZogNTUV48ePV9JjY2OxYcMG9OnTB5MmTVK6q7Zt2xbZ2dlVvo4eGxuL5ORk9O/fH1OmTFG6qxoMhkrdg6msqtxj2LNnD+Lj4xEVFQVvb29kZ2dj06ZNOHv2LBISEuDm5qbKn5qaChHBwIEDa6raVF9ZqjsU1Z1Dhw7Jk08+KVqtVnx8fCQpKUmmT58utra2qnwfffSRBAYGil6vF71eLx07dpTXXntNLl68qOQJDg6WTp06GZURExMjBoOhUvUqLCyUuLg4ad26teh0OgkJCZGzZ88adQEtq7tqQUGBzJw5U/z9/cXBwUH0er34+/vLypUrjcp57rnnpHfv3kbpaWlpEhQUJDY2NuLp6SkLFy6Uv/3tbwJAbt68qeQzGAwSERFR5jaUrquIyOnTpyU4OFhsbW3Fw8ND5s+fL2vWrKlyd9WsrCxV+tq1ayu9rrJ8++23EhkZKR4eHqLVasXe3l4CAwNl69atZeYfPny4BAYGVqtMahg4H8NDatCgQTh37lyZ18Mbmy+++AIhISG4cOFCuT2vik2dOhWrV69GXl5euTd9H0Y3b96Et7c3Nm/ezDOGhwDvMTwE8vPzVf+np6dj3759D81UlUFBQejbt6/RsB2l2+X27dtITk5GYGAgg0Ipy5cvh5+fH4PCQ4JnDA+B1q1bY/To0WjXrh2uXr2KVatWoaCgAGlpaSaPoKsiKyvL6KZmSVqtFs7OzjVebmV17twZISEheOyxx/Dzzz9jzZo1uH79Og4dOoSePXvWWrl5eXnIy8urMI+rqyuDE1mOZa9kUV0YPXq0GAwGsbGxkWbNmkm/fv3ku+++q7XyioeQKO8VHBxca2VXxqxZs6RDhw6i0+nEzs5OAgMDJSUlpdbLLb53UNGruvcPiKqDZwxU444dO2Z0maYkJyenGntStyG6fPmyyeFDAgMDYWtrW0c1IlJjYCAiIhXefCYiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlIxa3TVoqIiXL9+HQ4ODpy9qYpEBLm5uXB3d4eVVeXiMdu/+qrT/gD3QU3gd8CyKtX+5jwFd+3aNbMmGufL9OvatWuVfgqR7W/Z9uc+sPw+YPvXbfubFbYdHBzMyUZmqEpbsv1rTlXbkvug5vA7YFnmtKVZgYGnbjWnKm3J9q85VW1L7oOaw++AZZnTlrz5TEREKgwMRESkwsBAREQqZnVXNUUsNEBr7V52LH/lpra3rq+H1mb7V7Qt9bVci1yPNtEUYipDBSy1D6qj7vdBNdpBKq5rdfadpVS3/XnGQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKjXyHIMptden2VT/4orKbXh9k6uqPj6L0OhoTDxbUeFnsRrFVqONq/M8SH19fqJ8FbSTiSasaN/Vy2dqagDPGIiISIWBgYiIVBgYiIhIhYGBiIhUGBiIiEiFgYGIiFTqpLtqdbq21Vp3r0Y41G590/C6NNYmS7VFw+wuWVliajvr4W9Qfe4qzjMGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSqZHnGBrk0LLVGGq3ManOvrPUfq+fz0dY6vNS//rnW0QDHEK8NodMry6eMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREanU0LDb9bH7YMVM1VhTrW2q426AJru9VX1bqtMrrj52Eawtpran4q6JlmmLxrYPGpr63P48YyAiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIpUaeo7BlNrp12+673gF75lce/3rd14uU/2hq9GH3lLPIjSqIaGrzTJt8TA9h1JVtfk5teR3gGcMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKnXUXbV8tdntrTrrZndJy6po32lMdd98iHZdtb4//IxXm6W67VZvmHfTeMZAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqFn+Ogc8LNFzV2XfV2++m+o4/PJ8ptmP91lB/33jGQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpFJH3VUtMzQt1QTuu5pQ4TDiJns0ch9YUnWG1rbUsNzVxTMGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSqaHnGBrm0LKNRfWG9uW+qwkNdXjlqqpv22u5IeAbJ54xEBGRCgMDERGpMDAQEZEKAwMREakwMBARkYpZgaGhjhBYH1WlLdn+Naeqbcl9UHP4HbAsc9rSrMCQm5tb7crQA1VpS7Z/zalqW3If1Bx+ByzLnLbUiBnho6ioCNevX4eDgwP7/FaRiCA3Nxfu7u6wsqrcFTy2f/VVp/0B7oOawO+AZVWm/c0KDERE9PDgzWciIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlL5f2PheCWiqxKVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -228,7 +222,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfLUlEQVR4nO3de1hU1f4/8PeAAsOACIQhUIBkUerxQnkyUMQbiKKC5uWpI9gxu6gJlih28wJ4S8tjmfXgo4maWl6yR01FMUsqMxEvpQdTeDiagYJ5SQHh8/vDL/vnZgZmhgEH9P16nvljFmuvtfbazHxm7732WhoRERAREf0fG2s3gIiIGhcGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIgutXLkSGo0GeXl5qvQFCxagTZs2sLW1RadOneqljkOHDllUDpEpGBisJCsrCzNmzMDly5cbrI7U1FRs2bKlQcr28/ODRqPRe7388ssNUl+V77//Xqnr4sWLDVqXJXbt2oXExEQEBwdjxYoVSE1NvWt1x8XFGTw2gYGBenlPnz6NYcOGwdXVFY6OjggJCUFmZqbBcisrK/Hxxx+jU6dO0Gq1cHd3R69evZCTk1OnMg21serVt2/f+ukMqpNm1m7A/SorKwszZ85EXFwcWrZs2SB1pKamYtiwYRgyZEiDlN+pUye8/vrrqrRHH320QeoCbn8xTZw4ETqdDtevX2+weurD3r17YWNjg+XLl8POzu6u129vb4+0tDRVmouLi+p9QUEBunXrBltbW0yZMgU6nQ4rVqxAv379sGfPHvTo0UOV/4UXXsCaNWswevRoTJgwAdevX0d2djYKCwvrVGZ6erpeuw8dOoTFixejX79+9dENVEcMDFRn3t7eeP755+9afZ9++ikKCgowduxYLF68+K7VWxeFhYXQarVWCQoA0KxZM6PHZu7cubh8+TKOHz+Oxx57DADw4osvIjAwEAkJCfjll1+UvBs2bMBnn32GTZs2ITo6ul7KNNS+ffv2QaPRYNSoUWbtL9UvXkqyghkzZmDKlCkAAH9/f+X0ueoa9erVqxEUFAStVgs3NzeMHDkSBQUFqjJyc3MxdOhQeHp6wsHBAT4+Phg5ciT++usvALdP069fv47PPvtMKT8uLs5o27744gs88cQTcHBwQPv27bF582bExcXBz8/PYP6ysrI6/Xrv2bMn2rdvj19//RVhYWFwdHSEt7c35s+fbzB/cXEx3nrrLcyaNcvsM6yvvvoKAwYMgJeXF+zt7REQEIDZs2ejoqLC7HafOHECvXr1glarhY+PD5KTk1FZWanKo9FosGLFCly/fl3p+5UrVwIAdu/ejZCQELRs2RJOTk547LHHMH36dJPrLy0txeTJk+Hh4QGdTofo6GgUFRUZzFtRUYErV67UWNZ3332Hzp07K1/gAODo6IhBgwbh8OHDyM3NVdIXLVqErl27Ijo6GpWVlTUec3PKNLRvGzduRGhoKHx8fGrMRw2PgcEKYmJilF9E77//PtLT05Geng4PDw+kpKRg9OjRaNu2LRYtWoT4+HjlFLzqfkRZWRnCw8Px448/YuLEifjoo48wbtw4nDlzRsmTnp4Oe3t7dO/eXSn/pZdeqrVd27Ztw4gRI9C8eXPMmTMHMTEx+Pe//636lXenvXv3wtHREU5OTvDz8zP7V3xJSQkiIiLQsWNHLFy4EIGBgZg6dSp27Nihl/ftt9+Gp6en0X0wZOXKlXBycsLkyZOxePFiBAUF4Z133sG0adPMKufChQsICwvDkSNHMG3aNMTHx2PVqlV6+52eno7u3bvD3t5e6fsePXrgxIkTGDhwIEpLSzFr1iwsXLgQgwYNwoEDB0xuw8SJE5GTk4N3330Xr7zyCr7++mtMmDBBL9/ff/+NFi1awMXFBW5ubhg/fjyuXbumylNaWgqtVqu3raOjIwAox/3KlSs4ePAgnnrqKUyfPh0uLi5wcnJCmzZtsGHDhjqVacj27dtx+fJlPPfcc0Z6gRqckFUsWLBAAMjZs2eVtLy8PLG1tZWUlBRV3mPHjkmzZs2U9OzsbAEgX3zxRa116HQ6iY2NNblNHTp0EB8fH7l69aqStm/fPgEgvr6+qrxRUVEyb9482bJliyxfvly6d+8uACQxMdGkukJDQwWArFq1SkkrLS0VT09PGTp0qCpvTk6O2Nrays6dO0VE5N133xUAUlRUZFJdf//9t17aSy+9JI6OjnLz5k2TyhARiY+PFwDy008/KWmFhYXi4uKidyxjY2NFp9Optn///ffNavedVqxYIQCkT58+UllZqaQnJCSIra2tXL58WUmbNm2aTJ06VdavXy+ff/65xMbGCgAJDg6W8vJyJV9UVJS0bNlSrly5oqqrW7duAkDee+89ERE5fPiwABB3d3d58MEHZenSpbJmzRrp2rWraDQa2bFjh9llGjJ06FCxt7eXkpISs/uH6hcDg5UYCgyLFi0SjUYjubm5UlRUpHo9/vjj0qdPHxEROXPmjACQsWPHyvXr12usw5zAcO7cOQEg06dP1/tbhw4d9AJDdZWVlRIeHi7NmjWTgoICo/WFhoaKk5OT6ktORGTQoEHSuXNnvbwDBw5U3psbGO505coVKSoqktWrVwsAOXLkiMnbPvroo/L000/rpb/66qsmBYaqL/e0tDSpqKgwq91V227YsEGVvmnTJgEgOTk5tW6fkpIiAOTzzz9X0rZv3y4ApH///nL48GE5deqUTJo0SZo3by4AZPbs2SIisn//fgEgAOTHH39Utr969ao88MADEhwcbHaZ1f3111/i4OAg0dHRZvULNQxeSmpEcnNzISJo27YtPDw8VK/ffvtNGf3h7++PyZMnIy0tDQ888ADCw8Px0UcfKfcXalNWVoYLFy6oXhUVFcjPzwcAPPLII3rbGEqrTqPRICEhAbdu3cK+ffsAADdu3NCr604+Pj7QaDSqNFdXV5SUlCjv169fj6ysLCxcuLDW+q9du6aq587r7idOnEB0dDRcXFzQokULeHh4KDc+TemzKvn5+Wjbtq1e+p3X02szYsQIBAcHY+zYsXjwwQcxcuRIbNiwQXWPonp/3bhxQ1XGww8/rHrv6uoKAKo+MyQhIQE2NjbIyMhQ0vr3748lS5Zg//796NKlCx577DFs27YNKSkpAAAnJycAUC4N+fv745///KeyvZOTE6KionDw4EHcunXLrDKr27hxI27evMnLSI0EA0MjUllZCY1Gg2+++Qa7d+/We33yySdK3oULF+Lo0aOYPn06bty4gddeew3t2rXD//73v1rryMrKQuvWrVWv6je26+qhhx4CcPtGMXD7S716XXeytbU1WI7csdrslClT8Oyzz8LOzg55eXnIy8tT7qMUFBTg/PnzAID33ntPVc9TTz0FALh8+TJCQ0ORk5ODWbNm4euvv8bu3bsxb948ANC7cdyQtFot9u/fj4yMDPzrX//C0aNHMWLECPTt21e5EV69v9avX68qw5Q+q6lud3d35dhUmTBhAv78809kZWXh0KFDOHnypDKstWrosZeXFwDgwQcf1Cu3VatWKC8vV92MNqXM6tasWQMXFxcMHDiw1v2gu4PDVa2k+i9lAAgICICIwN/f36TnATp06IAOHTrgrbfeQlZWFoKDg7Fs2TIkJyfXWEfHjh2xe/duVZqnp6cyrPL06dN62xhKM+TMmTMAAA8PDwBAeHi4Xl3mKigowNq1a7F27Vq9v3Xp0gUdO3bEkSNHMHr0aISEhCh/q/qVu2/fPly6dAmbNm1SjaE/e/as2W3x9fU1OKrm1KlTJpdhY2OD3r17o3fv3li0aBFSU1Px5ptvIjMzE3369NHrr3bt2pndTkOuXr2KixcvKsfmTjqdDt26dVPeZ2RkQKvVIjg4GMDtwODp6Ylz587pbXv+/Hk4ODjA2dnZrDLv9McffyAzMxNxcXGwt7ev8z5S/WFgsBKdTgcAqiefY2JikJSUhJkzZ2L16tWqL3YRQXFxMdzd3XHlyhU4OjqiWbP/f/g6dOgAGxsblJaWquqo/mS1q6sr+vTpo9ceLy8vtG/fHqtWrUJSUpJyyv/tt9/i2LFj8PX1VfIWFxfDxcVF9eu1vLwcc+fOhZ2dHcLCwgDA4FmCuTZv3qyXtm7dOqxfvx6rVq1ShjW2adMGbdq00ctb1cY7f1GXlZVh6dKlZrclMjISH3zwAQ4ePIiuXbsCAIqKirBmzRqTti8uLoabm5sqrWqqjKrjZujYmOPmzZsoLy/X+6KePXs2RAQRERG1bp+VlYVNmzbhlVdeUT0QN2LECCxevBi7d+9Wnkq+ePEivvrqK/Tq1Qs2NjVffKipzCrr1q1DZWUlLyM1IgwMVhIUFAQAePPNNzFy5Eg0b94cUVFRSE5ORlJSEvLy8jBkyBA4Ozvj7Nmz2Lx5M8aNG4c33ngDe/fuxYQJE/Dss8/i0Ucfxa1bt5Ceng5bW1sMHTpUVUdGRgYWLVoELy8vvWvE1aWmpmLw4MEIDg7GmDFjUFJSgg8//BDt27dXDXXcunUrkpOTMWzYMPj7+6O4uBhr167F8ePHkZqaCk9Pz3rrJ0NPbR85cgTA7evZDzzwQK3bP/PMM3B1dUVsbCxee+01aDQapKenG730YkhiYiLS09MRERGBSZMmQafT4dNPP4Wvry+OHj1qdPtZs2Zh//79GDBgAHx9fVFYWIilS5fCx8dHdbZjiQsXLqBz584YNWqUMgXGzp07sX37dkRERGDw4MFK3vz8fAwfPhyDBg2Cp6cnTpw4gWXLluEf//iH3hQeSUlJ2LBhA4YOHYrJkyfDxcUFy5YtQ3l5uSqvOWVWWbNmDby8vNCzZ8966QOqB9a7702zZ88Wb29vsbGxUY1q2bhxo4SEhIhOpxOdTieBgYEyfvx4OXXqlIjcHpX0wgsvSEBAgDg4OIibm5uEhYVJRkaGqvyTJ09Kjx49RKvVCgCTRiitW7dOAgMDxd7eXtq3by9bt26VoUOHSmBgoJLn0KFDEhUVJd7e3mJnZydOTk4SEhKiN2KmNqGhodKuXTu99NjYWKMjoMwdlXTgwAF5+umnRavVipeXlyQmJsrOnTsFgGRmZprcZhGRo0ePSmhoqDg4OIi3t7fMnj1bli9fbtKopD179sjgwYPFy8tL7OzsxMvLS0aNGiX//e9/jdZbNSrp559/VqVnZmaq9qOkpESef/55eeSRR8TR0VHs7e2lXbt2kpqaKmVlZapti4uLZfDgweLp6Sl2dnbi7+8vU6dO1RtqWuX333+X6OhoadGihWi1WunVq5ccPHjQojJPnjwpAGTy5MlG+4DuHo1IHX460X2lU6dO8PDwsPh+ARE1DRyVRIry8nJl2GGVffv2IScnh6f5RPcRnjGQIi8vD3369MHzzz8PLy8vnDx5EsuWLYOLiwuOHz8Od3d3azexQdy4ccPo8wxubm5WmxCP6G7jzWdSuLq6IigoCGlpaSgqKoJOp8OAAQMwd+7cezYoALeftxgzZkyteTIzM3nWRPcNnjHQfe+PP/7AiRMnas0TFBSkPGVMdK9jYCAiIhXefCYiIhUGBmp0/Pz89BYVys3NRb9+/eDi4gKNRmP2WtaRkZF48cUX66+R/8dQWw1ZuXKlajGmpmbatGm1PhxJ9xYGBmoSYmNjcezYMaSkpCA9PR1PPvmkydseOHAAu3btwtSpUxuwhU2Tn5+fssrcna+XX35ZlS8+Ph45OTnYunWrlVpKdxNHJVGjd+PGDfzwww948803Da5WZsyCBQvQu3dvk6YPN9epU6dqnSeoKejUqRNef/11VVr1SRw9PT0xePBgvPfeexg0aNDdbB5ZAQMDNXpVayuYu9YzABQWFmLbtm1YtmxZvbVHRHDz5k1otdp7YjZQb29vZX2K2gwfPhzPPvsszpw5Y3DCQrp3NO2fOmSSffv24cknn4SDgwMCAgLwySefYMaMGXrTcq9evRpBQUHQarVwc3PDyJEj9dZq6NmzJ9q3b49ff/0VYWFhcHR0hLe3N+bPn292u0QEycnJ8PHxgaOjI8LCwvSGjc6YMUOZ2XXKlCnQaDTw8/MDcHsq6fj4ePj5+cHe3h6tWrVC3759cfjwYWX7bdu24datWwZnLT169ChCQ0Oh1Wrh4+OD5ORkrFixQu9egJ+fHwYOHIidO3fiySefhFarVdbGMHSP4cSJE+jVq5eq3Lqs+1B1jE6fPo24uDi0bNkSLi4uGDNmDP7++2+zy6tNWVmZak0FQ6r68KuvvqrXuqnx4RnDPS47OxsRERFo3bo1Zs6ciYqKCsyaNUtvXv6UlBS8/fbbGD58OMaOHYuioiIsWbIEPXr0QHZ2turXeklJCSIiIhATE4Phw4fjyy+/xNSpU9GhQwf079/f5La98847SE5ORmRkJCIjI3H48GH069cPZWVlSp6YmBi0bNkSCQkJGDVqFCIjI5UpwV9++WV8+eWXmDBhAp544glcunQJ33//PX777Td06dIFwO0pn93d3VXThgPAuXPnEBYWBo1Gg6SkJOh0OqSlpdV4BnDq1CmMGjUKL730El588cUaV227cOECwsLCcOvWLUybNk2ZgbVqfYi6GD58OPz9/TFnzhwcPnwYaWlpaNWqlbLYEHB7Jbry8nKjZTk4OOitorZ37144OjqioqICvr6+SEhIwKRJk/S2dXFxQUBAAA4cOICEhIQ67w81AdaavY/ujqioKHF0dJRz584pabm5udKsWTOpOvx5eXlia2srKSkpqm2PHTsmzZo1U6WHhoYKAFm1apWSVlpaKp6enjJ06FCT21VYWCh2dnYyYMAA1brP06dP15sJ9uzZswJAFixYoCrDxcVFxo8fX2s9ISEhEhQUpJc+ceJE0Wg0kp2draRdunRJ3Nzc9GZK9fX1FQDyzTff6JXj6+uramt8fLwAkJ9++km1ry4uLnrlGlM1i+wLL7ygSo+OjhZ3d3dVWtVxMfaqPsNuVFSUzJs3T7Zs2SLLly+X7t27CwBJTEw02KZ+/frJ448/bvI+UNPEM4Z7WEVFBTIyMhAdHa0szwjcXsO5f//++PrrrwEAmzZtQmVlJYYPH46LFy8q+Tw9PdG2bVtkZmZi+vTpSrqTk5PqmrSdnR26du2qrOBmioyMDJSVlWHixImqS1rx8fE1zttfXcuWLfHTTz/h/Pnzqv2706VLl+Dt7a2X/s0336Bbt27KQjnA7fmQnnvuOSxZskQvv7+/P8LDw422afv27Xj66aeVhXyA2yvaPffcc3VaHAiA3gih7t27Y/Pmzbhy5QpatGgB4PZSr8bWfQag10/VRxmNGTMG/fv3x6JFizBx4kRlIaQqrq6uyM7OrstuUBPCwHAPKywsxI0bNwyOxrkzLTc3FyJicKF7AGjevLnqvY+Pj979CVdXV5MWq6mSn58PAHp1enh4mDz1xPz58xEbG4uHHnoIQUFBiIyMxOjRo/VujIqBh/vz8/NVS09WqWnkkr+/v0ltys/PNzjev6ZLT6Z4+OGHVe+r+qekpEQJDFULP1lKo9EgISEBO3fuxL59+/RuSouIwSVj6d7CwECorKyERqPBjh07DC42X/2adF0XpK9vw4cPV34979q1CwsWLMC8efOwadMm5V6Hu7u7Sb+kjbHkHoGlTOnv4uJi1b2Zmmi1WoPLa97poYceUsqsrqSkxOiqedT0MTDcw1q1agUHBwecPn1a7293pgUEBEBE4O/vrzd+vaFU3QzOzc1V/cIvKioy64u8devWePXVV/Hqq6+isLAQXbp0QUpKihIYAgMDsXHjRoP1G+uXuvD19UVubq5e+qlTpywq15iYmBh8++23RvPFxsZi5cqVteapuiRYfYACAJw9exYdO3asUxup6eBw1XuYra0t+vTpgy1btuD8+fNK+unTp7Fjxw7lfUxMDGxtbTFz5ky9X/0igkuXLtV72/r06YPmzZtjyZIlqjo/+OADk7avqKjQW0OhVatW8PLyQmlpqZLWrVs3lJSU6N3/CA8Pxw8//KCsHw3c/oW8Zs0a83fmDpGRkfjxxx9x8OBBJa2oqMjico1ZuHAhdu/ebfSVmJiobFNcXIyKigpVOeXl5Zg7dy7s7OwQFham+ttff/2F33//Hc8880yD7gtZH88Y7nEzZszArl27EBwcjFdeeQUVFRX48MMP0b59e+VLMSAgAMnJyUhKSkJeXh6GDBkCZ2dnnD17Fps3b8a4cePwxhtv1Gu7PDw88MYbb2DOnDkYOHAgIiMjkZ2djR07dph0qeLq1avw8fHBsGHD0LFjRzg5OSEjIwM///wzFi5cqOQbMGAAmjVrhoyMDIwbN05JT0xMxOrVq9G3b19MnDhRGa768MMPo7i4uM7X0RMTE5Geno6IiAhMmjRJGa7q6+tr1j0Yc9XlHsPWrVuRnJyMYcOGwd/fH8XFxVi7di2OHz+O1NRUeHp6qvJnZGRARDB48OD6ajY1VtYaDkV3z549e6Rz585iZ2cnAQEBkpaWJq+//ro4ODio8m3cuFFCQkJEp9OJTqeTwMBAGT9+vJw6dUrJExoaKu3atdOrIzY2Vnx9fc1qV0VFhcycOVNat24tWq1WevbsKcePH9cbAmpouGppaalMmTJFOnbsKM7OzqLT6aRjx46ydOlSvXoGDRokvXv31kvPzs6W7t27i729vfj4+MicOXPkP//5jwCQCxcuKPl8fX1lwIABBveheltFRI4ePSqhoaHi4OAg3t7eMnv2bFm+fHmdh6sWFRWp0lesWGF2WYYcOnRIoqKixNvbW+zs7MTJyUlCQkJkw4YNBvOPGDFCQkJCLKqTmgaux3CfGjJkCE6cOGHwevi95rvvvkPPnj1x8uTJGkdeVYmPj8cnn3yCa9eu1XjT93504cIF+Pv7Y926dTxjuA/wHsN94MaNG6r3ubm52L59+32zVGX37t3Rr18/vWk7qvfLpUuXkJ6ejpCQEAaFaj744AN06NCBQeE+wTOG+0Dr1q0RFxeHNm3aID8/Hx9//DFKS0uRnZ1t9Bd0XRQVFend1LyTnZ0d3Nzc6r1ec3Xq1Ak9e/bE448/jj///BPLly/H+fPnsWfPHvTo0aPB6r127RquXbtWax4PDw8GJ7Ie617JorshLi5OfH19xd7eXlq0aCHh4eHyyy+/NFh9VVNI1PQKDQ1tsLrNkZSUJG3bthWtViuOjo4SEhIiu3fvbvB6q+4d1Pay9P4BkSV4xkD17sCBA3qXae7k6upab0/qNkVnzpwxOn1ISEgIHBwc7lKLiNQYGIiISIU3n4mISIWBgYiIVBgYiIhIhYGBiIhUGBiIiEiFgYGIiFRMml21srIS58+fh7OzM1dvqiMRwdWrV+Hl5QUbG/PiMfvfcpb0P8BjUB/4GbAus/rflKfgCgoKTFponC/jr4KCArOfQmT/W7f/eQysfwzY/3e3/00K287OzqZkIxPUpS/Z//Wnrn3JY1B/+BmwLlP60qTAwFO3+lOXvmT/15+69iWPQf3hZ8C6TOlL3nwmIiIVBgYiIlJhYCAiIhWThqsaI1aaoLVhLzvWXLix/b3b10Mbsv9r25fGWq9Vrkcb6QoxlqEW1joGlrj7x8CCfpDa22rJsbMWS/ufZwxERKTCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqDAxERKRSL88xGNNwY5qNjS+urd6mNza5rhrjswj3HI2RZytq/V+0oFoL+tiS50Ea6/MTNauln4x0YW3HrlE+U1MPeMZAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkcleGq1oytK3Bhnvdg1PtNjZNb0hjQ7JWXzTN4ZLmEmP72Qi/gxrzUHGeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREakwMBARkUq9PMfQJKeWtWCq3XuJJcfOWse9cT4fYa3/l8Y3Pt8qmuAU4g05ZbqleMZAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkUk/TbjfG4YO1M9ZijUX7dJeHARod9lb3fbFkVFxjHCLYUIztT+1DE63TF/faMWhqGnP/84yBiIhUGBiIiEiFgYGIiFQYGIiISIWBgYiIVBgYiIhIhYGBiIhU6uk5BmMaZly/8bHjtfzNaOmNb9x5jYyNh7ZgDL21nkW4p6aEtph1+uJ+eg6lrhry/9SanwGeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREancpeGqNWvIYW+WlM3hktZV27HTGBu+eR8dOos+P/wft5i1hu1aNs27cTxjICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFas/x8DnBZouS46dZcfd2Njx++d/iv3YuDXV7zeeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREancpeGq1pmaluoDj119qHUacaMjGnkMrMmSqbWtNS23pXjGQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKvX0HEPTnFr2XmHZ1L48dvWhqU6vXFeNbX+tNwX8vYlnDEREpMLAQEREKgwMRESkwsBAREQqDAxERKRiUmBoqjMENkZ16Uv2f/2pa1/yGNQffgasy5S+NCkwXL161eLG0G116Uv2f/2pa1/yGNQffgasy5S+1IgJ4aOyshLnz5+Hs7Mzx/zWkYjg6tWr8PLygo2NeVfw2P+Ws6T/AR6D+sDPgHWZ0/8mBQYiIrp/8OYzERGpMDAQEZEKAwMREakwMBARkQoDAxERqTAwEBGRCgMDERGp/D+ohCISWiB+xAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgv0lEQVR4nO3deVxUVf8H8M8IwsBAgIQioAOSpSkPLj3mgiCBiiipqKht4JL2mISaYtrmgriQZtmTWfpgoqblXqYiqfmopankmoYpRpI5Cq4pCHx/f/jjPl6HZdgc0M/79Zo/OHPuPeeey8x37j3nnqMREQEREdH/q2XuChARUfXCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQFRBixcvhkajQXp6uio9ISEBjRo1goWFBVq0aFEpZezfv79C+yEyBQODmezZsweTJk3C5cuXq6yM+Ph4rFu3rkr27enpCY1GY/R65ZVXqqS8Qrt27VLKunjxYpWWVRHJycmIjY1Fhw4dkJiYiPj4+Pta/kcffYSmTZvC2toa7u7uGDNmDG7cuKHKk5mZiRdeeAFPPPEE7O3t4ejoiDZt2uDzzz9HUTPlrFixAq1atYJWq4WLiwuGDBlS7Dn466+/MHz4cLi7u0Or1cLT0xNDhgxR5Zk0aVKR/0NarbbyGoLKxdLcFXhY7dmzB5MnT0ZUVBQcHR2rpIz4+Hj07dsXvXr1qpL9t2jRAq+//roq7fHHH6+SsgCgoKAA0dHR0Ol0Rl9y1c22bdtQq1YtLFq0CFZWVve17PHjx2PWrFno27cvYmJicPz4ccybNw/Hjh3Dli1blHwXL17EH3/8gb59+6Jhw4a4ffs2tm7diqioKJw8eVIVzObPn48RI0YgKCgIc+bMwR9//IEPPvgA+/fvx969e1Vf5hkZGejQoQMA4JVXXoG7uzsyMzOxb9++Ius7f/582NnZKX9bWFhUdpNQWQmZRUJCggCQM2fOVFkZOp1OIiMjq2Tfer1eunfvXiX7Ls78+fPF2dlZYmJiBIAYDIb7Wn5xEhMTjc7loEGDRKfTVXoZP/30U4n5MjMzxdLSUl588UVV+rx58wSAbNiwodSyevToITqdTvLy8kREJCcnRxwdHcXf318KCgqUfF9//bUAkA8//FC1fbdu3cTLy0suXrxYYjnvvvtutTqP9D+8lWQGkyZNwrhx4wAAXl5eyiV04T3qpUuXonXr1rCxsUGdOnUwYMAAZGRkqPaRlpaGPn36wNXVFVqtFh4eHhgwYACuXLkCANBoNLhx4wY+//xzZf9RUVGl1u2rr77Ck08+Ca1Wi+bNm2Pt2rWIioqCp6dnkflzc3PL9eu9U6dOaN68OY4fP47AwEDY2trC3d0ds2bNKjJ/VlYW3nrrLUyZMqXMV1jr169H9+7d4ebmBmtra3h7e2Pq1KnIz88vc72PHTuGZ555BjY2NvDw8EBcXBwKCgpUeTQaDRITE3Hjxg2l7RcvXgwA2Lp1K/z8/ODo6Ag7Ozs88cQTmDhxosnl5+TkYMyYMXBxcYFOp0Pv3r1hMBiU93/44Qfk5eVhwIABqu0K/16xYkWpZXh6euLvv/9Gbm4uAODo0aO4fPky+vfvD41Go+Tr0aMH7OzsVPs8ceIENm3ahHHjxsHZ2Rm3bt3C7du3SyxPRHD16tUib1+RefBWkhmEh4fj119/xRdffIH3338fjz76KADAxcUF06ZNw9tvv42IiAgMHToUBoMB8+bNg7+/P1JTU+Ho6Ijc3Fx07doVOTk5iI6OhqurK86dO4dvvvkGly9fhoODA5KSkjB06FC0adMGw4YNAwB4e3uXWK+NGzeif//+8PHxwfTp05GdnY0hQ4bA3d29yPzbtm2Dra0t8vPzodfrMXr0aMTExJjcDtnZ2QgJCUF4eDgiIiKwatUqjB8/Hj4+PujWrZsq79tvvw1XV1cMHz4cU6dONbkM4E7HrZ2dHcaMGQM7Ozts27YN77zzDq5evYqEhAST93P+/HkEBgYiLy8Pb7zxBnQ6HT799FPY2Nio8iUlJeHTTz/Fvn37sHDhQgBA+/btcezYMfTo0QP/+Mc/MGXKFFhbW+PUqVPYvXu3yXWIjo6Gk5MT3n33XaSnp2Pu3LkYOXIkVq5cCeBO4ABgVCdbW1sAwIEDB4z2efPmTdy4cQPXr1/H999/j8TERLRr107ZR3H7LExLTU1FQUEBatWqhZSUFABAvXr1EBQUhG3btsHCwgKdO3fG/Pnzi/yB0ahRI1y/fh06nQ69evXC7NmzUa9ePZPbhKqAuS9ZHlZF3UpKT08XCwsLmTZtmirvkSNHxNLSUklPTU0VAPLVV1+VWEZZbyX5+PiIh4eHXLt2TUnbsWOHABC9Xq/KGxYWJjNnzpR169bJokWLpGPHjgJAYmNjTSorICBAAMiSJUuUtJycHHF1dZU+ffqo8h46dEgsLCxky5YtIlL2WxB///23Udrw4cPF1tZWbt26ZdI+RERGjRolAGTv3r1K2oULF8TBwcHoXEZGRhrdSnr//ffLfeuk8FZScHCw6nbO6NGjxcLCQi5fviwiIgcOHBAAMnXqVNX2mzdvFgBiZ2dntO/p06cLAOUVFBQkv//+u/K+wWAQjUYjQ4YMUW134sQJZZvC20avvfaaABBnZ2cJCQmRlStXSkJCgtjZ2Ym3t7fcuHFD2X7u3LkycuRIWbZsmaxatUpiYmLE0tJSGjduLFeuXClzG1HlYWAwk6ICw5w5c0Sj0UhaWpoYDAbVq2nTphIcHCwiIqdPnxYAMnToUNUH7V5lCQznzp0TADJx4kSj93x8fIwCw70KCgqka9euYmlpKRkZGaWWFxAQIHZ2dqovORGRZ599Vlq2bGmUt0ePHsrfFbk3ffXqVTEYDLJ06VIBID///LPJ2z7++OPStm1bo/QRI0aYFBgKv9wXLlwo+fn5Zap34bZffvmlKn3NmjUCQA4dOqSkPf3002JnZyf/+c9/5MyZM/Ltt9+KXq+X2rVri4WFhdG+09PTZevWrbJ8+XJ57rnnJCgoSE6ePKnK079/f7G0tJT33ntPfvvtN9m5c6f4+vpK7dq1BYByzgcPHiwApFmzZqpj/OKLLwSAfPbZZyUe57JlywSATJ8+vUztQ5WLfQzVSFpaGkQEjRs3houLi+r1yy+/4MKFCwDu9EuMGTMGCxcuxKOPPoquXbvi3//+t9K/UJLc3FycP39e9crPz8fZs2cBAI899pjRNkWl3Uuj0WD06NHIy8vDjh07ANy5RXFvWXfz8PBQ3bMGACcnJ2RnZyt/r1y5Env27MHs2bNLLP/69euqcu6+737s2DH07t0bDg4OeOSRR+Di4oIXXngBAExqs0Jnz55F48aNjdKfeOIJk7bv378/OnTogKFDh6JevXoYMGAAvvzyS1Ufxb3tdfPmTdU+GjZsqPrbyckJAFRttnr1avj6+mLw4MHw8vJCWFgYIiIi0LJlS9Xon0J6vR7BwcEYOHAgli1bhkaNGiE4OFhV9oIFCxAaGoqxY8fC29sb/v7+8PHxQVhYGAAo+y283RQREYFatf739dKvXz9YWlpiz549JbbRc889B1dXV+WWFJkH+xiqkYKCAmg0GmzatKnIIXt3f6hnz56NqKgorF+/HsnJyXjttdcwffp0/Pjjj/Dw8Ci2jD179iAwMFCVdubMmUqpf4MGDQDc6SgG7nypDxo0SJVH7upgLG5Y4t15xo0bh379+sHKykrpnC989iMjIwO5ublwc3PDe++9h8mTJyvb6fV6pKen4/LlywgICMAjjzyCKVOmwNvbG1qtFgcPHsT48eONOo6rko2NDXbu3Int27dj48aN2Lx5M1auXIlnnnkGycnJsLCwQP369VXbJCYmqgYNmNJm7u7u2LVrF9LS0nD+/Hk0btwYrq6ucHNzM2k4cd++ffHZZ59h586d6Nq1KwDAwcEB69evx++//4709HTo9Xro9Xq0b98eLi4uyoAANzc3ADDqI7CwsICzs7MqgBWnQYMGyv8QmQcDg5nc+0sZuNM5LCLw8vIy6QPs4+MDHx8fvPXWW9izZw86dOiATz75BHFxccWW4evri61bt6rSXF1dlbH2p06dMtqmqLSinD59GsCdTnQA6Nq1q1FZZZWRkYHly5dj+fLlRu+1atUKvr6++Pnnn/HSSy/Bz89Pea/wl+uOHTtw6dIlrFmzBv7+/sr75QmGer0eaWlpRuknT540eR+1atVCUFCQ8jxAfHw83nzzTWzfvh3BwcFG7dWsWbMy17NQ48aNlSuc48eP488//zRpZFrhlUJRV1MNGzZUrlouX76MAwcOoE+fPsr7rVu3BgCcO3dOtV1ubi4uXryo/G8UR0SQnp6Oli1bllpPqjoMDGai0+kAQPXkc3h4OCZMmIDJkydj6dKlqi92EUFWVhacnZ1x9epV2NrawtLyf6fPx8cHtWrVUkaQFJZx75PVTk5OCA4ONqqPm5sbmjdvjiVLlmDChAnK1cn333+PI0eOQK/XK3mzsrLg4OCg+vV6+/ZtzJgxA1ZWVsoVSf369Y1+AZfV2rVrjdJWrFiBlStXYsmSJcrVUaNGjdCoUSOjvIV1vPsXdW5uLj7++OMy1yU0NBRz587Fvn370KZNGwCAwWDAsmXLTNo+KysLderUUaUVTpVReN6KOjcVVVBQgNjYWNja2qqeTDcYDEV+US9atAgajQatWrUqcb8TJkxAXl4eRo8eraR16tQJdevWxbJlyzBx4kTlwbfFixcjPz8fnTt3LrH8+fPnw2AwICQkpFzHSpWDgcFMCn9ZvfnmmxgwYABq166NsLAwxMXFYcKECUhPT0evXr1gb2+PM2fOYO3atRg2bBjGjh2Lbdu2YeTIkejXrx8ef/xx5OXlISkpCRYWFka/3lJSUjBnzhy4ubnBy8sLTz/9dLF1io+PR8+ePdGhQwcMGjQI2dnZ+Oijj9C8eXNcv35dybdhwwbExcWhb9++8PLyQlZWFpYvX46jR48iPj4erq6uldZORT21/fPPPwMAunXrpgz1LU779u3h5OSEyMhIvPbaa9BoNEhKSirXmPnY2FgkJSUhJCQEMTExynBVvV6Pw4cPl7r9lClTsHPnTnTv3h16vR4XLlzAxx9/DA8PD9XVTkXFxMTg1q1baNGiBW7fvo3ly5dj3759+Pzzz1V9FNOmTcPu3bsREhKChg0bIisrC6tXr8ZPP/2E6OhoVd/SjBkzcPToUTz99NOwtLTEunXrkJycjLi4OPzzn/9U8llbWyMhIQGRkZHw9/fHiy++iN9//x0ffPABOnbsiPDwcCWvXq9XhkdrtVrs2rULK1asQIsWLTB8+PBKaw8qB7N1e5NMnTpV3N3dpVatWqpRLatXrxY/Pz/R6XSi0+mkSZMm8uqrryojRU6fPi2DBw8Wb29v0Wq1UqdOHQkMDJSUlBTV/k+cOCH+/v5iY2MjAEwaobRixQpp0qSJWFtbS/PmzWXDhg3Sp08fadKkiZJn//79EhYWJu7u7mJlZSV2dnbi5+dnNGKmJAEBAdKsWTOj9MjIyFJHQJV1VNLu3bulbdu2YmNjI25ubhIbGytbtmwRALJ9+3aT6ywicvjwYQkICBCtVivu7u4ydepUWbRokUmjkr777jvp2bOnuLm5iZWVlbi5ucnAgQPl119/LbXc4p583r59u9FxJCYmiq+vr+h0OrG3t5egoCDZtm2b0T6Tk5OlR48e4ubmJrVr1xZ7e3vp0KGDJCYmGo0W++abb6RNmzZib28vtra20rZt2xLP9xdffCG+vr5ibW0t9erVk5EjR8rVq1dVeYYOHSpPPvmk2NvbS+3ateWxxx6T8ePHG+Wj+08jwscNqWQtWrSAi4tLhfsLiKhm4HBVUty+fRt5eXmqtB07duDQoUPo1KmTeSpFRPcdrxhIkZ6ejuDgYLzwwgtwc3PDiRMn8Mknn8DBwQFHjx6Fs7OzuatYJW7evFnq8wx16tS577OkEpkLO59J4eTkhNatW2PhwoUwGAzQ6XTo3r07ZsyY8cAGBaDo5y3utX37dl410UODVwz00Pvzzz9x7NixEvO0bt1aecqY6EHHwEBERCrsfCYiIhUGBqp2PD09jaZuSEtLQ5cuXeDg4ACNRlPmtaxDQ0Px8ssvV14l/19RdS3K4sWLVYsx1TRvvPFGiQ9H0oOFgYFqhMjISBw5cgTTpk1DUlISnnrqKZO33b17N5KTkzF+/PgqrGHN5Onpqawyd/fr7qkzAGDUqFE4dOgQNmzYYKaa0v3EUUlU7d28eRM//PAD3nzzTYwcObLM2yckJCAoKMik6cPL6uTJk6rppWuiFi1a4PXXX1el3TuJo6urK3r27In33nsPzz777P2sHpkBAwNVe4VrK5R1rWcAuHDhAjZu3IhPPvmk0uojIrh16xZsbGxgbW1dafs1F3d3d2V9ipJERESgX79+OH36dJETFtKDo2b/1CGT7NixA0899RS0Wi28vb2xYMECTJo0yWha7qVLl6J169awsbFBnTp1MGDAAGRkZKjydOrUCc2bN8fx48cRGBgIW1tbuLu7Y9asWWWul4ggLi4OHh4esLW1RWBgoNGw0UmTJikzu44bNw4ajUZZN/jatWsYNWoUPD09YW1tjbp166Jz5844ePCgsv3GjRuRl5dX5Kylhw8fRkBAAGxsbODh4YG4uDgkJiYa9QV4enqiR48e2LJlC5566inY2NhgwYIFynv39jEcO3YMzzzzjGq/5Vn3ofAcnTp1ClFRUXB0dISDgwMGDRqEv//+u8z7K0lubi5u3LhRYp7CNly/fn2llk3VD68YHnCpqakICQlB/fr1MXnyZOTn52PKlClG0x1PmzYNb7/9NiIiIjB06FAYDAbMmzcP/v7+SE1NVf1az87ORkhICMLDwxEREYFVq1Zh/Pjx8PHxQbdu3Uyu2zvvvIO4uDiEhoYiNDQUBw8eRJcuXZCbm6vkCQ8Ph6OjI0aPHo2BAwciNDRUmRL8lVdewapVqzBy5Eg8+eSTuHTpEnbt2oVffvlFmTJ6z549cHZ2Vk0bDtxZLyAwMBAajQYTJkyATqfDwoULi70COHnyJAYOHIjhw4fj5ZdfLnbVtvPnzyMwMBB5eXl44403lBlYC9eHKI+IiAh4eXlh+vTpOHjwIBYuXIi6deti5syZSp4rV67g9u3bpe5Lq9UareK2bds22NraIj8/H3q9HqNHj0ZMTIzRtg4ODvD29sbu3btVU23TA8hcs/fR/REWFia2trZy7tw5JS0tLU0sLS2l8PSnp6eLhYWFTJs2TbXtkSNHxNLSUpUeEBAgAGTJkiVKWk5Ojri6ukqfPn1MrteFCxfEyspKunfvrprJc+LEiUYzwZ45c0YASEJCgmofDg4O8uqrr5ZYjp+fn7Ru3dooPTo6WjQajaSmpipply5dkjp16hjNlKrX6wWAbN682Wg/er1eVddRo0YJANm7d6/qWB0cHIz2W5rCWWQHDx6sSu/du7c4Ozur0grPS2mve2fYDQsLk5kzZ8q6detk0aJF0rFjRwEgsbGxRdapS5cu0rRpU5OPgWomXjE8wPLz85GSkoLevXsrSy4Cd9Zw7tatG77++msAwJo1a1BQUICIiAhcvHhRyefq6orGjRtj+/btmDhxopJuZ2enuidtZWWFNm3aKCu4mSIlJQW5ubmIjo5W3dIaNWoU4uPjTdqHo6Mj9u7di8zMTNXx3e3SpUtwd3c3St+8eTPatWunLJQD3JkP6fnnn8e8efOM8nt5eSnLXJbk22+/Rdu2bZWFfIA7K9o9//zz5VocCIDRCKGOHTti7dq1uHr1Kh555BEAd5Z6NWXZzHvb6d5RRoMGDUK3bt0wZ84cREdHGy0T6+TkhNTU1PIcBtUgDAwPsAsXLuDmzZtFjsa5Oy0tLQ0iUuRC9wBQu3Zt1d8eHh5G/RNOTk4mLVZT6OzZswBgVKaLi4vJU0/MmjULkZGRaNCgAVq3bo3Q0FC89NJLRh2jUsTD/WfPnkW7du2M0osbueTl5WVSnc6ePVvkeP/ibj2Z4u7FdQAo7ZOdna0EhsKFnypKo9Fg9OjR2LJlC3bs2GHUKS0iRS4ZSw8WBgZCQUEBNBoNNm3aVORi8/fekzZlQfr7ISIiQvn1nJycjISEBMycORNr1qxR+jpMXYC+NBXpI6goU9o7KytL1TdTHBsbGzg4OJSYp0GDBso+75WdnV3qqnlU8zEwPMDq1q0LrVaLU6dOGb13d5q3tzdEBF5eXkbj16tKYWdwWlqa6he+wWAo0xd5/fr1MWLECIwYMQIXLlxAq1atMG3aNCUwNGnSBKtXry6y/NLapTz0ej3S0tKM0k+ePFmh/ZYmPDwc33//fan5IiMjsXjx4hLzFN4SLGo96DNnzsDX17dcdaSag8NVH2AWFhYIDg7GunXrkJmZqaSfOnUKmzZtUv4ODw+HhYUFJk+ebPSrX0Rw6dKlSq9bcHAwateujXnz5qnKnDt3rknb5+fnG62hULduXbi5uSEnJ0dJa9euHbKzs436P7p27YoffvhBWT8auPMLedmyZWU/mLuEhobixx9/xL59+5Q0g8FQ4f2WZvbs2di6dWupr9jYWGWbrKws5Ofnq/Zz+/ZtzJgxA1ZWVggMDFS9d+XKFfz2229o3759lR4LmR+vGB5wkyZNQnJyMjp06IB//etfyM/Px0cffYTmzZsrX4re3t6Ii4vDhAkTkJ6ejl69esHe3h5nzpzB2rVrMWzYMIwdO7ZS6+Xi4oKxY8di+vTp6NGjB0JDQ5GamopNmzaZdKvi2rVr8PDwQN++feHr6ws7OzukpKTgp59+wuzZs5V83bt3h6WlJVJSUjBs2DAlPTY2FkuXLkXnzp0RHR2tDFdt2LAhsrKyyn0fPTY2FklJSQgJCUFMTIwyXFWv15epD6asytPHsGHDBsTFxaFv377w8vJCVlYWli9fjqNHjyI+Ph6urq6q/CkpKRAR9OzZs7KqTdWVuYZD0f3z3XffScuWLcXKykq8vb1l4cKF8vrrr4tWq1XlW716tfj5+YlOpxOdTidNmjSRV199VU6ePKnkCQgIkGbNmhmVERkZKXq9vkz1ys/Pl8mTJ0v9+vXFxsZGOnXqJEePHjUaAlrUcNWcnBwZN26c+Pr6ir29veh0OvH19ZWPP/7YqJxnn31WgoKCjNJTU1OlY8eOYm1tLR4eHjJ9+nT58MMPBYCcP39eyafX66V79+5FHsO9dRUROXz4sAQEBIhWqxV3d3eZOnWqLFq0qNzDVQ0Ggyo9MTGxzPsqyv79+yUsLEzc3d3FyspK7OzsxM/PT7788ssi8/fv31/8/PwqVCbVDFyP4SHVq1cvHDt2rMj74Q+a//73v+jUqRNOnDhR7MirQqNGjcKCBQtw/fr1Yjt9H0bnz5+Hl5cXVqxYwSuGhwD7GB4CN2/eVP2dlpaGb7/99qFZqrJjx47o0qWL0bQd97bLpUuXkJSUBD8/PwaFe8ydOxc+Pj4MCg8JXjE8BOrXr4+oqCg0atQIZ8+exfz585GTk4PU1NRSf0GXh8FgMOrUvJuVlRXq1KlT6eWWVYsWLdCpUyc0bdoUf/31FxYtWoTMzEx899138Pf3r7Jyr1+/juvXr5eYx8XFhcGJzMe8d7LofoiKihK9Xi/W1tbyyCOPSNeuXeXAgQNVVl7hFBLFvQICAqqs7LKYMGGCNG7cWGxsbMTW1lb8/Pxk69atVV5uYd9BSa+K9h8QVQSvGKjS7d692+g2zd2cnJwq7Undmuj06dOlTh/i5+cHrVZ7n2pEpMbAQEREKux8JiIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUjFpdtWCggJkZmbC3t6eqzeVk4jg2rVrcHNzQ61aZYvHbP+Kq0j7AzwHlYGfAfMqU/ub8hRcRkaGSQuN81X6KyMjo8xPIbL9zdv+PAfmPwds//vb/iaFbXt7e1OykQnK05Zs/8pT3rbkOag8/AyYlyltaVJg4KVb5SlPW7L9K09525LnoPLwM2BeprQlO5+JiEiFgYGIiFQYGIiISMWk4aqlETNN0Fq1tx2L33lpx3u/74dWZfuXdCzVtVyz3I8upSmktAwlMNc5qIj7fw4q0A5Scl0rcu7MpaLtzysGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSqZTnGEpTdWOaSxtfXFK5NW9scnlVx2cRHjiaUp6tKPF/sQLFVqCNK/I8SHV9fqJ4JbRTKU1Y0rmrls/UVAJeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREancl+GqFRnaVmXDvR7AqXarm5o3pLEqmastauZwybKS0o6zGn4HVeeh4rxiICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIilUp5jqFGTi1bgal2HyQVOXfmOu/V8/kIc/2/VL/x+WZRA6cQr8op0yuKVwxERKTCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqlTTtdnUcPliy0mqsqdAx3edhgKUOeyv/sVRkVFx1HCJYVUo7npKHJpqnLR60c1DTVOf25xUDERGpMDAQEZEKAwMREakwMBARkQoDAxERqTAwEBGRCgMDERGpVNJzDKWpmnH9pY8dL+G9Uvde/cadF6u08dAVGENvrmcRHqgpoSvMPG3xMD2HUl5V+X9qzs8ArxiIiEiFgYGIiFQYGIiISIWBgYiIVBgYiIhIhYGBiIhU7tNw1eJV5bC3iuybwyXNq6Rzpylt+OZDdOoq9Pnh/3iFmWvYbsWmeS8drxiIiEiFgYGIiFQYGIiISIWBgYiIVBgYiIhIhYGBiIhUGBiIiEjF7M8x8HmBmqsi565i5720seMPz/8U27F6q6nfb7xiICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUrlPw1XNMzUtVQaeu8pQ4jTipY5o5Dkwp4pMrW2uabkrilcMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkUknPMdTMqWUfFBWb2pfnrjLU1OmVy6u6Ha/5poB/MPGKgYiIVBgYiIhIhYGBiIhUGBiIiEiFgYGIiFRMCgw1dYbA6qg8bcn2rzzlbUueg8rDz4B5mdKWJgWGa9euVbgydEd52pLtX3nK25Y8B5WHnwHzMqUtNWJC+CgoKEBmZibs7e055recRATXrl2Dm5sbatUq2x08tn/FVaT9AZ6DysDPgHmVpf1NCgxERPTwYOczERGpMDAQEZEKAwMREakwMBARkQoDAxERqTAwEBGRCgMDERGp/B93bMV4S6iwZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -277,7 +271,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "trying to get the dataset 'test-g5-n4-a_dfs-h59697'\n", + "trying to get the dataset 'test-g5-n4-a_dfs-h93965'\n", "generating dataset...\n" ] }, @@ -285,14 +279,14 @@ "name": "stderr", "output_type": "stream", "text": [ - "generating & solving mazes: 100%|██████████| 4/4 [00:00<00:00, 233.23maze/s]" + "generating & solving mazes: 100%|██████████| 4/4 [00:00<00:00, 485.72maze/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Got dataset test with 4 items. output.cfg.to_fname() = 'test-g5-n4-a_dfs-h59697'\n" + "Got dataset test with 4 items. output.cfg.to_fname() = 'test-g5-n4-a_dfs-h93965'\n" ] }, { @@ -337,7 +331,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfLUlEQVR4nO3de1hU1f4/8PeAAsOACIQhUIBkUerxQnkyUMQbiKKC5uWpI9gxu6gJlih28wJ4S8tjmfXgo4maWl6yR01FMUsqMxEvpQdTeDiagYJ5SQHh8/vDL/vnZgZmhgEH9P16nvljFmuvtfbazHxm7732WhoRERAREf0fG2s3gIiIGhcGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIgutXLkSGo0GeXl5qvQFCxagTZs2sLW1RadOneqljkOHDllUDpEpGBisJCsrCzNmzMDly5cbrI7U1FRs2bKlQcr28/ODRqPRe7388ssNUl+V77//Xqnr4sWLDVqXJXbt2oXExEQEBwdjxYoVSE1NvWt1x8XFGTw2gYGBenlPnz6NYcOGwdXVFY6OjggJCUFmZqbBcisrK/Hxxx+jU6dO0Gq1cHd3R69evZCTk1OnMg21serVt2/f+ukMqpNm1m7A/SorKwszZ85EXFwcWrZs2SB1pKamYtiwYRgyZEiDlN+pUye8/vrrqrRHH320QeoCbn8xTZw4ETqdDtevX2+weurD3r17YWNjg+XLl8POzu6u129vb4+0tDRVmouLi+p9QUEBunXrBltbW0yZMgU6nQ4rVqxAv379sGfPHvTo0UOV/4UXXsCaNWswevRoTJgwAdevX0d2djYKCwvrVGZ6erpeuw8dOoTFixejX79+9dENVEcMDFRn3t7eeP755+9afZ9++ikKCgowduxYLF68+K7VWxeFhYXQarVWCQoA0KxZM6PHZu7cubh8+TKOHz+Oxx57DADw4osvIjAwEAkJCfjll1+UvBs2bMBnn32GTZs2ITo6ul7KNNS+ffv2QaPRYNSoUWbtL9UvXkqyghkzZmDKlCkAAH9/f+X0ueoa9erVqxEUFAStVgs3NzeMHDkSBQUFqjJyc3MxdOhQeHp6wsHBAT4+Phg5ciT++usvALdP069fv47PPvtMKT8uLs5o27744gs88cQTcHBwQPv27bF582bExcXBz8/PYP6ysrI6/Xrv2bMn2rdvj19//RVhYWFwdHSEt7c35s+fbzB/cXEx3nrrLcyaNcvsM6yvvvoKAwYMgJeXF+zt7REQEIDZs2ejoqLC7HafOHECvXr1glarhY+PD5KTk1FZWanKo9FosGLFCly/fl3p+5UrVwIAdu/ejZCQELRs2RJOTk547LHHMH36dJPrLy0txeTJk+Hh4QGdTofo6GgUFRUZzFtRUYErV67UWNZ3332Hzp07K1/gAODo6IhBgwbh8OHDyM3NVdIXLVqErl27Ijo6GpWVlTUec3PKNLRvGzduRGhoKHx8fGrMRw2PgcEKYmJilF9E77//PtLT05Geng4PDw+kpKRg9OjRaNu2LRYtWoT4+HjlFLzqfkRZWRnCw8Px448/YuLEifjoo48wbtw4nDlzRsmTnp4Oe3t7dO/eXSn/pZdeqrVd27Ztw4gRI9C8eXPMmTMHMTEx+Pe//636lXenvXv3wtHREU5OTvDz8zP7V3xJSQkiIiLQsWNHLFy4EIGBgZg6dSp27Nihl/ftt9+Gp6en0X0wZOXKlXBycsLkyZOxePFiBAUF4Z133sG0adPMKufChQsICwvDkSNHMG3aNMTHx2PVqlV6+52eno7u3bvD3t5e6fsePXrgxIkTGDhwIEpLSzFr1iwsXLgQgwYNwoEDB0xuw8SJE5GTk4N3330Xr7zyCr7++mtMmDBBL9/ff/+NFi1awMXFBW5ubhg/fjyuXbumylNaWgqtVqu3raOjIwAox/3KlSs4ePAgnnrqKUyfPh0uLi5wcnJCmzZtsGHDhjqVacj27dtx+fJlPPfcc0Z6gRqckFUsWLBAAMjZs2eVtLy8PLG1tZWUlBRV3mPHjkmzZs2U9OzsbAEgX3zxRa116HQ6iY2NNblNHTp0EB8fH7l69aqStm/fPgEgvr6+qrxRUVEyb9482bJliyxfvly6d+8uACQxMdGkukJDQwWArFq1SkkrLS0VT09PGTp0qCpvTk6O2Nrays6dO0VE5N133xUAUlRUZFJdf//9t17aSy+9JI6OjnLz5k2TyhARiY+PFwDy008/KWmFhYXi4uKidyxjY2NFp9Optn///ffNavedVqxYIQCkT58+UllZqaQnJCSIra2tXL58WUmbNm2aTJ06VdavXy+ff/65xMbGCgAJDg6W8vJyJV9UVJS0bNlSrly5oqqrW7duAkDee+89ERE5fPiwABB3d3d58MEHZenSpbJmzRrp2rWraDQa2bFjh9llGjJ06FCxt7eXkpISs/uH6hcDg5UYCgyLFi0SjUYjubm5UlRUpHo9/vjj0qdPHxEROXPmjACQsWPHyvXr12usw5zAcO7cOQEg06dP1/tbhw4d9AJDdZWVlRIeHi7NmjWTgoICo/WFhoaKk5OT6ktORGTQoEHSuXNnvbwDBw5U3psbGO505coVKSoqktWrVwsAOXLkiMnbPvroo/L000/rpb/66qsmBYaqL/e0tDSpqKgwq91V227YsEGVvmnTJgEgOTk5tW6fkpIiAOTzzz9X0rZv3y4ApH///nL48GE5deqUTJo0SZo3by4AZPbs2SIisn//fgEgAOTHH39Utr969ao88MADEhwcbHaZ1f3111/i4OAg0dHRZvULNQxeSmpEcnNzISJo27YtPDw8VK/ffvtNGf3h7++PyZMnIy0tDQ888ADCw8Px0UcfKfcXalNWVoYLFy6oXhUVFcjPzwcAPPLII3rbGEqrTqPRICEhAbdu3cK+ffsAADdu3NCr604+Pj7QaDSqNFdXV5SUlCjv169fj6ysLCxcuLDW+q9du6aq587r7idOnEB0dDRcXFzQokULeHh4KDc+TemzKvn5+Wjbtq1e+p3X02szYsQIBAcHY+zYsXjwwQcxcuRIbNiwQXWPonp/3bhxQ1XGww8/rHrv6uoKAKo+MyQhIQE2NjbIyMhQ0vr3748lS5Zg//796NKlCx577DFs27YNKSkpAAAnJycAUC4N+fv745///KeyvZOTE6KionDw4EHcunXLrDKr27hxI27evMnLSI0EA0MjUllZCY1Gg2+++Qa7d+/We33yySdK3oULF+Lo0aOYPn06bty4gddeew3t2rXD//73v1rryMrKQuvWrVWv6je26+qhhx4CcPtGMXD7S716XXeytbU1WI7csdrslClT8Oyzz8LOzg55eXnIy8tT7qMUFBTg/PnzAID33ntPVc9TTz0FALh8+TJCQ0ORk5ODWbNm4euvv8bu3bsxb948ANC7cdyQtFot9u/fj4yMDPzrX//C0aNHMWLECPTt21e5EV69v9avX68qw5Q+q6lud3d35dhUmTBhAv78809kZWXh0KFDOHnypDKstWrosZeXFwDgwQcf1Cu3VatWKC8vV92MNqXM6tasWQMXFxcMHDiw1v2gu4PDVa2k+i9lAAgICICIwN/f36TnATp06IAOHTrgrbfeQlZWFoKDg7Fs2TIkJyfXWEfHjh2xe/duVZqnp6cyrPL06dN62xhKM+TMmTMAAA8PDwBAeHi4Xl3mKigowNq1a7F27Vq9v3Xp0gUdO3bEkSNHMHr0aISEhCh/q/qVu2/fPly6dAmbNm1SjaE/e/as2W3x9fU1OKrm1KlTJpdhY2OD3r17o3fv3li0aBFSU1Px5ptvIjMzE3369NHrr3bt2pndTkOuXr2KixcvKsfmTjqdDt26dVPeZ2RkQKvVIjg4GMDtwODp6Ylz587pbXv+/Hk4ODjA2dnZrDLv9McffyAzMxNxcXGwt7ev8z5S/WFgsBKdTgcAqiefY2JikJSUhJkzZ2L16tWqL3YRQXFxMdzd3XHlyhU4OjqiWbP/f/g6dOgAGxsblJaWquqo/mS1q6sr+vTpo9ceLy8vtG/fHqtWrUJSUpJyyv/tt9/i2LFj8PX1VfIWFxfDxcVF9eu1vLwcc+fOhZ2dHcLCwgDA4FmCuTZv3qyXtm7dOqxfvx6rVq1ShjW2adMGbdq00ctb1cY7f1GXlZVh6dKlZrclMjISH3zwAQ4ePIiuXbsCAIqKirBmzRqTti8uLoabm5sqrWqqjKrjZujYmOPmzZsoLy/X+6KePXs2RAQRERG1bp+VlYVNmzbhlVdeUT0QN2LECCxevBi7d+9Wnkq+ePEivvrqK/Tq1Qs2NjVffKipzCrr1q1DZWUlLyM1IgwMVhIUFAQAePPNNzFy5Eg0b94cUVFRSE5ORlJSEvLy8jBkyBA4Ozvj7Nmz2Lx5M8aNG4c33ngDe/fuxYQJE/Dss8/i0Ucfxa1bt5Ceng5bW1sMHTpUVUdGRgYWLVoELy8vvWvE1aWmpmLw4MEIDg7GmDFjUFJSgg8//BDt27dXDXXcunUrkpOTMWzYMPj7+6O4uBhr167F8ePHkZqaCk9Pz3rrJ0NPbR85cgTA7evZDzzwQK3bP/PMM3B1dUVsbCxee+01aDQapKenG730YkhiYiLS09MRERGBSZMmQafT4dNPP4Wvry+OHj1qdPtZs2Zh//79GDBgAHx9fVFYWIilS5fCx8dHdbZjiQsXLqBz584YNWqUMgXGzp07sX37dkRERGDw4MFK3vz8fAwfPhyDBg2Cp6cnTpw4gWXLluEf//iH3hQeSUlJ2LBhA4YOHYrJkyfDxcUFy5YtQ3l5uSqvOWVWWbNmDby8vNCzZ8966QOqB9a7702zZ88Wb29vsbGxUY1q2bhxo4SEhIhOpxOdTieBgYEyfvx4OXXqlIjcHpX0wgsvSEBAgDg4OIibm5uEhYVJRkaGqvyTJ09Kjx49RKvVCgCTRiitW7dOAgMDxd7eXtq3by9bt26VoUOHSmBgoJLn0KFDEhUVJd7e3mJnZydOTk4SEhKiN2KmNqGhodKuXTu99NjYWKMjoMwdlXTgwAF5+umnRavVipeXlyQmJsrOnTsFgGRmZprcZhGRo0ePSmhoqDg4OIi3t7fMnj1bli9fbtKopD179sjgwYPFy8tL7OzsxMvLS0aNGiX//e9/jdZbNSrp559/VqVnZmaq9qOkpESef/55eeSRR8TR0VHs7e2lXbt2kpqaKmVlZapti4uLZfDgweLp6Sl2dnbi7+8vU6dO1RtqWuX333+X6OhoadGihWi1WunVq5ccPHjQojJPnjwpAGTy5MlG+4DuHo1IHX460X2lU6dO8PDwsPh+ARE1DRyVRIry8nJl2GGVffv2IScnh6f5RPcRnjGQIi8vD3369MHzzz8PLy8vnDx5EsuWLYOLiwuOHz8Od3d3azexQdy4ccPo8wxubm5WmxCP6G7jzWdSuLq6IigoCGlpaSgqKoJOp8OAAQMwd+7cezYoALeftxgzZkyteTIzM3nWRPcNnjHQfe+PP/7AiRMnas0TFBSkPGVMdK9jYCAiIhXefCYiIhUGBmp0/Pz89BYVys3NRb9+/eDi4gKNRmP2WtaRkZF48cUX66+R/8dQWw1ZuXKlajGmpmbatGm1PhxJ9xYGBmoSYmNjcezYMaSkpCA9PR1PPvmkydseOHAAu3btwtSpUxuwhU2Tn5+fssrcna+XX35ZlS8+Ph45OTnYunWrlVpKdxNHJVGjd+PGDfzwww948803Da5WZsyCBQvQu3dvk6YPN9epU6dqnSeoKejUqRNef/11VVr1SRw9PT0xePBgvPfeexg0aNDdbB5ZAQMDNXpVayuYu9YzABQWFmLbtm1YtmxZvbVHRHDz5k1otdp7YjZQb29vZX2K2gwfPhzPPvsszpw5Y3DCQrp3NO2fOmSSffv24cknn4SDgwMCAgLwySefYMaMGXrTcq9evRpBQUHQarVwc3PDyJEj9dZq6NmzJ9q3b49ff/0VYWFhcHR0hLe3N+bPn292u0QEycnJ8PHxgaOjI8LCwvSGjc6YMUOZ2XXKlCnQaDTw8/MDcHsq6fj4ePj5+cHe3h6tWrVC3759cfjwYWX7bdu24datWwZnLT169ChCQ0Oh1Wrh4+OD5ORkrFixQu9egJ+fHwYOHIidO3fiySefhFarVdbGMHSP4cSJE+jVq5eq3Lqs+1B1jE6fPo24uDi0bNkSLi4uGDNmDP7++2+zy6tNWVmZak0FQ6r68KuvvqrXuqnx4RnDPS47OxsRERFo3bo1Zs6ciYqKCsyaNUtvXv6UlBS8/fbbGD58OMaOHYuioiIsWbIEPXr0QHZ2turXeklJCSIiIhATE4Phw4fjyy+/xNSpU9GhQwf079/f5La98847SE5ORmRkJCIjI3H48GH069cPZWVlSp6YmBi0bNkSCQkJGDVqFCIjI5UpwV9++WV8+eWXmDBhAp544glcunQJ33//PX777Td06dIFwO0pn93d3VXThgPAuXPnEBYWBo1Gg6SkJOh0OqSlpdV4BnDq1CmMGjUKL730El588cUaV227cOECwsLCcOvWLUybNk2ZgbVqfYi6GD58OPz9/TFnzhwcPnwYaWlpaNWqlbLYEHB7Jbry8nKjZTk4OOitorZ37144OjqioqICvr6+SEhIwKRJk/S2dXFxQUBAAA4cOICEhIQ67w81AdaavY/ujqioKHF0dJRz584pabm5udKsWTOpOvx5eXlia2srKSkpqm2PHTsmzZo1U6WHhoYKAFm1apWSVlpaKp6enjJ06FCT21VYWCh2dnYyYMAA1brP06dP15sJ9uzZswJAFixYoCrDxcVFxo8fX2s9ISEhEhQUpJc+ceJE0Wg0kp2draRdunRJ3Nzc9GZK9fX1FQDyzTff6JXj6+uramt8fLwAkJ9++km1ry4uLnrlGlM1i+wLL7ygSo+OjhZ3d3dVWtVxMfaqPsNuVFSUzJs3T7Zs2SLLly+X7t27CwBJTEw02KZ+/frJ448/bvI+UNPEM4Z7WEVFBTIyMhAdHa0szwjcXsO5f//++PrrrwEAmzZtQmVlJYYPH46LFy8q+Tw9PdG2bVtkZmZi+vTpSrqTk5PqmrSdnR26du2qrOBmioyMDJSVlWHixImqS1rx8fE1zttfXcuWLfHTTz/h/Pnzqv2706VLl+Dt7a2X/s0336Bbt27KQjnA7fmQnnvuOSxZskQvv7+/P8LDw422afv27Xj66aeVhXyA2yvaPffcc3VaHAiA3gih7t27Y/Pmzbhy5QpatGgB4PZSr8bWfQag10/VRxmNGTMG/fv3x6JFizBx4kRlIaQqrq6uyM7OrstuUBPCwHAPKywsxI0bNwyOxrkzLTc3FyJicKF7AGjevLnqvY+Pj979CVdXV5MWq6mSn58PAHp1enh4mDz1xPz58xEbG4uHHnoIQUFBiIyMxOjRo/VujIqBh/vz8/NVS09WqWnkkr+/v0ltys/PNzjev6ZLT6Z4+OGHVe+r+qekpEQJDFULP1lKo9EgISEBO3fuxL59+/RuSouIwSVj6d7CwECorKyERqPBjh07DC42X/2adF0XpK9vw4cPV34979q1CwsWLMC8efOwadMm5V6Hu7u7Sb+kjbHkHoGlTOnv4uJi1b2Zmmi1WoPLa97poYceUsqsrqSkxOiqedT0MTDcw1q1agUHBwecPn1a7293pgUEBEBE4O/vrzd+vaFU3QzOzc1V/cIvKioy64u8devWePXVV/Hqq6+isLAQXbp0QUpKihIYAgMDsXHjRoP1G+uXuvD19UVubq5e+qlTpywq15iYmBh8++23RvPFxsZi5cqVteapuiRYfYACAJw9exYdO3asUxup6eBw1XuYra0t+vTpgy1btuD8+fNK+unTp7Fjxw7lfUxMDGxtbTFz5ky9X/0igkuXLtV72/r06YPmzZtjyZIlqjo/+OADk7avqKjQW0OhVatW8PLyQmlpqZLWrVs3lJSU6N3/CA8Pxw8//KCsHw3c/oW8Zs0a83fmDpGRkfjxxx9x8OBBJa2oqMjico1ZuHAhdu/ebfSVmJiobFNcXIyKigpVOeXl5Zg7dy7s7OwQFham+ttff/2F33//Hc8880yD7gtZH88Y7nEzZszArl27EBwcjFdeeQUVFRX48MMP0b59e+VLMSAgAMnJyUhKSkJeXh6GDBkCZ2dnnD17Fps3b8a4cePwxhtv1Gu7PDw88MYbb2DOnDkYOHAgIiMjkZ2djR07dph0qeLq1avw8fHBsGHD0LFjRzg5OSEjIwM///wzFi5cqOQbMGAAmjVrhoyMDIwbN05JT0xMxOrVq9G3b19MnDhRGa768MMPo7i4uM7X0RMTE5Geno6IiAhMmjRJGa7q6+tr1j0Yc9XlHsPWrVuRnJyMYcOGwd/fH8XFxVi7di2OHz+O1NRUeHp6qvJnZGRARDB48OD6ajY1VtYaDkV3z549e6Rz585iZ2cnAQEBkpaWJq+//ro4ODio8m3cuFFCQkJEp9OJTqeTwMBAGT9+vJw6dUrJExoaKu3atdOrIzY2Vnx9fc1qV0VFhcycOVNat24tWq1WevbsKcePH9cbAmpouGppaalMmTJFOnbsKM7OzqLT6aRjx46ydOlSvXoGDRokvXv31kvPzs6W7t27i729vfj4+MicOXPkP//5jwCQCxcuKPl8fX1lwIABBveheltFRI4ePSqhoaHi4OAg3t7eMnv2bFm+fHmdh6sWFRWp0lesWGF2WYYcOnRIoqKixNvbW+zs7MTJyUlCQkJkw4YNBvOPGDFCQkJCLKqTmgaux3CfGjJkCE6cOGHwevi95rvvvkPPnj1x8uTJGkdeVYmPj8cnn3yCa9eu1XjT93504cIF+Pv7Y926dTxjuA/wHsN94MaNG6r3ubm52L59+32zVGX37t3Rr18/vWk7qvfLpUuXkJ6ejpCQEAaFaj744AN06NCBQeE+wTOG+0Dr1q0RFxeHNm3aID8/Hx9//DFKS0uRnZ1t9Bd0XRQVFend1LyTnZ0d3Nzc6r1ec3Xq1Ak9e/bE448/jj///BPLly/H+fPnsWfPHvTo0aPB6r127RquXbtWax4PDw8GJ7Ie617JorshLi5OfH19xd7eXlq0aCHh4eHyyy+/NFh9VVNI1PQKDQ1tsLrNkZSUJG3bthWtViuOjo4SEhIiu3fvbvB6q+4d1Pay9P4BkSV4xkD17sCBA3qXae7k6upab0/qNkVnzpwxOn1ISEgIHBwc7lKLiNQYGIiISIU3n4mISIWBgYiIVBgYiIhIhYGBiIhUGBiIiEiFgYGIiFRMml21srIS58+fh7OzM1dvqiMRwdWrV+Hl5QUbG/PiMfvfcpb0P8BjUB/4GbAus/rflKfgCgoKTFponC/jr4KCArOfQmT/W7f/eQysfwzY/3e3/00K287OzqZkIxPUpS/Z//Wnrn3JY1B/+BmwLlP60qTAwFO3+lOXvmT/15+69iWPQf3hZ8C6TOlL3nwmIiIVBgYiIlJhYCAiIhWThqsaI1aaoLVhLzvWXLix/b3b10Mbsv9r25fGWq9Vrkcb6QoxlqEW1joGlrj7x8CCfpDa22rJsbMWS/ufZwxERKTCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqDAxERKRSL88xGNNwY5qNjS+urd6mNza5rhrjswj3HI2RZytq/V+0oFoL+tiS50Ea6/MTNauln4x0YW3HrlE+U1MPeMZAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkcleGq1oytK3Bhnvdg1PtNjZNb0hjQ7JWXzTN4ZLmEmP72Qi/gxrzUHGeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREakwMBARkUq9PMfQJKeWtWCq3XuJJcfOWse9cT4fYa3/l8Y3Pt8qmuAU4g05ZbqleMZAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkUk/TbjfG4YO1M9ZijUX7dJeHARod9lb3fbFkVFxjHCLYUIztT+1DE63TF/faMWhqGnP/84yBiIhUGBiIiEiFgYGIiFQYGIiISIWBgYiIVBgYiIhIhYGBiIhU6uk5BmMaZly/8bHjtfzNaOmNb9x5jYyNh7ZgDL21nkW4p6aEtph1+uJ+eg6lrhry/9SanwGeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREancpeGqNWvIYW+WlM3hktZV27HTGBu+eR8dOos+P/wft5i1hu1aNs27cTxjICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFas/x8DnBZouS46dZcfd2Njx++d/iv3YuDXV7zeeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREancpeGq1pmaluoDj119qHUacaMjGnkMrMmSqbWtNS23pXjGQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKvX0HEPTnFr2XmHZ1L48dvWhqU6vXFeNbX+tNwX8vYlnDEREpMLAQEREKgwMRESkwsBAREQqDAxERKRiUmBoqjMENkZ16Uv2f/2pa1/yGNQffgasy5S+NCkwXL161eLG0G116Uv2f/2pa1/yGNQffgasy5S+1IgJ4aOyshLnz5+Hs7Mzx/zWkYjg6tWr8PLygo2NeVfw2P+Ws6T/AR6D+sDPgHWZ0/8mBQYiIrp/8OYzERGpMDAQEZEKAwMREakwMBARkQoDAxERqTAwEBGRCgMDERGp/D+ohCISWiB+xAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgv0lEQVR4nO3deVxUVf8H8M8IwsBAgIQioAOSpSkPLj3mgiCBiiipqKht4JL2mISaYtrmgriQZtmTWfpgoqblXqYiqfmopankmoYpRpI5Cq4pCHx/f/jjPl6HZdgc0M/79Zo/OHPuPeeey8x37j3nnqMREQEREdH/q2XuChARUfXCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQFRBixcvhkajQXp6uio9ISEBjRo1goWFBVq0aFEpZezfv79C+yEyBQODmezZsweTJk3C5cuXq6yM+Ph4rFu3rkr27enpCY1GY/R65ZVXqqS8Qrt27VLKunjxYpWWVRHJycmIjY1Fhw4dkJiYiPj4+Pta/kcffYSmTZvC2toa7u7uGDNmDG7cuKHKk5mZiRdeeAFPPPEE7O3t4ejoiDZt2uDzzz9HUTPlrFixAq1atYJWq4WLiwuGDBlS7Dn466+/MHz4cLi7u0Or1cLT0xNDhgxR5Zk0aVKR/0NarbbyGoLKxdLcFXhY7dmzB5MnT0ZUVBQcHR2rpIz4+Hj07dsXvXr1qpL9t2jRAq+//roq7fHHH6+SsgCgoKAA0dHR0Ol0Rl9y1c22bdtQq1YtLFq0CFZWVve17PHjx2PWrFno27cvYmJicPz4ccybNw/Hjh3Dli1blHwXL17EH3/8gb59+6Jhw4a4ffs2tm7diqioKJw8eVIVzObPn48RI0YgKCgIc+bMwR9//IEPPvgA+/fvx969e1Vf5hkZGejQoQMA4JVXXoG7uzsyMzOxb9++Ius7f/582NnZKX9bWFhUdpNQWQmZRUJCggCQM2fOVFkZOp1OIiMjq2Tfer1eunfvXiX7Ls78+fPF2dlZYmJiBIAYDIb7Wn5xEhMTjc7loEGDRKfTVXoZP/30U4n5MjMzxdLSUl588UVV+rx58wSAbNiwodSyevToITqdTvLy8kREJCcnRxwdHcXf318KCgqUfF9//bUAkA8//FC1fbdu3cTLy0suXrxYYjnvvvtutTqP9D+8lWQGkyZNwrhx4wAAXl5eyiV04T3qpUuXonXr1rCxsUGdOnUwYMAAZGRkqPaRlpaGPn36wNXVFVqtFh4eHhgwYACuXLkCANBoNLhx4wY+//xzZf9RUVGl1u2rr77Ck08+Ca1Wi+bNm2Pt2rWIioqCp6dnkflzc3PL9eu9U6dOaN68OY4fP47AwEDY2trC3d0ds2bNKjJ/VlYW3nrrLUyZMqXMV1jr169H9+7d4ebmBmtra3h7e2Pq1KnIz88vc72PHTuGZ555BjY2NvDw8EBcXBwKCgpUeTQaDRITE3Hjxg2l7RcvXgwA2Lp1K/z8/ODo6Ag7Ozs88cQTmDhxosnl5+TkYMyYMXBxcYFOp0Pv3r1hMBiU93/44Qfk5eVhwIABqu0K/16xYkWpZXh6euLvv/9Gbm4uAODo0aO4fPky+vfvD41Go+Tr0aMH7OzsVPs8ceIENm3ahHHjxsHZ2Rm3bt3C7du3SyxPRHD16tUib1+RefBWkhmEh4fj119/xRdffIH3338fjz76KADAxcUF06ZNw9tvv42IiAgMHToUBoMB8+bNg7+/P1JTU+Ho6Ijc3Fx07doVOTk5iI6OhqurK86dO4dvvvkGly9fhoODA5KSkjB06FC0adMGw4YNAwB4e3uXWK+NGzeif//+8PHxwfTp05GdnY0hQ4bA3d29yPzbtm2Dra0t8vPzodfrMXr0aMTExJjcDtnZ2QgJCUF4eDgiIiKwatUqjB8/Hj4+PujWrZsq79tvvw1XV1cMHz4cU6dONbkM4E7HrZ2dHcaMGQM7Ozts27YN77zzDq5evYqEhAST93P+/HkEBgYiLy8Pb7zxBnQ6HT799FPY2Nio8iUlJeHTTz/Fvn37sHDhQgBA+/btcezYMfTo0QP/+Mc/MGXKFFhbW+PUqVPYvXu3yXWIjo6Gk5MT3n33XaSnp2Pu3LkYOXIkVq5cCeBO4ABgVCdbW1sAwIEDB4z2efPmTdy4cQPXr1/H999/j8TERLRr107ZR3H7LExLTU1FQUEBatWqhZSUFABAvXr1EBQUhG3btsHCwgKdO3fG/Pnzi/yB0ahRI1y/fh06nQ69evXC7NmzUa9ePZPbhKqAuS9ZHlZF3UpKT08XCwsLmTZtmirvkSNHxNLSUklPTU0VAPLVV1+VWEZZbyX5+PiIh4eHXLt2TUnbsWOHABC9Xq/KGxYWJjNnzpR169bJokWLpGPHjgJAYmNjTSorICBAAMiSJUuUtJycHHF1dZU+ffqo8h46dEgsLCxky5YtIlL2WxB///23Udrw4cPF1tZWbt26ZdI+RERGjRolAGTv3r1K2oULF8TBwcHoXEZGRhrdSnr//ffLfeuk8FZScHCw6nbO6NGjxcLCQi5fviwiIgcOHBAAMnXqVNX2mzdvFgBiZ2dntO/p06cLAOUVFBQkv//+u/K+wWAQjUYjQ4YMUW134sQJZZvC20avvfaaABBnZ2cJCQmRlStXSkJCgtjZ2Ym3t7fcuHFD2X7u3LkycuRIWbZsmaxatUpiYmLE0tJSGjduLFeuXClzG1HlYWAwk6ICw5w5c0Sj0UhaWpoYDAbVq2nTphIcHCwiIqdPnxYAMnToUNUH7V5lCQznzp0TADJx4kSj93x8fIwCw70KCgqka9euYmlpKRkZGaWWFxAQIHZ2dqovORGRZ599Vlq2bGmUt0ePHsrfFbk3ffXqVTEYDLJ06VIBID///LPJ2z7++OPStm1bo/QRI0aYFBgKv9wXLlwo+fn5Zap34bZffvmlKn3NmjUCQA4dOqSkPf3002JnZyf/+c9/5MyZM/Ltt9+KXq+X2rVri4WFhdG+09PTZevWrbJ8+XJ57rnnJCgoSE6ePKnK079/f7G0tJT33ntPfvvtN9m5c6f4+vpK7dq1BYByzgcPHiwApFmzZqpj/OKLLwSAfPbZZyUe57JlywSATJ8+vUztQ5WLfQzVSFpaGkQEjRs3houLi+r1yy+/4MKFCwDu9EuMGTMGCxcuxKOPPoquXbvi3//+t9K/UJLc3FycP39e9crPz8fZs2cBAI899pjRNkWl3Uuj0WD06NHIy8vDjh07ANy5RXFvWXfz8PBQ3bMGACcnJ2RnZyt/r1y5Env27MHs2bNLLP/69euqcu6+737s2DH07t0bDg4OeOSRR+Di4oIXXngBAExqs0Jnz55F48aNjdKfeOIJk7bv378/OnTogKFDh6JevXoYMGAAvvzyS1Ufxb3tdfPmTdU+GjZsqPrbyckJAFRttnr1avj6+mLw4MHw8vJCWFgYIiIi0LJlS9Xon0J6vR7BwcEYOHAgli1bhkaNGiE4OFhV9oIFCxAaGoqxY8fC29sb/v7+8PHxQVhYGAAo+y283RQREYFatf739dKvXz9YWlpiz549JbbRc889B1dXV+WWFJkH+xiqkYKCAmg0GmzatKnIIXt3f6hnz56NqKgorF+/HsnJyXjttdcwffp0/Pjjj/Dw8Ci2jD179iAwMFCVdubMmUqpf4MGDQDc6SgG7nypDxo0SJVH7upgLG5Y4t15xo0bh379+sHKykrpnC989iMjIwO5ublwc3PDe++9h8mTJyvb6fV6pKen4/LlywgICMAjjzyCKVOmwNvbG1qtFgcPHsT48eONOo6rko2NDXbu3Int27dj48aN2Lx5M1auXIlnnnkGycnJsLCwQP369VXbJCYmqgYNmNJm7u7u2LVrF9LS0nD+/Hk0btwYrq6ucHNzM2k4cd++ffHZZ59h586d6Nq1KwDAwcEB69evx++//4709HTo9Xro9Xq0b98eLi4uyoAANzc3ADDqI7CwsICzs7MqgBWnQYMGyv8QmQcDg5nc+0sZuNM5LCLw8vIy6QPs4+MDHx8fvPXWW9izZw86dOiATz75BHFxccWW4evri61bt6rSXF1dlbH2p06dMtqmqLSinD59GsCdTnQA6Nq1q1FZZZWRkYHly5dj+fLlRu+1atUKvr6++Pnnn/HSSy/Bz89Pea/wl+uOHTtw6dIlrFmzBv7+/sr75QmGer0eaWlpRuknT540eR+1atVCUFCQ8jxAfHw83nzzTWzfvh3BwcFG7dWsWbMy17NQ48aNlSuc48eP488//zRpZFrhlUJRV1MNGzZUrlouX76MAwcOoE+fPsr7rVu3BgCcO3dOtV1ubi4uXryo/G8UR0SQnp6Oli1bllpPqjoMDGai0+kAQPXkc3h4OCZMmIDJkydj6dKlqi92EUFWVhacnZ1x9epV2NrawtLyf6fPx8cHtWrVUkaQFJZx75PVTk5OCA4ONqqPm5sbmjdvjiVLlmDChAnK1cn333+PI0eOQK/XK3mzsrLg4OCg+vV6+/ZtzJgxA1ZWVsoVSf369Y1+AZfV2rVrjdJWrFiBlStXYsmSJcrVUaNGjdCoUSOjvIV1vPsXdW5uLj7++OMy1yU0NBRz587Fvn370KZNGwCAwWDAsmXLTNo+KysLderUUaUVTpVReN6KOjcVVVBQgNjYWNja2qqeTDcYDEV+US9atAgajQatWrUqcb8TJkxAXl4eRo8eraR16tQJdevWxbJlyzBx4kTlwbfFixcjPz8fnTt3LrH8+fPnw2AwICQkpFzHSpWDgcFMCn9ZvfnmmxgwYABq166NsLAwxMXFYcKECUhPT0evXr1gb2+PM2fOYO3atRg2bBjGjh2Lbdu2YeTIkejXrx8ef/xx5OXlISkpCRYWFka/3lJSUjBnzhy4ubnBy8sLTz/9dLF1io+PR8+ePdGhQwcMGjQI2dnZ+Oijj9C8eXNcv35dybdhwwbExcWhb9++8PLyQlZWFpYvX46jR48iPj4erq6uldZORT21/fPPPwMAunXrpgz1LU779u3h5OSEyMhIvPbaa9BoNEhKSirXmPnY2FgkJSUhJCQEMTExynBVvV6Pw4cPl7r9lClTsHPnTnTv3h16vR4XLlzAxx9/DA8PD9XVTkXFxMTg1q1baNGiBW7fvo3ly5dj3759+Pzzz1V9FNOmTcPu3bsREhKChg0bIisrC6tXr8ZPP/2E6OhoVd/SjBkzcPToUTz99NOwtLTEunXrkJycjLi4OPzzn/9U8llbWyMhIQGRkZHw9/fHiy++iN9//x0ffPABOnbsiPDwcCWvXq9XhkdrtVrs2rULK1asQIsWLTB8+PBKaw8qB7N1e5NMnTpV3N3dpVatWqpRLatXrxY/Pz/R6XSi0+mkSZMm8uqrryojRU6fPi2DBw8Wb29v0Wq1UqdOHQkMDJSUlBTV/k+cOCH+/v5iY2MjAEwaobRixQpp0qSJWFtbS/PmzWXDhg3Sp08fadKkiZJn//79EhYWJu7u7mJlZSV2dnbi5+dnNGKmJAEBAdKsWTOj9MjIyFJHQJV1VNLu3bulbdu2YmNjI25ubhIbGytbtmwRALJ9+3aT6ywicvjwYQkICBCtVivu7u4ydepUWbRokUmjkr777jvp2bOnuLm5iZWVlbi5ucnAgQPl119/LbXc4p583r59u9FxJCYmiq+vr+h0OrG3t5egoCDZtm2b0T6Tk5OlR48e4ubmJrVr1xZ7e3vp0KGDJCYmGo0W++abb6RNmzZib28vtra20rZt2xLP9xdffCG+vr5ibW0t9erVk5EjR8rVq1dVeYYOHSpPPvmk2NvbS+3ateWxxx6T8ePHG+Wj+08jwscNqWQtWrSAi4tLhfsLiKhm4HBVUty+fRt5eXmqtB07duDQoUPo1KmTeSpFRPcdrxhIkZ6ejuDgYLzwwgtwc3PDiRMn8Mknn8DBwQFHjx6Fs7OzuatYJW7evFnq8wx16tS577OkEpkLO59J4eTkhNatW2PhwoUwGAzQ6XTo3r07ZsyY8cAGBaDo5y3utX37dl410UODVwz00Pvzzz9x7NixEvO0bt1aecqY6EHHwEBERCrsfCYiIhUGBqp2PD09jaZuSEtLQ5cuXeDg4ACNRlPmtaxDQ0Px8ssvV14l/19RdS3K4sWLVYsx1TRvvPFGiQ9H0oOFgYFqhMjISBw5cgTTpk1DUlISnnrqKZO33b17N5KTkzF+/PgqrGHN5Onpqawyd/fr7qkzAGDUqFE4dOgQNmzYYKaa0v3EUUlU7d28eRM//PAD3nzzTYwcObLM2yckJCAoKMik6cPL6uTJk6rppWuiFi1a4PXXX1el3TuJo6urK3r27In33nsPzz777P2sHpkBAwNVe4VrK5R1rWcAuHDhAjZu3IhPPvmk0uojIrh16xZsbGxgbW1dafs1F3d3d2V9ipJERESgX79+OH36dJETFtKDo2b/1CGT7NixA0899RS0Wi28vb2xYMECTJo0yWha7qVLl6J169awsbFBnTp1MGDAAGRkZKjydOrUCc2bN8fx48cRGBgIW1tbuLu7Y9asWWWul4ggLi4OHh4esLW1RWBgoNGw0UmTJikzu44bNw4ajUZZN/jatWsYNWoUPD09YW1tjbp166Jz5844ePCgsv3GjRuRl5dX5Kylhw8fRkBAAGxsbODh4YG4uDgkJiYa9QV4enqiR48e2LJlC5566inY2NhgwYIFynv39jEcO3YMzzzzjGq/5Vn3ofAcnTp1ClFRUXB0dISDgwMGDRqEv//+u8z7K0lubi5u3LhRYp7CNly/fn2llk3VD68YHnCpqakICQlB/fr1MXnyZOTn52PKlClG0x1PmzYNb7/9NiIiIjB06FAYDAbMmzcP/v7+SE1NVf1az87ORkhICMLDwxEREYFVq1Zh/Pjx8PHxQbdu3Uyu2zvvvIO4uDiEhoYiNDQUBw8eRJcuXZCbm6vkCQ8Ph6OjI0aPHo2BAwciNDRUmRL8lVdewapVqzBy5Eg8+eSTuHTpEnbt2oVffvlFmTJ6z549cHZ2Vk0bDtxZLyAwMBAajQYTJkyATqfDwoULi70COHnyJAYOHIjhw4fj5ZdfLnbVtvPnzyMwMBB5eXl44403lBlYC9eHKI+IiAh4eXlh+vTpOHjwIBYuXIi6deti5syZSp4rV67g9u3bpe5Lq9UareK2bds22NraIj8/H3q9HqNHj0ZMTIzRtg4ODvD29sbu3btVU23TA8hcs/fR/REWFia2trZy7tw5JS0tLU0sLS2l8PSnp6eLhYWFTJs2TbXtkSNHxNLSUpUeEBAgAGTJkiVKWk5Ojri6ukqfPn1MrteFCxfEyspKunfvrprJc+LEiUYzwZ45c0YASEJCgmofDg4O8uqrr5ZYjp+fn7Ru3dooPTo6WjQajaSmpipply5dkjp16hjNlKrX6wWAbN682Wg/er1eVddRo0YJANm7d6/qWB0cHIz2W5rCWWQHDx6sSu/du7c4Ozur0grPS2mve2fYDQsLk5kzZ8q6detk0aJF0rFjRwEgsbGxRdapS5cu0rRpU5OPgWomXjE8wPLz85GSkoLevXsrSy4Cd9Zw7tatG77++msAwJo1a1BQUICIiAhcvHhRyefq6orGjRtj+/btmDhxopJuZ2enuidtZWWFNm3aKCu4mSIlJQW5ubmIjo5W3dIaNWoU4uPjTdqHo6Mj9u7di8zMTNXx3e3SpUtwd3c3St+8eTPatWunLJQD3JkP6fnnn8e8efOM8nt5eSnLXJbk22+/Rdu2bZWFfIA7K9o9//zz5VocCIDRCKGOHTti7dq1uHr1Kh555BEAd5Z6NWXZzHvb6d5RRoMGDUK3bt0wZ84cREdHGy0T6+TkhNTU1PIcBtUgDAwPsAsXLuDmzZtFjsa5Oy0tLQ0iUuRC9wBQu3Zt1d8eHh5G/RNOTk4mLVZT6OzZswBgVKaLi4vJU0/MmjULkZGRaNCgAVq3bo3Q0FC89NJLRh2jUsTD/WfPnkW7du2M0osbueTl5WVSnc6ePVvkeP/ibj2Z4u7FdQAo7ZOdna0EhsKFnypKo9Fg9OjR2LJlC3bs2GHUKS0iRS4ZSw8WBgZCQUEBNBoNNm3aVORi8/fekzZlQfr7ISIiQvn1nJycjISEBMycORNr1qxR+jpMXYC+NBXpI6goU9o7KytL1TdTHBsbGzg4OJSYp0GDBso+75WdnV3qqnlU8zEwPMDq1q0LrVaLU6dOGb13d5q3tzdEBF5eXkbj16tKYWdwWlqa6he+wWAo0xd5/fr1MWLECIwYMQIXLlxAq1atMG3aNCUwNGnSBKtXry6y/NLapTz0ej3S0tKM0k+ePFmh/ZYmPDwc33//fan5IiMjsXjx4hLzFN4SLGo96DNnzsDX17dcdaSag8NVH2AWFhYIDg7GunXrkJmZqaSfOnUKmzZtUv4ODw+HhYUFJk+ebPSrX0Rw6dKlSq9bcHAwateujXnz5qnKnDt3rknb5+fnG62hULduXbi5uSEnJ0dJa9euHbKzs436P7p27YoffvhBWT8auPMLedmyZWU/mLuEhobixx9/xL59+5Q0g8FQ4f2WZvbs2di6dWupr9jYWGWbrKws5Ofnq/Zz+/ZtzJgxA1ZWVggMDFS9d+XKFfz2229o3759lR4LmR+vGB5wkyZNQnJyMjp06IB//etfyM/Px0cffYTmzZsrX4re3t6Ii4vDhAkTkJ6ejl69esHe3h5nzpzB2rVrMWzYMIwdO7ZS6+Xi4oKxY8di+vTp6NGjB0JDQ5GamopNmzaZdKvi2rVr8PDwQN++feHr6ws7OzukpKTgp59+wuzZs5V83bt3h6WlJVJSUjBs2DAlPTY2FkuXLkXnzp0RHR2tDFdt2LAhsrKyyn0fPTY2FklJSQgJCUFMTIwyXFWv15epD6asytPHsGHDBsTFxaFv377w8vJCVlYWli9fjqNHjyI+Ph6urq6q/CkpKRAR9OzZs7KqTdWVuYZD0f3z3XffScuWLcXKykq8vb1l4cKF8vrrr4tWq1XlW716tfj5+YlOpxOdTidNmjSRV199VU6ePKnkCQgIkGbNmhmVERkZKXq9vkz1ys/Pl8mTJ0v9+vXFxsZGOnXqJEePHjUaAlrUcNWcnBwZN26c+Pr6ir29veh0OvH19ZWPP/7YqJxnn31WgoKCjNJTU1OlY8eOYm1tLR4eHjJ9+nT58MMPBYCcP39eyafX66V79+5FHsO9dRUROXz4sAQEBIhWqxV3d3eZOnWqLFq0qNzDVQ0Ggyo9MTGxzPsqyv79+yUsLEzc3d3FyspK7OzsxM/PT7788ssi8/fv31/8/PwqVCbVDFyP4SHVq1cvHDt2rMj74Q+a//73v+jUqRNOnDhR7MirQqNGjcKCBQtw/fr1Yjt9H0bnz5+Hl5cXVqxYwSuGhwD7GB4CN2/eVP2dlpaGb7/99qFZqrJjx47o0qWL0bQd97bLpUuXkJSUBD8/PwaFe8ydOxc+Pj4MCg8JXjE8BOrXr4+oqCg0atQIZ8+exfz585GTk4PU1NRSf0GXh8FgMOrUvJuVlRXq1KlT6eWWVYsWLdCpUyc0bdoUf/31FxYtWoTMzEx899138Pf3r7Jyr1+/juvXr5eYx8XFhcGJzMe8d7LofoiKihK9Xi/W1tbyyCOPSNeuXeXAgQNVVl7hFBLFvQICAqqs7LKYMGGCNG7cWGxsbMTW1lb8/Pxk69atVV5uYd9BSa+K9h8QVQSvGKjS7d692+g2zd2cnJwq7Undmuj06dOlTh/i5+cHrVZ7n2pEpMbAQEREKux8JiIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUjFpdtWCggJkZmbC3t6eqzeVk4jg2rVrcHNzQ61aZYvHbP+Kq0j7AzwHlYGfAfMqU/ub8hRcRkaGSQuN81X6KyMjo8xPIbL9zdv+PAfmPwds//vb/iaFbXt7e1OykQnK05Zs/8pT3rbkOag8/AyYlyltaVJg4KVb5SlPW7L9K09525LnoPLwM2BeprQlO5+JiEiFgYGIiFQYGIiISMWk4aqlETNN0Fq1tx2L33lpx3u/74dWZfuXdCzVtVyz3I8upSmktAwlMNc5qIj7fw4q0A5Scl0rcu7MpaLtzysGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSqZTnGEpTdWOaSxtfXFK5NW9scnlVx2cRHjiaUp6tKPF/sQLFVqCNK/I8SHV9fqJ4JbRTKU1Y0rmrls/UVAJeMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREancl+GqFRnaVmXDvR7AqXarm5o3pLEqmastauZwybKS0o6zGn4HVeeh4rxiICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIilUp5jqFGTi1bgal2HyQVOXfmOu/V8/kIc/2/VL/x+WZRA6cQr8op0yuKVwxERKTCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqlTTtdnUcPliy0mqsqdAx3edhgKUOeyv/sVRkVFx1HCJYVUo7npKHJpqnLR60c1DTVOf25xUDERGpMDAQEZEKAwMREakwMBARkQoDAxERqTAwEBGRCgMDERGpVNJzDKWpmnH9pY8dL+G9Uvde/cadF6u08dAVGENvrmcRHqgpoSvMPG3xMD2HUl5V+X9qzs8ArxiIiEiFgYGIiFQYGIiISIWBgYiIVBgYiIhIhYGBiIhU7tNw1eJV5bC3iuybwyXNq6Rzpylt+OZDdOoq9Pnh/3iFmWvYbsWmeS8drxiIiEiFgYGIiFQYGIiISIWBgYiIVBgYiIhIhYGBiIhUGBiIiEjF7M8x8HmBmqsi565i5720seMPz/8U27F6q6nfb7xiICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUrlPw1XNMzUtVQaeu8pQ4jTipY5o5Dkwp4pMrW2uabkrilcMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkUknPMdTMqWUfFBWb2pfnrjLU1OmVy6u6Ha/5poB/MPGKgYiIVBgYiIhIhYGBiIhUGBiIiEiFgYGIiFRMCgw1dYbA6qg8bcn2rzzlbUueg8rDz4B5mdKWJgWGa9euVbgydEd52pLtX3nK25Y8B5WHnwHzMqUtNWJC+CgoKEBmZibs7e055recRATXrl2Dm5sbatUq2x08tn/FVaT9AZ6DysDPgHmVpf1NCgxERPTwYOczERGpMDAQEZEKAwMREakwMBARkQoDAxERqTAwEBGRCgMDERGp/B93bMV4S6iwZQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -347,7 +341,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgDUlEQVR4nO3deVhV1foH8O8BBI6gCAjiAT0QV7PEJDGvJgqoOaCmOKBmN9DHhuuQYxTa4ICamWbRdSi82kV9ynLIMhUHuN20yURNSy8qGDkEoSmSgsL7+8PL/rk4wDmMB/T7eZ7zPLDO2nutszacd++91l5LJyICIiKi/7GxdgWIiKhuYWAgIiIFAwMRESkYGIiISMHAQERECgYGIiJSMDAQEZGCgYGIiBQMDEREpGBgIKqitWvXQqfTISMjQ0lfvHgx7rvvPtja2iIwMLBayjh48GCV9kNkCQYGKzlw4ABmz56NP/74o8bKWLBgAbZu3Voj+/b19YVOpzN5PffcczVSXrGvvvpKK+v333+v0bKqIikpCTExMejatSvWrFmDBQsW1Gr5RUVFWLFiBQIDA6HX6+Hu7o4ePXrgyJEjWp6MjIxSj6FOp8OHH36o7K+sfDqdDo899phJ+adPn8YTTzwBT09P6PV6tGrVCrNmzTLJt3HjRnTu3BlNmjSBu7s7QkJCsH379upvEKoQO2tX4F514MABzJkzB9HR0WjSpEmNlLFgwQIMGzYMgwcPrpH9BwYGYvr06Upa69ata6Qs4PaX3aRJk+Dk5IS8vLwaK6c67Nu3DzY2Nli9ejXs7e1rvfyxY8di/fr1eOqppzBx4kTk5eUhNTUVWVlZJnlHjRqF8PBwJa1Lly7K74mJiSbbHTx4EG+//TZ69+6tpB8+fBihoaHw9vbG9OnT4e7ujl9++QWZmZlKvvj4eDz//PPo378/Xn/9ddy4cQNr167FgAEDsGnTJgwZMqSyH5+qiIGBKs3b2xtPPvlkrZX33nvvITMzE+PGjcPbb79da+VWRlZWFvR6vVWCwsaNG/HBBx9g8+bNiIiIMJu/Q4cOZo9jae+npKRAp9Nh1KhRWlpRURH+9re/oU2bNkhOToZery9zn/Hx8XjkkUfw2WefQafTAbgd0Ly9vfHBBx8wMFgRbyVZwezZs/HCCy8AAPz8/LRL8uJ71OvWrUNQUBD0ej3c3NwwcuRIk7OttLQ0DB06FF5eXnB0dISPjw9GjhyJK1euALh96Z+Xl4cPPvhA2390dLTZun388cd48MEH4ejoiICAAGzZsgXR0dHw9fUtNX9BQUGlzt5DQ0MREBCAn376CWFhYWjYsCG8vb3xxhtvlJr/0qVLePnllzF37twKX2F9+umn6N+/PwwGAxwcHODv74958+ahsLCwwvU+fvw4evToAb1eDx8fH8TFxaGoqEjJo9PpsGbNGuTl5Wltv3btWgDA7t27ERwcjCZNmsDZ2Rn3338/Zs6caXH5+fn5mDZtGjw8PODk5ISIiAhkZ2creZYuXYpOnTohIiICRUVFFh2fvLw8FBQUVKgemzZtQkhICHx8fLT0pKQkHDt2DK+99hr0ej3+/PPPMtv56tWr8PT01IICADRu3BjOzs7lBhSqBUK17siRIzJq1CgBIG+99ZYkJiZKYmKiXLt2TeLi4kSn08mIESNk+fLlMmfOHGnatKn4+vrK5cuXRUQkPz9f/Pz8xGAwSFxcnCQkJMicOXPkkUcekYyMDBERSUxMFAcHB+nWrZu2/wMHDpRbr88//1x0Op089NBDsnTpUnnllVfE1dVVAgICxGg0KnmNRqPo9XqxtbUVAGI0GmXZsmUWt0FISIgYDAZp0aKFTJ48WZYvXy49evQQAPLFF1+Y5B8/fry0bdtWbt26Ja+99poAkOzsbIvKGjx4sERGRsrixYtlxYoVMnz4cAEgM2bMsLi+IiIXLlwQDw8PcXV1ldmzZ8vixYulVatW8tBDDwkASU9PF5Hbbd+tWzdxcHDQ2v706dNy7Ngxsbe3l44dO8rbb78tK1eulBkzZkj37t3Nlr1mzRoBIA8//LD06NFD4uPjZfr06WJrayuRkZFavitXrohOp5MJEyZIbGysODs7CwDx8/OTjz76SNlnenq6ANDy6HQ66dixo+zatctsfTZv3iwA5P3331fSp0+fLgBk7969EhQUJADE3t5eRowYITk5OUreESNGiK2trbzzzjuSnp4uP//8s4wfP170er3Zv1WqWQwMVrJ48WLly0REJCMjQ2xtbWX+/PlK3h9//FHs7Oy09NTUVAEgH3/8cbllODk5SVRUlMV1ateunfj4+Ehubq6WlpKSon3x32ngwIGyaNEi2bp1q6xevVq6desmACQmJsaiskJCQgSA/Otf/9LS8vPzxcvLS4YOHarkPXLkiNja2mpfWBUNDH/++adJ2rPPPisNGzaUGzduWLQPEZEpU6YIAPn222+1tKysLHFxcTE5llFRUeLk5KRs/9Zbb1Wo3ncqDgy9evWSoqIiLX3q1Klia2srf/zxh4iIHDp0SACIu7u7NGvWTJYvXy7r16+XTp06iU6nkx07dmjbnj17Vnr37i0rVqyQbdu2ybJly6Rly5ZiY2Mjn3/+ebn1GTp0qDg4OGgnK8Uef/xxrfzRo0fLJ598Iq+88orY2dnJo48+qtT9t99+k549ewoA7dW0aVMGhTqAgcFKSgsMS5cuFZ1OJ2lpaZKdna28HnjgAenVq5eIiJw5c0YAyLhx4yQvL6/MMioSGM6dOycAZObMmSbvtWvXziQwlFRUVCR9+vQROzs7yczMNFteSEiIODs7K18UIre/WB5++GGTvAMGDNB+r2hguNPVq1clOztb1q1bJwDk8OHDFm/bunVr6dy5s0n6+PHjLQoMxV/uCQkJUlhYWKF6F2+7ceNGJb34zP3IkSMiIvLll19qX7LffPONli83N1eaNm0qXbt2LbecnJwcadasmdx///1l5rly5Yo4OjpKRESEyXvFV319+/ZV0hcuXCgAZPfu3Uqdxo8fL1FRUfLxxx/LP//5T2nXrp14eXlJWlpaufWkmsU+hjokLS0NIoJWrVrBw8NDef3888/aiBI/Pz9MmzYNCQkJaNq0Kfr06YN//OMfWv9CeQoKCnDx4kXlVVhYiLNnzwIA/vKXv5hsU1paSTqdDlOnTsWtW7eQkpICALh+/bpJWXfy8fFR7i8DgKurKy5fvqz9/tFHH+HAgQNYsmRJueVfu3ZNKefO++7Hjx9HREQEXFxc0LhxY3h4eGidqZa0WbGzZ8+iVatWJun333+/RduPGDECXbt2xbhx49CsWTOMHDkSGzduVPooSrbX9evXlX20bNlS+d3V1RUAtDYrvjfv5+eHv/71r1o+Z2dnDBw4EN999x1u3bpVZh3d3NwwZswYnDx5Er/++mupeTZt2oQbN25g9OjRJu8Vl39nhzQAPPHEEwBuj8YrNnz4cPzyyy9Yu3Ythg0bhjFjxiAlJQUFBQWlDm2l2sNRSXVIUVERdDodduzYAVtbW5P3nZ2dtZ+XLFmC6OhofPrpp0hKSsLzzz+PhQsX4ptvvlE6A0s6cOAAwsLClLT09PRqqX+LFi0A3O4oBm5/qY8ZM0bJI3esJFvaZyyZ54UXXsDw4cNhb2+vdc4XP/uRmZmJgoICGAwGvPnmm5gzZ462ndFoREZGBv744w+EhISgcePGmDt3Lvz9/eHo6IhDhw7hxRdfNOk4rkl6vR5ffvklkpOTsX37duzcuRMfffQRevTogaSkJNja2qJ58+bKNmvWrFEGDZhrM4PBAABo1qyZSR5PT0/cvHkTeXl5cHFxKbOedx7H0v6W1q9fDxcXFwwYMMDkvbLK9/T0BPD/AezMmTPYuXMn3nvvPSWfm5sbgoODsX///jLrRzWPgcFKSp4pA4C/vz9EBH5+fhY9D9CuXTu0a9cOL7/8Mg4cOICuXbti5cqViIuLK7OM9u3bY/fu3Uqal5eXNqzy1KlTJtuUllaaM2fOAAA8PDwAAH369DEpq6IyMzOxYcMGbNiwweS9Dh06oH379jh8+DCeeuopBAcHa+8Vn7mmpKQgJycHmzdvRvfu3bX3KxMMjUYj0tLSTNJPnjxp8T5sbGzQs2dP9OzZE0uXLsWCBQswa9YsJCcno1evXibt1bZt2wrV0WAwwMvLC+fOnTN57/z583B0dESjRo3K3UfJ43inCxcuIDk5GdHR0XBwcDB5PygoCO+//75J+efPn1f2+dtvvwFAqSOWbt68We5VDdUCq97IuoetWLFCAEhqaqqWdurUKbG1tZUnnnjC5N57UVGR/P777yJy+x7vzZs3lfevXr0qNjY2ykibZs2ayaBBgyyuU0BAgEWdzzk5OXLr1i1l24KCAunatavY29vLhQsXzJYVEhIibdu2NUmPiopSytqyZYvJa8SIEVrH9b59+8otZ9u2bQJAUlJStLT8/HwJDAwUAJKcnGy2rsWq2vlcclSOiMj27dsFgNnO3uI+hu+//15JT05ONvkckydPFgCSlJSkpWVnZ0vjxo0lPDxcqXtJv/76q7i6uspDDz1Uaj2WLl2qjToqzYULF8TBwUGCg4OVfpTY2FgBIN99951Wto2NjYSGhip/65mZmeLs7GzSR0G1i1cMVhIUFAQAmDVrFkaOHIkGDRpg4MCBiIuLQ2xsLDIyMjB48GA0atQI6enp2LJlC5555hnMmDED+/btw8SJEzF8+HC0bt0at27dQmJiImxtbTF06FCljD179mDp0qUwGAwm951LWrBgAQYNGoSuXbtizJgxuHz5Mt59910EBATg2rVrWr5t27YhLi4Ow4YNg5+fHy5duoQNGzbg2LFjWLBgAby8vKqtnUp7avvw4cMAgH79+qFp06blbv/oo4/C1dUVUVFReP7556HT6ZCYmKjcrrJUTEwMEhMT0bdvX0yePBlOTk547733YDQacfToUbPbz507F19++SX69+8Po9GIrKwsLF++HD4+PsrVTlXFxsZi48aNGDp0KKZNmwYXFxesXLkSN2/eVKbmiImJwenTp9GzZ08YDAZkZGRg1apVyMvLK/MBwvXr18NgMCA0NLTU9728vDBr1iy8+uqr6Nu3LwYPHowjR47g/fffx6hRo/DII48AuH3lMHbsWCQkJKBnz54YMmQIcnNzsXz5cly/fh2xsbHV1h5UCdaOTPeyefPmibe3t9jY2ChnnJs2bZLg4GBxcnISJycnadOmjUyYMEFOnjwpIrdHJY0dO1b8/f3F0dFR3NzcJCwsTPbs2aPs/8SJE9K9e3fR6/UCwKIRSh9++KG0adNGHBwcJCAgQLZt2yZDhw6VNm3aaHkOHjwoAwcOFG9vb7G3txdnZ2cJDg42GTFTHkuvGEpT0VFJ+/fvl86dO4terxeDwSAxMTGya9euCl8xiIgcPXpUQkJCxNHRUby9vWXevHmyevVqi64Y9u7dK4MGDRKDwSD29vZiMBhk1KhR8t///tdsuRW5YhAROX36tEREREjjxo1Fr9dLjx49tLP1Yhs2bJDu3buLh4eH2NnZSdOmTSUiIkJ++OGHUutw4sQJASDTpk0rt65FRUUSHx8vrVu3lgYNGkiLFi3k5ZdfloKCAiXfzZs3JT4+XgIDA8XZ2VmcnZ0lLCzM7FUg1TydSCVOneieEhgYCA8Pjyr3FxBR/cDhqqQprdMvJSUFR44cKfPWARHdfXjFQJqMjAz06tULTz75JAwGA06cOIGVK1fCxcUFx44dg7u7u7WrWCOuX79u9nkGNzc3q0yIR2QN7HwmjaurK4KCgpCQkIDs7Gw4OTlpUyLfrUEBKP15i5KSk5N51UT3DF4x0D3vwoULOH78eLl5goKCtKeMie52DAxERKRg5zMRESkYGKjO8fX1NVlUKC0tDb1794aLiwt0Ol2F17IODw/H008/XX2V/J/S6lqatWvXKosx1TcvvfRSuQ9H0t2FgYHqhaioKPz444+YP38+EhMT0bFjR4u33b9/P5KSkvDiiy/WYA3rJ19fX22VuTtfzz33nJJvypQpOHLkCLZt22almlJt4qgkqvOuX7+Or7/+GrNmzcLEiRMrvP3ixYvRs2dPi6YPr6iTJ0/CxqZ+n18FBgZi+vTpSlrJSRy9vLwwaNAgvPnmm3j88cdrs3pkBQwMVOcVr61Q0bWeASArKwvbt2/HypUrq60+IoIbN25Ar9eXOsNofePt7a2tT1GeyMhIDB8+HGfOnMF9991XCzUja6nfpzpkkZSUFHTs2BGOjo7w9/fHqlWrMHv2bJNpudetW4egoCDo9Xq4ublh5MiRyMzMVPKEhoYiICAAP/30E8LCwtCwYUN4e3vjjTfeqHC9RARxcXHw8fFBw4YNERYWZjJsdPbs2TAajQBur82g0+ng6+sLAMjNzcWUKVPg6+sLBwcHeHp64rHHHsOhQ4e07bdv345bt26hV69eJuUfPXoUISEh0Ov18PHxQVxcHNasWWPSF+Dr64sBAwZg165d6NixI/R6PVatWqW9V7KP4fjx4+jRo4ey38qs+1B8jE6dOoXo6Gg0adIELi4uGDNmDP78888K7688BQUFyMvLKzdPcRt++umn1Vo21T28YrjLpaamom/fvmjevDnmzJmDwsJCzJ0712Su/fnz5+OVV15BZGQkxo0bh+zsbMTHx6N79+5ITU1VztYvX76Mvn37YsiQIYiMjMQnn3yCF198Ee3atUO/fv0srturr76KuLg4hIeHIzw8HIcOHULv3r1RUFCg5RkyZAiaNGmCqVOnYtSoUQgPD9cWLHruuefwySefYOLEiXjwwQeRk5ODr776Cj///DM6dOgA4PbCRO7u7lpwKXbu3DmEhYVBp9MhNjYWTk5OSEhIKPMK4OTJkxg1ahSeffZZPP3002Wu2nbx4kWEhYXh1q1beOmll7QZWIvXh6iMyMhI+Pn5YeHChTh06BASEhLg6emJRYsWaXmuXLmCmzdvmt2Xo6OjsuATAOzbtw8NGzZEYWEhjEYjpk6dismTJ5ts6+LiAn9/f+zfvx9Tp06t9OehesBas/dR7Rg4cKA0bNhQzp07p6WlpaWJnZ2dFB/+jIwMsbW1lfnz5yvb/vjjj2JnZ6ekh4SEaGshFMvPzxcvLy8ZOnSoxfXKysoSe3t76d+/vzIf/8yZM01mgk1PTxcAsnjxYmUfLi4uMmHChHLLCQ4OlqCgIJP0SZMmiU6nU9bDyMnJETc3N5OZUo1GowCQnTt3muzHaDQqda3Img3mFM8iO3bsWCU9IiJC3N3dlbTi42LuVXKG3YEDB8qiRYtk69atsnr1aunWrZsAkJiYmFLr1Lt3b3nggQcs/gxUP/GK4S5WWFiIPXv2ICIiQltyEbi9hnO/fv3w2WefAQA2b96MoqIiREZG4vfff9fyeXl5oVWrVkhOTsbMmTO1dGdnZ+WetL29PTp16qSt/GWJPXv2oKCgAJMmTVJuaU2ZMkVZM6A8TZo0wbfffovz588rn+9OOTk58Pb2NknfuXMnunTpgsDAQC3Nzc0No0ePRnx8vEl+Pz8/9OnTx2ydvvjiC3Tu3BmdOnXS0jw8PDB69GgsX77cgk9lquQIoW7dumHLli24evUqGjduDOD2Uq93rpVdlpLtVHKU0ZgxY9CvXz8sXboUkyZNMlna09XVFampqZX5GFSPMDDcxbKysnD9+vVSR+PcmZaWlgYRKXWhewBo0KCB8ruPj49J/4Srq6tFi9UUO3v2LACYlOnh4WHx1BNvvPEGoqKi0KJFCwQFBSE8PBxPPfWUSceolPJw/9mzZ9GlSxeT9LJGLvn5+VlUp7Nnz5Y63r+sW0+WaNmypfJ7cftcvnxZCwzFCz9VlU6nw9SpU7Fr1y6kpKSYdEqLSKlLxtLdhYGBUFRUBJ1Ohx07dpS62HzJe9LmFqSvLZGRkdrZc1JSEhYvXoxFixZh8+bNWl+Hu7u7RWfS5lSlj6CqLGnvS5cuKX0zZdHr9XBxcSk3T4sWLbR9lnT58mWzq+ZR/cfAcBfz9PSEo6MjTp06ZfLenWn+/v4QEfj5+ZmMX68pxZ3BaWlpyhl+dnZ2hb7ImzdvjvHjx2P8+PHIyspChw4dMH/+fC0wtGnTBps2bSq1fHPtUhlGoxFpaWkm6SdPnqzSfs0ZMmQI/v3vf5vNFxUVhbVr15abp/iWYMkBCgCQnp6O9u3bV6qOVH9wuOpdzNbWFr169cLWrVtx/vx5Lf3UqVPYsWOH9vuQIUNga2uLOXPmmJz1iwhycnKqvW69evVCgwYNEB8fr5S5bNkyi7YvLCw0WUPB09MTBoMB+fn5WlqXLl1w+fJlk/6PPn364Ouvv9bWjwZunyGvX7++4h/mDuHh4fjmm2/w3XffaWnZ2dlV3q85S5Yswe7du82+YmJitG0uXbqEwsJCZT83b97E66+/Dnt7e4SFhSnvXblyBadPn8ajjz5ao5+FrI9XDHe52bNnIykpCV27dsXf//53FBYW4t1330VAQID2pejv74+4uDjExsYiIyMDgwcPRqNGjZCeno4tW7bgmWeewYwZM6q1Xh4eHpgxYwYWLlyIAQMGIDw8HKmpqdixY4dFtypyc3Ph4+ODYcOGoX379nB2dsaePXvw/fffY8mSJVq+/v37w87ODnv27MEzzzyjpcfExGDdunV47LHHMGnSJG24asuWLXHp0qVK30ePiYlBYmIi+vbti8mTJ2vDVY1GY4X6YCqqMn0M27ZtQ1xcHIYNGwY/Pz9cunQJGzZswLFjx7BgwQJ4eXkp+ffs2QMRwaBBg6qr2lRXWWs4FNWevXv3ysMPPyz29vbi7+8vCQkJMn36dHF0dFTybdq0SYKDg8XJyUmcnJykTZs2MmHCBDl58qSWJyQkRNq2bWtSRlRUlBiNxgrVq7CwUObMmSPNmzcXvV4voaGhcuzYMZMhoKUNV83Pz5cXXnhB2rdvL40aNRInJydp3769LF++3KScxx9/XHr27GmSnpqaKt26dRMHBwfx8fGRhQsXyjvvvCMA5OLFi1o+o9Eo/fv3L/UzlKyriMjRo0clJCREHB0dxdvbW+bNmyerV6+u9HDV7OxsJX3NmjUV3ldpDh48KAMHDhRvb2+xt7cXZ2dnCQ4Olo0bN5aaf8SIERIcHFylMql+4HoM96jBgwfj+PHjpd4Pv9v85z//QWhoKE6cOFHmyKtiU6ZMwapVq3Dt2rUyO33vRRcvXoSfnx8+/PBDXjHcA9jHcA+4fv268ntaWhq++OKLe2apym7duqF3794m03aUbJecnBwkJiYiODiYQaGEZcuWoV27dgwK9wheMdwDmjdvjujoaNx33304e/YsVqxYgfz8fKSmppo9g66M7Oxsk07NO9nb28PNza3ay62owMBAhIaG4oEHHsBvv/2G1atX4/z589i7dy+6d+9eY+Veu3YN165dKzePh4cHgxNZj3XvZFFtiI6OFqPRKA4ODtK4cWPp06eP/PDDDzVWXvEUEmW9QkJCaqzsioiNjZVWrVqJXq+Xhg0bSnBwsOzevbvGyy3uOyjvVdX+A6Kq4BUDVbv9+/eb3Ka5k6ura7U9qVsfnTlzxuz0IcHBwXB0dKylGhGpGBiIiEjBzmciIlIwMBARkYKBgYiIFAwMRESkYGAgIiIFAwMRESksml21qKgI58+fR6NGjbh6UyWJCHJzc2EwGGBjU7F4zPavuqq0P8BjUB34P2BdFWp/S56Cy8zMtGihcb7MvzIzMyv8FCLb37rtz2Ng/WPA9q/d9rcobDdq1MiSbGSByrQl27/6VLYteQyqD/8HrMuStrQoMPDSrfpUpi3Z/tWnsm3JY1B9+D9gXZa0JTufiYhIwcBAREQKBgYiIlJYNFzVHLHSBK01e9ux7J2b+7y1fT+0Jtu/vM9SV8u1yv1oM00h5jKUw1rHoCpq/xhUoR2k/LpW5dhZS1Xbn1cMRESkYGAgIiIFAwMRESkYGIiISMHAQERECgYGIiJSMDAQEZGiWp5jMKfmxjSbG19cXrn1b2xyZdXFZxHuOjozz1aU+7dYhWKr0MZVeR6krj4/UbZy2slME5Z37OrkMzXVgFcMRESkYGAgIiIFAwMRESkYGIiISMHAQERECgYGIiJS1Mpw1aoMbaux4V534VS7dU39G9JYk6zVFvVzuGRFibnPWQe/g+ryUHFeMRARkYKBgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISMHAQEREimp5jqFeTi1bhal27yZVOXbWOu518/kIa/291L3x+VZRD6cQr8kp06uKVwxERKRgYCAiIgUDAxERKRgYiIhIwcBAREQKBgYiIlJU07TbdXH4YPnM1VhXpc9Uy8MAzQ57q/xnqcqouLo4RLCmmPs85Q9NtE5b3G3HoL6py+3PKwYiIlIwMBARkYKBgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISFFNzzGYUzPj+s2PHS/nPbN7r3vjzstkbjx0FcbQW+tZhLtqSugqs05b3EvPoVRWTf6dWvN/gFcMRESkYGAgIiIFAwMRESkYGIiISMHAQERECgYGIiJS1NJw1bLV5LC3quybwyWtq7xjpzM3fPMeOnRV+v/h33iVWWvYbtWmeTePVwxERKRgYCAiIgUDAxERKRgYiIhIwcBAREQKBgYiIlIwMBARkcLqzzHweYH6qyrHrmrH3dzY8Xvnb4rtWLfV1+83XjEQEZGCgYGIiBQMDEREpGBgICIiBQMDEREpGBiIiEhRS8NVrTM1LVUHHrvqUO404mZHNPIYWFNVpta21rTcVcUrBiIiUjAwEBGRgoGBiIgUDAxERKRgYCAiIgUDAxERKRgYiIhIUU3PMdTPqWXvFlWb2pfHrjrU1+mVK6uufV7rTQF/d+IVAxERKRgYiIhIwcBAREQKBgYiIlIwMBARkcKiwFBfZwisiyrTlmz/6lPZtuQxqD78H7AuS9rSosCQm5tb5crQbZVpS7Z/9alsW/IYVB/+D1iXJW2pEwvCR1FREc6fP49GjRpxzG8liQhyc3NhMBhgY1OxO3hs/6qrSvsDPAbVgf8D1lWR9rcoMBAR0b2Dnc9ERKRgYCAiIgUDAxERKRgYiIhIwcBAREQKBgYiIlIwMBARkeL/AAMer25URztJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgMElEQVR4nO3de1hU1d4H8O8IAsNFRMRgwAYkzBJSw3wrQS7e8X5DzQr0WJaX1FQMrQRFzUyzYwet8NFEPWrm7Zw0FdM6aWod8VoZXjDSDBLyloHC7/3Dl/26HGCGmwP6/TzP/MGatfdae+1hfrP3WnstnYgIiIiI/k8da1eAiIhqFgYGIiJSMDAQEZGCgYGIiBQMDEREpGBgICIiBQMDEREpGBiIiEjBwEBERAoGBqJKWrZsGXQ6HTIzM5X0uXPnokmTJrCxsUHLli2rpIzvvvuuUvshsgQDg5Xs3bsXCQkJ+OOPP6qtjFmzZmHjxo3Vsm9fX1/odDqT10svvVQt5RX7+uuvtbJ+//33ai2rMrZv3464uDi0bdsWS5cuxaxZs+5q+UVFRVi0aBFatmwJvV4Pd3d3REZG4vDhwyZ5T506hWeeeQaNGjWCXq9HQEAApk6dquQ5cOAARo4cieDgYNStWxc6na7Usi9duoS4uDgEBARAr9fDaDTib3/7G37++WclX0JCQomfIQcHh6ppBKowW2tX4H61d+9eJCYmIjY2FvXr16+WMmbNmoX+/fujd+/e1bL/li1bYsKECUpa06ZNq6Us4NaX3ZgxY+Dk5IRr165VWzlV4YsvvkCdOnWwZMkS2NnZ3fXyhw0bhpUrV+L555/H6NGjce3aNaSnpyM7O1vJd+jQIYSHh8Pb2xsTJkyAu7s7fv75Z2RlZSn5tmzZgpSUFDz22GNo0qQJfvrppxLLLSoqQseOHfH9999j5MiRaNq0KU6ePInk5GRs27YNP/zwA1xcXJRtFi1aBGdnZ+1vGxubKmoFqigGBqowb29vPPvss3etvA8//BBZWVkYPnw43nvvvbtWbkVkZ2dDr9dbJSisXbsWH3/8MdavX48+ffqUmq+oqAjPPfccmjVrhl27dkGv15ea9+WXX8bkyZOh1+sxevToUgPDvn378O233+L999/HqFGjtPSHH34Yw4YNQ1pamkmd+vfvj4YNG5bzKKk68VaSFSQkJGDSpEkAAD8/P+0Suvge9YoVKxAcHAy9Xo8GDRpg0KBBJr/gMjIy0K9fP3h6esLBwQE+Pj4YNGgQLl26BADQ6XS4du0aPv74Y23/sbGxZuv2ySef4NFHH4WDgwMCAwOxYcMGxMbGwtfXt8T8BQUFFfr1Hh4ejsDAQHz//feIiIiAo6MjvL298fbbb5eYPzc3F6+//jqmT59e7iusTZs2oVu3bjAYDLC3t4e/vz9mzJiBwsLCctf7+PHjiIyMhF6vh4+PD5KSklBUVKTk0el0WLp0Ka5du6a1/bJlywAAO3bsQEhICOrXrw9nZ2c8/PDDmDJlisXl5+fn49VXX4WHhwecnJzQp08f5OTkKHnmz5+PNm3aoE+fPigqKir1/Gzfvh3Hjh3DtGnToNfr8eeff5baJg888ECZgaPY5cuXtfy38/LyAoAS9yEiuHz5MjjRcw0idNcdPnxYBg8eLADk3XffldTUVElNTZWrV69KUlKS6HQ6GThwoCQnJ0tiYqI0bNhQfH19JS8vT0RE8vPzxc/PTwwGgyQlJUlKSookJibKE088IZmZmSIikpqaKvb29hIaGqrtf+/evWXW69///rfodDp57LHHZP78+fLGG2+Im5ubBAYGitFoVPIajUbR6/ViY2MjAMRoNMqCBQssboOwsDAxGAzSuHFjGTt2rCQnJ0tkZKQAkC1btpjkHzlypDRv3lxu3rwp06ZNEwCSk5NjUVm9e/eW6OhomTt3rixatEgGDBggAGTixIkW11dE5NdffxUPDw9xc3OThIQEmTt3rgQEBMhjjz0mAOTMmTMicqvtQ0NDxd7eXmv7U6dOybFjx8TOzk5at24t7733nixevFgmTpwo7dq1M1v20qVLBYC0atVKIiMjZeHChTJhwgSxsbGR6OhoLd+lS5dEp9PJqFGjJD4+XpydnQWA+Pn5yZo1a5R9TpgwQQDIzp07JTg4WACInZ2dDBw4UC5evFhqXUaNGiWlfXXk5OSIk5OTNGvWTHbu3Cm//PKL7N69W4KCguSJJ56QGzduaHmLz2NxHZ2cnGTIkCFy4cIFs+1B1YuBwUrmzp2rfJmIiGRmZoqNjY3MnDlTyXv06FGxtbXV0tPT0wWAfPLJJ2WW4eTkJDExMRbXKSgoSHx8fOTKlSta2u7du7Uv/tv16NFD5syZIxs3bpQlS5ZIaGioAJC4uDiLygoLCxMAsnz5ci0tPz9fPD09pV+/fkrew4cPi42NjWzbtk1EpNyB4c8//zRJGzFihDg6Ospff/1l0T5ERMaNGycAZP/+/Vpadna2uLq6mpzLmJgYcXJyUrZ/9913y1Xv2xUHhg4dOkhRUZGWPn78eLGxsZE//vhDREQOHjwoAMTd3V0eeOABSU5OlpUrV0qbNm1Ep9PJ1q1btW179uyp5R0yZIisW7dO3njjDbG1tZWnn35aKed2ZQUGkVs/MLy8vASA9urcubPyuRIRWbBggYwePVpWrlwp69atk7Fjx4qtra0EBATIpUuXyt1GVHUYGKykpMAwf/580el0kpGRITk5OcrrkUcekQ4dOoiIyOnTpwWADB8+XK5du1ZqGeUJDOfOnRMAMmXKFJP3goKCTALDnYqKiqRz585ia2srWVlZZssLCwsTZ2dnky+fnj17SqtWrUzydu/eXfu7vIHhdpcvX5acnBxZsWKFAJBDhw5ZvG3Tpk3lySefNEkfOXKkRYGh+Ms9JSVFCgsLy1Xv4m3Xrl2rpK9fv14AyOHDh0VE5KuvvtK+jPft26flu3LlijRs2FDatm2rpRVfoXXp0kXZ5+zZswWA7Nixo8S6mAsM+/fvl6ioKJk5c6Zs3LhREhISxNHRUfr372/2OFeuXCkAZPbs2WbzUvVhH0MNkpGRARFBQEAAPDw8lNcPP/ygjSjx8/PDq6++ipSUFDRs2BCdO3fGP/7xD61/oSwFBQW4cOGC8iosLMTZs2cBAA899JDJNiWl3Umn02H8+PG4efMmdu/eDQC4fv26SVm38/HxMRn26Obmhry8PO3vNWvWYO/evZg3b16Z5V+9elUp5/b77sePH0efPn3g6uqKevXqwcPDQ+s0t6TNip09exYBAQEm6Q8//LBF2w8cOBBt27bF8OHD8cADD2DQoEFYu3at0kdxZ3tdv35d2ceDDz6o/O3m5gYAWpsV38P38/PD//zP/2j5nJ2d0aNHDxw4cAA3b95U8g4ePFjZ5zPPPAPg1si58jp9+jQiIiIwbNgwTJkyBb169cK0adOQnJyMdevWYevWrWVu/8wzz8DT0xNpaWnlLpuqDkcl1SBFRUXQ6XTYunVriUP2bh/SN2/ePMTGxmLTpk3Yvn07XnnlFcyePRv79u2Dj49PqWXs3bsXERERStqZM2eqpP6NGzcGcKujGLj1pT506FAlj9zWwVjasMTb80yaNAkDBgyAnZ2d1jlf/OxHVlYWCgoKYDAY8M477yAxMVHbzmg0IjMzE3/88QfCwsJQr149TJ8+Hf7+/nBwcMDBgwcxefJkk47j6qTX6/HVV19h165d+Oyzz/D5559jzZo1iIyMxPbt22FjY6N10hZbunSpMmjAXJsZDAYApp2/ANCoUSPcuHED165dg6ura6l5GzVqBABKgLbUsmXL8Ndff6F79+5Kes+ePQEAe/bsQdeuXcvcR+PGjbXPEFkHA4OVlPSAkL+/P0QEfn5+Fj0PEBQUhKCgILz++uvYu3cv2rZti8WLFyMpKanUMlq0aIEdO3YoaZ6entqwypMnT5psU1JaSU6fPg0A8PDwAAB07tzZpKzyysrKwqpVq7Bq1SqT9x5//HG0aNEChw4dwvPPP4+QkBDtveJfw7t378bFixexfv16tGvXTnu/IsHQaDQiIyPDJP3EiRMW76NOnTpo37492rdvj/nz52PWrFmYOnUqdu3ahQ4dOpi0V/PmzctVR4PBAE9PT5w7d87kvfPnz8PBwUF7jiA4OBgfffSRSd7z588D+P/zWB6//fYbRMRkdNONGzcAQLtaKY2IIDMzE61atSp32VR1GBisxMnJCQCUJ5/79u2L+Ph4JCYmYsWKFcoXu4ggNzcX7u7uuHz5MhwdHWFr+/+nLygoCHXq1EF+fr5Sxp1PVru5uaFDhw4m9TEYDAgMDMTy5csRHx+vXZ18+eWXOHr0KIxGo5Y3NzcXrq6uyq/XGzdu4K233oKdnZ12ReLl5WXyC7i8NmzYYJK2evVqrFmzBsuXL9eujpo0aYImTZqY5C2u4+1XIQUFBUhOTi53XaKiorBgwQIcOHAAbdq0AQDk5ORg5cqVFm2fm5uLBg0aKGnFU2UUn7eSzk15DRw4EO+99x527NiBjh07AgB+//13bNq0CZGRkahT59Yd5F69emHs2LHaVUlxekpKCgBo25ZH06ZNISJYu3atcqXzz3/+EwCUL/ycnByT4LNo0SLk5OSgS5cu5S6bqg4Dg5UEBwcDAKZOnYpBgwahbt266NGjB5KSkhAfH4/MzEz07t0bLi4uOHPmDDZs2IAXX3wREydOxBdffIHRo0djwIABaNq0KW7evInU1FTY2NigX79+ShlpaWmYP38+DAaDyX3nO82aNQu9evVC27ZtMXToUOTl5eH9999HYGAgrl69quXbvHkzkpKS0L9/f/j5+SE3NxerVq3CsWPHMGvWLHh6elZZO5X01PahQ4cAAF27djX7YNTTTz8NNzc3xMTE4JVXXoFOp0NqamqFxszHxcUhNTUVXbp0wdixY+Hk5IQPP/wQRqMRR44cMbv99OnT8dVXX6Fbt24wGo3Izs5GcnIyfHx8lKudyoqPj8fatWvRr18/vPrqq3B1dcXixYtx48YNZWoOT09PTJ06FW+++Sa6dOmC3r174/Dhw/joo48wePBgPPHEE1res2fPIjU1FQC0+ZqKr0yNRiOee+45AEBsbCzeeecdjBgxAunp6WjevDkOHjyIlJQUNG/eXHm4zWg0YuDAgQgKCoKDgwO+/vprrF69Gi1btsSIESOqrD2oAqzU6U0iMmPGDPH29pY6deooo1o+/fRTCQkJEScnJ21M+KhRo+TEiRMicmtU0rBhw8Tf318cHBykQYMGEhERIWlpacr+f/zxR2nXrp3o9XoBYNEIpdWrV0uzZs3E3t5eAgMDZfPmzdKvXz9p1qyZlue7776THj16iLe3t9jZ2Ymzs7OEhISYjJgpS1hYmDRv3twkPSYmxuwIqPKOStqzZ488+eSTotfrxWAwSFxcnGzbtk0AyK5duyyus4jIkSNHJCwsTBwcHMTb21tmzJghS5YssWhU0s6dO6VXr15iMBjEzs5ODAaDDB48WH766Sez5RaPSvr222+V9F27dpV4HKdOnZI+ffpIvXr1RK/XS2RkpBw4cMBkv0VFRbJw4UJp2rSp1K1bVxo3biyvv/66FBQUlFhOSa+wsDAl7y+//CLDhg0TPz8/sbOzEy8vL3nhhRdMztfw4cPl0UcfFRcXF6lbt6489NBDMnnyZLl8+bLZ9qDqpRPh44ZUtpYtW8LDw6PS/QVEVDtwuCppbty4YdI5uHv3bhw+fBjh4eHWqRQR3XW8YiBNZmYmOnTogGeffRYGgwE//vgjFi9eDFdXVxw7dgzu7u7WrmK1uH79utnnGRo0aGCVCfGIrIGdz6Rxc3NDcHAwUlJSkJOTAycnJ3Tr1g1vvfXWPRsUgJKft7jTrl27eNVE9w1eMdB979dff8Xx48fLzBMcHKw9ZUx0r2NgICIiBTufiYhIwcBANY6vr6/JokIZGRno1KkTXF1dodPpyr2WdVRUFF544YWqq+T/KamuJVm2bJmyGFNt89prr5X5cCTdWxgYqFaIiYnB0aNHMXPmTKSmpqJ169YWb7tnzx5s374dkydPrsYa1k6+vr7aKnO3v1566SUl37hx43D48GFs3rzZSjWlu4mjkqjGu379Or755htMnToVo0ePLvf2c+fORfv27S2aPry8Tpw4oc0xVFu1bNkSEyZMUNLunMTR09MTvXr1wjvvvKPNlEr3LgYGqvGK11Yo71rPAJCdnY3PPvsMixcvrrL6iAj++usv6PV62NvbV9l+rcXb21tbn6Is0dHRGDBgAE6fPl3ihIV076jdP3XIIrt370br1q3h4OAAf39/fPDBB0hISDCZlnvFihUIDg6GXq9HgwYNMGjQIGRlZSl5wsPDERgYiO+//x4RERFwdHSEt7c33n777XLXS0SQlJQEHx8fODo6IiIiwmTYaEJCgjaz66RJk6DT6eDr6wsAuHLlCsaNGwdfX1/Y29ujUaNG6NixIw4ePKht/9lnn+HmzZslzlp65MgRhIWFQa/Xw8fHB0lJSVi6dKlJX4Cvry+6d++Obdu2oXXr1tDr9fjggw+09+7sYzh+/DgiIyOV/VZk3Yfic3Ty5EnExsaifv36cHV1xdChQ/Hnn3+We39lKSgowLVr18rMU9yGmzZtqtKyqebhFcM9Lj09HV26dIGXlxcSExNRWFiI6dOnm0x3PHPmTLzxxhuIjo7G8OHDkZOTg4ULF6Jdu3ZIT09Xfq3n5eWhS5cu6Nu3L6Kjo7Fu3TpMnjwZQUFBZhdhud2bb76JpKQkREVFISoqCgcPHkSnTp1QUFCg5enbty/q16+P8ePHY/DgwYiKitKmBH/ppZewbt06jB49Go8++iguXryIr7/+Gj/88AMef/xxALcWJnJ3d1emDQeAc+fOISIiAjqdDvHx8XByckJKSkqpVwAnTpzA4MGDMWLECLzwwgulrtp24cIFRERE4ObNm3jttde0GViL14eoiOjoaPj5+WH27NnaTKWNGjXCnDlztDyXLl3S1jwoi4ODg7LgEwB88cUXcHR0RGFhIYxGI8aPH4+xY8eabOvq6gp/f3/s2bMH48ePr/DxUC1grdn76O7o0aOHODo6yrlz57S0jIwMsbW11dbtzczMFBsbG5k5c6ay7dGjR8XW1lZJDwsLEwCyfPlyLS0/P188PT2lX79+FtcrOztb7OzspFu3bsq6z1OmTDGZCfbMmTMCQObOnavsw9XVVUaNGlVmOSEhIRIcHGySPmbMGNHpdJKenq6lXbx4URo0aGAyU6rRaBQA8vnnn5vsx2g0KnUdN26cAJD9+/crx+rq6mqyX3OKZ5EdNmyYkt6nTx9xd3dX0orPi7nXnTPs9ujRQ+bMmSMbN26UJUuWSGhoqACQuLi4EuvUqVMneeSRRyw+BqqdeMVwDyssLERaWhr69OmjLeMI3FrDuWvXrvjXv/4FAFi/fj2KiooQHR2N33//Xcvn6emJgIAA7Nq1C1OmTNHSnZ2dlXvSdnZ2aNOmjbaCmyXS0tJQUFCAMWPGKLe0xo0bp6wZUJb69etj//79OH/+vHJ8t7t48SK8vb1N0j///HM89dRT2kI5wK35kIYMGYKFCxea5Pfz80Pnzp3N1mnLli148skntYV8gFsroQ0ZMqRCiwMBMBkhFBoaig0bNuDy5cuoV68egFtLvVqyFOed7XTnKKOhQ4eia9eumD9/PsaMGWOyTKybmxvS09MrchhUizAw3MOys7Nx/fr1Ekfj3J6WkZEBESlxoXsAqFu3rvK3j4+PSf+Em5ubRYvVFDt79iwAmJTp4eFh8dQTb7/9NmJiYtC4cWMEBwcjKioKzz//vEnHqJTwcP/Zs2fx1FNPmaSXNnLJz8/PojqdPXu2xPH+pd16ssSDDz6o/F3cPnl5eVpgKF74qbJ0Oh3Gjx+Pbdu2Yffu3Sad0iJS4pKxdG9hYCAUFRVBp9Nh69atJS42f+c9aXML0t8t0dHR2q/n7du3Y+7cuZgzZw7Wr1+v9XW4u7tXaFH7O1Wmj6CyLGnv3NxcpW+mNHq9Hq6urmXmady4sbbPO+Xl5ZldNY9qPwaGe1ijRo3g4OCAkydPmrx3e5q/vz9EBH5+fibj16tLcWdwRkaG8gs/JyenXF/kXl5eGDlyJEaOHIns7Gw8/vjjmDlzphYYmjVrhk8//bTE8s21S0UYjUZkZGSYpJ84caJS+zWnb9+++PLLL83mi4mJwbJly8rMU3xL8M4BCgBw5swZtGjRokJ1pNqDw1XvYTY2NujQoQM2btyI8+fPa+knT57E1q1btb/79u0LGxsbJCYmmvzqFxFcvHixyuvWoUMH1K1bFwsXLlTKXLBggUXbFxYWmqyh0KhRIxgMBuTn52tpTz31FPLy8kz6Pzp37oxvvvlGWz8auPULeeXKleU/mNtERUVh3759OHDggJaWk5NT6f2aM2/ePOzYscPsKy4uTtsmNzcXhYWFyn5u3LiBt956C3Z2doiIiFDeu3TpEk6dOoWnn366Wo+FrI9XDPe4hIQEbN++HW3btsXLL7+MwsJCvP/++wgMDNS+FP39/ZGUlIT4+HhkZmaid+/ecHFxwZkzZ7Bhwwa8+OKLmDhxYpXWy8PDAxMnTsTs2bPRvXt3REVFIT09HVu3brXoVsWVK1fg4+OD/v37o0WLFnB2dkZaWhq+/fZbzJs3T8vXrVs32NraIi0tDS+++KKWHhcXhxUrVqBjx44YM2aMNlz1wQcfRG5uboXvo8fFxSE1NRVdunTB2LFjteGqRqOxXH0w5VWRPobNmzcjKSkJ/fv3h5+fH3Jzc7Fq1SocO3YMs2bNgqenp5I/LS0NIoJevXpVVbWpprLWcCi6e3bu3CmtWrUSOzs78ff3l5SUFJkwYYI4ODgo+T799FMJCQkRJycncXJykmbNmsmoUaPkxIkTWp6wsDBp3ry5SRkxMTFiNBrLVa/CwkJJTEwULy8v0ev1Eh4eLseOHTMZAlrScNX8/HyZNGmStGjRQlxcXMTJyUlatGghycnJJuX07NlT2rdvb5Kenp4uoaGhYm9vLz4+PjJ79mz5+9//LgDkwoULWj6j0SjdunUr8RjurKuIyJEjRyQsLEwcHBzE29tbZsyYIUuWLKnwcNWcnBwlfenSpeXeV0m+++476dGjh3h7e4udnZ04OztLSEiIrF27tsT8AwcOlJCQkEqVSbUD12O4T/Xu3RvHjx8v8X74veY///kPwsPD8eOPP5Y68qrYuHHj8MEHH+Dq1auldvrejy5cuAA/Pz+sXr2aVwz3AfYx3AeuX7+u/J2RkYEtW7bcN0tVhoaGolOnTibTdtzZLhcvXkRqaipCQkIYFO6wYMECBAUFMSjcJ3jFcB/w8vJCbGwsmjRpgrNnz2LRokXIz89Henq62V/QFZGTk2PSqXk7Ozs7NGjQoMrLLa+WLVsiPDwcjzzyCH777TcsWbIE58+fx86dO9GuXbtqK/fq1au4evVqmXk8PDwYnMh6rHsni+6G2NhYMRqNYm9vL/Xq1ZPOnTvLf//732orr3gKidJeYWFh1VZ2ecTHx0tAQIDo9XpxdHSUkJAQ2bFjR7WXW9x3UNarsv0HRJXBKwaqcnv27DG5TXM7Nze3KntStzY6ffq02elDQkJC4ODgcJdqRKRiYCAiIgU7n4mISMHAQERECgYGIiJSMDAQEZGCgYGIiBQMDEREpLBodtWioiKcP38eLi4uXL2pgkQEV65cgcFgQJ065YvHbP/Kq0z7AzwHVYH/A9ZVrva35Cm4rKwsixYa58v8Kysrq9xPIbL9rdv+PAfWPwds/7vb/haFbRcXF0uykQUq0pZs/6pT0bbkOag6/B+wLkva0qLAwEu3qlORtmT7V52KtiXPQdXh/4B1WdKW7HwmIiIFAwMRESkYGIiISGHRcFVzxEoTtFbvbcfSd27ueO/2/dDqbP+yjqWmlmuV+9FmmkLMZSiDtc5BZdz9c1CJdpCy61qZc2ctlW1/XjEQEZGCgYGIiBQMDEREpGBgICIiBQMDEREpGBiIiEjBwEBERIoqeY7BnOob02xufHFZ5da+sckVVROfRbjn6Mw8W1HmZ7ESxVaijSvzPEhNfX6idGW0k5kmLOvc1chnaqoArxiIiEjBwEBERAoGBiIiUjAwEBGRgoGBiIgUDAxERKS4K8NVKzO0rdqGe92DU+3WNLVvSGN1slZb1M7hkuUl5o6zBn4H1eSh4rxiICIiBQMDEREpGBiIiEjBwEBERAoGBiIiUjAwEBGRgoGBiIgUVfIcQ62cWrYSU+3eSypz7qx13mvm8xHW+rzUvPH5VlELpxCvzinTK4tXDEREpGBgICIiBQMDEREpGBiIiEjBwEBERAoGBiIiUlTRtNs1cfhg2czVWFepY7rLwwDNDnur+LFUZlRcTRwiWF3MHU/ZQxOt0xb32jmobWpy+/OKgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISMHAQERECgYGIiJSVNFzDOZUz7h+82PHy3jP7N5r3rjzUpkbD12JMfTWehbhnpoSutKs0xb303MoFVWdn1Nr/g/wioGIiBQMDEREpGBgICIiBQMDEREpGBiIiEjBwEBERIq7NFy1dNU57K0y++ZwSesq69zpzA3fvI9OXaX+f/gZrzRrDdut3DTv5vGKgYiIFAwMRESkYGAgIiIFAwMRESkYGIiISMHAQERECgYGIiJSWP05Bj4vUHtV5txV7rybGzt+/3ym2I41W239fuMVAxERKRgYiIhIwcBAREQKBgYiIlIwMBARkYKBgYiIFHdpuKp1pqalqsBzVxXKnEbc7IhGngNrqszU2taalruyeMVAREQKBgYiIlIwMBARkYKBgYiIFAwMRESkYGAgIiIFAwMRESmq6DmG2jm17L2iclP78txVhdo6vXJF1bTjtd4U8PcmXjEQEZGCgYGIiBQMDEREpGBgICIiBQMDEREpLAoMtXWGwJqoIm3J9q86FW1LnoOqw/8B67KkLS0KDFeuXKl0ZeiWirQl27/qVLQteQ6qDv8HrMuSttSJBeGjqKgI58+fh4uLC8f8VpCI4MqVKzAYDKhTp3x38Nj+lVeZ9gd4DqoC/wesqzztb1FgICKi+wc7n4mISMHAQERECgYGIiJSMDAQEZGCgYGIiBQMDEREpGBgICIixf8CGkiMXgftSHkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -376,7 +370,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdYElEQVR4nO3de1SU1d4H8O+AAsOACIbhgA5IFhWESatTCSKKonjH+6kjWOadxEy8ZXkBvKXZsUxbsPCIubTy2lJT8VJHTcvEa0l4FBZL84CCikagsN8/PDyvmwFmhhkYwO9nrfmDPfvZe89+HuY3z/PsZ2+VEEKAiIjof2ys3QAiImpYGBiIiEjCwEBERBIGBiIikjAwEBGRhIGBiIgkDAxERCRhYCAiIgkDAxERSRgYiMy0bt06qFQqZGdnS+nLli1D+/btYWtri44dO1qkjpMnT5pVDpExGBis5NixY5g3bx5u3bpVZ3UkJSVh+/btdVK2t7c3VCqV3mv8+PF1Ul+FI0eOKHXduHGjTusyx759+xAfH4/OnTsjNTUVSUlJ9Vb3Tz/9hIkTJyIoKAjNmzeHSqWqNu/nn3+OoUOHol27dlCpVIiJiamx7PT0dHTr1g0uLi5wdnZGUFAQNm/eLOUx9dgwpkyqX82s3YDH1bFjxzB//nzExMSgZcuWdVJHUlIShgwZgoEDB9ZJ+R07dsS0adOktKeffrpO6gKA8vJyxMbGQqPR4N69e3VWjyUcPHgQNjY2SElJgZ2dXb3WvXv3biQnJ+OFF15A+/bt8fvvv1ebd8mSJSgqKsLLL7+MP/74o8ZyU1NT8dZbb6FHjx5ISkqCra0tMjMzkZubq5fX2GPDlDKp/jAwUK15enrijTfeqLf6vvjiC+Tm5mLMmDH45JNP6q3e2sjLy4Nara73oAAAEyZMwIwZM6BWqzF58uQaA8P333+vnC04OTlVmy87OxuTJk1CbGysUX1vzLFhaplUf3gpyQrmzZuH6dOnAwB8fHyUU+2Ka9QbNmxAUFAQ1Go13NzcMGLECL1fUFlZWRg8eDA8PDzg4OAALy8vjBgxArdv3wYAqFQq3Lt3D//617+U8g1dJgCAr7/+Gs899xwcHBzg7++Pbdu2ISYmBt7e3lXmLy0trdWv965du8Lf3x+//vorwsLC4OjoCE9PTyxdurTK/AUFBXj//fexYMECk8+wduzYgT59+kCr1cLe3h6+vr5YuHAhysrKTG73hQsX0K1bN6jVanh5eSEhIQHl5eVSHpVKhdTUVNy7d0/p+3Xr1gEA9u/fj+DgYLRs2RJOTk545plnMHv2bKPrLykpwbvvvgt3d3doNBoMGjQI+fn5Up4nn3wSarXaqPJ0Ol2Nl5oqrFmzBmVlZViwYAEA4O7duzA0MbOhY6M2ZVL9YGCwgqioKIwcORIA8PHHHyMtLQ1paWlwd3dHYmIiRo0ahQ4dOmDFihWIi4vDgQMH0KVLF+V+RGlpKSIiInD8+HHExsbis88+w9ixY3H58mUlT1paGuzt7RESEqKUP27cuBrbtWvXLgwfPhzNmzfHokWLEBUVhbfeegu//PJLlfkPHjwIR0dHODk5wdvb2+RffYWFhejVqxcCAwOxfPly+Pn5YcaMGdizZ49e3rlz58LDw8PgZ6jKunXr4OTkhHfffReffPIJgoKC8MEHH2DmzJkmlXP9+nWEhYXh9OnTmDlzJuLi4rB+/Xq9z52WloaQkBDY29srfd+lSxdcuHABffv2RUlJCRYsWIDly5ejf//+OHr0qNFtiI2NxZkzZ/Dhhx9iwoQJ+PbbbzF58mSTPkdtpKenw8/PD7t374aXlxecnZ3RqlUrzJ07Vy8wAsYdG6aWSfVIkFUsW7ZMABBXrlxR0rKzs4Wtra1ITEyU8p47d040a9ZMSc/IyBAAxNdff11jHRqNRkRHRxvdpoCAAOHl5SWKioqUtMOHDwsAQqfTSXn79esnlixZIrZv3y5SUlJESEiIACDi4+ONqis0NFQAEOvXr1fSSkpKhIeHhxg8eLCU98yZM8LW1lbs3btXCCHEhx9+KACI/Px8o+r6888/9dLGjRsnHB0dxV9//WVUGUIIERcXJwCIEydOKGl5eXnCxcVFb19GR0cLjUYjbf/xxx+b1O5HpaamCgAiPDxclJeXK+lTp04Vtra24tatW1VuN2nSJGHsv3lNx0uLFi2Eq6ursLe3F3PnzhXffPON+Pvf/y4AiJkzZ0p5jT02TCmT6hcDg5VUFRhWrFghVCqVyMrKEvn5+dLr2WefFeHh4UIIIS5fviwAiDFjxoh79+5VW4cpgeHq1asCgJg9e7beewEBAXqBobLy8nIREREhmjVrJnJzcw3WFxoaKpycnKQvOSGE6N+/v3jxxRf18vbt21f529TA8Kg7d+6I/Px8sWHDBgFAnD592uhtn376afHKK6/opU+cONGowFDx5Z6cnCzKyspManfFtl999ZWUvnXrVgFAnDlzpsrtLBUYbGxsBACxePFiKb1Xr15CrVaLO3fuVFtudceGOWVS3eKlpAYkKysLQgh06NAB7u7u0uu3335DXl4egIf3Jd59910kJyfjiSeeQEREBD777DPl/kJNSktLcf36delVVlaGnJwcAMBTTz2lt01VaZWpVCpMnToVDx48wOHDhwEAxcXFenU9ysvLS+/6tqurKwoLC5W/N2/ejGPHjmH58uU11n/37l2pnkevu1+4cAGDBg2Ci4sLWrRoAXd3d+XGqDF9ViEnJwcdOnTQS3/mmWeM2n748OHo3LkzxowZgyeffBIjRozAV199JV02qdxfxcXFUhnt2rWT/nZ1dQUAqc/qQsU9i4pLoBVGjhyJ4uJiZGRkVLttVceGuWVS3eKopAakvLwcKpUKe/bsga2trd77j44aWb58OWJiYrBjxw7s27cP77zzDhYtWoTjx4/Dy8ur2jqOHTuGsLAwKe3KlSsWaX/btm0BPLxRDDz8Uh89erSURzxyc7Gqz1g5z/Tp0zF06FDY2dkpN+cr7qPk5uaitLQUWq0WH330EebPn69sp9PpkJ2djVu3biE0NBQtWrTAggUL4OvrCwcHB5w6dQozZsyo12vZarUaP/zwAw4dOoRdu3bhu+++w+bNm9GtWzfs27cPtra2aNOmjbRNamqqNGjAmD6rC1qtFllZWXjyySel9NatWwMwHJgqHxuWKJPqDgODlVQ1EsTX1xdCCPj4+Bj1PEBAQAACAgLw/vvv49ixY+jcuTPWrFmDhISEausIDAzE/v37pTQPDw9lWOWlS5f0tqkqrSqXL18GALi7uwMAIiIi9OoyVW5uLjZu3IiNGzfqvdepUycEBgbi9OnTGDVqFIKDg5X3Kn6NHj58GDdv3sTWrVvRpUsX5f3aBEOdToesrCy99MzMTKPLsLGxQffu3dG9e3esWLECSUlJmDNnDg4dOoTw8HC9/nr++edNbmddCAoKQlZWFq5evYr27dsr6deuXQPw//u8OpWPDUuUSXWHgcFKNBoNAEhPPkdFRWHWrFmYP38+NmzYIH2xCyFQUFCAVq1a4c6dO3B0dESzZv+/+wICAmBjY4OSkhKpjspPVru6uiI8PFyvPVqtFv7+/li/fj1mzZqlnJ18//33OHfuHHQ6nZK3oKAALi4u0q/X+/fvY/HixbCzs1POSNq0aaP3C9hU27Zt00vbtGkTNm/ejPXr1ytnR+3bt5e+XCpUtPHRX9SlpaVYvXq1yW2JjIzEypUr8dNPP+Hll18GAOTn5+PLL780avuCggK4ublJaRVTZVTst6r2TUMwfPhwbNq0CSkpKUhMTATw8Aw3NTUVbm5uCAoKAmD8sWFKmVT/GBispOKgnzNnDkaMGIHmzZujX79+SEhIwKxZs5CdnY2BAwfC2dkZV65cwbZt2zB27Fi89957OHjwICZPnoyhQ4fi6aefxoMHD5CWlgZbW1sMHjxYqiM9PR0rVqyAVquFj48P/va3v1XbpqSkJAwYMACdO3fG6NGjUVhYiE8//RT+/v64e/eukm/nzp1ISEjAkCFD4OPjg4KCAmzcuBHnz59HUlISPDw8LNZPVT21ffr0aQBA79698cQTT9S4/WuvvQZXV1dER0fjnXfegUqlQlpaWq0uvcTHxyMtLQ29evXClClToNFo8MUXX0Cn0+Hs2bMGt1+wYAF++OEH9OnTBzqdDnl5eVi9ejW8vLyksx1z5eTkIC0tDQCUuZUqziJ1Oh3+8Y9/KHm//fZbnDlzBsDDL/CzZ88qefv3748XXngBADBgwAB0794dixYtwo0bNxAYGIjt27fjyJEjWLt2Lezt7QGYdmwYWyZZgfXue9PChQuFp6enMjqjYlTLli1bRHBwsNBoNEKj0Qg/Pz8xadIkkZmZKYR4OCrpzTffFL6+vsLBwUG4ubmJsLAwkZ6eLpV/8eJF0aVLF6FWqwUAo0Yobdq0Sfj5+Ql7e3vh7+8vdu7cKQYPHiz8/PyUPCdPnhT9+vUTnp6ews7OTjg5OYng4GC9ETM1CQ0NFc8//7xeenR0tMERUKaOSjp69Kh45ZVXhFqtFlqtVsTHx4u9e/cKAOLQoUNGt1kIIc6ePStCQ0OFg4OD8PT0FAsXLhQpKSlGjUo6cOCAGDBggNBqtcLOzk5otVoxcuRI8fvvvxust2JU0s8//yylHzp0SO9zVKRV9QoNDZW2j46OrjZvamqqlLeoqEhMmTJFeHh4CDs7OxEQECA2bNgg5TH12DCmTKp/KiH4qCHVrGPHjnB3dzf7fgERNQ4crkqK+/fv48GDB1La4cOHcebMGXTt2tU6jSKiesczBlJkZ2cjPDwcb7zxBrRaLS5evIg1a9bAxcUF58+fR6tWrazdxDpRXFxs8HkGNzc3q0yIR2QNvPlMCldXVwQFBSE5ORn5+fnQaDTo06cPFi9e3GSDAlD18xaVHTp0iGdN9NjgGQM99v744w9cuHChxjxBQUHKU8ZETR0DAxERSXjzmYiIJAwM1OB4e3vrLSqUlZWFnj17wsXFBSqVyuS1rCMjI/H2229brpH/U1Vbq7Ju3TppMabGZubMmTU+HElNCwMDNQrR0dE4d+4cEhMTkZaWhpdeesnobY8ePYp9+/ZhxowZddjCxsnb21tZZe7R1/jx46V8cXFxOHPmDHbu3GmlllJ94qgkavCKi4vx448/Ys6cObVarWzZsmXo3r27UdOHmyozMxM2No3791XHjh0xbdo0Ka3yJI4eHh4YMGAAPvroI/Tv378+m0dWwMBADV7F2gqmrvUMAHl5edi1axfWrFljsfYIIfDXX39BrVY3ifl8PD09lfUpajJs2DAMHToUly9frnLCQmo6GvdPHTLK4cOH8dJLL8HBwQG+vr5Yu3Yt5s2bpzct94YNGxAUFAS1Wg03NzeMGDECubm5Up6uXbvC398fv/76K8LCwuDo6AhPT08sXbrU5HYJIZCQkAAvLy84OjoiLCxMb9jovHnzlJldp0+fDpVKBW9vbwBAUVER4uLi4O3tDXt7e7Ru3Ro9evTAqVOnlO137dqFBw8eVDlr6dmzZxEaGgq1Wg0vLy8kJCQgNTVV716At7c3+vbti7179+Kll16CWq3G2rVrlfcq32O4cOECunXrJpVbm3UfKvbRpUuXEBMTg5YtW8LFxQWjR4/Gn3/+aXJ5NSktLcW9e/dqzFPRhzt27LBo3dTw8IyhicvIyECvXr3Qpk0bzJ8/H2VlZViwYIHeXPeJiYmYO3cuhg0bhjFjxiA/Px+rVq1Cly5dkJGRIf1aLywsRK9evRAVFYVhw4bhm2++wYwZMxAQEIDevXsb3bYPPvgACQkJiIyMRGRkJE6dOoWePXuitLRUyRMVFYWWLVti6tSpGDlyJCIjI5UpwcePH49vvvkGkydPxnPPPYebN2/iyJEj+O2339CpUycADxcmatWqlTRtOABcvXoVYWFhUKlUmDVrFjQaDZKTk6s9A8jMzMTIkSMxbtw4vP3229Wu2nb9+nWEhYXhwYMHmDlzpjIDa8X6ELUxbNgw+Pj4YNGiRTh16hSSk5PRunVrLFmyRMlz+/Zt3L9/32BZDg4O0oJPAHDw4EE4OjqirKwMOp0OU6dOxZQpU/S2dXFxga+vL44ePYqpU6fW+vNQI2Ct2fuofvTr1084OjqKq1evKmlZWVmiWbNmylrA2dnZwtbWViQmJkrbnjt3TjRr1kxKDw0NFQDE+vXrlbSSkhLh4eEhBg8ebHS78vLyhJ2dnejTp4+07vPs2bP1ZoK9cuWKACCWLVsmleHi4iImTZpUYz3BwcEiKChILz02NlaoVCqRkZGhpN28eVO4ubnpzZSq0+kEAPHdd9/plaPT6aS2xsXFCQDixIkT0md1cXHRK9eQillk33zzTSl90KBBolWrVlJaxX4x9Ko8w26/fv3EkiVLxPbt20VKSooICQkRAER8fHyVberZs6d49tlnjf4M1DjxjKEJKysrQ3p6OgYNGgStVqukP/XUU+jduze+/fZbAMDWrVtRXl6OYcOG4caNG0o+Dw8PdOjQAYcOHcLs2bOVdCcnJ+matJ2dHV5++WVllS5jpKeno7S0FLGxsdIlrbi4OCQlJRlVRsuWLXHixAlcu3ZN+nyPunnzJjw9PfXSv/vuO7z66qvKQjnAw/mQXn/9daxatUovv4+PDyIiIgy2affu3XjllVeUhXyAhyuRvf7667VaHAiA3gihkJAQbNu2DXfu3EGLFi0APFzq1ZilMCv3U+VRRqNHj0bv3r2xYsUKxMbG6i0T6+rqyrWYHwMMDE1YXl4eiouLqxyN82haVlYWhBBVLnQPAM2bN5f+9vLy0rs/4erqatRiNRVycnIAQK9Od3d3o6eeWLp0KaKjo9G2bVsEBQUhMjISo0aN0rsxKqp4uD8nJwevvvqqXnp1I5d8fHyMalNOTk6V4/2ru/RkjHbt2kl/V/RPYWGhEhgstdqZSqXC1KlTsXfvXhw+fFjvprQQosolY6lpYWAglJeXQ6VSYc+ePVUuNl/5mrS1FqSvbNiwYcqv53379mHZsmVYsmQJtm7dqtzraNWqlUUWlTfnHoG5jOnvgoIC6d5MddRqNVxcXGrM07ZtW6XMygoLCw2umkeNHwNDE9a6dWs4ODjg0qVLeu89mubr6wshBHx8fPTGr9eVipvBWVlZ0i/8/Px8k77I27Rpg4kTJ2LixInIy8tDp06dkJiYqAQGPz8/bNmypcr6DfVLbeh0OmRlZemlZ2ZmmlWuIVFRUfj+++8N5ouOjsa6detqzFNxSbDyAAUAuHLlCgIDA2vVRmo8OFy1CbO1tUV4eDi2b9+Oa9euKemXLl3Cnj17lL+joqJga2uL+fPn6/3qF0Lg5s2bFm9beHg4mjdvjlWrVkl1rly50qjty8rK9NZQaN26NbRaLUpKSpS0V199FYWFhXr3PyIiIvDjjz8q60cDD38hf/nll6Z/mEdERkbi+PHj+Omnn5S0/Px8s8s1ZPny5di/f7/BV3x8vLJNQUEBysrKpHLu37+PxYsXw87ODmFhYdJ7t2/fxn/+8x+89tprdfpZyPp4xtDEzZs3D/v27UPnzp0xYcIElJWV4dNPP4W/v7/ypejr64uEhATMmjUL2dnZGDhwIJydnXHlyhVs27YNY8eOxXvvvWfRdrm7u+O9997DokWL0LdvX0RGRiIjIwN79uwx6lJFUVERvLy8MGTIEAQGBsLJyQnp6en4+eefsXz5ciVfnz590KxZM6Snp2Ps2LFKenx8PDZs2IAePXogNjZWGa7arl07FBQU1Po6enx8PNLS0tCrVy9MmTJFGa6q0+lMugdjqtrcY9i5cycSEhIwZMgQ+Pj4oKCgABs3bsT58+eRlJQEDw8PKX96ejqEEBgwYIClmk0NlbWGQ1H9OXDggHjxxReFnZ2d8PX1FcnJyWLatGnCwcFByrdlyxYRHBwsNBqN0Gg0ws/PT0yaNElkZmYqeUJDQ8Xzzz+vV0d0dLTQ6XQmtausrEzMnz9ftGnTRqjVatG1a1dx/vx5vSGgVQ1XLSkpEdOnTxeBgYHC2dlZaDQaERgYKFavXq1XT//+/UX37t310jMyMkRISIiwt7cXXl5eYtGiReKf//ynACCuX7+u5NPpdKJPnz5VfobKbRVCiLNnz4rQ0FDh4OAgPD09xcKFC0VKSkqth6vm5+dL6ampqSaXVZWTJ0+Kfv36CU9PT2FnZyecnJxEcHCw+Oqrr6rMP3z4cBEcHGxWndQ4cD2Gx9TAgQNx4cKFKq+HNzX//ve/0bVrV1y8eLHakVcV4uLisHbtWty9e7fam76Po+vXr8PHxwebNm3iGcNjgPcYHgPFxcXS31lZWdi9e/djs1RlSEgIevbsqTdtR+V+uXnzJtLS0hAcHMygUMnKlSsREBDAoPCY4BnDY6BNmzaIiYlB+/btkZOTg88//xwlJSXIyMgw+Au6NvLz8/Vuaj7Kzs4Obm5uFq/XVB07dkTXrl3x7LPP4r///S9SUlJw7do1HDhwAF26dKmzeu/evYu7d+/WmMfd3Z3BiazHuleyqD7ExMQInU4n7O3tRYsWLURERIT45Zdf6qy+iikkqnuFhobWWd2mmDVrlujQoYNQq9XC0dFRBAcHi/3799d5vRX3Dmp6mXv/gMgcPGMgizt69KjeZZpHubq6WuxJ3cbo8uXLBqcPCQ4OhoODQz21iEjGwEBERBLefCYiIgkDAxERSRgYiIhIwsBAREQSBgYiIpIwMBARkcSo2VXLy8tx7do1ODs7c/WmWhJCoKioCFqtFjY2psVj9r/5zOl/gPvAEvg/YF0m9b8xT8Hl5uYatdA4X4Zfubm5Jj+FyP63bv9zH1h/H7D/67f/jQrbzs7OxmQjI9SmL9n/llPbvuQ+sBz+D1iXMX1pVGDgqZvl1KYv2f+WU9u+5D6wHP4PWJcxfcmbz0REJGFgICIiCQMDERFJjBquaoiw0gStdXvZsfrCDX3e+r4eWpf9X9Nnaaj1WuV6tIGuEIYy1MBa+8Ac9b8PzOgHUXNbzdl31mJu//OMgYiIJAwMREQkYWAgIiIJAwMREUkYGIiISMLAQEREEgYGIiKSWOQ5BkPqbkyzofHFNdXb+MYm11ZDfBahyVEZeLaixmPRjGrN6GNzngdpqM9PVK+GfjLQhTXtuwb5TI0F8IyBiIgkDAxERCRhYCAiIgkDAxERSRgYiIhIwsBARESSehmuas7Qtjob7tUEp9ptaBrfkMa6ZK2+aJzDJU0lDH3OBvgd1JCHivOMgYiIJAwMREQkYWAgIiIJAwMREUkYGIiISMLAQEREEgYGIiKSWOQ5hkY5tawZU+02JebsO2vt94b5fIS1jpeGNz7fKhrhFOJ1OWW6uXjGQEREEgYGIiKSMDAQEZGEgYGIiCQMDEREJGFgICIiiYWm3W6IwwdrZqjFKrM+Uz0PAzQ47K32n8WcUXENcYhgXTH0eWoemmidvmhq+6Cxacj9zzMGIiKSMDAQEZGEgYGIiCQMDEREJGFgICIiCQMDERFJGBiIiEhioecYDKmbcf2Gx47X8J7B0hveuPNqGRoPbcYYems9i9CkpoQ2m3X64nF6DqW26vI4teb/AM8YiIhIwsBAREQSBgYiIpIwMBARkYSBgYiIJAwMREQkqafhqtWry2Fv5pTN4ZLWVdO+UxkavvkY7Tqz/n94jJvNWsN2zZvm3TCeMRARkYSBgYiIJAwMREQkYWAgIiIJAwMREUkYGIiISMLAQEREEqs/x8DnBRovc/adefvd0Njxx+eYYj82bI31+41nDEREJGFgICIiCQMDERFJGBiIiEjCwEBERBIGBiIiktTTcFXrTE1LlsB9Zwk1TiNucEQj94E1mTO1trWm5TYXzxiIiEjCwEBERBIGBiIikjAwEBGRhIGBiIgkDAxERCRhYCAiIomFnmNonFPLNhXmTe3LfWcJjXV65dpqaJ/XelPAN008YyAiIgkDAxERSRgYiIhIwsBAREQSBgYiIpIYFRga6wyBDVFt+pL9bzm17UvuA8vh/4B1GdOXRgWGoqIisxtDD9WmL9n/llPbvuQ+sBz+D1iXMX2pEkaEj/Lycly7dg3Ozs4c81tLQggUFRVBq9XCxsa0K3jsf/OZ0/8A94El8H/Aukzpf6MCAxERPT5485mIiCQMDEREJGFgICIiCQMDERFJGBiIiEjCwEBERBIGBiIikvwfHWbFI3q3UvUAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAACVCAYAAABctV1kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgNElEQVR4nO3de1hU1f4/8PeADgwDIiCKgA6IliWEiXksQUDxBpE3RD11xEuZlddUSrOTKKJmmh07iufBR4+ox1veSk3BSxft2EXylnowxeNJDRQqSEKFz+8Pv+wfmwFmuA7g+/U88zywZu291l57Zj77svZaGhEREBER/R8rS1eAiIjqFwYGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgaialq3bh00Gg0yMjJU6UuWLEG7du1gbW2Nzp0710gZ3377bbXWQ2QOBgYLOX78OObOnYtffvml1spISEjArl27amXdXl5e0Gg0Rq8JEybUSnnFvvzyS6WsW7du1WpZ1XHw4EHExsaiR48eWLt2LRISEuqk3KKiIqxbtw7PPfcc2rRpA71eD19fX8THx+OPP/5Q5c3Pz8e4cePg6+sLR0dH2Nvbw9/fHx988AHu3btntO5ffvkF48ePh6urK/R6PUJDQ3Hy5ElVnqNHj5b5uSh+LViwwGi9qamp6NWrFxwdHeHg4ICAgABs2bKlZhuGKqWJpSvwsDp+/Dji4uIwevRoNG/evFbKSEhIQFRUFAYNGlQr6+/cuTOmT5+uSnvkkUdqpSzgwY/epEmToNfr8fvvv9daOTXh8OHDsLKywpo1a6DVauus3Dt37mDMmDHo3r07JkyYgJYtW+Krr77CO++8g0OHDuHw4cPQaDQAHgSGc+fOITw8HF5eXrCyssLx48cxbdo0nDhxAps2bVLWW1RUhIiICJw6dQozZ85EixYtsHLlSoSEhOC7775Dhw4dAACPPfYYkpOTjeqVnJyMgwcPom/fvqr0tWvXYty4cejTpw8SEhJgbW2Nixcv4tq1a7XYSmSSkEUsWbJEAMiVK1dqrQy9Xi8xMTG1sm6DwSARERG1su7yrFq1SlxcXGTKlCkCQLKysuq0/PKsXbvWaF+OGTNG9Hp9jZfxzTffVJivoKBAjh07ZpQeFxcnACQlJcVkWRMnThQAcuPGDSVty5YtAkC2bdumpGVmZkrz5s1l5MiRJtfZvn176dChgyrtypUrotPpZPLkySaXp7rFS0kWMHfuXMycORMA4O3trZxmF1+j3rBhAwICAqDT6eDs7IwRI0YYHUGlp6dj6NChcHNzg62tLTw9PTFixAj8+uuvAACNRoPff/8d//znP5X1jx492mTdtm3bhscffxy2trbw9fXFzp07MXr0aHh5eZWZ/+7du1U6eg8JCYGvry9++OEHhIaGws7ODh4eHnj33XfLzJ+dnY05c+Zg3rx5lT7D2r17NyIiIuDu7g4bGxv4+Phg/vz5KCwsrHS9z507h169ekGn08HT0xPx8fEoKipS5dFoNFi7di1+//13pe3XrVsHAEhJSUFgYCCaN28Oe3t7PProo5g9e7bZ5RcUFOD1119XLucMHjwYWVlZyvtarRbPPPOM0XKDBw8GAJw/f95kGcX7uuRlzu3bt6NVq1YYMmSIkubq6oro6Gjs3r0bBQUF5a7v66+/xqVLl/D888+r0hMTE1FYWIh58+YBAPLy8iAc7Ll+sHRkehidOnVKRo4cKQDk/fffl+TkZElOTpa8vDyJj48XjUYjw4cPl5UrV0pcXJy0aNFCvLy8JCcnR0QeHBV6e3uLu7u7xMfHS1JSksTFxclTTz0lGRkZIiKSnJwsNjY2EhQUpKz/+PHjFdbrk08+EY1GI0888YQsW7ZM3n77bXFychJfX18xGAyqvAaDQXQ6nVhbWwsAMRgMsnz5crPbIDg4WNzd3aVNmzYyZcoUWblypfTq1UsAyL59+4zyv/rqq9KpUye5f/++vPPOO5U6Yxg0aJBER0fLkiVLZNWqVTJs2DABIDNmzDC7viIiN27cEFdXV3FycpK5c+fKkiVLpEOHDvLEE0+ozhiSk5MlKChIbGxslLb/8ccf5ezZs6LVaqVr167ywQcfSGJiosyYMUN69uxpsuziM4Ynn3xSevXqJStWrJDp06eLtbW1REdHm1z+4MGDAkA2bdpk9F5BQYFkZWXJf//7X9mxY4e4ubmJwWCQe/fuKXnat28vAwYMMFo2KSlJAMjp06fLLXvy5MkCQNLT01XpAQEB8sQTT8imTZvEw8NDAIiTk5PMmTNHCgsLTW4T1R4GBgsp61JSRkaGWFtby4IFC1R5z5w5I02aNFHS09LSjE7ry1LZS0l+fn7i6ekpubm5StrRo0eVH/6SIiMjZfHixbJr1y5Zs2aNBAUFCQCJjY01q6zg4GABIOvXr1fSCgoKxM3NTYYOHarKe+rUKbG2tpYDBw6IiFQ6MNy5c8co7eWXXxY7Ozv5448/zFqHiMjUqVMFgJw4cUJJy8zMFEdHR6N9GRMTY3Qp6f3336/yJbDiwBAWFiZFRUVK+rRp08Ta2lp++eWXCpcPCwuTZs2aKQcXJf3rX/8SAMqra9euRj/0er1exo4da7Ts3r17BYB8+umnZZZ7//59adWqlXTr1s3ovWbNmomTk5PY2NjI22+/Ldu3b5c///nPAkDefPPNCreHahcvJdUjO3bsQFFREaKjo3Hr1i3l5ebmhg4dOuDIkSMAAEdHRwDAgQMHcOfOnRop+/r16zhz5gxGjRoFe3t7JT04OBh+fn5G+ffs2YPY2FgMHDgQY8eOxWeffYZ+/fph2bJl+N///mdWmfb29njhhReU/7VaLbp164bLly+r8k2ePBkDBgwwunFpLp1Op/ydm5uLW7duISgoCHfu3MGFCxfMXs++ffvQvXt3dOvWTUlzdXU1ukRSnuJLYLt37za6/GSu8ePHKzePASAoKAiFhYW4evVqucskJCQgNTUVixYtKvMyXGhoKFJSUrBt2zZMmDABTZs2Nbo8mJ+fDxsbG6NlbW1tlffLcujQIfz8889ltlFeXh5ycnIQFxeHefPmYejQodi4cSP69++PDz74ALm5ueVuE9UuBoZ6JD09HSKCDh06wNXVVfU6f/48MjMzATy4L/H6668jKSkJLVq0QL9+/fD3v/9dub9Qkbt37+LmzZuqV8kflvbt2xstU1ZaaRqNBtOmTcP9+/dx9OhRAA9+LEqXVZKnp6fqRw4AnJyckJOTo/y/ZcsWHD9+HEuXLq2w/Ly8PFU5Ja+7nzt3DoMHD4ajoyOaNWsGV1dXJSCZ02bFrl69qvS+KenRRx81a/nhw4ejR48eePHFF9GqVSuMGDECW7duVQWJ0u1V+ge3bdu2qv+dnJwAQNVmJW3ZsgVz5szBuHHj8Morr5SZp1WrVggLC0NUVBRWrVqFZ599Fn369FHtL51OV+Z9hOIusCWDb0kbN26EtbU1hg8fbvRe8TIjR45UpY8cORL5+flIS0src51U+xgY6pGioiJoNBp8+umnSElJMXqtXr1aybt06VKcPn0as2fPRn5+PiZPnoxOnTqZPFo/fvw4WrdurXrVVNfANm3aAHhwoxh48KNUuqySrK2ty1yPlLgBOXPmTAwbNgxarRYZGRnIyMhQbopeu3YN169fBwC89957qnKeeuopAA9uoAYHB+PUqVOYN28ePv74Y6SkpGDx4sUAUOUj96rQ6XT4/PPPkZqair/85S84ffo0hg8fjj59+ig3wku3V+n+/Oa0WbGUlBSMGjUKERERSExMNLueUVFRyMvLw+7du5W01q1b48aNG0Z5i9Pc3d2N3svPz8fOnTsRFhaGVq1aGb1fvEzp91q2bAmg/GBHtY/PMVhI6SNlAPDx8YGIwNvb26znAfz8/ODn54c5c+bg+PHj6NGjBxITExEfH19uGf7+/khJSVGlubm5KX3tL126ZLRMWWllKb4E5OrqCgDo16+fUVmVde3aNWzatEnVp75Yly5d4O/vj++//x6jRo1CYGCg8l7x0ejRo0dx+/Zt7NixAz179lTev3LlSqXrYjAYkJ6ebpR+8eJFs9dhZWWF3r17o3fv3li2bBkSEhLw1ltv4ciRIwgLCzNqr06dOlW6ngBw4sQJDB48GF27dsXWrVvRpIn5X/Xis5SSZ1OdO3fGF198gaKiIlhZ/f/jyRMnTsDOzq7Mz+uePXuQm5tb7qW2gIAApKen46effkK7du2U9OJgX/w5orrHwGAher0egLpL4JAhQzBr1izExcVhw4YNqh92EUF2djZcXFzw22+/wc7OTvVl9/Pzg5WVlep0X6/XGz1Z7eTkhLCwMKP6uLu7w9fXF+vXr8esWbOU+wyfffYZzpw5A4PBoOTNzs6Go6Oj6uj13r17WLRoEbRaLUJDQwGgzLOEytq5c6dR2ubNm7FlyxasX78enp6eAIB27dqpflyKFdex5BH13bt3sXLlykrXJTw8HMuXL8fXX3+t3GfIysrCxo0bzVo+Ozsbzs7OqrTioTKK91tZ+6ayzp8/j4iICHh5eeGTTz4p9zLPrVu34OLiYnQAkZSUBADo2rWrkhYVFYXt27djx44diIqKUpbftm0bIiMjy7z/sGnTJtjZ2SldZUsbPnw4Nm/ejDVr1ihPRBcVFWHt2rVwdnZGQEBA5TeeagQDg4UUf+jfeustjBgxAk2bNkVkZCTi4+Mxa9YsZGRkYNCgQXBwcMCVK1ewc+dOjB8/HjNmzMDhw4cxceJEDBs2DI888gju37+P5ORkWFtbY+jQoaoyUlNTsWzZMri7u8Pb2xt/+tOfyq1TQkICBg4ciB49emDMmDHIycnBhx9+CF9fX+Tl5Sn59uzZg/j4eERFRcHb2xvZ2dnYtGkTzp49i4SEBLi5udVYO5X11Pb3338PABgwYABatGhR4fLPPPMMnJycEBMTg8mTJ0Oj0SA5OblK/eVjY2ORnJyM/v37Y8qUKdDr9fjHP/4Bg8GA06dPm1x+3rx5+PzzzxEREQGDwYDMzEysXLkSnp6eqrOd6sjNzUW/fv2Qk5ODmTNnYu/evar3fXx88PTTTwN48LxMYmIiBg0ahHbt2iE3NxcHDhxASkoKIiMj0atXL2W5qKgodO/eHWPGjMEPP/ygPPlcWFiIuLg4o3pkZ2dj//79GDp0qKozQ0kDBw5E7969sXDhQty6dQv+/v7YtWsXvvzyS6xevbrMYEN1xII9oh568+fPFw8PD7GyslJ1d/zoo48kMDBQ9Hq96PV66dixo7z22mty8eJFERG5fPmyjB07Vnx8fMTW1lacnZ0lNDRUUlNTVeu/cOGC9OzZU3Q6nQAwq+vq5s2bpWPHjmJjYyO+vr6yZ88eGTp0qHTs2FHJ8+2330pkZKR4eHiIVqsVe3t7CQwMlK1bt5q97cHBwdKpUyej9JiYGKOusaVVtrvqsWPHpHv37qLT6cTd3V1iY2PlwIEDAkCOHDlidp1FRE6fPi3BwcFia2srHh4eMn/+fFmzZo1Z3VUPHTokAwcOFHd3d9FqteLu7i4jR46U//znPybLLe/J5yNHjqi248qVK6qup6VfJT8D33zzjQwbNkzatm0rNjY2otfrpUuXLrJs2TLVMwzFsrOzZdy4ceLi4iJ2dnYSHBxc7pPYiYmJAkD27NlT4Xbl5ubKlClTxM3NTbRarfj5+cmGDRtMtgfVLo0IHzWkinXu3Bmurq7Vvl9ARA0DeyWR4t69e7h//74q7ejRozh16hRCQkIsUykiqnM8YyBFRkYGwsLC8MILL8Dd3R0XLlxAYmIiHB0dcfbsWbi4uFi6irUiPz/f5PMMzs7OdTpKKpEl8eYzKZycnBAQEICkpCRkZWVBr9cjIiICixYtarRBAXjwvMWYMWMqzHPkyBGeNdFDg2cM9NC7ceMGzp07V2GegIAA5SljosaOgYGIiFR485mIiFQYGKje8fLyMppUKD09HX379oWjoyM0Gk2l57IODw/HSy+9VHOV/D9l1bUs69atU03G1NC8+eabFT4cSY0LAwM1CDExMThz5gwWLFiA5ORk1XANphw7dgwHDx7EG2+8UYs1bJi8vLyUWeZKviZMmKDKN3XqVJw6dQp79uyxUE2pLrFXEtV7+fn5+Oqrr/DWW29h4sSJlV5+yZIl6N27t1nDh1fWxYsXVYPKNUSdO3fG9OnTVWmlB8Vzc3PDwIED8d577+G5556ry+qRBTAwUL1XPLdCZed6BoDMzEzs3bu3UsNOmyIi+OOPP6DT6RrFeD4eHh6qCZPKEx0djWHDhuHy5ctlDlhIjUfDPtQhsxw9ehRdu3aFra0tfHx8sHr1asydO9doVM0NGzYgICAAOp0Ozs7OGDFihNFcDSEhIfD19cUPP/yA0NBQ2NnZwcPDA++++26l6yUiiI+Ph6enJ+zs7BAaGmrUbXTu3LnKyK4zZ86ERqNRJqvPzc3F1KlT4eXlBRsbG7Rs2RJ9+vTByZMnleX37t2L+/fvlzlq6enTpxEcHAydTgdPT0/Ex8dj7dq1RvcCvLy88Oyzz+LAgQPo2rUrdDqdMjdGWfcYzp07h169eqnWW5V5H4r30aVLlzB69Gg0b94cjo6OGDNmTI3N3Ffs7t27RrO2lVbchiXnaaDGiWcMjVxaWhr69++P1q1bIy4uDoWFhZg3b57RWPcLFizA22+/jejoaLz44ovIysrCihUr0LNnT6SlpamO1nNyctC/f38MGTIE0dHR2L59O9544w34+flhwIABZtftr3/9K+Lj4xEeHo7w8HCcPHkSffv2xd27d5U8Q4YMQfPmzTFt2jSMHDkS4eHhymidEyZMwPbt2zFx4kQ8/vjjuH37Nr788kucP38eXbp0AfBgYiIXFxfVsOEA8NNPPyE0NBQajQazZs2CXq9HUlJSuWcAFy9exMiRI/Hyyy/jpZdeKnfWtps3byI0NBT379/Hm2++qYzAWt7Q1+aIjo6Gt7c3Fi5ciJMnTyIpKQktW7ZUJhsCHsydcO/ePZPrsrW1NRrt9PDhw7Czs0NhYSEMBgOmTZuGKVOmGC3r6OgIHx8fHDt2DNOmTavy9lADYKnR+6huREZGip2dnfz0009KWnp6ujRp0kSKd39GRoZYW1vLggULVMueOXNGmjRpokoPDg4WALJ+/XolraCgQNzc3GTo0KFm1yszM1O0Wq1ERESoJrefPXu20SigxSOGLlmyRLUOR0dHee211yosJzAwUAICAozSJ02aJBqNRtLS0pS027dvi7Ozs9FIqQaDodwJ7w0Gg6quU6dOFQBy4sQJ1bY6OjoardeU4lFkx44dq0ofPHiwuLi4qNKK94upV+kRdiMjI2Xx4sWya9cuWbNmjQQFBQkAiY2NLbNOffv2lccee8zsbaCGiWcMjVhhYSFSU1MxePBg1dSL7du3x4ABA/Dxxx8DAHbs2IGioiJER0fj1q1bSj43Nzd06NABR44cwezZs5V0e3t71TVprVaLbt26KTO4mSM1NRV3797FpEmTVJe0pk6dioSEBLPW0bx5c5w4cQLXr18vc2pJALh9+zY8PDyM0j/99FM8/fTTykQ5wIPxkJ5//nmsWLHCKL+3tzf69etnsk779u1D9+7dlYl8gAczkT3//PNVmhwIgFEPoaCgIOzcuRO//fYbmjVrBuDBVK/mTIVZup1K9zIaM2YMBgwYgGXLlmHSpEnKREjFnJycOBfzQ4CBoRHLzMxEfn5+mb1xSqalp6dDRMqc6B4AmjZtqvrf09PT6P6Ek5OTWZPVFLt69SoAGJXp6upq9tAT7777LmJiYtCmTRsEBAQgPDwco0aNMroxKmU83H/16lVlwpqSyuu55O3tbVadrl69WmZ///IuPZmjbdu2qv+L2ycnJ0cJDDU125lGo8G0adNw4MABHD161OimtIiUOWUsNS4MDISioiJoNBrs37+/zMnmS1+TrsyE9LUpOjpaOXo+ePAglixZgsWLF2PHjh3KvQ4XF5camVS+OvcIqsuc9s7OzlbdmymPTqeDo6NjhXnatGmjrLO0nJwck7PmUcPHwNCItWzZEra2trh06ZLReyXTfHx8ICLw9vYuc1L32lB8Mzg9PV11hJ+VlVWpH/LWrVvj1VdfxauvvorMzEx06dIFCxYsUAJDx44d8dFHH5VZvql2qQqDwYD09HSj9IsXL1ZrvaYMGTIEn332mcl8MTExWLduXYV5ii8Jlu6gAABXrlyBv79/lepIDQe7qzZi1tbWCAsLw65du3D9+nUl/dKlS9i/f7/y/5AhQ2BtbY24uDijo34Rwe3bt2u8bmFhYWjatClWrFihKnP58uVmLV9YWGg0h0LLli3h7u6OgoICJe3pp59GTk6O0f2Pfv364auvvlLmjwYeHCFv3Lix8htTQnh4OP7973/j66+/VtKysrKqvV5Tli5dipSUFJOv2NhYZZns7GwUFhaq1nPv3j0sWrQIWq0WoaGhqvd+/fVX/Pjjj3jmmWdqdVvI8njG0MjNnTsXBw8eRI8ePfDKK6+gsLAQH374IXx9fZUfRR8fH8THx2PWrFnIyMjAoEGD4ODggCtXrmDnzp0YP348ZsyYUaP1cnV1xYwZM7Bw4UI8++yzCA8PR1paGvbv32/WpYrc3Fx4enoiKioK/v7+sLe3R2pqKr755hssXbpUyRcREYEmTZogNTUV48ePV9JjY2OxYcMG9OnTB5MmTVK6q7Zt2xbZ2dlVvo4eGxuL5ORk9O/fH1OmTFG6qxoMhkrdg6msqtxj2LNnD+Lj4xEVFQVvb29kZ2dj06ZNOHv2LBISEuDm5qbKn5qaChHBwIEDa6raVF9ZqjsU1Z1Dhw7Jk08+KVqtVnx8fCQpKUmmT58utra2qnwfffSRBAYGil6vF71eLx07dpTXXntNLl68qOQJDg6WTp06GZURExMjBoOhUvUqLCyUuLg4ad26teh0OgkJCZGzZ88adQEtq7tqQUGBzJw5U/z9/cXBwUH0er34+/vLypUrjcp57rnnpHfv3kbpaWlpEhQUJDY2NuLp6SkLFy6Uv/3tbwJAbt68qeQzGAwSERFR5jaUrquIyOnTpyU4OFhsbW3Fw8ND5s+fL2vWrKlyd9WsrCxV+tq1ayu9rrJ8++23EhkZKR4eHqLVasXe3l4CAwNl69atZeYfPny4BAYGVqtMahg4H8NDatCgQTh37lyZ18Mbmy+++AIhISG4cOFCuT2vik2dOhWrV69GXl5euTd9H0Y3b96Et7c3Nm/ezDOGhwDvMTwE8vPzVf+np6dj3759D81UlUFBQejbt6/RsB2l2+X27dtITk5GYGAgg0Ipy5cvh5+fH4PCQ4JnDA+B1q1bY/To0WjXrh2uXr2KVatWoaCgAGlpaSaPoKsiKyvL6KZmSVqtFs7OzjVebmV17twZISEheOyxx/Dzzz9jzZo1uH79Og4dOoSePXvWWrl5eXnIy8urMI+rqyuDE1mOZa9kUV0YPXq0GAwGsbGxkWbNmkm/fv3ku+++q7XyioeQKO8VHBxca2VXxqxZs6RDhw6i0+nEzs5OAgMDJSUlpdbLLb53UNGruvcPiKqDZwxU444dO2Z0maYkJyenGntStyG6fPmyyeFDAgMDYWtrW0c1IlJjYCAiIhXefCYiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlIxa3TVoqIiXL9+HQ4ODpy9qYpEBLm5uXB3d4eVVeXiMdu/+qrT/gD3QU3gd8CyKtX+5jwFd+3aNbMmGufL9OvatWuVfgqR7W/Z9uc+sPw+YPvXbfubFbYdHBzMyUZmqEpbsv1rTlXbkvug5vA7YFnmtKVZgYGnbjWnKm3J9q85VW1L7oOaw++AZZnTlrz5TEREKgwMRESkwsBAREQqZnVXNUUsNEBr7V52LH/lpra3rq+H1mb7V7Qt9bVci1yPNtEUYipDBSy1D6qj7vdBNdpBKq5rdfadpVS3/XnGQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKjXyHIMptden2VT/4orKbXh9k6uqPj6L0OhoTDxbUeFnsRrFVqONq/M8SH19fqJ8FbSTiSasaN/Vy2dqagDPGIiISIWBgYiIVBgYiIhIhYGBiIhUGBiIiEiFgYGIiFTqpLtqdbq21Vp3r0Y41G590/C6NNYmS7VFw+wuWVliajvr4W9Qfe4qzjMGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSqZHnGBrk0LLVGGq3ManOvrPUfq+fz0dY6vNS//rnW0QDHEK8NodMry6eMRARkQoDAxERqTAwEBGRCgMDERGpMDAQEZEKAwMREanU0LDb9bH7YMVM1VhTrW2q426AJru9VX1bqtMrrj52Eawtpran4q6JlmmLxrYPGpr63P48YyAiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlJhYCAiIpUaeo7BlNrp12+673gF75lce/3rd14uU/2hq9GH3lLPIjSqIaGrzTJt8TA9h1JVtfk5teR3gGcMRESkwsBAREQqDAxERKTCwEBERCoMDEREpMLAQEREKnXUXbV8tdntrTrrZndJy6po32lMdd98iHZdtb4//IxXm6W67VZvmHfTeMZAREQqDAxERKTCwEBERCoMDEREpMLAQEREKgwMRESkwsBAREQqFn+Ogc8LNFzV2XfV2++m+o4/PJ8ptmP91lB/33jGQEREKgwMRESkwsBAREQqDAxERKTCwEBERCoMDEREpFJH3VUtMzQt1QTuu5pQ4TDiJns0ch9YUnWG1rbUsNzVxTMGIiJSYWAgIiIVBgYiIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSqaHnGBrm0LKNRfWG9uW+qwkNdXjlqqpv22u5IeAbJ54xEBGRCgMDERGpMDAQEZEKAwMREakwMBARkYpZgaGhjhBYH1WlLdn+Naeqbcl9UHP4HbAsc9rSrMCQm5tb7crQA1VpS7Z/zalqW3If1Bx+ByzLnLbUiBnho6ioCNevX4eDgwP7/FaRiCA3Nxfu7u6wsqrcFTy2f/VVp/0B7oOawO+AZVWm/c0KDERE9PDgzWciIlJhYCAiIhUGBiIiUmFgICIiFQYGIiJSYWAgIiIVBgYiIlL5f2PheCWiqxKVAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -484,21 +478,21 @@ "\n", "Colored tokens, raw html:\n", "\n", - " <ADJLIST_START> (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; <ADJLIST_END>   <ORIGIN_START> (1,3) <ORIGIN_END>   <TARGET_START> (2,3) <TARGET_END>   <PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH_END> \n", + " <ADJLIST_START> (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; <ADJLIST_END>   <ORIGIN_START> (1,3) <ORIGIN_END>   <TARGET_START> (2,3) <TARGET_END>   <PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH_END> \n", "\n", "Colored tokens, raw latex:\n", "\n", - "\\colorbox[RGB]{ 234,209,220 }{ \\texttt{ (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; } } \\colorbox[RGB]{ 217,210,233 }{ \\texttt{ (1,3) } } \\colorbox[RGB]{ 207,226,243 }{ \\texttt{ (2,3) } } \\colorbox[RGB]{ 217,234,211 }{ \\texttt{ (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) } }\n", + "\\colorbox[RGB]{ 217,210,233 }{ \\texttt{ (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; } } \\colorbox[RGB]{ 217,234,211 }{ \\texttt{ (1,3) } } \\colorbox[RGB]{ 234,209,220 }{ \\texttt{ (2,3) } } \\colorbox[RGB]{ 207,226,243 }{ \\texttt{ (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) } }\n", "\n", "Colored tokens, terminal:\n", "\n", - "\u001b[30m\u001b[48;2;234;209;220m (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; \u001b[0m \u001b[30m\u001b[48;2;217;210;233m (1,3) \u001b[0m \u001b[30m\u001b[48;2;207;226;243m (2,3) \u001b[0m \u001b[30m\u001b[48;2;217;234;211m (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) \u001b[0m\n" + "\u001b[30m\u001b[48;2;217;210;233m (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; \u001b[0m \u001b[30m\u001b[48;2;217;234;211m (1,3) \u001b[0m \u001b[30m\u001b[48;2;234;209;220m (2,3) \u001b[0m \u001b[30m\u001b[48;2;207;226;243m (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) \u001b[0m\n" ] }, { "data": { "text/html": [ - " <ADJLIST_START> (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; <ADJLIST_END>   <ORIGIN_START> (1,3) <ORIGIN_END>   <TARGET_START> (2,3) <TARGET_END>   <PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH_END> " + " <ADJLIST_START> (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <--> (4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4) ; (4,2) <--> (4,3) ; (0,0) <--> (0,1) ; (0,3) <--> (0,2) ; (4,4) <--> (3,4) ; (4,3) <--> (4,4) ; (4,1) <--> (4,2) ; (2,1) <--> (2,2) ; (1,4) <--> (0,4) ; (1,2) <--> (0,2) ; (2,4) <--> (2,3) ; (4,0) <--> (3,0) ; (2,2) <--> (3,2) ; (1,2) <--> (2,2) ; (1,3) <--> (0,3) ; (3,2) <--> (3,3) ; (0,2) <--> (0,1) ; (3,1) <--> (3,2) ; (1,3) <--> (1,4) ; <ADJLIST_END>   <ORIGIN_START> (1,3) <ORIGIN_END>   <TARGET_START> (2,3) <TARGET_END>   <PATH_START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0) (4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH_END> " ], "text/plain": [ "" @@ -509,7 +503,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAW3UlEQVR4nO3dXYxU9fnA8WeAMlADo2hZ2AK6NaaoKLUiRGna/MNGYojRNjFtgw3ViyZmLSBJq7YB0lhd0dQ0KsGXC7Wpor0oviW2IVQxRN4U8CW2gJHUjXZBE51BrKvZPf8L28UVEC2zPLPL55P8LvbM7J4nh9nzzZkdZkpFURQBAEfZkOwBADg2CRAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkGJY9wGf19PTEW2+9FaNGjYpSqZQ9DgBfUlEUsXfv3mhubo4hQw59ndNwAXrrrbdi4sSJ2WMAcIQ6OjpiwoQJh7y94Z6CGzVqVPYIANTB4c7nDRcgT7sBDA6HO583XIAAODYIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABS9FuAli9fHqecckqMGDEiZsyYEZs2beqvXQEwAPVLgB555JFYtGhRLF26NLZs2RJTp06N2bNnx549e/pjdwAMREU/mD59etHW1tb7dXd3d9Hc3Fy0t7cf9nur1WoREZZlWdYAX9Vq9XPP93W/Avroo4/ihRdeiNbW1t5tQ4YMidbW1li/fv0B9+/q6opardZnATD41T1A77zzTnR3d0dTU1Of7U1NTdHZ2XnA/dvb26NSqfQunwUEcGxIfxXc9ddfH9VqtXd1dHRkjwTAUVD3T0Q96aSTYujQobF79+4+23fv3h3jxo074P7lcjnK5XK9xwCgwdX9Cmj48OFx7rnnxpo1a3q39fT0xJo1a+L888+v9+4AGKDqfgUUEbFo0aKYN29eTJs2LaZPnx6///3vY9++fXHFFVf0x+4AGID6JUA//OEP4+23344lS5ZEZ2dnfOtb34q//OUvB7wwAYBjV6koiiJ7iE+r1WpRqVSyxwDgCFWr1Rg9evQhb09/FRwAxyYBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIgRb+8F9xg0WDvUkSDKJWyJ+BAjfGP0gjnjNIAeoC6AgIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRAimHZA/D5SqVS9ggcoMge4D8a4bHRKMeCgcgVEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkKLuAWpvb4/zzjsvRo0aFWPHjo1LL700tm/fXu/dADDA1T1Aa9eujba2ttiwYUOsXr06Pv7447jwwgtj37599d4VAANYqSiKfv1Aj7fffjvGjh0ba9euje9+97uHvX+tVotKpdKfI31h/XxovhCfB9SI8h8Xn2iEx4Zj8WnOGX1Vq9UYPXr0IW/v9w+kq1arERExZsyYg97e1dUVXV1dvV/XarX+HgmABtCvL0Lo6emJhQsXxsyZM2PKlCkHvU97e3tUKpXeNXHixP4cCYAG0a9PwV111VXx1FNPxbp162LChAkHvc/BroAaJUIupzm4/MfFJxrhseFYfJpzRl9pT8FdffXV8eSTT8azzz57yPhERJTL5SiXy/01BgANqu4BKooifv7zn8eqVavimWeeiZaWlnrvAoBBoO4Bamtri4ceeigee+yxGDVqVHR2dkZERKVSiZEjR9Z7dwAMUHX/G9Chnn+877774qc//elhv9/LsPtqpOdz+a/8x8UnGuGx4Vh8mnNGX0f9b0CN8A8AQOPzXnAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKTo9w+k48h4Z4n9GuktRviPojH+TYqGeUsgvgxXQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIMSx7gEZWKpWyR4DG1iC/IqVGGYQvxRUQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQot8DdPPNN0epVIqFCxf2964AGED6NUCbN2+Ou+++O84+++z+3A0AA1C/Bej999+PuXPnxr333hsnnHBCf+0GgAGq3wLU1tYWc+bMidbW1s+9X1dXV9RqtT4LgMGvXz4R9eGHH44tW7bE5s2bD3vf9vb2+M1vftMfYwDQwOp+BdTR0RELFiyIBx98MEaMGHHY+19//fVRrVZ7V0dHR71HAqABlYqiKOr5Ax999NH4/ve/H0OHDu3d1t3dHaVSKYYMGRJdXV19bvusWq0WlUqlniNBndX1V+YIlLIHgM9VrVZj9OjRh7y97k/BzZo1K15++eU+26644oqYPHlyXHvttZ8bHwCOHXUP0KhRo2LKlCl9th133HFx4oknHrAdgGOXd0IAIEXd/wZ0pPwNiMbXKL8y/gZEYzvc34BcAQGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkKJfPg9o8GiU//EOjalRfkNKDTNJIxg475DhCgiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBTDsgfgcErZA/AZRVFkjxAREaUGeGg0wAj/0SiTNMZjY6BwBQRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASNEvAXrzzTfj8ssvjxNPPDFGjhwZZ511Vjz//PP9sSsABqi6vxv2u+++GzNnzoz/+7//i6eeeiq+9rWvxc6dO+OEE06o964AGMDqHqBly5bFxIkT47777uvd1tLSUu/dADDA1f0puMcffzymTZsWl112WYwdOzbOOeecuPfeew95/66urqjVan0WAINf3QP0+uuvx4oVK+K0006Lv/71r3HVVVfF/Pnz44EHHjjo/dvb26NSqfSuiRMn1nskABpQqajzxzsOHz48pk2bFs8991zvtvnz58fmzZtj/fr1B9y/q6srurq6er+u1WoNFKFG+HTDRvmkR/6rcT4R1WOj8TTCY6NxHhfVajVGjx59yNvrfgU0fvz4OOOMM/psO/300+ONN9446P3L5XKMHj26zwJg8Kt7gGbOnBnbt2/vs23Hjh1x8skn13tXAAxgdQ/QNddcExs2bIibbropXnvttXjooYfinnvuiba2tnrvCoCBrOgHTzzxRDFlypSiXC4XkydPLu65554v/L3VarWIT55IbYBVNMDKPgbWZ1ejyD4O1sFW9vmisR4X1Wr1cx/DdX8RwpGq1WpRqVSyx/iPRjg0jfMHRT7RKL8yXoTQiBrhsdE4j4uj/iIEAPgiBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKer+iagMTo3yv//Zz7/Jft4VYmByBQRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQIph2QMwMJRKpewRgEHGFRAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIEXdA9Td3R2LFy+OlpaWGDlyZJx66qlxww03RFEU9d4VAANY3d8Ne9myZbFixYp44IEH4swzz4znn38+rrjiiqhUKjF//vx67w6AAaruAXruuefikksuiTlz5kRExCmnnBIrV66MTZs21XtXAAxgdX8K7oILLog1a9bEjh07IiLixRdfjHXr1sVFF1100Pt3dXVFrVbrswA4BhR11t3dXVx77bVFqVQqhg0bVpRKpeKmm2465P2XLl1aRESDrqIBVvYxsCzri6/s80VjnTOq1ern9qLuAVq5cmUxYcKEYuXKlcVLL71U/OEPfyjGjBlT3H///Qe9/4cfflhUq9Xe1dHRkX7QPJgsy/rfVvb5orHOGUc9QBMmTCjuvPPOPttuuOGG4pvf/OYX+v5qtZp+0DyYLMv631b2+aKxzhmHC1Dd/wb0wQcfxJAhfX/s0KFDo6enp967AmAAq/ur4C6++OK48cYbY9KkSXHmmWfG1q1b47bbbosrr7yy3rsCYAArFUVR1PMH7t27NxYvXhyrVq2KPXv2RHNzc/z4xz+OJUuWxPDhww/7/bVaLSqVSj1HOgJ1PTT/o1L2AMAX5pzxadVqNUaPHn3I2+seoCMlQJ/VOA8m4HCcMz7tcAHyXnAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABS1P3NSKm3RnhrD4D6cwUEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBTDsgdobKXsAQAGLVdAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUXzpAzz77bFx88cXR3NwcpVIpHn300T63F0URS5YsifHjx8fIkSOjtbU1du7cWa95ARgkvnSA9u3bF1OnTo3ly5cf9PZbbrklbr/99rjrrrti48aNcdxxx8Xs2bPjww8/POJhARhEiiMQEcWqVat6v+7p6SnGjRtX3Hrrrb3b3nvvvaJcLhcrV678Qj+zWq0WEWFZlmUN8FWtVj/3fF/XvwHt2rUrOjs7o7W1tXdbpVKJGTNmxPr16w/6PV1dXVGr1fosAAa/ugaos7MzIiKampr6bG9qauq97bPa29ujUqn0rokTJ9ZzJAAaVPqr4K6//vqoVqu9q6OjI3skAI6CugZo3LhxERGxe/fuPtt3797de9tnlcvlGD16dJ8FwOBX1wC1tLTEuHHjYs2aNb3barVabNy4Mc4///x67gqAAW7Yl/2G999/P1577bXer3ft2hXbtm2LMWPGxKRJk2LhwoXx29/+Nk477bRoaWmJxYsXR3Nzc1x66aX1nBuAge7LvvT66aefPujL7ebNm9f7UuzFixcXTU1NRblcLmbNmlVs3779C/98L8O2LMsaHOtwL8MuFUVRRAOp1WpRqVSyxwDgCFWr1c/9u376q+AAODYJEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSNFyAGuyNGQD4Hx3ufN5wAdq7d2/2CADUweHO5w33XnA9PT3x1ltvxahRo6JUKv1PP6NWq8XEiROjo6PjmP98IceiL8djP8diP8div3oci6IoYu/evdHc3BxDhhz6OudLfxxDfxsyZEhMmDChLj/LB9zt51j05Xjs51js51jsd6TH4ou8qXTDPQUHwLFBgABIMSgDVC6XY+nSpVEul7NHSedY9OV47OdY7OdY7Hc0j0XDvQgBgGPDoLwCAqDxCRAAKQQIgBQCBECKQRmg5cuXxymnnBIjRoyIGTNmxKZNm7JHOura29vjvPPOi1GjRsXYsWPj0ksvje3bt2eP1RBuvvnmKJVKsXDhwuxRUrz55ptx+eWXx4knnhgjR46Ms846K55//vnssVJ0d3fH4sWLo6WlJUaOHBmnnnpq3HDDDcfEe1I+++yzcfHFF0dzc3OUSqV49NFH+9xeFEUsWbIkxo8fHyNHjozW1tbYuXNnXWcYdAF65JFHYtGiRbF06dLYsmVLTJ06NWbPnh179uzJHu2oWrt2bbS1tcWGDRti9erV8fHHH8eFF14Y+/btyx4t1ebNm+Puu++Os88+O3uUFO+++27MnDkzvvKVr8RTTz0Vr776avzud7+LE044IXu0FMuWLYsVK1bEnXfeGX//+99j2bJlccstt8Qdd9yRPVq/27dvX0ydOjWWL19+0NtvueWWuP322+Ouu+6KjRs3xnHHHRezZ8+ODz/8sH5DFIPM9OnTi7a2tt6vu7u7i+bm5qK9vT1xqnx79uwpIqJYu3Zt9ihp9u7dW5x22mnF6tWri+9973vFggULskc66q699triO9/5TvYYDWPOnDnFlVde2WfbD37wg2Lu3LlJE+WIiGLVqlW9X/f09BTjxo0rbr311t5t7733XlEul4uVK1fWbb+D6groo48+ihdeeCFaW1t7tw0ZMiRaW1tj/fr1iZPlq1arERExZsyY5EnytLW1xZw5c/o8Po41jz/+eEybNi0uu+yyGDt2bJxzzjlx7733Zo+V5oILLog1a9bEjh07IiLixRdfjHXr1sVFF12UPFmuXbt2RWdnZ5/flUqlEjNmzKjrubTh3oz0SLzzzjvR3d0dTU1NfbY3NTXFP/7xj6Sp8vX09MTChQtj5syZMWXKlOxxUjz88MOxZcuW2Lx5c/YoqV5//fVYsWJFLFq0KH71q1/F5s2bY/78+TF8+PCYN29e9nhH3XXXXRe1Wi0mT54cQ4cOje7u7rjxxhtj7ty52aOl6uzsjIg46Ln0v7fVw6AKEAfX1tYWr7zySqxbty57lBQdHR2xYMGCWL16dYwYMSJ7nFQ9PT0xbdq0uOmmmyIi4pxzzolXXnkl7rrrrmMyQH/605/iwQcfjIceeijOPPPM2LZtWyxcuDCam5uPyeNxtA2qp+BOOumkGDp0aOzevbvP9t27d8e4ceOSpsp19dVXx5NPPhlPP/103T7mYqB54YUXYs+ePfHtb387hg0bFsOGDYu1a9fG7bffHsOGDYvu7u7sEY+a8ePHxxlnnNFn2+mnnx5vvPFG0kS5fvGLX8R1110XP/rRj+Kss86Kn/zkJ3HNNddEe3t79mip/nu+7O9z6aAK0PDhw+Pcc8+NNWvW9G7r6emJNWvWxPnnn5842dFXFEVcffXVsWrVqvjb3/4WLS0t2SOlmTVrVrz88suxbdu23jVt2rSYO3dubNu2LYYOHZo94lEzc+bMA16Ov2PHjjj55JOTJsr1wQcfHPCBaUOHDo2enp6kiRpDS0tLjBs3rs+5tFarxcaNG+t7Lq3byxkaxMMPP1yUy+Xi/vvvL1599dXiZz/7WXH88ccXnZ2d2aMdVVdddVVRqVSKZ555pvjXv/7Vuz744IPs0RrCsfoquE2bNhXDhg0rbrzxxmLnzp3Fgw8+WHz1q18t/vjHP2aPlmLevHnF17/+9eLJJ58sdu3aVfz5z38uTjrppOKXv/xl9mj9bu/evcXWrVuLrVu3FhFR3HbbbcXWrVuLf/7zn0VRFMXNN99cHH/88cVjjz1WvPTSS8Ull1xStLS0FP/+97/rNsOgC1BRFMUdd9xRTJo0qRg+fHgxffr0YsOGDdkjHXURcdB13333ZY/WEI7VABVFUTzxxBPFlClTinK5XEyePLm45557skdKU6vVigULFhSTJk0qRowYUXzjG98ofv3rXxddXV3Zo/W7p59++qDniHnz5hVF8clLsRcvXlw0NTUV5XK5mDVrVrF9+/a6zuDjGABIMaj+BgTAwCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACn+HyFDT7ODig3KAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAW3UlEQVR4nO3dXYxU9fnA8WeAMlADo2hZ2AK6NaaoKLUiRGna/MNGYojRNjFtgw3ViyZmLSBJq7YB0lhd0dQ0KsGXC7Wpor0oviW2IVQxRN4U8CW2gJHUjXZBE51BrKvZPf8L28UVEC2zPLPL55P8LvbM7J4nh9nzzZkdZkpFURQBAEfZkOwBADg2CRAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkGJY9wGf19PTEW2+9FaNGjYpSqZQ9DgBfUlEUsXfv3mhubo4hQw59ndNwAXrrrbdi4sSJ2WMAcIQ6OjpiwoQJh7y94Z6CGzVqVPYIANTB4c7nDRcgT7sBDA6HO583XIAAODYIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABS9FuAli9fHqecckqMGDEiZsyYEZs2beqvXQEwAPVLgB555JFYtGhRLF26NLZs2RJTp06N2bNnx549e/pjdwAMREU/mD59etHW1tb7dXd3d9Hc3Fy0t7cf9nur1WoREZZlWdYAX9Vq9XPP93W/Avroo4/ihRdeiNbW1t5tQ4YMidbW1li/fv0B9+/q6opardZnATD41T1A77zzTnR3d0dTU1Of7U1NTdHZ2XnA/dvb26NSqfQunwUEcGxIfxXc9ddfH9VqtXd1dHRkjwTAUVD3T0Q96aSTYujQobF79+4+23fv3h3jxo074P7lcjnK5XK9xwCgwdX9Cmj48OFx7rnnxpo1a3q39fT0xJo1a+L888+v9+4AGKDqfgUUEbFo0aKYN29eTJs2LaZPnx6///3vY9++fXHFFVf0x+4AGID6JUA//OEP4+23344lS5ZEZ2dnfOtb34q//OUvB7wwAYBjV6koiiJ7iE+r1WpRqVSyxwDgCFWr1Rg9evQhb09/FRwAxyYBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIgRb+8F9xg0WDvUkSDKJWyJ+BAjfGP0gjnjNIAeoC6AgIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRAimHZA/D5SqVS9ggcoMge4D8a4bHRKMeCgcgVEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkKLuAWpvb4/zzjsvRo0aFWPHjo1LL700tm/fXu/dADDA1T1Aa9eujba2ttiwYUOsXr06Pv7447jwwgtj37599d4VAANYqSiKfv1Aj7fffjvGjh0ba9euje9+97uHvX+tVotKpdKfI31h/XxovhCfB9SI8h8Xn2iEx4Zj8WnOGX1Vq9UYPXr0IW/v9w+kq1arERExZsyYg97e1dUVXV1dvV/XarX+HgmABtCvL0Lo6emJhQsXxsyZM2PKlCkHvU97e3tUKpXeNXHixP4cCYAG0a9PwV111VXx1FNPxbp162LChAkHvc/BroAaJUIupzm4/MfFJxrhseFYfJpzRl9pT8FdffXV8eSTT8azzz57yPhERJTL5SiXy/01BgANqu4BKooifv7zn8eqVavimWeeiZaWlnrvAoBBoO4Bamtri4ceeigee+yxGDVqVHR2dkZERKVSiZEjR9Z7dwAMUHX/G9Chnn+877774qc//elhv9/LsPtqpOdz+a/8x8UnGuGx4Vh8mnNGX0f9b0CN8A8AQOPzXnAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKTo9w+k48h4Z4n9GuktRviPojH+TYqGeUsgvgxXQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIMSx7gEZWKpWyR4DG1iC/IqVGGYQvxRUQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQot8DdPPNN0epVIqFCxf2964AGED6NUCbN2+Ou+++O84+++z+3A0AA1C/Bej999+PuXPnxr333hsnnHBCf+0GgAGq3wLU1tYWc+bMidbW1s+9X1dXV9RqtT4LgMGvXz4R9eGHH44tW7bE5s2bD3vf9vb2+M1vftMfYwDQwOp+BdTR0RELFiyIBx98MEaMGHHY+19//fVRrVZ7V0dHR71HAqABlYqiKOr5Ax999NH4/ve/H0OHDu3d1t3dHaVSKYYMGRJdXV19bvusWq0WlUqlniNBndX1V+YIlLIHgM9VrVZj9OjRh7y97k/BzZo1K15++eU+26644oqYPHlyXHvttZ8bHwCOHXUP0KhRo2LKlCl9th133HFx4oknHrAdgGOXd0IAIEXd/wZ0pPwNiMbXKL8y/gZEYzvc34BcAQGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkKJfPg9o8GiU//EOjalRfkNKDTNJIxg475DhCgiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBTDsgfgcErZA/AZRVFkjxAREaUGeGg0wAj/0SiTNMZjY6BwBQRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASNEvAXrzzTfj8ssvjxNPPDFGjhwZZ511Vjz//PP9sSsABqi6vxv2u+++GzNnzoz/+7//i6eeeiq+9rWvxc6dO+OEE06o964AGMDqHqBly5bFxIkT47777uvd1tLSUu/dADDA1f0puMcffzymTZsWl112WYwdOzbOOeecuPfeew95/66urqjVan0WAINf3QP0+uuvx4oVK+K0006Lv/71r3HVVVfF/Pnz44EHHjjo/dvb26NSqfSuiRMn1nskABpQqajzxzsOHz48pk2bFs8991zvtvnz58fmzZtj/fr1B9y/q6srurq6er+u1WoNFKFG+HTDRvmkR/6rcT4R1WOj8TTCY6NxHhfVajVGjx59yNvrfgU0fvz4OOOMM/psO/300+ONN9446P3L5XKMHj26zwJg8Kt7gGbOnBnbt2/vs23Hjh1x8skn13tXAAxgdQ/QNddcExs2bIibbropXnvttXjooYfinnvuiba2tnrvCoCBrOgHTzzxRDFlypSiXC4XkydPLu65554v/L3VarWIT55IbYBVNMDKPgbWZ1ejyD4O1sFW9vmisR4X1Wr1cx/DdX8RwpGq1WpRqVSyx/iPRjg0jfMHRT7RKL8yXoTQiBrhsdE4j4uj/iIEAPgiBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKer+iagMTo3yv//Zz7/Jft4VYmByBQRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQIph2QMwMJRKpewRgEHGFRAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIEXdA9Td3R2LFy+OlpaWGDlyZJx66qlxww03RFEU9d4VAANY3d8Ne9myZbFixYp44IEH4swzz4znn38+rrjiiqhUKjF//vx67w6AAaruAXruuefikksuiTlz5kRExCmnnBIrV66MTZs21XtXAAxgdX8K7oILLog1a9bEjh07IiLixRdfjHXr1sVFF1100Pt3dXVFrVbrswA4BhR11t3dXVx77bVFqVQqhg0bVpRKpeKmm2465P2XLl1aRESDrqIBVvYxsCzri6/s80VjnTOq1ern9qLuAVq5cmUxYcKEYuXKlcVLL71U/OEPfyjGjBlT3H///Qe9/4cfflhUq9Xe1dHRkX7QPJgsy/rfVvb5orHOGUc9QBMmTCjuvPPOPttuuOGG4pvf/OYX+v5qtZp+0DyYLMv631b2+aKxzhmHC1Dd/wb0wQcfxJAhfX/s0KFDo6enp967AmAAq/ur4C6++OK48cYbY9KkSXHmmWfG1q1b47bbbosrr7yy3rsCYAArFUVR1PMH7t27NxYvXhyrVq2KPXv2RHNzc/z4xz+OJUuWxPDhww/7/bVaLSqVSj1HOgJ1PTT/o1L2AMAX5pzxadVqNUaPHn3I2+seoCMlQJ/VOA8m4HCcMz7tcAHyXnAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABS1P3NSKm3RnhrD4D6cwUEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUAgRACgECIIUAAZBCgABIIUAApBAgAFIIEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSCBAAKQQIgBTDsgdobKXsAQAGLVdAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACkECIAUXzpAzz77bFx88cXR3NwcpVIpHn300T63F0URS5YsifHjx8fIkSOjtbU1du7cWa95ARgkvnSA9u3bF1OnTo3ly5cf9PZbbrklbr/99rjrrrti48aNcdxxx8Xs2bPjww8/POJhARhEiiMQEcWqVat6v+7p6SnGjRtX3Hrrrb3b3nvvvaJcLhcrV678Qj+zWq0WEWFZlmUN8FWtVj/3fF/XvwHt2rUrOjs7o7W1tXdbpVKJGTNmxPr16w/6PV1dXVGr1fosAAa/ugaos7MzIiKampr6bG9qauq97bPa29ujUqn0rokTJ9ZzJAAaVPqr4K6//vqoVqu9q6OjI3skAI6CugZo3LhxERGxe/fuPtt3797de9tnlcvlGD16dJ8FwOBX1wC1tLTEuHHjYs2aNb3barVabNy4Mc4///x67gqAAW7Yl/2G999/P1577bXer3ft2hXbtm2LMWPGxKRJk2LhwoXx29/+Nk477bRoaWmJxYsXR3Nzc1x66aX1nBuAge7LvvT66aefPujL7ebNm9f7UuzFixcXTU1NRblcLmbNmlVs3779C/98L8O2LMsaHOtwL8MuFUVRRAOp1WpRqVSyxwDgCFWr1c/9u376q+AAODYJEAApBAiAFAIEQAoBAiCFAAGQQoAASCFAAKQQIABSNFyAGuyNGQD4Hx3ufN5wAdq7d2/2CADUweHO5w33XnA9PT3x1ltvxahRo6JUKv1PP6NWq8XEiROjo6PjmP98IceiL8djP8diP8div3oci6IoYu/evdHc3BxDhhz6OudLfxxDfxsyZEhMmDChLj/LB9zt51j05Xjs51js51jsd6TH4ou8qXTDPQUHwLFBgABIMSgDVC6XY+nSpVEul7NHSedY9OV47OdY7OdY7Hc0j0XDvQgBgGPDoLwCAqDxCRAAKQQIgBQCBECKQRmg5cuXxymnnBIjRoyIGTNmxKZNm7JHOura29vjvPPOi1GjRsXYsWPj0ksvje3bt2eP1RBuvvnmKJVKsXDhwuxRUrz55ptx+eWXx4knnhgjR46Ms846K55//vnssVJ0d3fH4sWLo6WlJUaOHBmnnnpq3HDDDcfEe1I+++yzcfHFF0dzc3OUSqV49NFH+9xeFEUsWbIkxo8fHyNHjozW1tbYuXNnXWcYdAF65JFHYtGiRbF06dLYsmVLTJ06NWbPnh179uzJHu2oWrt2bbS1tcWGDRti9erV8fHHH8eFF14Y+/btyx4t1ebNm+Puu++Os88+O3uUFO+++27MnDkzvvKVr8RTTz0Vr776avzud7+LE044IXu0FMuWLYsVK1bEnXfeGX//+99j2bJlccstt8Qdd9yRPVq/27dvX0ydOjWWL19+0NtvueWWuP322+Ouu+6KjRs3xnHHHRezZ8+ODz/8sH5DFIPM9OnTi7a2tt6vu7u7i+bm5qK9vT1xqnx79uwpIqJYu3Zt9ihp9u7dW5x22mnF6tWri+9973vFggULskc66q699triO9/5TvYYDWPOnDnFlVde2WfbD37wg2Lu3LlJE+WIiGLVqlW9X/f09BTjxo0rbr311t5t7733XlEul4uVK1fWbb+D6groo48+ihdeeCFaW1t7tw0ZMiRaW1tj/fr1iZPlq1arERExZsyY5EnytLW1xZw5c/o8Po41jz/+eEybNi0uu+yyGDt2bJxzzjlx7733Zo+V5oILLog1a9bEjh07IiLixRdfjHXr1sVFF12UPFmuXbt2RWdnZ5/flUqlEjNmzKjrubTh3oz0SLzzzjvR3d0dTU1NfbY3NTXFP/7xj6Sp8vX09MTChQtj5syZMWXKlOxxUjz88MOxZcuW2Lx5c/YoqV5//fVYsWJFLFq0KH71q1/F5s2bY/78+TF8+PCYN29e9nhH3XXXXRe1Wi0mT54cQ4cOje7u7rjxxhtj7ty52aOl6uzsjIg46Ln0v7fVw6AKEAfX1tYWr7zySqxbty57lBQdHR2xYMGCWL16dYwYMSJ7nFQ9PT0xbdq0uOmmmyIi4pxzzolXXnkl7rrrrmMyQH/605/iwQcfjIceeijOPPPM2LZtWyxcuDCam5uPyeNxtA2qp+BOOumkGDp0aOzevbvP9t27d8e4ceOSpsp19dVXx5NPPhlPP/103T7mYqB54YUXYs+ePfHtb387hg0bFsOGDYu1a9fG7bffHsOGDYvu7u7sEY+a8ePHxxlnnNFn2+mnnx5vvPFG0kS5fvGLX8R1110XP/rRj+Kss86Kn/zkJ3HNNddEe3t79mip/nu+7O9z6aAK0PDhw+Pcc8+NNWvW9G7r6emJNWvWxPnnn5842dFXFEVcffXVsWrVqvjb3/4WLS0t2SOlmTVrVrz88suxbdu23jVt2rSYO3dubNu2LYYOHZo94lEzc+bMA16Ov2PHjjj55JOTJsr1wQcfHPCBaUOHDo2enp6kiRpDS0tLjBs3rs+5tFarxcaNG+t7Lq3byxkaxMMPP1yUy+Xi/vvvL1599dXiZz/7WXH88ccXnZ2d2aMdVVdddVVRqVSKZ555pvjXv/7Vuz744IPs0RrCsfoquE2bNhXDhg0rbrzxxmLnzp3Fgw8+WHz1q18t/vjHP2aPlmLevHnF17/+9eLJJ58sdu3aVfz5z38uTjrppOKXv/xl9mj9bu/evcXWrVuLrVu3FhFR3HbbbcXWrVuLf/7zn0VRFMXNN99cHH/88cVjjz1WvPTSS8Ull1xStLS0FP/+97/rNsOgC1BRFMUdd9xRTJo0qRg+fHgxffr0YsOGDdkjHXURcdB13333ZY/WEI7VABVFUTzxxBPFlClTinK5XEyePLm45557skdKU6vVigULFhSTJk0qRowYUXzjG98ofv3rXxddXV3Zo/W7p59++qDniHnz5hVF8clLsRcvXlw0NTUV5XK5mDVrVrF9+/a6zuDjGABIMaj+BgTAwCFAAKQQIABSCBAAKQQIgBQCBEAKAQIghQABkEKAAEghQACkECAAUggQACn+HyFDT7ODig3KAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -519,7 +513,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAGwCAYAAAAXAEo1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjHklEQVR4nO3df3DU9Z3H8dcmkGyAJEKESCSIaPihmDT8NIKFUyqnHqNiZ6qnEq0dp21AkLmpxh5YQC/UDv64wimjltNWDkdPYMZqU6TyS8GEQBAQAdGrsQgoyCZEdoHs9/5YzbLsYrKbbD6f3TwfM9+Rz3e/+8k7H3f3le/n891dl+M4jgAAsFiK6QIAAGgJYQUAsB5hBQCwHmEFALAeYQUAsB5hBQCwHmEFALBeF9MFtIXf79eBAweUmZkpl8tluhwAQJQcx1FDQ4Py8vKUknLu86eEDqsDBw4oPz/fdBkAgDaqq6tTv379znl7Qk8DZmZmmi4BANAOWno9T+iwYuoPAJJDS6/nCR1WAIDOgbACAFgvoS+wOBc+SD6U1+sN2+d2uw1UYi/GqGWMUcsiTWXxehQq1uUbzqwAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWsyKsFi9erAEDBsjtdmvMmDGqqqoyXRIAwCJdTBfwyiuvaNasWXr22Wc1ZswYPfXUU5o0aZL27NmjPn36mC4PsE9jo7RtW3T3ycmRhg4N3//BB1J9fau6cPl8kiRn9Gipa9fQGw8flvbuja6m/v0D29nee0/y+1vfT1qaNHp0dD8bCcflOI5jsoAxY8Zo1KhRWrRokSTJ7/crPz9f06dP10MPPRRyrM/nk+/bJ4wk1dfXKz8/P6xPw7+Sdbxeb9g+t9ttoBJ7JdQY7dolDRsW3X1uuUV6/fXw/ePGSe++G1VX3s8+k3r3lnTGGP3pT9Jdd0VX0/z50r//e/j+7t2lb75pfT8XXih9/nl0PztOXC5X2D5ej0JFGiNJ8ng8ysrKOuf9jE4Dnjx5UjU1NZo4cWLzvpSUFE2cOFGbNm0KO76iokLZ2dnNW6SgAgAkH6Nh9dVXX6mpqUm5ubkh+3Nzc3Xw4MGw48vLy+XxeJq3urq6jioV6Hhffy1VVga3r782XRFgjPE1q2ikp6crPT3ddBlAx9i1S/rnfw62N2wITNsNGBD4dzRyciLv/6//avWaVfMU/Hnnhd943XXR1xRpvUqSVq+Ofs0KSc9oWJ1//vlKTU3VoUOHQvYfOnRIF1xwgaGqAMt17x4IrfZQWNjqQ50I63rN+vQJbO3hqqvapx8kFaPTgGlpaRoxYoTWrFnTvM/v92vNmjUqKSkxWBkAwCbGpwFnzZql0tJSjRw5UqNHj9ZTTz2lxsZG3XPPPaZLA2C7Tz6Rvr2SWJI0bZo0cKC5ehA3xsPqJz/5ib788kvNmTNHBw8e1A9+8AP95S9/CbvoAgDCHDggPflksD1lCmGVpIyHlSRNmzZN06ZNM10GAMBSVnzcEgAA34ewAgBYj7ACAFiPsAIAWI+wAgBYj7ACAFjPikvXAUTQt680fXpoG+ikCCvAVpdcIv3nf5quArAC04AAAOsRVgAA6zENCCBxXXaZ9MYboW0kJcIKQOLq1Uu68UbTVaADMA0I2Kq6OvCtwN9t1dWGCwLM4cwKsJXPJ/3976FtoJPizAoAYD3OrAAkrm++kerqgu38fKlbN3P1IG44swKQuLZulYYMCW5bt5quCHFCWAEArEdYAQCsR1gBAKxHWAEArEdYAQCsR1gBAKxHWAEArMebggFbuVxSWlpoG+ikCCvAVmPH8nmAwLeSMqy8Xq/pEqySkZFhuoSEdOLECdMlWCXS48j0GLl8PqWf0fb5fHIse/7zetQ+WLMCAFgvKc+sAHQSvXqp6cwvX+zVy1wtiCvCCkDCcoYO1anXXjNdBjoAYQXYqq5OqcuXNzebbrst8BUYQCeUlGHldrtNl2CVSIvgjFEoV4TLwo2P0aFD0pw5zc2u//RPUkGBwYLCGR8jy/Bcix8usAAAWI+wAgBYj7ACkLh27JAmTAhuO3YYLgjxkpRrVgA6CY9HWrcutI2kxJkVAMB6hBUAwHqEFQDAeoQVAMB6hBUAwHqEFQDAeoQVAMB6vM8KsFVBgbR0aWgb6KQIK8BWubnS3XebrgKwAtOAAADrEVYAAOsxDQggcY0eLR04EGzn5JirBXFFWAG2OnVKamgItjMzpa5dzdVjo7Q0qW9f01WgAzANCNjq/fcDZwrfbe+/b7oiwBjCCgBgPcIKAGA91qwAJK4vv5TefjvYnjhR6t3bXD2IG8IKQOLas0f6138NtjdsIKySFNOAAADrEVYAAOsRVgAA6xFWABKX43x/G0mDsAKQeI4dk55+Wrr99tD9t98e2H/smImqEEeEFYDEUlkp9esnPfBA6OcCSoH2Aw8Ebq+sNFMf4oKwApA4KiulG2+UTpwITPlFmgZ0nMDtN95IYCURo2G1fv16TZ48WXl5eXK5XFq5cqXJcgC7ZGZKV14Z3DIzTVdk1rFj0q23BsLI7//+Y/3+wHG33sqUYJIwGlaNjY0qKirS4sWLTZYB2KmoSNq0KbgVFZmuyKwXX5S++abloPqO3x84/qWX4lsXOoTLcey4fMblcmnFihW6+eabW32f+vp6ZWdnh+235FeyhtfrDdvndrsNVGIvl8sVto/HUSijY+Q4UkGB9Mkn0V3x53JJAwdK+/YF/h1nPNdaFulxJEkej0dZWVnnvF9CfdySz+eTz+drbtfX1xusBkCHOXJE2r8/+vs5TuB+R4/yxYwJLqEusKioqFB2dnbzlp+fb7okAB3h+PG23f/ML7FEQkqosCovL5fH42ne6urqTJcEoCP06NG2+3f2i1OSQEJNA6anpys9Pd10GUDH2L1bmjMn2J43Txo61Fw9JuXkSJdcEvuaVa9e8asNHSKhzqyATuXIEem114LbkSOmKzLH5ZKmT4/tvvff3yEXVyC+jIbV8ePHVVtbq9raWknSp59+qtraWn322WcmywJgo9JSqVs3KaWVL1spKYHjp06Nb13oEEbDasuWLSouLlZxcbEkadasWSouLtacM6c+AECSzjtP+t//DZwltRRYKSmB415/PXA/JDyja1YTJkzgvSwAWm/SJOnPfw58MsU33wT2nfka8t10X0ZGIKiuu67ja0RcsGYFILFMmiR9/rn01FOBiyfONHBgYP8//kFQJZmEuhoQACQFpvbuvz9w0cXRo4H3UWVmBq7642KKpERYAUhcLlfgsnY+nSLpMQ0IALAeYQUAsB5hBQCwHmEFALAeYQUAsB5XAwK2Ki6Wtm8Pti+5xFwtgGGEFWCr7t2lwkLTVQBWYBoQAGA9wgoAYD3CCgBgPdasAFsdOyZt2RJsjxzJ112g0yKsAFvt3Cn96EfB9oYN0rhx5uoBDGIaEABgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9PhsQsFXfvtIvfxnaBjopl+M4jukiYlVfX6/s7GzTZSBJnThxwnQJVsnIyDBdApKYx+NRVlbWOW9nGhAAYD3CCgBgPcIKAGA9wgoAYL2kvBowga8ZiQuv1xu2z+12G6jEXlaO0ZYt0m23BdvLlwe+2t4iPNdCWfk4sozL5YrpfkkZVkBS8Hql/ftD20AnxTQgAMB6hBUAwHqEFQDAeoQVAMB6hBUAwHqEFQDAeoQVAMB6hBUAwHqEFQDAeoQVAMB6fNwSYLPUVNMVAFYgrABbjRsnnT5tugrACkwDAgCsR1gBAKxHWAEArEdYAQCsxwUWgK0+/1z6n/8Jtm+/XerXz1w9gEGEFWCr//s/6Ve/CrZLSggrdFpMAwIArEdYAQCsR1gBAKxHWAEArEdYAQCsF1NYTZ06VUuXLtX+/fvbux4AAMLEFFZpaWmqqKhQQUGB8vPzdeedd+r555/Xvn372rs+AABiC6vnn39ee/fuVV1dnR5//HH16NFDCxcu1JAhQ9SP94EAiIff/EaaPz+6+8yfH7gfEl6b1qx69uypnJwc9ezZU+edd566dOmi3r17t1dtABCUmirNmdP6wJo/P3A83wmWFGL6BIuHH35Ya9eu1bZt2zR06FCNHz9eDz30kH74wx+qZ8+e7V0jAEizZwf+O2dOaDuS74Jq3rzvPw4JI6awWrBggXr37q1HHnlEU6ZM0aBBg2L64RUVFXr99df10UcfKSMjQ1dddZV++9vfavDgwTH1ByDJtSawCKqkFFNYbdu2TevWrdPatWu1cOFCpaWlafz48ZowYYImTJjQ6vBat26dysrKNGrUKJ0+fVoPP/ywrrvuOn344Yfq3r17LKUByePSS6Xnngtt4/sDi6BKWi7HcZy2drJ9+3Y9+eSTevnll+X3+9XU1BRTP19++aX69OmjdevW6Yc//GGLx9fX1ys7Oztsfzv8Su1r3z7p0KHo7nPFFdLZv1tDg7R9e3T99O4t70UXhe12794tNTZG11dJSfj8/xdfSNG+heHii6ULLwzfv3FjdP1kZEgjRoTv//hj6eDBqLryFhSEjbf79Gmptja6ms4/XxoyJHx/ba10/Hh0fV15pdTFns+adrlcYfuMPtfODKbS0sB/X3hBuvde6e67w4/Pzg48r862a5f09dfR/ewRIwKPvzMdOSJfhMdLenr6ufu58MLA8+Fs778vnTrV+npSUwPPz7N99llgkyS3Wyoqkrp2bX2/cRDpcSRJHo9HWVlZ576jEwO/3+/U1NQ4CxcudCZPnuz07NnTSU1NdYqLi52ZM2fG0qXjOI6zb98+R5KzY8eOiLd7vV7H4/E0b3V1dY6ksM06997rOFJ024YN4f1UVUXfzx13OCdOnAjbnOLi6Ps6fjy8pmefjb6fhQsjj1O0/QwaFLmf++6Lui9fZWX4GNXURF/TbbdFrmnkyOj78nha9/jqIFY+1+bNC4xVamrL43nttZH7uOGG6P/f7NsX3s+qVdH382//FrmmCy6Irp/MzMj9PPJI6HHFxY5z8mRMQ91eIj2OJDmeFh7vMV0N2KtXL40ZM0bLli1TQUGBXnzxRX311VfaunWrnnzyyVi6lN/v18yZMzV27FgNGzYs4jEVFRXKzs5u3vLz82P6WQCSxOzZUlqaFONsTqezbVv0szOWiGmO4U9/+pOuvvrq7z9li1JZWZl27typjd8zFVReXq5Zs2Y1t+vr6wksoDObP186eTIwDUZgtY7Xa7qCmLR5zerzzz+XpDa9GXjatGlatWqV1q9fr4sjzd+eA2tWrcCaVauwZtUy1qzOkEhrVm+8IZWVBfdt2CCNG9f6vttZh65ZNTU1OXPnznWysrKclJQUJyUlxcnOznbmzZvnNDU1tbofv9/vlJWVOXl5ec7evXujrsPj8dg5j26ZiGtWCMEYtcyq59p3a1Xz5rVufwex8nG0YUPoulWk9fAOFOlxpFasWcX0Z9uvf/1rvfDCC1qwYIHGjh0rSdq4caN+85vfyOv16rHHHmtVP2VlZVq2bJlWrVqlzMxMHfz2r+Hs7GxlnP1XSyLZulW6665g+49/lIYPN1cPkEy+7/L0aN44jMQSSzL27dvXWbVqVdj+lStXOnl5ea3uR+dI2KVLl7bq/taeWVn2l4yVf+1ZhjFqmRXPtdaeORk6w7LycWTZ69G5XvfjcmZ19OhRDYkwLz9kyBAdPXo0mqCM5ccD6IyiecMvZ1hJJ6ZL14uKirRo0aKw/YsWLVJRUVGbiwKAME1N0X0yxezZgeO5SjApxHRm9bvf/U433HCD3n77bZV8ewXKpk2bVFdXpzfffLNdCwQASbF91QdnVEkj6jOrU6dOae7cuXrzzTc1ZcoUHTt2TMeOHdOUKVO0Z88eXX311fGoEwDQiUV9ZtW1a1d98MEH6tu3rx599NF41AQAaC+DB0vLloW2E1BM04B33nln86XrAACL9e4t3X676SraLKawOn36tP7whz/o7bff1ogRI8K+zuOJJ55ol+IAAJBiDKudO3dq+Ldvct27d2/Ibef6KA0AAGIVU1i988477V0HAADnZM+nZAIA2t/Jk9KRI8F2Tk7ga1USTExvCgYAJIiqKikvL7hVVZmuKCacWcXD2LGhH+9/9tdqAACiQljFg8tl1fcQAUCiYxoQAGA9wgoAYD3CCgBgPRZW4uHAAem114LtH/84cBUOACAmhFU8fPKJNGNGsD18OGEFAG3ANCAAwHqEFQDAeoQVAMB6hBUAwHpcYAEAySw7Wxo/PrSdgAgrAEhmV1whrV1ruoo2YxoQAGA9wgoAYD3CCgBgPcIKAGC9pLzAwuv1Gv35Lp9P6We0fT6fHIM1ZWRkGPvZiezEiROmS7Cey+UyXYL1TD+OXLt3q8vs2c3t0/Pnyxk61GBFsUnKsDLNufhinXryyZA2ABhx9KhS//zn5ubpBx4wWEzsCKt4yMtT089/broKAEgarFkBAKxHWAEArJeU04But9t0CdZzHMd0CVaJdFEOj6NQkS4UYIxCRbrgxPgYpaef1UyXTNcUg6QMK+P8funUqWC7a1cphZNYAIgVr6Dx8N57gb9cvtvee890RQCQ0AgrAID1CCsAgPUIKwCA9QgrAID1CCsAgPW4dB0Aktnw4dJHHwXb+fnmamkDwgoAklm3btLgwaaraDOmAQEA1iOsAADWI6wAANZjzQoAktnRo9KmTcF2SYnUq5e5emJEWMVDt27SFVeEtgHAhA8/lP7lX4LtDRukcePM1RMjwioehg+XPvjAdBUAkDRYswIAWI+wAgBYj7ACAFiPsAIAWI8LLOJh717pP/4j2H74YWnQIHP1AECCI6zi4fBh6cUXg+2f/YywAoA2YBoQAGA9wgoAYD3CCgBgPcIKAGA9LrAAgGSWlyc98EBoOwERVgCQzAYOlJ54wnQVbcY0IADAeoQVAMB6RsPqmWeeUWFhobKyspSVlaWSkhK99dZbJksCAFjIaFj169dPCxYsUE1NjbZs2aJrrrlGN910k3bt2mWyLACAZYyG1eTJk3XDDTeooKBAgwYN0mOPPaYePXpo8+bNJssCgORRVSX16xfcqqpMVxQTa64GbGpq0quvvqrGxkaVlJREPMbn88nn8zW36+vrO6q86BQWSu+9F2xffrm5WgB0bidPSv/4R2g7ARkPqx07dqikpERer1c9evTQihUrdNlll0U8tqKiQnPnzu3gCmOQlSWdI3ABANEzfjXg4MGDVVtbq/fff1+/+MUvVFpaqg8//DDiseXl5fJ4PM1bXV1dB1cLADDB+JlVWlqaLr30UknSiBEjVF1draefflpLliwJOzY9PV3p6ekdXSIAwDDjZ1Zn8/v9IetSAAAYPbMqLy/X9ddfr/79+6uhoUHLli3T2rVrVVlZabKstquvl868/P7yywPrWACAmBgNq8OHD2vq1Kn64osvlJ2drcLCQlVWVupHP/qRybLa7oMPpKuvDrY3bJDGjTNXDwAkOKNh9cILL5j88QCABGHdmhUAAGcjrAAA1iOsAADWM/4+KwBAHKWkSN26hbYTEGEFAMnsqqukxkbTVbRZYkYsAKBTIawAANYjrAAA1iOsAADW4wILAEhmn30mvfRSsD11qtS/v7l6YkRYxUOfPlJpaWgbAEz47DNp9uxge8IEwgrfGjRI+u//Nl0FACQN1qwAANYjrAAA1iOsAADWI6wAANYjrOJh61apsDC4bd1quiIASGhcDRgP33wj7dgR2gYAxIwzKwCA9QgrAID1CCsAgPUIKwCA9bjAAgCS2aBB0h//GNpOQIQVACSzPn2kO+80XUWbMQ0IALAeYQUAsB5hBQCwXlKuWXm9XqM/3+XzKf2Mts/nk2O4prO5XC7TJQCdgunXI506JR07Fmyfd57UtaupamLGmRUAJDFXVZXc/fs3b66qKtMlxSQpz6xMc0pK5D3zL5kE/CsGAGxCWMVDSoqUnt7ycQCAVmEaEABgvaQ8s3K73aZLsMqJEyfC9jFGoSItgjNGoRijllk5RmfN8qSnp0uma4oBZ1YAAOsl5ZmVcQcOSCtWBNu33CLl5ZmrBwASHGEVD598Ik2bFmwXFRFWANAGTAMCAKxHWAEArEdYAQCsR1gBAKzHBRYAkMyysqSxY0PbCYiwAoBkVlgobdxouoo2YxoQAGA9wgoAYD3CCgBgPcIKAGA9wgoAktnu3dKUKcFt927TFcWEqwHjYeBA6emnQ9sAYMKRI6EfrD1rlrla2oCwioe8POn++01XAQBJg2lAAID1CCsAgPUIKwCA9VizigfHkZqagu3UVMnlMlcPACQ4zqzi4d13pa5dg9u775quCAASGmEFALAeYQUAsB5hBQCwHmEFALAeYQUAsB6XrgNAMisulnbuDLYHDDBWSlsQVgCQzLp3ly6/3HQVbcY0IADAetaE1YIFC+RyuTRz5kzTpQAALGNFWFVXV2vJkiUqLCw0XQoAwELG16yOHz+uO+64Q88995weffRR0+XE37590qFD0d3niiuk7OzQfQ0N0vbtrbq7y+cL/KN3bzmDBoUfsG2b1NgYXU0lJYHPPDzTF19I+/dH18/FF0sXXhi+f+PG6PrJyJBGjAjf//HH0sGDLd69eYwkOcOGhY/38eNSbW10NZ1/vjRkSPj+2tpAf9G48kqpy1lP14MHA79fNAYMkPr1C9/fivE+c4zkdsuJNN779wceB9EYNkw677zQfY2NgcdlNHJypKFDw/dv3x54vkRjzJjAR6Wd6dChwPP3e4SMkSSnf3+poCD8wHffDXyGaGulp0ujRoXvb814f/21VFUVqCM3Vxo9WurZs/U/2xaOYVOnTnVmzpzpOI7jjB8/3pkxY8Y5j/V6vY7H42ne6urqHElhm3E1NY5z2WXBraYmeNu99zpO4GHa+m3DhvCfUVUVdT+nb7vNOXHihHPixInQvoqLo6/p+PHwmp59Nvp+Fi6MPIbR9jNoUOR+7rsv6r58lZXhY1RTE31Nt90WuaaRI6Pvy+MJ7+e556Lv5/HHI9eUmhpVP00DB4aPkeM4zi9/GX1Nq1eH97N9e/T9/PjHkX+3K6+Mvq8jR8L7Wbo06n5OzpsXuaa0tOj6uuiiyP1Mnx797xbp9aQDRXrNluR4Ij3Gz2D0zGr58uXaunWrqqurW3V8RUWF5s6dG+eq2sHw4dKuXaarAIBwbrfpCmJibM2qrq5OM2bM0Msvvyx3KwevvLxcHo+neaurq4tzlQCQRIqLpaIi01XExPXtaVmHW7lypW655RalnrHu0dTUJJfLpZSUFPl8vpDbIqmvr1f22WsLkgz9Sq1jYM3KF2HNKuQPBNasgmMkNa9ZhYwRa1YhY/TdmlXYH5qdfM3KF2HNym16zeo7bncgqM7+vTqY6xzf7efxeJSVlXXu+5kKq4aGBv39738P2XfPPfdoyJAhevDBBzVs2LAW+0jIsDLA6/WG7Wvt2WxnwRi1jDFqGWPUsljDytiaVWZmZlggde/eXTk5Oa0KKgBA52HF+6wAAPg+xt9ndaa1a9eaLgEAYCHOrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANbrYrqAeHC5XKZLAAC0I86sAADWI6wAANYjrAAA1kvosHIcx3QJAIB20NLreUKHVUNDg+kSAADtoKXXc5eTwKcnfr9fBw4cUGZmpnVXANbX1ys/P191dXXKysoyXY6VGKOWMUYtY4xaZvMYOY6jhoYG5eXlKSXl3OdPCX3pekpKivr162e6jO+VlZVl3YPDNoxRyxijljFGLbN1jLKzs1s8JqGnAQEAnQNhBQCwHmEVJ+np6XrkkUeUnp5uuhRrMUYtY4xaxhi1LBnGKKEvsAAAdA6cWQEArEdYAQCsR1gBAKxHWAEArEdYxcnixYs1YMAAud1ujRkzRlVVVaZLssb69es1efJk5eXlyeVyaeXKlaZLsk5FRYVGjRqlzMxM9enTRzfffLP27NljuiyrPPPMMyosLGx+o2tJSYneeust02VZa8GCBXK5XJo5c6bpUmJCWMXBK6+8olmzZumRRx7R1q1bVVRUpEmTJunw4cOmS7NCY2OjioqKtHjxYtOlWGvdunUqKyvT5s2btXr1ap06dUrXXXedGhsbTZdmjX79+mnBggWqqanRli1bdM011+imm27Srl27TJdmnerqai1ZskSFhYWmS4mdg3Y3evRop6ysrLnd1NTk5OXlORUVFQarspMkZ8WKFabLsN7hw4cdSc66detMl2K1nj17Os8//7zpMqzS0NDgFBQUOKtXr3bGjx/vzJgxw3RJMeHMqp2dPHlSNTU1mjhxYvO+lJQUTZw4UZs2bTJYGRKZx+ORJPXq1ctwJXZqamrS8uXL1djYqJKSEtPlWKWsrEw33nhjyGtSIkroD7K10VdffaWmpibl5uaG7M/NzdVHH31kqCokMr/fr5kzZ2rs2LEaNmyY6XKssmPHDpWUlMjr9apHjx5asWKFLrvsMtNlWWP58uXaunWrqqurTZfSZoQVYLmysjLt3LlTGzduNF2KdQYPHqza2lp5PB699tprKi0t1bp16wgsSXV1dZoxY4ZWr14tt9ttupw2I6za2fnnn6/U1FQdOnQoZP+hQ4d0wQUXGKoKiWratGl64403tH79euu/DseEtLQ0XXrppZKkESNGqLq6Wk8//bSWLFliuDLzampqdPjwYQ0fPrx5X1NTk9avX69FixbJ5/MpNTXVYIXRYc2qnaWlpWnEiBFas2ZN8z6/3681a9Ywl45WcxxH06ZN04oVK/S3v/1NF198semSEoLf75fP5zNdhhWuvfZa7dixQ7W1tc3byJEjdccdd6i2tjahgkrizCouZs2apdLSUo0cOVKjR4/WU089pcbGRt1zzz2mS7PC8ePH9fHHHze3P/30U9XW1qpXr17q37+/wcrsUVZWpmXLlmnVqlXKzMzUwYMHJQW+pC4jI8NwdXYoLy/X9ddfr/79+6uhoUHLli3T2rVrVVlZabo0K2RmZoatcXbv3l05OTmJufZp+nLEZPX73//e6d+/v5OWluaMHj3a2bx5s+mSrPHOO+84ksK20tJS06VZI9L4SHKWLl1qujRr/PSnP3UuuugiJy0tzendu7dz7bXXOn/9619Nl2W1RL50na8IAQBYjzUrAID1CCsAgPUIKwCA9QgrAID1CCsAgPUIKwCA9QgrAID1CCsAgPUIKyCB3X333br55ptNlwHEHWEFALAeYQUAsB5hBRjm9/v1+OOP69JLL1V6err69++vxx57TFLgm3CvueYaZWRkKCcnR/fdd5+OHz9uuGKg4xFWgGHl5eVasGCBZs+erQ8//FDLli1Tbm6uGhsbNWnSJPXs2VPV1dV69dVX9fbbb2vatGmmSwY6HJ+6DhjU0NCg3r17a9GiRfrZz34Wcttzzz2nBx98UHV1derevbsk6c0339TkyZN14MAB5ebm6u6779axY8e0cuVKA9UDHYczK8Cg3bt3y+fz6dprr414W1FRUXNQSdLYsWPl9/u1Z8+ejiwTMI6wAgziW3+B1iGsAIMKCgqUkZGhNWvWhN02dOhQbd++XY2Njc373n33XaWkpGjw4MEdWSZgHGEFGOR2u/Xggw/qV7/6lV566SXt379fmzdv1gsvvKA77rhDbrdbpaWl2rlzp9555x1Nnz5dd911l3Jzc02XDnSoLqYLADq72bNnq0uXLpozZ44OHDigvn376uc//7m6deumyspKzZgxQ6NGjVK3bt1066236oknnjBdMtDhuBoQAGA9pgEBANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1vt/GKTUWF2qglwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAasAAAGwCAYAAAAXAEo1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAi80lEQVR4nO3dfXDU1b3H8c8mkGyAJEKESBIRUZ4Uk4ZHIyhcoXLRy6jYmepVidaO0zYgyNypxnvBAnpD7eBDC1cZtVxt5eLoFZix2hSpPCmYEAgCIiB6KxgBBYkQ2QV2f/eP1SzLLiS7yeac3bxfM7+p55fdky+nu/vJ75yzuy7HcRwBAGCxFNMFAADQFMIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgvQ6mC2iJzp07y+PxKDU1VT169DBdDgAgSocOHZLP55Pb7VZDQ8M5b+dK5DcFp6amyu/3my4DANBCKSkp8vl85/55G9bS6lJTU02XAABoBU29nid0WDH1BwDJoanX84QOKwBA+0BYAQCsl9C7Ac8lgfeMxIXH4wk753a7DVRiL8aoaYxR01wuV9g5Xo9CRRqj5uDKCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD0rwmrhwoXq3bu33G63RowYoaqqKtMlAQAs0sF0Aa+++qpmzJih5557TiNGjNDTTz+t8ePHa9euXerRo4fp8gD7NDRIW7ZEd5+cHGngwPDzH34offtts7pweb2SJGf4cKljx9AfHjok7d4dXU29egWOs73/vuT3N7+ftDRp+PDofjcSjstxHMdkASNGjNCwYcO0YMECSZLf79fFF1+sqVOn6uGHHw65rdfrlff7J4wkDRw4UHV1dWF9Gv4nWcfj8YSdc7vdBiqxV0KN0Y4d0qBB0d3n1lulN94IPz9qlPTee1F15fn8c6l7d0lnjNGf/yzdfXd0Nc2dK/3Hf4Sf79xZ+u675veTny/t3x/d744Tl8sVdo7Xo1CRxkiS8vPztf88/z8anQY8efKkampqNG7cuMZzKSkpGjdunDZs2BB2+4qKCmVnZzcekYIKAJB8jIbV119/LZ/Pp9zc3JDzubm5OnDgQNjty8vLVV9f33jk5eW1ValA2/vmG6myMnh8843pigBjjK9ZRSM9PV3p6emN7XNdTgJJYccO6Z//Odhety4wbde7d+C/o5GTE/n8f/1Xs9esGqfgL7gg/Ic33BB9TZHWqyRp5cro16yQ9IyG1YUXXqjU1FQdPHgw5PzBgwd10UUXGaoKsFznzoHQag2Fhc2+qRNhXa9Rjx6BozVcc03r9IOkYnQaMC0tTUOGDNGqVasaz/n9fq1atUolJSUGKwMA2MT4NOCMGTNUWlqqoUOHavjw4Xr66afV0NCge++913RpAGz36afS9zuJJUlTpkh9+pirB3FjPKx++tOf6quvvtKsWbN04MAB/ehHP9Jf//rXsE0XABCmrk566qlge9IkwipJGQ8rSZoyZYqmTJliugwAgKWs+LglAADOh7ACAFiPsAIAWI+wAgBYj7ACAFiPsAIAWM+KresAIujZU5o6NbQNtFOEFWCryy6Tfv9701UAVmAaEABgPcIKAGA9pgEBJK4rrpDefDO0jaREWAFIXN26STfdZLoKtAGmAQFbVVcHvhX4h6O62nBBgDlcWQG28nqlf/wjtA20U1xZAQCsx5UVgMT13XfSvn3B9sUXS506masHccOVFYDEtXmzNGBA8Ni82XRFiBPCCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPd4UDNjK5ZLS0kLbQDtFWAG2GjmSzwMEvpeUYeXxeEyXYJWMjAzTJSSkEydOmC7BKpEeR6bHyOX1Kv2MttfrlWPZ85/Xo9bBmhUAwHpJeWUFoJ3o1k2+M798sVs3c7UgrggrAAnLGThQp15/3XQZaAOEFWCrffuUunRpY9N3++2Br8AA2qGkDCu32226BKtEWgRnjEK5ImwLNz5GBw9Ks2Y1Njv+0z9JffsaLCic8TGyDM+1+GGDBQDAeoQVAMB6hBWAxLVtmzRmTPDYts1wQYiXpFyzAtBO1NdLa9aEtpGUuLICAFiPsAIAWI+wAgBYj7ACAFiPsAIAWI+wAgBYj7ACAFiP91kBturbV1q8OLQNtFOEFWCr3FzpnntMVwFYgWlAAID1CCsAgPWYBgSQuIYPl+rqgu2cHHO1IK4IK8BWp05Jx44F25mZUseO5uqxUVqa1LOn6SrQBpgGBGz1wQeBK4Ufjg8+MF0RYAxhBQCwHmEFALAea1YAEtdXX0nvvBNsjxsnde9urh7EDWEFIHHt2iX9678G2+vWEVZJimlAAID1CCsAgPUIKwCA9QgrAInLcc7fRtIgrAAknqNHpWeeke64I/T8HXcEzh89aqIqxBFhBSCxVFZKBQXSgw+Gfi6gFGg/+GDg55WVZupDXBBWABJHZaV0003SiROBKb9I04COE/j5TTcRWEnEaFitXbtWEydOVF5enlwul5YvX26yHMAumZnS1VcHj8xM0xWZdfSodNttgTDy+89/W78/cLvbbmNKMEkYDauGhgYVFRVp4cKFJssA7FRUJG3YEDyKikxXZNZLL0nffdd0UP3A7w/c/uWX41sX2oTRT7CYMGGCJkyYYLIEAInAcaQ//CG2+/7+99LUqZLL1bo1oU0l1Mcteb1eeb3exrbDNlWgfTh8WNq7N/r7OU7gfkeO8MWMCS6hNlhUVFQoOzu78ag7eycQgOR0/HjL7n/ml1giISVUWJWXl6u+vr7xyMvLM10SgLbQpUvL7t/eN6ckgYSaBkxPT1d6enpj28UcNJLZzp3SrFnB9pw50sCB5uoxKSdHuuwy6dNPo/uUCpdL6tNH6tYtfrWhTSTUlRXQrhw+LL3+evA4fNh0Rea4XIFNErF44AE2VyQBo2F1/Phx1dbWqra2VpL02Wefqba2Vp9//rnJsgDYqLRU6tRJSmnmy1ZKSuD2kyfHty60CaNhtWnTJhUXF6u4uFiSNGPGDBUXF2vWmVMfACBJF1wg/e//Bq6SmgqslJTA7d54I3A/JDyja1Zjxoxh+zmA5hs/XvrLXwKfTPHdd4FzZ76G/DDdl5ERCKobbmj7GhEXrFkBSCzjx0v790tPPx3YPHGmPn0C57/4gqBKMgm1GxAAJAWm9h54ILDp4siRwPuoMjMDu/7YTJGUCCsAicvlCmxr59Mpkh7TgAAA6xFWAADrEVYAAOsRVgAA6xFWAADrsRsQsFVxsbR1a7B92WXmagEMI6wAW3XuLBUWmq4CsALTgAAA6xFWAADrEVYAAOuxZgXY6uhRadOmYHvoUL7uAu0WYQXYavt26cc/DrbXrZNGjTJXD2AQ04AAAOsRVgAA6xFWAADrEVYAAOsRVgAA6xFWAADrEVYAAOsRVgAA6xFWAADrEVYAAOsRVgAA6/HZgICtevaUfvWr0DbQTiVlWLlcLtMlIAl4PB6zBeTnS/Pnh54zXdNZeK6hrTANCACwHmEFALAeYQUAsB5hBQCwXlJusHAcx3QJVom0UcDtdhuoxF5WjtGmTdLttwfbS5cGvtreIjzXQln5OLJMrJtykjKsgKTg8Uh794a2gXaKaUAAgPUIKwCA9QgrAID1CCsAgPUIKwCA9QgrAID1CCsAgPUIKwCA9QgrAID1CCsAgPX4uCXAZqmppisArEBYAbYaNUo6fdp0FYAVmAYEAFiPsAIAWI+wAgBYj7ACAFiPDRaArfbvl/7nf4LtO+6QCgrM1QMYRFgBtvq//5N+/etgu6SEsEK7xTQgAMB6hBUAwHqEFQDAeoQVAMB6hBUAwHoxhdXkyZO1ePFi7d27t7XrAQAgTExhlZaWpoqKCvXt21cXX3yx7rrrLr3wwgvas2dPa9cHAEBsYfXCCy9o9+7d2rdvn5544gl16dJF8+fP14ABA1TA+0AAxMNvfiPNnRvdfebODdwPCa9Fa1Zdu3ZVTk6OunbtqgsuuEAdOnRQ9+7dW6s2AAhKTZVmzWp+YM2dG7g93wmWFGL6BItHHnlEq1ev1pYtWzRw4ECNHj1aDz/8sK677jp17dq1tWsEAGnmzMD/zpoV2o7kh6CaM+f8t0PCiCms5s2bp+7du+vRRx/VpEmT1K9fv5h+eUVFhd544w19/PHHysjI0DXXXKPf/va36t+/f0z9AUhyzQksgiopxRRWW7Zs0Zo1a7R69WrNnz9faWlpGj16tMaMGaMxY8Y0O7zWrFmjsrIyDRs2TKdPn9YjjzyiG264QR999JE6d+4cS2lA8rj8cun550PbOH9gEVRJy+U4jtPSTrZu3aqnnnpKr7zyivx+v3w+X0z9fPXVV+rRo4fWrFmj6667rsnbFxQU6Isvvgg73wr/pNa1Z4908GB097nqKik7O/TcsWPS1q3R9dO9uzyXXBJ22r1zp9TQEF1fJSXh8/9ffilF+xaGSy+V8vPDz69fH10/GRnSkCHh5z/5RDpwIKquPH37ho23+/RpqbY2upouvFAaMCD8fG2tdPx4dH1dfbXUwZ7Pmna5XGHnjD7Xzgym0tLA/774onTffdI994TfPjs78Lw6244d0jffRPe7hwwJPP7OdPiwvBEeL+np6efuJz8/8Hw42wcfSKdONb+e1NTA8/Nsn38eOCTJ7ZaKiqSOHZvfbxxEehxJUn5+vvbv33/uOzox8Pv9Tk1NjTN//nxn4sSJTteuXZ3U1FSnuLjYmT59eixdOo7jOHv27HEkOdu2bYv4c4/H49TX1zceeXl5jqSwwzr33ec4UnTHunXh/VRVRd/PnXc6J06cCDuc4uLo+zp+PLym556Lvp/58yOPU7T99OsXuZ/774+6L29lZfgY1dREX9Ptt0euaejQ6Puqr2/e46uNWPlcmzMnMFapqU2P59ixkfu48cbo/7/Zsye8nxUrou/n3/4tck0XXRRdP5mZkft59NHQ2xUXO87JkzENdWuJ9DiS5OTn55/3fjHtBuzWrZtGjBihJUuWqG/fvnrppZf09ddfa/PmzXrqqadi6VJ+v1/Tp0/XyJEjNWjQoIi3qaioUHZ2duNRV1cX0+8CkCRmzpTS0qQYZ3PanS1bop+dsURMcwx//vOfde211yorK6vVCikrK9P27du1/jxTQeXl5ZoxY0Zje+DAgQQW0J7NnSudPBmYBiOwmsfjMV1BTFq8ZvXDHGNL3gw8ZcoUrVixQmvXrtWlkeZvz4E1q2ZgzapZWLNqGmtWZ0ikNas335TKyoLn1q2TRo1qft+trE3XrHw+nzN79mwnKyvLSUlJcVJSUpzs7Gxnzpw5js/na3Y/fr/fKSsrc/Ly8pzdu3dHXUd+fr6d8+iWibhmhRCMUdOseq79sFY1Z07zzrcRKx9H69aFrltFWg9vQ5EeR2rGmlVMf7b9+7//u1588UXNmzdPI0eOlCStX79ev/nNb+TxePT44483q5+ysjItWbJEK1asUGZmpg58/9dwdna2Ms7+qyWRbN4s3X13sP2nP0mDB5urB0gm59ueHs0bh5FYYknGnj17OitWrAg7v3z5cicvL6/Z/egcCbt48eJm3d/aKyvL/pKx8q89yzBGTbPiudbcKydDV1hWPo4sez061+t+XK6sjhw5ogER5uUHDBigI0eORBOUsfx6AO1RNG/45Qor6cS0db2oqEgLFiwIO79gwQIVFRW1uCgACOPzRffJFDNnBm7PLsGkENOV1e9+9zvdeOONeuedd1Ty/Q6UDRs2aN++fXrrrbdatUAAkBTbV31wRZU0or6yOnXqlGbPnq233npLkyZN0tGjR3X06FFNmjRJu3bt0rXXXhuPOgEA7VjUV1YdO3bUhx9+qJ49e+qxxx6LR00AgNbSv7+0ZEloOwHFNA141113NW5dBwBYrHt36Y47TFfRYjGF1enTp/XHP/5R77zzjoYMGRL2dR5PPvlkqxQHAIAUY1ht375dg79/k+vu3btDfnauj9IAACBWMYXVu+++29p1AABwTvZ8SiYAoPWdPCkdPhxs5+QEvlYlwcT0pmAAQIKoqpLy8oJHVZXpimLClVU8jBwZ+vH+Z3+tBgAgKoRVPLhcVn0PEQAkOqYBAQDWI6wAANYjrAAA1mNhJR7q6qTXXw+2f/KTwC4cAEBMCKt4+PRTadq0YHvwYMIKAFqAaUAAgPUIKwCA9QgrAID1CCsAgPXYYAEAySw7Wxo9OrSdgAgrAEhmV10lrV5tuooWYxoQAGA9wgoAYD3CCgBgPcIKAGC9pNxg4fF4jP5+l9er9DPaXq9XjsGaMjIyjP3uRHbixAnTJVjP5XKZLsF6ph9Hrp071WHmzMb26blz5QwcaLCi2CRlWJnmXHqpTj31VEgbAIw4ckSpf/lLY/P0gw8aLCZ2hFU85OXJ94tfmK4CAJIGa1YAAOsRVgAA6yXlNKDb7TZdgvUcxzFdglUibcrhcRQq0kYBxihUpA0nxscoPf2sZrpkuqYYJGVYGef3S6dOBdsdO0opXMQCQKx4BY2H998P/OXyw/H++6YrAoCERlgBAKxHWAEArEdYAQCsR1gBAKxHWAEArMfWdQBIZoMHSx9/HGxffLG5WlqAsAKAZNapk9S/v+kqWoxpQACA9QgrAID1CCsAgPVYswKAZHbkiLRhQ7BdUiJ162aunhgRVvHQqZN01VWhbQAw4aOPpH/5l2B73Tpp1Chz9cSIsIqHwYOlDz80XQUAJA3WrAAA1iOsAADWI6wAANYjrAAA1mODRTzs3i39538G2488IvXrZ64eAEhwhFU8HDokvfRSsP3znxNWANACTAMCAKxHWAEArEdYAQCsR1gBAKzHBgsASGZ5edKDD4a2ExBhBQDJrE8f6cknTVfRYkwDAgCsR1gBAKxnNKyeffZZFRYWKisrS1lZWSopKdHbb79tsiQAgIWMhlVBQYHmzZunmpoabdq0Sddff71uvvlm7dixw2RZAADLGA2riRMn6sYbb1Tfvn3Vr18/Pf744+rSpYs2btxosiwASB5VVVJBQfCoqjJdUUys2Q3o8/n02muvqaGhQSUlJRFv4/V65fV6G9uO47RVedEpLJTefz/YvvJKc7UAaN9OnpS++CK0nYCMh9W2bdtUUlIij8ejLl26aNmyZbriiisi3raiokKzZ89u4wpjkJUlnSNwAQDRM74bsH///qqtrdUHH3ygX/7ylyotLdVHH30U8bbl5eWqr69vPPIS9M1tAIDoGL+ySktL0+WXXy5JGjJkiKqrq/XMM89o0aJFYbdNT09Xenp6Y9vlcrVZnQAAc4xfWZ3N7/eHrEsBAGD0yqq8vFwTJkxQr169dOzYMS1ZskSrV69WZWWlybJa7ttvpTO33195ZWAdCwAQE6NhdejQIU2ePFlffvmlsrOzVVhYqMrKSv34xz82WVbLffihdO21wfa6ddKoUebqAYAEZzSsXnzxRZO/HgCQIKxbswIA4GyEFQDAeoQVAMB6xt9nBQCIo5QUqVOn0HYCIqwAIJldc43U0GC6ihZLzIgFALQrhBUAwHqEFQDAeoQVAMB6bLAAgGT2+efSyy8H25MnS716masnRoRVPPToIZWWhrYBwITPP5dmzgy2x4whrPC9fv2k//5v01UAQNJgzQoAYD3CCgBgPcIKAGA9wgoAYD3CKh42b5YKC4PH5s2mKwKAhMZuwHj47jtp27bQNgAgZlxZAQCsR1gBAKxHWAEArEdYAQCsxwYLAEhm/fpJf/pTaDsBEVYAkMx69JDuust0FS3GNCAAwHqEFQDAeoQVAMB6Sblm5fF4jP5+l9er9DPaXq9XjuGazuZyuUyXALQLpl+PdOqUdPRosH3BBVLHjqaqiRlXVgCQxFxVVXL36tV4uKqqTJcUk6S8sjLNKSmR58y/ZBLwrxgAsAlhFQ8pKVJ6etO3AwA0C9OAAADrJeWVldvtNl2CVU6cOBF2jjEKFWkRnDEKxRg1zcoxOmuWJz09XTJdUwy4sgIAWC8pr6yMq6uTli0Ltm+9VcrLM1cPACQ4wioePv1UmjIl2C4qIqwAoAWYBgQAWI+wAgBYj7ACAFiPsAIAWI8NFgCQzLKypJEjQ9sJiLACgGRWWCitX2+6ihZjGhAAYD3CCgBgPcIKAGA9wgoAYD3CCgCS2c6d0qRJwWPnTtMVxYTdgPHQp4/0zDOhbQAw4fDh0A/WnjHDXC0tQFjFQ16e9MADpqsAgKTBNCAAwHqEFQDAeoQVAMB6rFnFg+NIPl+wnZoquVzm6gGABMeVVTy8957UsWPweO890xUBQEIjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWY+s6ACSz4mJp+/Zgu3dvY6W0BGEFAMmsc2fpyitNV9FiTAMCAKxnTVjNmzdPLpdL06dPN10KAMAyVoRVdXW1Fi1apMLCQtOlAAAsZHzN6vjx47rzzjv1/PPP67HHHjNdTvzt2SMdPBjdfa66SsrODj137Ji0dWuz7u7yegP/0b27nH79wm+wZYvU0BBdTSUlgc88PNOXX0p790bXz6WXSvn54efXr4+un4wMaciQ8POffCIdONDk3RvHSJIzaFD4eB8/LtXWRlfThRdKAwaEn6+tDfQXjauvljqc9XQ9cCDw74tG795SQUH4+WaM95ljJLdbTqTx3rs38DiIxqBB0gUXhJ5raAg8LqORkyMNHBh+fuvWwPMlGiNGBD4q7UwHDwaev+cRMkaSnF69pL59w2/43nuBzxBtrvR0adiw8PPNGe9vvpGqqgJ15OZKw4dLXbs2/3fbwjFs8uTJzvTp0x3HcZzRo0c706ZNO+dtPR6PU19f33jk5eU5ksIO42pqHOeKK4JHTU3wZ/fd5ziBh2nzj3Xrwn9HVVXU/Zy+/XbnxIkTzokTJ0L7Ki6Ovqbjx8Nreu656PuZPz/yGEbbT79+kfu5//6o+/JWVoaPUU1N9DXdfnvkmoYOjb6v+vrwfp5/Pvp+nngick2pqVH14+vTJ3yMHMdxfvWr6GtauTK8n61bo+/nJz+J/G+7+uro+zp8OLyfxYuj7ufknDmRa0pLi66vSy6J3M/UqdH/2yK9nrShSK/Zkpz8/Pzz3s/oldXSpUu1efNmVVdXN+v2FRUVmj17dpyragWDB0s7dpiuAgDCud2mK4iJsTWrffv2adq0aXrllVfkbubglZeXq76+vvHIy8uLc5UAkESKi6WiItNVxMT1/WVZm1u+fLluvfVWpZ6x7uHz+eRyuZSSkiKv1xvys0gKCgr0xRdfhJ039E9qHgNrVt4Ia1YhfyCwZhUcI6lxzSpkjFizChmjH9aswv7QbOdrVt4Ia1Zu02tWP3C7A0F19r+rjbnO8d1++fn52r9//7nvZyqsjh07pn/84x8h5+69914NGDBADz30kAYNGtRkHwkZVgZ4PJ6wc829mm0vGKOmMUZNY4yaFmtYGVuzyszMDAukzp07Kycnp1lBBQBoP6x4nxUAAOdj/H1WZ1q9erXpEgAAFuLKCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYL0OpguIB5fLZboEAEAr4soKAGA9wgoAYD3CCgBgPZfjOI7pImKVlpamU6dOmS4DANBCHTt21MmTJ8/584S+svL5fKZLAAC0gqZezxN6N6Db7ZbH41Fqaqp69OhhupwQjuOorq5OeXl57E48B8aoaYxR0xijptk8RocOHZLP55Pb7T7v7RJ6GtBm3377rbKzs1VfX6+srCzT5ViJMWoaY9Q0xqhpyTBGCT0NCABoHwgrAID1CKs4SU9P16OPPqr09HTTpViLMWoaY9Q0xqhpyTBGrFkBAKzHlRUAwHqEFQDAeoQVAMB6hBUAwHqEVZwsXLhQvXv3ltvt1ogRI1RVVWW6JGusXbtWEydObHw3/fLly02XZJ2KigoNGzZMmZmZ6tGjh2655Rbt2rXLdFlWefbZZ1VYWKisrCxlZWWppKREb7/9tumyrDVv3jy5XC5Nnz7ddCkxIazi4NVXX9WMGTP06KOPavPmzSoqKtL48eN16NAh06VZoaGhQUVFRVq4cKHpUqy1Zs0alZWVaePGjVq5cqVOnTqlG264QQ0NDaZLs0ZBQYHmzZunmpoabdq0Sddff71uvvlm7dixw3Rp1qmurtaiRYtUWFhoupTYOWh1w4cPd8rKyhrbPp/PycvLcyoqKgxWZSdJzrJly0yXYb1Dhw45kpw1a9aYLsVqXbt2dV544QXTZVjl2LFjTt++fZ2VK1c6o0ePdqZNm2a6pJhwZdXKTp48qZqaGo0bN67xXEpKisaNG6cNGzYYrAyJrL6+XpLUrVs3w5XYyefzaenSpWpoaFBJSYnpcqxSVlamm266KeQ1KREl9Keu2+jrr7+Wz+dTbm5uyPnc3Fx9/PHHhqpCIvP7/Zo+fbpGjhypQYMGmS7HKtu2bVNJSYk8Ho+6dOmiZcuW6YorrjBdljWWLl2qzZs3q7q62nQpLUZYAZYrKyvT9u3btX79etOlWKd///6qra1VfX29Xn/9dZWWlmrNmjUElqR9+/Zp2rRpWrlyZZNfv5EICKtWduGFFyo1NVUHDx4MOX/w4EFddNFFhqpCopoyZYrefPNNrV27VgUFBabLsU5aWpouv/xySdKQIUNUXV2tZ555RosWLTJcmXk1NTU6dOiQBg8e3HjO5/Np7dq1WrBggbxer1JTUw1WGB3WrFpZWlqahgwZolWrVjWe8/v9WrVqFXPpaDbHcTRlyhQtW7ZMf//733XppZeaLikh+P1+eb1e02VYYezYsdq2bZtqa2sbj6FDh+rOO+9UbW1tQgWVxJVVXMyYMUOlpaUaOnSohg8frqeffloNDQ269957TZdmhePHj+uTTz5pbH/22Weqra1Vt27d1KtXL4OV2aOsrExLlizRihUrlJmZqQMHDkiSsrOzlZGRYbg6O5SXl2vChAnq1auXjh07piVLlmj16tWqrKw0XZoVMjMzw9Y4O3furJycnMRc+zS9HTFZ/eEPf3B69erlpKWlOcOHD3c2btxouiRrvPvuu46ksKO0tNR0adaIND6SnMWLF5suzRo/+9nPnEsuucRJS0tzunfv7owdO9b529/+ZrosqyXy1nW+IgQAYD3WrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6wAANYjrAAA1iOsAADWI6yABHbPPffolltuMV0GEHeEFQDAeoQVAMB6hBVgmN/v1xNPPKHLL79c6enp6tWrlx5//HFJgW/Cvf7665WRkaGcnBzdf//9On78uOGKgbZHWAGGlZeXa968eZo5c6Y++ugjLVmyRLm5uWpoaND48ePVtWtXVVdX67XXXtM777yjKVOmmC4ZaHN86jpg0LFjx9S9e3ctWLBAP//5z0N+9vzzz+uhhx7Svn371LlzZ0nSW2+9pYkTJ6qurk65ubm65557dPToUS1fvtxA9UDb4coKMGjnzp3yer0aO3ZsxJ8VFRU1BpUkjRw5Un6/X7t27WrLMgHjCCvAIL71F2gewgowqG/fvsrIyNCqVavCfjZw4EBt3bpVDQ0Njefee+89paSkqH///m1ZJmAcYQUY5Ha79dBDD+nXv/61Xn75Ze3du1cbN27Uiy++qDvvvFNut1ulpaXavn273n33XU2dOlV33323cnNzTZcOtKkOpgsA2ruZM2eqQ4cOmjVrlurq6tSzZ0/94he/UKdOnVRZWalp06Zp2LBh6tSpk2677TY9+eSTpksG2hy7AQEA1mMaEABgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGA9wgoAYD3CCgBgPcIKAGC9/wdDirwHkA5I0AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -625,7 +619,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm0klEQVR4nO3de1hVVcLH8d8RkosgXsIEUUS8opXjJdNEqQyTHK9J2vSmNWYOheLoqDR560EtLxMN3XQszUszb5la72uKkTiTpo3zimWaDl4A8xKk5GVEQ9jvHz6cPB7UA+sgCt/P8/g8nrXXWWvtffY+nN/Ze+1jsyzLEgAAAAAYqFHZAwAAAABw6yNYAAAAADBGsAAAAABgjGABAAAAwBjBAgAAAIAxggUAAAAAYwQLAAAAAMYIFgAAAACMESwAAAAAGCNYALipTJ8+XTabrbKHgRvIZrNp+vTpDmXbt29Xt27dVKtWLdlsNu3cudO4j+eff96oDQDAtREsAKCSPfTQQzfkg29hYaEiIiJks9k0b968Cu3LRGFhoYYMGaKTJ0/q1Vdf1bJlyxQaGnpD+t60aZNsNlup/7Zt23bV5/30009q0KCBbDabVq5cec0+Zs6cKZvNpnbt2jktKyws1IwZM9SsWTN5eXmpWbNmSkpK0sWLF53qXrhwQZMmTVJwcLB8fHzUpUsXffbZZ2VfaQBwE8/KHgAAVGerVq3S1q1bb0hfKSkpysnJuSF9mThw4ICys7P1l7/8RSNHjqyUMYwZM0adO3d2KGvevPlV60+dOlXnzp27brvff/+9Zs2apVq1apW6/IknntCHH36op59+Wp06ddK2bds0ZcoU5eTkaOHChQ51R4wYoZUrVyohIUEtWrTQkiVLFBMTo/T0dHXv3t2FtQQA9+KMBQBUkvPnz2v8+PGaNGlShfeVm5url1566Yb0ZSo3N1eSVKdOnUobQ2RkpJ544gmHf7fffnupdb/99lu99dZbLm3bCRMm6N5771WnTp2clm3fvl0ffPCBXnzxRS1atEijR4/WkiVLNH78eC1atEjffPONve4///lP/e1vf9Ps2bM1d+5cjRo1Shs3blRoaKgmTpxY/hUHAAMECwCVZvPmzercubO8vb0VHh6uBQsWlFpv+fLl6tixo3x8fFSvXj0NHTpUhw8fdqgTFRWldu3a6ZtvvlHPnj3l6+ur5s2b2y9L+fvf/64uXbrIx8dHrVq1UlpamlM/GRkZ6tOnj2rXri0/Pz89+OCD17z85UrZ2dnq16+fatWqpQYNGmjcuHFKTU2VzWbTpk2bnOrPmTNHxcXFmjBhgst9SNKSJUtks9m0ZcsW/f73v1dgYKBq1aqlgQMHKi8vr9TnTJ48Wa1atdITTzxRpr6ys7MVFxenVq1aycfHR/Xr19eQIUOUlZVVpnakS5fujBs3ToGBgfL391e/fv30/fffO9QZMWKEevbsKUkaMmSIbDaboqKiJEnHjx/XU089pZCQEHl5eSkoKEj9+/cv01jWrFmjdu3aycvLS23bttX69euvWvfMmTOlXoJ0pbFjx2rgwIGKjIy8Zr1//OMfWrlypZKTk0td/sUXX0iShg4d6lA+dOhQWZal//7v/7aXrVy5Uh4eHho1apS9zNvbW7/97W+1detWp+MDAG4ELoUCUCl27dql6OhoBQYGavr06bp48aKmTZumO+64w6HezJkzNWXKFMXGxmrkyJHKy8tTSkqKevTooYyMDIdvtfPz89W3b18NHTpUQ4YM0VtvvaWhQ4dqxYoVSkhI0OjRo/X4449r7ty5evTRR3X48GH5+/tLknbv3q3IyEjVrl1bEydO1G233aYFCxYoKirKHkqu5T//+Y8eeOABHTt2TGPHjlXDhg31/vvvKz09vdT6OTk5evnll/Xuu+/Kx8enXNswPj5edevW1bRp05SVlaXk5GQ9//zzDh9ApUvfbr/33nvavHlzmSfGb9++XV9++aWGDh2qkJAQZWVl6a233lJUVJT27NkjX19fl9saOXKkli9frscff1zdunXTxo0b9cgjjzjUefbZZ9WoUSPNmjXLfjlSyT4xePBg7d69W/Hx8WratKlyc3P12WefKScnR02bNr1u/5s3b9aqVasUFxcnf39//fnPf9bgwYOVk5Oj+vXrO9R96qmndPbsWXl4eCgyMlJz584t9SzDhx9+qC+//FLffffdNQNOUVGR4uPjNXLkSN15552l1rlw4YIkOe0PJdv4//7v/+xlGRkZatmypWrXru1Q95577pEk7dy5U40bN77qeACgQlgAUAkGDBhgeXt7W9nZ2fayPXv2WB4eHlbJW1NWVpbl4eFhzZw50+G5u3btsjw9PR3Ke/bsaUmy3n//fXvZ3r17LUlWjRo1rG3bttnLU1NTLUnW4sWLHcZTs2ZN68CBA/ayo0ePWv7+/laPHj2uuz7z58+3JFlr1qyxlxUUFFitW7e2JFnp6ekO9R999FGrW7du9seSrOeee+66/ViWZS1evNiSZPXq1csqLi62l48bN87y8PCwfvrpJ3tZcXGxdc8991jDhg2zLMuyDh06ZEmy5s6d61Jf586dcyrbunWrJclaunSpS21YlmXt3LnTkmTFxcU5lD/++OOWJGvatGn2svT0dEuS9eGHH9rL8vPzyzTuK0myatasae3fv99e9vXXX1uSrJSUFHvZli1brMGDB1vvvPOO9fHHH1uzZ8+26tevb3l7e1s7duxwaPPcuXNWkyZNrMTExKuOu8Trr79uBQQEWLm5uZZlXdpf27Zt61Dno48+siRZy5Ytcyh/++23LUlWu3bt7GVt27a1HnjgAad+du/ebUmy3n77bVc3DQC4DZdCAbjhioqKlJqaqgEDBqhJkyb28jZt2qh37972x6tWrVJxcbFiY2P1448/2v81bNhQLVq0cDob4Ofn53AZSatWrVSnTh21adPG4YxDyf8PHjxoH8+GDRs0YMAANWvWzF4vKChIjz/+uDZv3qzTp09fc53Wr1+vRo0aqV+/fvYyb29vPfPMM05109PT9dFHH131khhXjRo1yuEMRGRkpIqKipSdnW0vW7JkiXbt2qVXXnmlXH1c/u15YWGhTpw4oebNm6tOnTrasWOHy+18+umnki5Nir5cQkKCy+OoWbOmNm3apPz8fJf7vVyvXr0UHh5uf3zXXXepdu3a9v1Akrp166aVK1fq6aefVr9+/TR58mRt27ZNNptNiYmJDu29/PLLKiws1AsvvHDNfk+cOKGpU6dqypQpCgwMvGq9mJgYhYaGasKECVq1apWys7P1wQcf6I9//KM8PT1VUFBgr1tQUCAvLy+nNry9ve3LAeBG41IoADdcXl6eCgoK1KJFC6dlrVq1sn8IzczMlGVZpdaTpNtuu83hcUhIiNOlPgEBAU6XhAQEBEiS/QNqXl6ezp07p1atWjn10aZNGxUXF+vw4cNq27at8vLyVFRUZF/u5+cnPz8/ZWdnKzw83Kn/K+8kdPHiRY0ZM0b/9V//5XTXoSsdP37cadyXf9C/PJRJUt26dR3W6/Tp00pMTNQf/vCHa14WU1RU5DQ3o169eqpZs6YKCgo0e/ZsLV68WEeOHJFlWfY6p06duub4L5edna0aNWo4fLCXVOo2L42Xl5deeeUVjR8/XnfccYfuvfde9e3bV08++aQaNmxoH8/lH6hr1qypevXq2R9fub2kS9vsekGlefPm6t+/v1atWqWioiJ5eHgoKytLc+fO1RtvvCE/P79rPv/FF19UvXr1FB8ff8163t7eWrt2rWJjYzV48GD7es+ZM0czZ8506MfHx8d+6dTlzp8/b18OADcawQLATau4uFg2m03r1q2Th4eH0/IrP9CVVuda5Zd/SHZV586dHc4ITJs2zenH3a5l6dKl2rdvnxYsWOB0Tf6ZM2eUlZWlBg0ayNfXV0FBQQ7LFy9erBEjRtgfX2+95s2bp59//lmPPfaYva+SydL5+fnKyspScHCwjh49qrCwMIc20tPTFRUVpfj4eC1evFgJCQnq2rWrAgICZLPZNHToUBUXF7u83u6QkJCgX//611qzZo1SU1M1ZcoUzZ49Wxs3btSvfvUrjR07Vu+99569fs+ePR0mzZvsB40bN9bPP/+s//znP6pdu7amTp2qRo0aKSoqyr5tS4JgXl6esrKy1KRJEx04cEALFy5UcnKyjh49am/v/PnzKiwsVFZWlmrXrm0PQG3bttW3336rPXv2KD8/XxEREfLx8dG4cePsk9qlS2fTjhw54jTOY8eOSZKCg4Ovu04A4G4ECwA3XGBgoHx8fJSZmem0bN++ffb/h4eHy7IshYWFqWXLlhU6Hl9fX4e+S+zdu1c1atSwf+O/YsUKh2/FSy6dCg0N1Z49e2RZlsNZi/379zu0l5OTo8LCQt13331OfS1dulRLly7V6tWrNWDAAKcfO2vbtm2Z1isnJ0f5+fmlPm/WrFmaNWuWMjIy1Lp1a6e+7r77bkmX7j40fPhwzZ8/377s/Pnz+umnn8o0ltDQUBUXF+vAgQMOZylK2+bXEh4ervHjx2v8+PHKzMxU+/btNX/+fC1fvlwTJ050uOtVyRkcdzh48KC8vb3tYTYnJ0f79+93uHSuRFxcnKRL4e3IkSMqLi7WmDFjnC4Dk6SwsDCNHTvW4bI4m83m8Jp9+umnKi4uVq9evexl7du3V3p6uk6fPu0wgfurr76yLweAG41gAeCG8/DwUO/evbVmzRrl5OTYL1H57rvvlJqaaq83aNAgJSYmasaMGVq+fLnDB3bLsnTy5Emnu/mUdzzR0dH6+OOPlZWVZb/D0A8//KD3339f3bt3t394Ky0QSFLv3r312Wef6ZNPPlH//v0lXfoA/pe//MWh3tChQ0v90Ddw4EDFxMTomWeesc8BufyDZHmMGTNGAwYMcCjLzc3Vs88+qxEjRqh///4KCwuTt7f3Vfvy8PBw+kY/JSXF4XIwV/Tp00cvvPCC/vznP+uNN96wl7s6z+TcuXOqUaOGfQ6BdClk+Pv72y8JioiIUERERJnGdaW8vDyneRBff/21PvnkE/Xp00c1alyampiUlKQff/zRod63336rKVOmaOLEieratatq1aqldu3aafXq1U79vPjiizpz5oxee+01p8vDLldQUKApU6YoKChIw4YNs5c/+uijmjdvnhYuXGi/XfGFCxe0ePFidenShTtCAagUBAsAlWLGjBlav369IiMjFRcXp4sXLyolJUVt27a1/xBYeHi4kpKSlJiYqKysLA0YMED+/v46dOiQVq9erVGjRpX5NyCuJikpSZ999pm6d++uuLg4eXp6asGCBbpw4YLmzJlz3ec/++yzev311zVs2DCNHTtWQUFBWrFihf2DcEkoat26tVq3bl1qG2FhYU5BwESHDh3UoUMHh7KSy3batm3rUl99+/bVsmXLFBAQoIiICG3dulVpaWllDnTt27fXsGHD9Oabb+rUqVPq1q2bPv/8c6czOlfz73//Ww8++KBiY2MVEREhT09PrV69Wj/88IPT7z6YeOyxx+Tj46Nu3bqpQYMG2rNnjxYuXChfX1+9/PLL9nql/bJ1ya2PO3fubN+2t99+e6nbuSRQXbksNjZWwcHBioiI0OnTp/Xuu+/q4MGDWrt2rf3WyNKlGxAMGTJEiYmJys3NVfPmzfXee+8pKytL77zzjtE2AIDyIlgAqBR33XWXUlNT9fvf/15Tp05VSEiIZsyYoWPHjjn8wvDkyZPVsmVLvfrqq5oxY4akS9e7R0dHO9yByVTbtm31xRdfKDExUbNnz1ZxcbG6dOmi5cuXX/c3LKRL8z02btyo+Ph4vfbaa/Lz89OTTz6pbt26afDgwQ7ftN9KXnvtNXl4eGjFihU6f/687rvvPqWlpTncvctV7777rgIDA7VixQqtWbNGDzzwgNauXevSt+uNGzfWsGHD9Pnnn2vZsmXy9PRU69at9cEHH9gnOrvDgAEDtGLFCv3pT3/S6dOnFRgYqEGDBmnatGlOE/ErQqdOnbR48WItWLBAPj4+ioyM1Pvvv1/qWa6lS5dqypQpWrZsmfLz83XXXXfpf//3f9WjR48KHycAlMZmlWf2IgDAJcnJyRo3bpy+//57NWrUqLKHAwBAhSFYAICbFBQUONzm8/z58/rVr36loqIi/fvf/67EkQEAUPG4FAoA3GTQoEFq0qSJ2rdvr1OnTmn58uXau3evVqxYUdlDq1BX/t7GlXx8fOy/HQIAqLo4YwEAbpKcnKxFixYpKytLRUVFioiI0MSJE/XYY49V9tAq1JU/Cnil4cOHa8mSJTdmMACASkOwAAAYSUtLu+bykrscAQCqNoIFAAAAAGM1KnsAAAAAAG59BAsAuIU0bdpUI0aMcCjLzMxUdHS0AgICZLPZtGbNmjK1WfKL3+5W2lhLs2TJEtlsNvuP991qJk+e7NJvnQBAVUewAIBb3PDhw7Vr1y7NnDlTy5YtU6dOnVx+7pYtW7RhwwZNmjSpAkd46ztw4IC8vb1ls9n0r3/9y2FZQkKCvv76a33yySeVNDoAuDlwu1kAuIUVFBRo69at+uMf/6jnn3++zM+fO3euHnzwwQr5Vel9+/apRo2q8f3VuHHj5OnpqQsXLjgta9iwofr376958+a59dfgAeBWUzXe8QGgmsrLy5Mk1alTp8zPzc3N1dq1axUbG+u28ViWpYKCAkmSl5eXbrvtNre1XVlSU1OVmpqqcePGXbVObGysNm/erIMHD97AkQHAzYVgAaBa27Rpkzp16iRvb2+Fh4drwYIFmj59utNvMyxfvlwdO3aUj4+P6tWrp6FDh+rw4cMOdaKiotSuXTvt2bNH999/v3x9fdWoUSPNmTOnzOOyLEtJSUkKCQmRr6+v7r//fu3evduhzvTp0xUaGipJ+sMf/iCbzaamTZtKks6cOaOEhAQ1bdpUXl5eatCggR566CHt2LHD/vy1a9fq4sWL6tWrl1P/33zzjXr27CkfHx+FhIQoKSlJixcvdpoL0bRpU/Xt21epqanq1KmTfHx8tGDBAvuyK+dY7N69Ww888IBDu8XFxWXePiWv0f79+zVixAjVqVNHAQEBeuqpp3Tu3Lkyt3c1hYWFGjt2rMaOHavw8PCr1ivZhh9//LHb+gaAWw2XQgGotjIyMvTwww8rKChIM2bMUFFRkV566SUFBgY61Js5c6amTJmi2NhYjRw5Unl5eUpJSVGPHj2UkZHhcLYgPz9fDz/8sAYNGqTY2FitXLlSkyZN0p133qk+ffq4PLapU6cqKSlJMTExiomJ0Y4dOxQdHa2ff/7ZXmfQoEGqU6eOxo0bp2HDhikmJkZ+fn6SpNGjR2vlypV6/vnnFRERoRMnTmjz5s367rvv1KFDB0nSl19+qfr169vDSYkjR47o/vvvl81mU2JiomrVqqVFixbJy8ur1LHu27dPw4YN07PPPqtnnnlGrVq1KrXe8ePHdf/99+vixYuaPHmyatWqpYULF8rHx8fl7XKl2NhYhYWFafbs2dqxY4cWLVqkBg0a6JVXXrHXOXXqlAoLC6/blre3t337lUhOTlZ+fr5efPFFrVq16qrPDQgIUHh4uLZs2XLNMxsAUKVZAFBN/frXv7Z8fX2tI0eO2MsyMzMtT09Pq+TtMSsry/Lw8LBmzpzp8Nxdu3ZZnp6eDuU9e/a0JFlLly61l124cMFq2LChNXjwYJfHlZuba9WsWdN65JFHrOLiYnv5Cy+8YEmyhg8fbi87dOiQJcmaO3euQxsBAQHWc889d81+unfvbnXs2NGpPD4+3rLZbFZGRoa97MSJE1a9evUsSdahQ4fs5aGhoZYka/369U7thIaGOow1ISHBkmR99dVXDusaEBDg1O71TJs2zZJkPf300w7lAwcOtOrXr+9QVvK6XO/f5WO1LMs6duyY5e/vby1YsMCyLMtavHixJcnavn17qWOKjo622rRp4/I6AEBVwxkLANVSUVGR0tLSNHDgQAUHB9vLmzdvrj59+uh//ud/JEmrVq1ScXGxYmNj9eOPP9rrNWzYUC1atFB6erpeeOEFe7mfn5+eeOIJ++OaNWvqnnvuKdO192lpafr5558VHx/vcElWQkKCZs2a5VIbderU0VdffaWjR486rN/lTpw4oUaNGjmVr1+/Xl27dlX79u3tZfXq1dNvfvMbpaSkONUPCwtT7969rzumTz/9VPfee6/uuecee1lgYKB+85vf6M0333RhrZyNHj3a4XFkZKRWr16t06dPq3bt2pKk+fPnKz8//7ptXbmdJk2apGbNmmnkyJEujaVu3brKyMhwceQAUPUQLABUS7m5uSooKCj1bkiXl2VmZsqyLLVo0aLUdq6cnBwSEuI0P6Nu3br65ptvXB5bdna2JDn1GRgYqLp167rUxpw5czR8+HA1btxYHTt2VExMjJ588kk1a9bMoZ5lWaX237VrV6fyq905KiwszKUxZWdnl/p7D1e7dMoVTZo0cXhcsn3y8/PtwaJjx45lbnfbtm1atmyZPv/8c5fvbGVZltNrDwDVCcECAK6huLhYNptN69atk4eHh9PyK6/JL62OVPoH+IoUGxtr//Z+w4YNmjt3rl555RWtWrXKPtejfv36Ln2Tfz0mcyRMubK9T5486TA35Wp8fHwUEBAgSZo4caIiIyMVFhZmn6xecsbq2LFjysnJcQo1+fn5uv3228uzGgBQJRAsAFRLDRo0kLe3t/bv3++07PKy8PBwWZalsLAwtWzZ8oaMrWQydWZmpsMZhry8vDIFgaCgIMXFxSkuLk65ubnq0KGDZs6caQ8WrVu31kcffVRq/9fbLuURGhqqzMxMp/J9+/YZtXs9gwYN0t///vfr1hs+fLiWLFkiScrJyVF2dnapZ2P69eungIAA/fTTTw7lhw4d0t133+2OIQPALYlgAaBa8vDwUK9evbRmzRqHeQj79+/XunXr7PUGDRqkxMREzZgxQ8uXL3e41MWyLJ08eVL169d369h69eql2267TSkpKYqOjrb3mZyc7NLzi4qKdPbsWfu379KlIBUcHOzwA29du3bVokWLdPDgQYcA07t3b73xxhvauXOnfZ7FyZMntWLFCqP1iomJUXJysv75z3/a51nk5eUZt3s95ZljsXDhQqfb1m7cuFEpKSmaN2+eWrdu7bDs1KlTOnDggH73u9+5Z9AAcAsiWACotqZPn64NGzbovvvu0+9+9zsVFRXp9ddfV7t27bRz505Jl85YJCUlKTExUVlZWRowYID8/f116NAhrV69WqNGjdKECRPcOq7AwEBNmDBBs2fPVt++fRUTE6OMjAytW7fOpUttzpw5o5CQED366KO6++675efnp7S0NG3fvl3z58+313vkkUfk6emptLQ0jRo1yl4+ceJELV++XA899JDi4+Ptt5tt0qSJTp48We55BBMnTtSyZcv08MMPa+zYsfbbzYaGhpZpDkpZlWeORXR0tFNZyRmKnj17qlOnTg7L0tLSZFmW+vfvX64xAkBVQLAAUG117NhR69at04QJEzRlyhQ1btxYL730kr777jvt3bvXXm/y5Mlq2bKlXn31Vc2YMUOS1LhxY0VHR6tfv34VMrakpCR5e3vr7bffVnp6urp06aINGzbokUceue5zfX19FRcXpw0bNtjvatW8eXO9+eabDt+o33HHHYqJidEHH3zgECwaN26s9PR0jRkzRrNmzVJgYKCee+451apVS2PGjJG3t3e51ikoKEjp6emKj4/Xyy+/rPr162v06NEKDg7Wb3/723K1ebP48MMP1b1792v+iB4AVHU260bPKASAm9yAAQO0e/fuUucDVDVffPGFoqKitHfv3qve+apEQkKCFixYoLNnz1510nR1dPz4cYWFhelvf/sbZywAVGuu3UMPAKqogoICh8eZmZn69NNPFRUVVTkDusEiIyMVHR2tOXPmOJRfuV1OnDihZcuWqXv37oSKKyQnJ+vOO+8kVACo9jhjAaBaCwoK0ogRI9SsWTNlZ2frrbfe0oULF5SRkXHdb/DLIy8vT0VFRVddXrNmTdWrV8/t/ZZV+/btFRUVpTZt2uiHH37QO++8o6NHj+rzzz9Xjx49Kqzfs2fP6uzZs9esExgYSLgBgJsQcywAVGsPP/yw/vrXv+r48ePy8vJS165dNWvWrAoJFZLUuXNn+w/glaZnz57atGlThfRdFjExMVq5cqUWLlwom82mDh066J133qnQUCFJ8+bNs89juZpDhw6padOmFToOAEDZccYCAG6gLVu2OF1mdLm6deuW6y5GVcXBgwd18ODBa9bp3r17uSeQAwAqDsECAAAAgDEmbwMAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMU9XKhUXF+vo0aPy9/eXzWar6DEBFc6yLJ05c0bBwcGqUaNs+ZrjAVWNyfEgcUyg6uFvBPCLshwPLgWLo0ePqnHjxm4ZHHAzOXz4sEJCQsr0HI4HVFXlOR4kjglUXfyNAH7hyvHgUgz39/d3y4CAm0159m2OB1RV5d23OSZQVfE3AviFK/u2S8GCU3moqsqzb3M8oKoq777NMYGqir8RwC9c2beZvA0AAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGDMs9J6ttzcns3dDUqWbG5u0P1jrG5sNje/JjcJy837RkVsJ3ePEeaq6vEg3SL7m7u3/62wzje5qnpMVMe/Ee4fY3U8vm788cAZCwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABjzrLSebTd9gxUwRPe2aFmWW9uzuXl8kvvHiMpTEftHdcPxUHkqZv918+vJMQbcQm6B95RKwBkLAAAAAMYIFgAAAACMESwAAAAAGCNYAAAAADBGsAAAAABgjGABAAAAwBjBAgAAAIAxggUAAAAAYwQLAAAAAMYIFgAAAACMESwAAAAAGCNYAAAAADBGsAAAAABgjGABAAAAwBjBAgAAAIAxggUAAAAAYwQLAAAAAMYIFgAAAACMESwAAAAAGCNYAAAAADDmWVkdW5ZVWV0DVR7HlzmbzVbZQwCMVMf3AY7bSuT2bV/99t+qgDMWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMOZZ2QNwF5vNVtlDAG4aFXE8WJbl1vY4ZoGKdSscY+5+X0Hlcf/edvPvv3DGGQsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAY86zsAdzMLMtya3s2m82t7bl7fMCtjOMBN5zl5vd03dz7sLv/hqHy8H5pjuOhdJyxAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDHPyurYZrNVVte4Cl4TXEt12z+q2/qiHNy8i9jc3KBlWW5tD1UH72+oKJyxAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjnpXVsWVZldV1pbnZ1/lmH58k2Wy2yh7CLeFWeC3dzSZ37xvu34aWm8fI0eC6W+GYuNnf326FbQjXVMRr6fb3YBv7262IMxYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAw5llZHdtstsrqGrjpcDzcjNz/mvAqu45jwhzbsOqonq9ldVznWx9nLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMOZSsLAsq6LHAVSK8uzbHA+oqsq7b3NMoKribwTwC1f2bZeCxZkzZ4wHA9yMyrNvczygqirvvs0xgaqKvxHAL1zZt22WC/GjuLhYR48elb+/v2w2m1sGB1Qmy7J05swZBQcHq0aNsl0RyPGAqsbkeJA4JlD18DcC+EVZjgeXggUAAAAAXAuTtwEAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxv4fE1t50v6JwPQAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmhElEQVR4nO3de1RVZcLH8d8BlIsgXgYTRJHwrlMmmaN5ITM0LCVMBmxSp/E2FopTo9G83lpeysvSkZnKRtMEfLuY2sxbilI0azS7vK84uSwNL0DjDUbJy4g32O8fLk4eD3J7DqLw/azFWpznPOd5nr3P3ofzY+9nb5tlWZYAAAAAwIBbbQ8AAAAAwJ2PYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAHgtjJnzhzZbLbaHgZuIZvNpjlz5jiUff311+rTp48aNWokm82mPXv2GPfx3HPPGbUBACgfwQIAatkjjzxyS774XrlyRV26dJHNZtOSJUtqtC8TV65c0ciRI3X69GktW7ZMKSkpCgkJuaVj2L17t4YNG6ZmzZrJx8dH3bp104oVKxzqREREyGazOf0MGTLEqb1Lly5pxowZCgoKkre3t3r16qXt27c71MnJySmzvdKf8ePH2+uOHTu23LpHjx6tmRUDAOXwqO0BAEB9tnHjRu3ateuW9JWcnKy8vLxb0peJQ4cOKTc3V3/5y180bty4W97/tm3b9Pjjj+u+++7TzJkz5evrq0OHDulf//qXU93g4GAtXLjQoSwoKMip3tixY7VhwwYlJiaqffv2Wrt2raKiopSZmam+fftKkgICApSSkuL02q1btyotLU2RkZH2sokTJ2rQoEEO9SzL0qRJk9S2bVu1atWqWssOACYIFgBQSy5evKjnn39eM2bM0KxZs2q0r/z8fL388su3pC9T+fn5kqQmTZrc8r7Pnj2r0aNHa+jQodqwYYPc3Mo/sO/v769f/epX5db56quv9M4772jx4sV64YUXJEmjR49Wt27dNH36dH3++eeSpEaNGpXZ1tq1a9W4cWM9/vjj9rLevXurd+/eDvV27NihCxcu6KmnnqrUsgKAq3EqFIBas2PHDvXs2VNeXl4KCwvTypUry6yXmpqq8PBweXt7q1mzZoqLi9MPP/zgUCciIkLdunXTN998owEDBsjHx0ft2rXThg0bJEl///vf1atXL3l7e6tjx47KyMhw6icrK0uPPvqoGjduLF9fXz388MP64osvKr08ubm5GjZsmBo1aqQWLVpo2rRpSk9Pl81m02effeZUf9GiRSopKbF/2aystWvXymazaefOnfrd736ngIAANWrUSE888YQKCgrKfM2LL76ojh07VvgluKxlmjx5sjp27Chvb281b95cI0eOVE5OTpXaka6dDjRt2jQFBATIz89Pw4YNczoKMHbsWA0YMECSNHLkSNlsNkVEREiSTpw4oV//+tcKDg6Wp6enAgMDNXz48CqNZfPmzerWrZs8PT3VtWtXbd261eH59evX6+TJk5o/f77c3Nz0n//8RyUlJeW2efXqVZ0/f/6mz2/YsEHu7u6aMGGCvczLy0u/+c1vtGvXLqdt+XrHjx9XZmamYmJi5OXlVe441q9fL5vNplGjRpVbDwBqCkcsANSKvXv3KjIyUgEBAZozZ46uXr2q2bNn66677nKoN3/+fM2cOVOxsbEaN26cCgoKlJycrP79+ysrK8vhv9qFhYV67LHHFBcXp5EjR+r1119XXFyc0tLSlJiYqEmTJmnUqFFavHixnnzySf3www/y8/OTJO3bt0/9+vVT48aNNX36dDVo0EArV65URESEPZSU5z//+Y8GDhyo48ePa+rUqWrZsqXWr1+vzMzMMuvn5eXplVde0VtvvSVvb+9qrcOEhAQ1bdpUs2fPVk5OjpYvX67nnntO7777rkO9r776Sm+//bZ27NhR5YnxX3/9tT7//HPFxcUpODhYOTk5ev311xUREaFvv/1WPj4+lW5r3LhxSk1N1ahRo9SnTx99+umnGjp0qEOdiRMnqlWrVlqwYIGmTJminj172reJESNGaN++fUpISFDbtm2Vn5+v7du3Ky8vT23btq2w/x07dmjjxo2aPHmy/Pz8tGLFCo0YMUJ5eXlq3ry5JCkjI0ONGzfW0aNHFR0dre+//16NGjXS008/rWXLljl9uS99/vLly7rrrrs0fvx4zZo1Sw0aNLDXycrKUocOHdS4cWOH1z7wwAOSpD179qh169Zljvmdd95RSUlJhUchrly5ovfee099+vSp1LoAgBphAUAtiI6Otry8vKzc3Fx72bfffmu5u7tbpR9NOTk5lru7uzV//nyH1+7du9fy8PBwKB8wYIAlyVq/fr29bP/+/ZYky83Nzfriiy/s5enp6ZYka82aNQ7jadiwoXXo0CF72bFjxyw/Pz+rf//+FS7P0qVLLUnW5s2b7WVFRUVWp06dLElWZmamQ/0nn3zS6tOnj/2xJOvZZ5+tsB/Lsqw1a9ZYkqxBgwZZJSUl9vJp06ZZ7u7u1o8//mgvKykpsR544AErPj7esizLOnLkiCXJWrx4caX6unDhglPZrl27LEnWunXrKtWGZVnWnj17LEnW5MmTHcpHjRplSbJmz55tL8vMzLQkWe+//769rLCwsErjvpEkq2HDhtbBgwftZf/85z8tSVZycrK97J577rF8fHwsHx8fKyEhwfrggw+shIQES5IVFxfn0OYzzzxjzZkzx/rggw+sdevWWcOGDbMkWbGxsQ71unbtag0cONBpTPv27bMkWW+88cZNxx0eHm4FBgZaxcXF5S7f3/72N0uS9dprr5VbDwBqEqdCAbjliouLlZ6erujoaLVp08Ze3rlzZw0ePNj+eOPGjSopKVFsbKz+/e9/239atmyp9u3bOx0N8PX1VVxcnP1xx44d1aRJE3Xu3NnhiEPp74cPH7aPZ9u2bYqOjtbdd99trxcYGKhRo0Zpx44dOnv2bLnLtHXrVrVq1UrDhg2zl3l5eTlcyadUZmamPvjgAy1fvrzcNisyYcIEhyMQ/fr1U3FxsXJzc+1la9eu1d69e/Xqq69Wq4/rj6ZcuXJFp06dUrt27dSkSRPt3r270u18/PHHkqQpU6Y4lCcmJlZ6HA0bNtRnn32mwsLCSvd7vUGDBiksLMz++J577lHjxo3t24EknT9/XhcuXNDo0aO1YsUKxcTEaMWKFZo4caLeeecdZWdn2+uuXr1as2fPVkxMjJ5++ml9+OGHGj9+vN577z2HU+iKiork6enpNJ7Sox9FRUVljvf777/X//3f/ykuLq7CuR7r169XgwYNFBsbW7mVAQA1gGAB4JYrKChQUVGR2rdv7/Rcx44d7b9nZ2fLsiy1b99eAQEBDj/fffedfZJvqeDgYKdTffz9/Z1OM/H395ck+xfUgoICXbhwwaHvUp07d1ZJSYn9PPiCggKdOHHC/lN6bn1ubq7CwsKc+m/Xrp3D46tXr2rKlCl6+umn1bNnz5uvJMmhnxMnTjh9Ab0+lElS06ZNHZbr7NmzSkpK0u9///ubnmojXQtWN/Z1+fJlSde+9M6aNUutW7eWp6enfvaznykgIEA//vijzpw5U+74r5ebmys3NzeHL/aSylznZfH09NSrr76qLVu26K677lL//v21aNEinThxwl7nzJkzDstw+vRphzZuXF/StXV2fVApDVLx8fEO9UrnLVR0Ba/nn39ekhzm8Hh7e+vSpUtOdS9evOjQ543S0tIkqcLToM6fP68PP/xQgwcPtp/SBQC1gTkWAG5bJSUlstls2rJli9zd3Z2e9/X1dXhcVp3yyi3LqvKYevbs6XBEYPbs2U43dyvPunXrdODAAa1cudJp0vG5c+eUk5OjFi1ayMfHR4GBgQ7Pr1mzRmPHjrU/rmi5lixZosuXL+uXv/ylva/SydKFhYXKyclRUFCQjh07ptDQUIc2MjMzFRERoYSEBK1Zs0aJiYnq3bu3/P39ZbPZFBcXV+GkZldLTEzU448/rs2bNys9PV0zZ87UwoUL9emnn+q+++7T1KlT9fbbb9vrDxgwwGHSfGW2g6CgIO3bt89prk+LFi0kqcKjJaUB7vpQExgYWOZ9JY4fP27vsyzr169Xx44dFR4eXm6fmzdv5mpQAG4LBAsAt1xAQIC8vb0dTispdeDAAfvvYWFhsixLoaGh6tChQ42Ox8fHx6HvUvv375ebm5v9C2NaWprDkYPSU6dCQkL07bffyrIsh6MWBw8edGgvLy9PV65c0YMPPujU17p167Ru3Tpt2rRJ0dHRTjdQ69q1a5WWKy8vT4WFhWW+bsGCBVqwYIGysrLUqVMnp77uvfdeSdeuaDRmzBgtXbrU/tzFixf1448/VmksISEhKikp0aFDhxyOUpS1zssTFham559/Xs8//7yys7PVvXt3LV26VKmpqZo+fbrDVa9Kj+BURXh4uLZv366jR486jPPYsWOSrm0r5Sk9rer6et27d1dmZqbOnj3rMIH7yy+/tD9/oy+//FIHDx7Uyy+/XOGY09LS5Ovr63AaHgDUBoIFgFvO3d1dgwcP1ubNm5WXl2c/ReW7775Tenq6vV5MTIySkpI0d+5cpaamOnxhtyxLp0+fdsmpH+7u7oqMjNSHH36onJwc+1V1Tp48qfXr16tv3772L4RlBQJJGjx4sLZv366//vWvGj58uKRrX8D/8pe/ONSLi4sr84vkE088oaioKI0fP94+B+TGG6BV1ZQpUxQdHe1Qlp+fr4kTJ2rs2LEaPny4QkND5eXlddO+3N3dnY7sJCcnq7i4uEpjefTRR/XSSy9pxYoV+vOf/2wvr+w8kwsXLsjNzc3hqkxhYWHy8/Ozn2bUpUsXdenSpUrjulFsbKxeeeUVrV69WgMHDrSXr1q1Sh4eHvZL3549e1aenp4Ocycsy9K8efMkyWGu0JNPPqklS5bozTfftF9a+NKlS1qzZo169epV5mlq69evl6QKLx1bUFCgjIwMxcfHV+kKXQBQEwgWAGrF3LlztXXrVvXr10+TJ0/W1atXlZycrK5du+qbb76RdO2L47x585SUlKScnBxFR0fLz89PR44c0aZNmzRhwoQq3wPiZubNm6ft27erb9++mjx5sjw8PLRy5UpdunRJixYtqvD1EydO1J/+9CfFx8dr6tSpCgwMVFpamv2LcGko6tSpkzp16lRmG6GhoU5BwESPHj3Uo0cPh7LSU6K6du1aqb4ee+wxpaSkyN/fX126dNGuXbuUkZFR5UDXvXt3xcfH67XXXtOZM2fUp08fffLJJ05HdG7m+++/18MPP6zY2Fh16dJFHh4e2rRpk06ePOkwYd/Ufffdp2eeeUZvvfWWrl69aj+d6v3331dSUpL9tKXdu3crPj5e8fHxateunYqKirRp0ybt3LlTEyZMcFjvvXr10siRI5WUlKT8/Hy1a9dOb7/9tnJycrR69WqnMRQXF+vdd9/VL37xC6c5KTd69913dfXqVU6DAnBbIFgAqBX33HOP0tPT9bvf/U6zZs1ScHCw5s6dq+PHj9uDhXTtxm4dOnTQsmXLNHfuXEnXzmOPjIx06akfXbt21T/+8Q8lJSVp4cKFKikpUa9evZSamlrhPSyka/M9Pv30UyUkJOiPf/yjfH19NXr0aPXp00cjRoyo8OZmt6s//vGPcnd3V1pami5evKgHH3xQGRkZDv+Rr6y33npLAQEBSktL0+bNmzVw4EB99NFH5U4sL9W6dWvFx8frk08+UUpKijw8PNSpUye99957GjFiRHUW7abeeOMNtWnTRmvWrNGmTZsUEhKiZcuWOVzBKiQkRP369dOmTZt04sQJubm5qXPnznrjjTccboRXat26dZo5c6ZSUlJUWFioe+65R//zP/+j/v37O9XNyMjQyZMn9Yc//KHCsaalpalFixbGR7cAwBVsVnVmLwIAKmX58uWaNm2a/vWvf6lVq1a1PRwAAGoMwQIAXKSoqMjh0qEXL17Ufffdp+LiYn3//fe1ODIAAGoep0IBgIvExMSoTZs26t69u86cOaPU1FTt37/ffj+Cuur6e0mUxdvb237vEABA3cURCwBwkeXLl2vVqlXKyclRcXGxunTpounTp+uXv/xlbQ+tRt14U8AbjRkzRmvXrr01gwEA1BqCBQDAyPV3mS5LUFCQ8WVgAQC3P4IFAAAAAGNutT0AAAAAAHc+ggUA3EHatm2rsWPHOpRlZ2crMjJS/v7+stls2rx5c5XaLL3jt6uVNdayrF27VjabzX7zvjvNiy++WKl7nQBAXUewAIA73JgxY7R3717Nnz9fKSkpuv/++yv92p07d2rbtm2aMWNGDY7wznfo0CF5eXnJZrPpf//3fx2eS0xM1D//+U/99a9/raXRAcDtgcvNAsAdrKioSLt27dIf/vAHPffcc1V+/eLFi/Xwww+rXbt2Lh/bgQMH5OZWN/5/NW3aNHl4eOjSpUtOz7Vs2VLDhw/XkiVLXHo3eAC409SNT3wAqKcKCgokSU2aNKnya/Pz8/XRRx8pNjbWZeOxLEtFRUWSJE9PTzVo0MBlbdeW9PR0paena9q0aTetExsbqx07dujw4cO3cGQAcHshWACo1z777DPdf//98vLyUlhYmFauXKk5c+Y43ZshNTVV4eHh8vb2VrNmzRQXF6cffvjBoU5ERIS6deumb7/9Vg899JB8fHzUqlUrLVq0qMrjsixL8+bNU3BwsHx8fPTQQw9p3759DnXmzJmjkJAQSdLvf/972Ww2tW3bVpJ07tw5JSYmqm3btvL09FSLFi30yCOPaPfu3fbXf/TRR7p69aoGDRrk1P8333yjAQMGyNvbW8HBwZo3b57WrFnjNBeibdu2euyxx5Senq77779f3t7eWrlypf25G+dY7Nu3TwMHDnRot6SkpMrrp/Q9OnjwoMaOHasmTZrI399fv/71r3XhwoUqt3czV65c0dSpUzV16lSFhYXdtF7pOvzwww9d1jcA3Gk4FQpAvZWVlaUhQ4YoMDBQc+fOVXFxsV5++WUFBAQ41Js/f75mzpyp2NhYjRs3TgUFBUpOTlb//v2VlZXlcLSgsLBQQ4YMUUxMjGJjY7VhwwbNmDFDP//5z/Xoo49WemyzZs3SvHnzFBUVpaioKO3evVuRkZG6fPmyvU5MTIyaNGmiadOmKT4+XlFRUfL19ZUkTZo0SRs2bNBzzz2nLl266NSpU9qxY4e+++479ejRQ5L0+eefq3nz5vZwUuro0aN66KGHZLPZlJSUpEaNGmnVqlXy9PQsc6wHDhxQfHy8Jk6cqPHjx6tjx45l1jtx4oQeeughXb16VS+++KIaNWqkN998U97e3pVeLzeKjY1VaGioFi5cqN27d2vVqlVq0aKFXn31VXudM2fO6MqVKxW25eXlZV9/pZYvX67CwkL913/9lzZu3HjT1/r7+yssLEw7d+4s98gGANRpFgDUU48//rjl4+NjHT161F6WnZ1teXh4WKUfjzk5OZa7u7s1f/58h9fu3bvX8vDwcCgfMGCAJclat26dvezSpUtWy5YtrREjRlR6XPn5+VbDhg2toUOHWiUlJfbyl156yZJkjRkzxl525MgRS5K1ePFihzb8/f2tZ599ttx++vbta4WHhzuVJyQkWDabzcrKyrKXnTp1ymrWrJklyTpy5Ii9PCQkxJJkbd261amdkJAQh7EmJiZakqwvv/zSYVn9/f2d2q3I7NmzLUnWM88841D+xBNPWM2bN3coK31fKvq5fqyWZVnHjx+3/Pz8rJUrV1qWZVlr1qyxJFlff/11mWOKjIy0OnfuXOllAIC6hiMWAOql4uJiZWRk6IknnlBQUJC9vF27dnr00Uf1t7/9TZK0ceNGlZSUKDY2Vv/+97/t9Vq2bKn27dsrMzNTL730kr3c19dXv/rVr+yPGzZsqAceeKBK595nZGTo8uXLSkhIcDglKzExUQsWLKhUG02aNNGXX36pY8eOOSzf9U6dOqVWrVo5lW/dulW9e/dW9+7d7WXNmjXTU089peTkZKf6oaGhGjx4cIVj+vjjj/WLX/xCDzzwgL0sICBATz31lF577bVKLJWzSZMmOTzu16+fNm3apLNnz6px48aSpKVLl6qwsLDCtm5cTzNmzNDdd9+tcePGVWosTZs2VVZWViVHDgB1D8ECQL2Un5+voqKiMq+GdH1Zdna2LMtS+/bty2znxsnJwcHBTvMzmjZtqm+++abSY8vNzZUkpz4DAgLUtGnTSrWxaNEijRkzRq1bt1Z4eLiioqI0evRo3X333Q71LMsqs//evXs7ld/sylGhoaGVGlNubm6Z93u42alTldGmTRuHx6Xrp7Cw0B4swsPDq9zuF198oZSUFH3yySeVvrKVZVlO7z0A1CcECwAoR0lJiWw2m7Zs2SJ3d3en5288J7+sOlLZX+BrUmxsrP2/99u2bdPixYv16quvauPGjfa5Hs2bN6/Uf/IrYjJHwlRl1vfp06cd5qbcjLe3t/z9/SVJ06dPV79+/RQaGmqfrF56xOr48ePKy8tzCjWFhYX62c9+Vp3FAIA6gWABoF5q0aKFvLy8dPDgQafnri8LCwuTZVkKDQ1Vhw4dbsnYSidTZ2dnOxxhKCgoqFIQCAwM1OTJkzV58mTl5+erR48emj9/vj1YdOrUSR988EGZ/Ve0XqojJCRE2dnZTuUHDhwwarciMTEx+vvf/15hvTFjxmjt2rWSpLy8POXm5pZ5NGbYsGHy9/fXjz/+6FB+5MgR3Xvvva4YMgDckQgWAOold3d3DRo0SJs3b3aYh3Dw4EFt2bLFXi8mJkZJSUmaO3euUlNTHU51sSxLp0+fVvPmzV06tkGDBqlBgwZKTk5WZGSkvc/ly5dX6vXFxcU6f/68/b/v0rUgFRQU5HCDt969e2vVqlU6fPiwQ4AZPHiw/vznP2vPnj32eRanT59WWlqa0XJFRUVp+fLl+uqrr+zzLAoKCozbrUh15li8+eabTpet/fTTT5WcnKwlS5aoU6dODs+dOXNGhw4d0m9/+1vXDBoA7kAECwD11pw5c7Rt2zY9+OCD+u1vf6vi4mL96U9/Urdu3bRnzx5J145YzJs3T0lJScrJyVF0dLT8/Px05MgRbdq0SRMmTNALL7zg0nEFBATohRde0MKFC/XYY48pKipKWVlZ2rJlS6VOtTl37pyCg4P15JNP6t5775Wvr68yMjL09ddfa+nSpfZ6Q4cOlYeHhzIyMjRhwgR7+fTp05WamqpHHnlECQkJ9svNtmnTRqdPn672PILp06crJSVFQ4YM0dSpU+2Xmw0JCanSHJSqqs4ci8jISKey0iMUAwYM0P333+/wXEZGhizL0vDhw6s1RgCoCwgWAOqt8PBwbdmyRS+88IJmzpyp1q1b6+WXX9Z3332n/fv32+u9+OKL6tChg5YtW6a5c+dKklq3bq3IyEgNGzasRsY2b948eXl56Y033lBmZqZ69eqlbdu2aejQoRW+1sfHR5MnT9a2bdvsV7Vq166dXnvtNYf/qN91112KiorSe++95xAsWrdurczMTE2ZMkULFixQQECAnn32WTVq1EhTpkyRl5dXtZYpMDBQmZmZSkhI0CuvvKLmzZtr0qRJCgoK0m9+85tqtXm7eP/999W3b99yb6IHAHWdzbrVMwoB4DYXHR2tffv2lTkfoK75xz/+oYiICO3fv/+mV74qlZiYqJUrV+r8+fM3nTRdH504cUKhoaF65513OGIBoF6r3DX0AKCOKioqcnicnZ2tjz/+WBEREbUzoFusX79+ioyM1KJFixzKb1wvp06dUkpKivr27UuouMHy5cv185//nFABoN7jiAWAei0wMFBjx47V3XffrdzcXL3++uu6dOmSsrKyKvwPfnUUFBSouLj4ps83bNhQzZo1c3m/VdW9e3dFRESoc+fOOnnypFavXq1jx47pk08+Uf/+/Wus3/Pnz+v8+fPl1gkICCDcAMBtiDkWAOq1IUOG6L//+7914sQJeXp6qnfv3lqwYEGNhApJ6tmzp/0GeGUZMGCAPvvssxrpuyqioqK0YcMGvfnmm7LZbOrRo4dWr15do6FCkpYsWWKfx3IzR44cUdu2bWt0HACAquOIBQDcQjt37nQ6zeh6TZs2rdZVjOqKw4cP6/Dhw+XW6du3b7UnkAMAag7BAgAAAIAxJm8DAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGPylQqKSnRsWPH5OfnJ5vNVtNjAmqcZVk6d+6cgoKC5OZWtXzN/oC6xmR/kNgnUPfwNwL4SVX2h0oFi2PHjql169YuGRxwO/nhhx8UHBxcpdewP6Cuqs7+ILFPoO7ibwTwk8rsD5WK4X5+fi4ZEHC7qc62zf6Auqq62zb7BOoq/kYAP6nMtl2pYMGhPNRV1dm22R9QV1V322afQF3F3wjgJ5XZtpm8DQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYMyj1nq2XNyezdUNSpZsLm7Q9WOsb2w2F78ntwnLxdtGTawnV48R5urq/iDdIdubq9f/nbDMt7m6uk/Ux78Rrh9jfdy/bv3+wBELAAAAAMYIFgAAAACMESwAAAAAGCNYAAAAADBGsAAAAABgjGABAAAAwBjBAgAAAIAxggUAAAAAYwQLAAAAAMYIFgAAAACMESwAAAAAGCNYAAAAADBGsAAAAABgjGABAAAAwBjBAgAAAIAxggUAAAAAYwQLAAAAAMYIFgAAAACMESwAAAAAGPOotZ5tt32DNTBE17ZoWZZL27O5eHyS68eI2lMT20d9w/5Qe2pm+3Xx+8k+BtxB7oDPlFrAEQsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMOZRWx1bllVbXQN1HvuXOZvNVttDAIzUx88B9tta5PJ1X/+237qAIxYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAw5lHbA3AVm81W20MAbhs1sT9YluXS9thngZp1J+xjrv5cQe1x/dZ2+2+/cMYRCwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABjzqO0B3M4sy3JpezabzaXtuXp8wJ2M/QG3nOXiz3Td3tuwq/+GofbweWmO/aFsHLEAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMYIFAAAAAGMECwAAAADGCBYAAAAAjBEsAAAAABgjWAAAAAAwRrAAAAAAYIxgAQAAAMAYwQIAAACAMY/a6thms9VW17gJ3hOUp75tH/VteVENLt5EbC5u0LIsl7aHuoPPN9QUjlgAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGP2urYsqza6rrW3O7LfLuPT5JsNlttD+GOcCe8l65mk6u3DdevQ8vFY2RvqLw7YZ+43T/f7oR1iMqpiffS5Z/BNra3OxFHLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGDMo7Y6ttlstdU1cNthf7gduf494V2uPPYJc6zDuqN+vpf1cZnvfByxAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAGMECAAAAgDGCBQAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADAWKWChWVZNT0OoFZUZ9tmf0BdVd1tm30CdRV/I4CfVGbbrlSwOHfunPFggNtRdbZt9gfUVdXdttknUFfxNwL4SWW2bZtVifhRUlKiY8eOyc/PTzabzSWDA2qTZVk6d+6cgoKC5OZWtTMC2R9Q15jsDxL7BOoe/kYAP6nK/lCpYAEAAAAA5WHyNgAAAABjBAsAAAAAxggWAAAAAIwRLAAAAAAYI1gAAAAAMEawAAAAAGCMYAEAAADA2P8DAhmEsv6OFJAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -635,7 +629,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAv9klEQVR4nO3deVhV1eLG8fcAMggIapQgiIYmDqlpw1VRMBVnMwccuqX2MytzIg2H7k3tOuRQWpZlWVqK91aO9TjghKVWt0FMsxwT1MwkcUxUgvX7o4dzPR5GNwro9/M8Po9nnXXWWnufszn7PXvvtW3GGCMAAAAAsMCluAcAAAAAoPQjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAKFHGjx8vm81W3MPADWSz2TR+/HiHsm+++UZNmjSRt7e3bDabduzYYbmPwYMHW2oDAJA3ggUAFLPWrVvfkB3fjIwM1a5dWzabTTNmzLiufVmRkZGhHj16KC0tTTNnztTChQsVGhp6Q/r+5ptvNHjwYNWpU0fe3t6qUqWKYmJitG/fPqe6Npst13+tW7e218sOy7n927Ztm71uv379cqwTHh7u1P+BAwfUvXt3lS9fXmXLllVERIQSExOvz4oBgAJwK+4BAMCtbNmyZfryyy9vSF+zZ8/W4cOHb0hfVhw8eFApKSl65513NGDAgBva99SpU7Vt2zb16NFD9erV0/Hjx/X666+rYcOG+uqrr1S3bl173YULFzq9/ttvv9Wrr76q6Ohoe1nXrl1VvXp1p7pjx47V+fPndd999zmUe3h4aN68eQ5lfn5+Do+PHDmixo0by9XVVc8995y8vb01f/58RUdHa+PGjWrevPk1LT8AWEGwAIBicvHiRY0YMUKjRo3SCy+8cF37OnHihF588cUb0pdVJ06ckCT5+/vf8L6fffZZLV68WO7u7vaynj176u6779ZLL72kRYsW2cv//ve/O71+8+bNstls6t27t72sXr16qlevnkO9I0eO6OjRoxowYIBDX5Lk5uaWY9tXeumll3T69Gn98MMPqlmzpiTpiSeeUHh4uGJjY/Xdd98VfKEBoIhwKhSAYrN161bdd9998vT0VFhYmObOnZtjvUWLFqlRo0by8vJShQoV1KtXLx05csShTlRUlOrWraudO3cqMjJSZcuWVfXq1bVkyRJJ0meffaYHHnhAXl5eqlmzpjZs2ODUT1JSktq1a6dy5crJx8dHLVu21FdffVXg5UlJSVHnzp3l7e2t22+/XbGxsUpISJDNZtPmzZud6k+bNk1ZWVkaOXJkgfuQpAULFthPoXn22WcVEBAgb29vPfzww0pNTc3xNaNHj1bNmjXz3WHNaZkGDRqkmjVrysvLSxUrVlSPHj2UnJxcqHYk6dKlS4qNjVVAQIB8fX3VuXNnHT161KFOv379FBkZKUnq0aOHbDaboqKiJEnHjx9X//79FRwcLA8PDwUGBuqhhx4q1FhWrFihunXrysPDQ3Xq1NHatWsdnm/SpInTjn6NGjVUp04d/fTTT/ku39KlSxUZGang4OA86/773/+WMUaPPPJIjs9nZmbq7Nmzub5+y5Ytuueee+yhQpLKli2rzp07a/v27dq/f3+e/QPA9cARCwDFYteuXYqOjlZAQIDGjx+vP//8U+PGjdMdd9zhUG/SpEn65z//qZiYGA0YMECpqamaPXu2mjdvrqSkJIdftU+dOqWOHTuqV69e6tGjh95880316tVL8fHxGj58uJ566in16dNH06dPV/fu3XXkyBH5+vpKknbv3q1mzZqpXLlyiouLU5kyZTR37lxFRUXZQ0le/vjjDz344IP69ddfNWzYMFWqVEmLFy/O9Zz3w4cP66WXXtJ7770nLy+va1qHQ4YMUfny5TVu3DglJydr1qxZGjx4sD788EOHel9//bXef/99bd26tdAXxn/zzTf64osv1KtXLwUHBys5OVlvvvmmoqKi9OOPP6ps2bIFbmvAgAFatGiR+vTpoyZNmmjTpk3q0KGDQ50nn3xSlStX1uTJkzV06FDdd9999s9Et27dtHv3bg0ZMkRVq1bViRMntH79eh0+fFhVq1bNt/+tW7dq2bJlGjRokHx9ffXaa6+pW7duOnz4sCpWrJjr64wx+u2331SnTp0821+9erVOnz6da1i4Unx8vEJCQnI8ZenChQsqV66cLly4oPLly6t3796aOnWqfHx87HUuXbqk8uXLO702+/347rvvVKNGjXzHAQBFygBAMejSpYvx9PQ0KSkp9rIff/zRuLq6muw/TcnJycbV1dVMmjTJ4bW7du0ybm5uDuWRkZFGklm8eLG9bM+ePUaScXFxMV999ZW9PCEhwUgy8+fPdxiPu7u7OXjwoL3s2LFjxtfX1zRv3jzf5Xn55ZeNJLNixQp7WXp6ugkPDzeSTGJiokP97t27myZNmtgfSzLPPPNMvv0YY8z8+fONJNOqVSuTlZVlL4+NjTWurq7m9OnT9rKsrCxz//33m969extjjDl06JCRZKZPn16gvi5cuOBU9uWXXxpJ5oMPPihQG8YYs2PHDiPJDBo0yKG8T58+RpIZN26cvSwxMdFIMh9//LG97NSpU4Ua99UkGXd3d3PgwAF72ffff28kmdmzZ+f52oULFxpJ5t13382zXrdu3YyHh4c5depUnvV++OEHI8nExcU5PTd69GgzatQo8+GHH5p///vfpm/fvkaSadq0qcnIyLDX69Spk/H39zdnz551eH3jxo2NJDNjxow8xwAA1wOnQgG44TIzM5WQkKAuXbqoSpUq9vJatWqpTZs29sfLli1TVlaWYmJi9Pvvv9v/VapUSTVq1HA6GuDj46NevXrZH9esWVP+/v6qVauWwxGH7P///PPP9vGsW7dOXbp00Z133mmvFxgYqD59+mjr1q15npYiSWvXrlXlypXVuXNne5mnp6eeeOIJp7qJiYlaunSpZs2alWeb+Rk4cKDDEYhmzZopMzNTKSkp9rIFCxZo165dmjp16jX1ceXRlIyMDJ08eVLVq1eXv7+/tm/fXuB2Vq9eLUkaOnSoQ/nw4cMLPA53d3dt3rxZp06dKnC/V2rVqpXCwsLsj+vVq6dy5crZPwc52bNnj5555hk1btxYffv2zbXe2bNntWrVKrVv3z7fa0Pi4+MlKccjG1OmTNFLL72kmJgY9erVSwsWLNCkSZO0bds2+2l9kvT000/r9OnT6tmzp5KSkrRv3z4NHz5c3377rSQpPT09zzEAwPVAsABww6Wmpio9PT3HUzWuPGd8//79MsaoRo0aCggIcPj3008/2S/yzRYcHOx0qo+fn59CQkKcyiTZd1BTU1N14cIFh76z1apVS1lZWfZrOlJTU3X8+HH7v/Pnz0v661qEsLAwp/6vng3ozz//1NChQ/Xoo486zQZ0tSv7OX78uNPO4pWhTJL91Jjs5Tp79qzGjBmj5557zmkdXCkzM9Opr8uXL0v6awf1hRdeUEhIiDw8PHTbbbcpICBAp0+f1pkzZ/Ic/5VSUlLk4uLisGMvKcd1nhMPDw9NnTpVa9as0R133KHmzZtr2rRpOn78uL3OmTNnHJYhLS3NoY2r15f01zrLLagcP35cHTp0kJ+fn5YsWSJXV9dcx7d06VJdvHgx39OgjDFavHix6tat63RBd25iY2Pl4uLicF1Qu3btNHv2bH3++edq2LChatasqVWrVmnSpEmS5HDaFADcKFxjAaDEysrKks1m05o1a3Lcqbt65ym3Hb/cyo0xhR7Tfffd53BEYNy4cU43d8vLBx98oL1792ru3LlOFx2fO3dOycnJuv3221W2bFkFBgY6PD9//nz169fP/ji/5ZoxY4YuX76snj172vvKvlj61KlTSk5OVlBQkI4dO6Zq1ao5tJGYmKioqCgNGTJE8+fP1/Dhw9W4cWP5+fnJZrOpV69eysrKKvByF4Xhw4erU6dOWrFihRISEvTPf/5TU6ZM0aZNm3TPPfdo2LBhev/99+31IyMjHS6aL8zn4MyZM2rXrp1Onz6tLVu2KCgoKM+xxcfHy8/PTx07dsyz3rZt25SSkqIpU6bkWe9K2RfNXx2UBg8erP79+2vnzp1yd3dXgwYN9O6770qS7rrrrgK3DwBFhWAB4IYLCAiQl5dXjjPX7N271/7/sLAwGWNUrVq167qjFBAQoLJlyzr0nW3Pnj1ycXGx/+IfHx/vcOQg+9Sp0NBQ/fjjjzLGOBy1OHDggEN7hw8fVkZGhpo2berU1wcffKAPPvhAy5cvV5cuXbR+/XqH5/O7ePhqhw8f1qlTp3J83eTJkzV58mQlJSUpPDzcqa/69etLkpYsWaK+ffvq5Zdftj938eJFnT59ulBjCQ0NVVZWlg4ePOhwlCKndZ6XsLAwjRgxQiNGjND+/fvVoEEDvfzyy1q0aJHi4uIcZr3K6eLmgrh48aI6deqkffv2acOGDapdu3ae9X/99VclJiaqX79+8vDwyLNufHy8bDab+vTpU+DxnDt3Tr///rsCAgKcnvP29lbjxo3tjzds2CAvL68cP18AcL0RLADccK6urmrTpo1WrFihw4cP209R+emnn5SQkGCv17VrV40ZM0YTJkzQokWLHHbYjTFKS0vLczafwownOjpaK1euVHJysn2God9++02LFy9WRESEypUrJ0m57rC1adNG69ev1yeffKKHHnpI0l87qO+8845DvV69eqlBgwZOr3/44YfVvn17PfHEE/ZrQFq1amVpuYYOHaouXbo4lJ04cUJPPvmk+vXrp4ceekjVqlWTp6dnrn25uro6/aI/e/ZsZWZmFmos7dq109ixY/Xaa6/pjTfesJcX9DqTCxcuyMXFRZ6envaysLAw+fr66tKlS5Kk2rVr5xsC8pOZmamePXvqyy+/1MqVKx122nPzn//8R1lZWfmeBpWRkaGPP/5YEREROZ6WdfHiRWVkZNhnKsv2r3/9S8YYtW3bNs/2v/jiCy1btkxPP/200w31AOBGIFgAKBYTJkzQ2rVr1axZMw0aNEh//vmnZs+erTp16mjnzp2S/tpxnDhxosaMGaPk5GR16dJFvr6+OnTokJYvX66BAwcW+h4QuZk4caLWr1+viIgIDRo0SG5ubpo7d64uXbqkadOm5fv6J598Uq+//rp69+6tYcOGKTAwUPHx8fYd4exQFB4ervDw8BzbqFatmlMQsKJhw4Zq2LChQ1n2KVF16tQpUF8dO3bUwoUL5efnp9q1a+vLL7/Uhg0bCh3oGjRooN69e2vOnDk6c+aMmjRpoo0bNzod0cnNvn371LJlS8XExKh27dpyc3PT8uXL9dtvvzlcsG/ViBEj9Mknn6hTp05KS0tzuCGelPNN8eLj4xUUFGS/30ZuEhISdPLkyVwDyPHjx3XPPfeod+/e9s9IQkKCVq9erbZt29oDq/TXNSsxMTHq3LmzKlWqpN27d+utt95SvXr1NHny5EIuNQAUDYIFgGJRr149JSQk6Nlnn9ULL7yg4OBgTZgwQb/++qs9WEh/3djtrrvu0syZMzVhwgRJUkhIiKKjox1mYLKqTp062rJli8aMGaMpU6YoKytLDzzwgBYtWpTvPSykv6732LRpk4YMGaJXX31VPj4+euyxx9SkSRN169bN4Zf20uTVV1+Vq6ur4uPjdfHiRTVt2lQbNmxwmL2roN577z0FBAQoPj5eK1as0IMPPqhVq1bleWF5tpCQEPXu3VsbN27UwoUL5ebmpvDwcH300Ufq1q3btSxajnbs2CFJ+vTTT/Xpp586PX91sNi7d6++++47Pfvss3JxyXs+lPj4eJUpU0Y9evTI8Xl/f3917NhR69ev1/vvv6/MzExVr15dkydP1siRIx3aL1eunAIDA/X6668rLS1NlStX1tChQ/X88887HfEAgBvFZq7l6kUAQIHMmjVLsbGxOnr0qCpXrlzcwwEA4LohWABAEUlPT3e478PFixd1zz33KDMzU/v27SvGkQEAcP1xKhQAFJGuXbuqSpUqatCggc6cOaNFixZpz5499hui3ayuvJdETry8vLiYGABuARyxAIAiMmvWLM2bN0/JycnKzMxU7dq1FRcXp549exb30K6rq28KeLW+fftqwYIFN2YwAIBiQ7AAAFhy5R2hcxIUFGR5GlgAQMlHsAAAAABgWd5z4wEAAABAARAsAJRoVatWVb9+/RzK9u/fr+joaPn5+clms2nFihWFajP7DtdFLaex5mTBggWy2Wz2m9Xdimw2m8aPH39d2v7zzz8VFxenkJAQubi4FNlNB5OTk2Wz2TRjxowiaa84jR8/Pt9rY65VRkaGQkJCNGfOnOvSPoCSi2ABoNTp27evdu3apUmTJmnhwoW69957C/zabdu2ad26dRo1atR1HGHpd/DgQXl6espms+nbb78t7uEUynvvvafp06ere/fuev/99xUbG1vcQyoy/fr1k81my/Hf2rVri3t4kqQyZcro2Wef1aRJk3Tx4sXiHg6AG4jpZgGUKunp6fryyy/1/PPPa/DgwYV+/fTp09WyZUtVr169yMe2d+/efO++XFrExsbKzc1Nly5dKu6hFNqmTZtUuXJlzZw5s7iHcl14eHho3rx5TuX169cvhtHkrH///ho9erQWL16sxx9/vLiHA+AGIVgAKFVSU1MlSf7+/oV+7YkTJ7Rq1Sq99dZbRTYeY4wuXrwoLy8veXh4FFm7xSkhIUEJCQmKi4vTxIkTi3s4hXbixIlr+nzkJisrS5cvXy6y9qxyc3PT3//+9+IeRp78/f0VHR2tBQsWECyAW8jN8dMagALZvHmz7r33Xnl6eiosLExz587N9VzrRYsWqVGjRvLy8lKFChXUq1cvHTlyxKFOVFSU6tatqx9//FEtWrRQ2bJlVblyZU2bNq3QYzPGaOLEiQoODlbZsmXVokUL7d6926HO+PHjFRoaKkl67rnnZLPZVLVqVUnSuXPnNHz4cFWtWlUeHh66/fbb1bp1a23fvt3++lWrVunPP/9Uq1atnPrfuXOnIiMj5eXlpeDgYE2cOFHz5893uhaiatWq6tixoxISEnTvvffKy8tLc+fOtT939TUWu3fv1oMPPujQblZWVqHXT/b7dODAAfXr10/+/v7y8/NT//79deHChUK3l5uMjAwNGzZMw4YNU1hYmOX2Ll26pNjYWAUEBMjX11edO3fW0aNHc6yblJSkdu3aqVy5cvLx8VHLli311VdfFbiv7GsgEhMTtXv3bvspQps3b5Yk/fHHHxoxYoRCQkLk4eGhmjVrasaMGbp6ckSbzabBgwcrPj5ederUkYeHR66nGRljNHDgQLm7u2vZsmWS/lqHEyZMUI0aNeTp6amKFSsqIiJC69evL/CyXKstW7aoR48eqlKlijw8PBQSEqLY2Filp6fn+9r169crIiJC/v7+8vHxUc2aNTV27FiHOpcuXdK4ceNUvXp1e/txcXE5Htlq3bq1tm7dqrS0tCJbPgAlG0csgFtEUlKS2rZtq8DAQE2YMEGZmZl68cUXFRAQ4FR30qRJ+uc//6mYmBgNGDBAqampmj17tpo3b66kpCSHX4NPnTqltm3bqmvXroqJidGSJUs0atQo3X333WrXrl2Bx/fCCy9o4sSJat++vdq3b6/t27crOjra4Zfirl27yt/fX7Gxserdu7fat28vHx8fSdJTTz2lJUuWaPDgwapdu7ZOnjyprVu36qefflLDhg0lSV988YUqVqxoDyfZfvnlF7Vo0UI2m01jxoyRt7e35s2bl+sRiL1796p379568skn9cQTT6hmzZo51jt+/LhatGihP//8U6NHj5a3t7fefvtteXl5FXi9XC0mJkbVqlXTlClTtH37ds2bN0+33367pk6daq9z5swZZWRk5NuWp6enff1lmzVrlk6dOqV//OMf9h1lKwYMGKBFixapT58+atKkiTZt2qQOHTo41du9e7eaNWumcuXKKS4uTmXKlNHcuXMVFRWlzz77TA888EC+fQUEBGjhwoWaNGmSzp8/rylTpkiSatWqJWOMOnfurMTERP3f//2fGjRooISEBD333HP65ZdfnE6b2rRpkz766CMNHjxYt912mz3AXikzM1OPP/64PvzwQy1fvty+XOPHj9eUKVM0YMAA3X///Tp79qy+/fZbbd++Xa1bt5b01w76uXPnCrQOb7vtNqey33//3eFxmTJl5Ofnp48//lgXLlzQ008/rYoVK+rrr7/W7NmzdfToUX388ce59rF792517NhR9erV04svvigPDw8dOHBA27Zts9fJyspS586dtXXrVg0cOFC1atXSrl27NHPmTO3bt89pEoVGjRrJGKMvvvhCHTt2LNCyAijlDIBbQqdOnUzZsmXNL7/8Yi/bv3+/cXNzM1f+KUhOTjaurq5m0qRJDq/ftWuXcXNzcyiPjIw0kswHH3xgL7t06ZKpVKmS6datW4HHduLECePu7m46dOhgsrKy7OVjx441kkzfvn3tZYcOHTKSzPTp0x3a8PPzM88880ye/URERJhGjRo5lQ8ZMsTYbDaTlJRkLzt58qSpUKGCkWQOHTpkLw8NDTWSzNq1a53aCQ0NdRjr8OHDjSTz3//+12FZ/fz8nNrNz7hx44wk8/jjjzuUP/zww6ZixYoOZdnvS37/rhyrMcb8+uuvxtfX18ydO9cYY8z8+fONJPPNN98UeJxX2rFjh5FkBg0a5FDep08fI8mMGzfOXtalSxfj7u5uDh48aC87duyY8fX1Nc2bNy9Uv5GRkaZOnToOZStWrDCSzMSJEx3Ku3fvbmw2mzlw4IC9TJJxcXExu3fvdqh75WcvIyPD9OzZ03h5eZmEhASHevXr1zcdOnTIc4zZ67Yg/67Ut2/fHOtERkYaY4y5cOGCU19TpkwxNpvNpKSk2MuyP0/ZZs6caSSZ1NTUXMe8cOFC4+LiYrZs2eJQ/tZbbxlJZtu2bQ7lx44dM5LM1KlT81wXAG4eHLEAbgGZmZnasGGDHn74YQUFBdnLq1evrnbt2unTTz+1ly1btkxZWVmKiYlx+FW0UqVKqlGjhhITEx1Oj/Dx8XE439vd3V3333+/fv755wKPb8OGDbp8+bKGDBnicFrW8OHDNXny5AK14e/vr//+9786duyYwzJe6eTJk6pcubJT+dq1a9W4cWM1aNDAXlahQgU98sgjmj17tlP9atWqqU2bNvmOafXq1frb3/6m+++/314WEBCgRx555Jqn4nzqqaccHjdr1kzLly/X2bNnVa5cOUnSyy+/rFOnTuXb1tXradSoUbrzzjs1YMCAaxrb1VavXi1JGjp0qEP58OHDtXjxYvvjzMxMrVu3Tl26dNGdd95pLw8MDFSfPn30zjvvOCzftY7F1dXVaSwjRozQkiVLtGbNGofJACIjI3O9W/jly5fVo0cPrV+/XqtXr1ZUVJTD8/7+/tq9e7f279+vGjVq5NhGmzZtrvnUKE9PT4dtVpLKly8vSQ5Hw/744w+lp6erSZMmMsYoKSlJVapUybHN7KOQK1euVP/+/XOchODjjz9WrVq1FB4e7vC34cEHH5QkJSYmqkmTJk5juvroCoCbF8ECuAWcOHFC6enpOc6EdHXZ/v37ZYzJdYeoTJkyDo+Dg4OdrtEoX768du7cWeDxpaSkSJJTnwEBAfadk/xMmzZNffv2VUhIiBo1aqT27dvrsccec9hRleR0Pn12/40bN3Yqz23mqGrVqhVoTCkpKTmewpPbqVMFcfWOYfb6OXXqlH3Hu1GjRoVu96uvvtLChQu1cePGIpvZKiUlRS4uLk7Xaly9/Kmpqbpw4UKO66VWrVrKysrSkSNHVKdOHUtjCQoKkq+vr1P72c9fKa/3eMqUKTp//rzWrFnjFCok6cUXX9RDDz2ku+66S3Xr1lXbtm316KOPql69evY6gYGBCgwMvKZlcXV1zfE6IUk6fPiwXnjhBX3yySdO4fLMmTO5ttmzZ0/NmzdPAwYM0OjRo9WyZUt17dpV3bt3t38e9u/fr59++inH0yelv/7OXCl7W7te98sAUPIQLAA4yMrKks1m05o1a+Tq6ur0/NXn5OdUR8p5B/56iomJsf96v27dOk2fPl1Tp07VsmXL7Nd6VKxYsUC/5OfHyjUSVhVkfaelpRVoFiMvLy/5+flJkuLi4tSsWTNVq1bNfrF69i/Nv/76qw4fPpzrr903o7ze4zZt2mjt2rWaNm2aoqKi5Onp6fB88+bNdfDgQa1cuVLr1q3TvHnzNHPmTL311lv2o0Hp6el57uhfqVKlSgWql5mZqdatWystLU2jRo1SeHi4vL299csvv6hfv355Thrg5eWlzz//XImJiVq1apXWrl2rDz/8UA8++KDWrVsnV1dXZWVl6e6779Yrr7ySYxshISEOj7O3tZyuEQFwcyJYALeA22+/XZ6enjpw4IDTc1eXhYWFyRijatWq6a677roh48u+mHr//v0ORxhSU1MLFQQCAwM1aNAgDRo0SCdOnFDDhg01adIke7AIDw/X0qVLc+y/IOumsEJDQ7V//36n8r1791pqNz9du3bVZ599lm+9vn37asGCBZL++qU7JSUlx1/qO3fuLD8/P50+fbpQ4wgNDVVWVpYOHjzocDTi6uUPCAhQ2bJlc1wve/bskYuLi9NOa2GFhoZqw4YNOnfunMNRiz179tifL6i//e1veuqpp9SxY0f16NFDy5cvl5ub49dphQoV1L9/f/Xv31/nz59X8+bNNX78eHuw+PDDD9W/f/8C9VfQkL5r1y7t27dP77//vh577DF7eUFPuXJxcVHLli3VsmVLvfLKK5o8ebKef/55JSYmqlWrVgoLC9P333+vli1bFugoxKFDhyT976gQgJsfwQK4BWSfOrFixQqHaxAOHDigNWvWONTt2rWrxowZowkTJmjRokUOOxDGGKWlpalixYpFOr5WrVqpTJkymj17tqKjo+19zpo1q0Cvz8zM1Pnz5+2/vkt/hamgoCCHaTAbN26sefPm6eeff3YIMG3atNEbb7yhHTt22K+zSEtLU3x8vKXlat++vWbNmqWvv/7afp1Famqq5Xbzcy3XWLz99ttO09Zu2rRJs2fP1owZMxQeHl7ocbRr105jx47Va6+9pjfeeMNefvX76urqqujoaK1cuVLJycn2GZh+++03LV68WBEREZaur5D+ei/efvttvf766xozZoy9fObMmbLZbIWawUz66zP7n//8Rz169NCjjz6q+Ph4+ylDJ0+edNhGfHx8VL16dYfpmq1cY5Gb7KNZVwYRY4xeffXVfF+blpamChUqOJRlbwvZ21BMTIxWr16td955RwMHDnSom56erqysLHl7e9vLvvvuO9lsthxPMwRwcyJYALeI8ePHa926dWratKmefvppZWZm6vXXX1fdunW1Y8cOe72wsDBNnDhRY8aMUXJysrp06SJfX18dOnRIy5cv18CBAzVy5MgiHVtAQIBGjhypKVOmqGPHjmrfvr2SkpK0Zs2aAp1Gce7cOQUHB6t79+6qX7++fHx8tGHDBn3zzTd6+eWX7fU6dOggNzc3bdiwwWHHKC4uTosWLVLr1q01ZMgQ+3SzVapUUVpa2jWfIx4XF6eFCxeqbdu2GjZsmH262dDQ0EJdg1JY13KNRXR0tFNZ9hGKyMhI3Xvvvfby5ORkVatWzeGIR04aNGig3r17a86cOTpz5oyaNGmijRs35ngkaOLEifb7KAwaNEhubm6aO3euLl26dE33Rblap06d1KJFCz3//PNKTk5W/fr1tW7dOq1cuVLDhw+/pnt2dOnSRfPnz9djjz2mcuXK2e9nUrt2bUVFRalRo0aqUKGCvv32W/tUyNmsXGORm/DwcIWFhWnkyJH65ZdfVK5cOS1durRAIfPFF1/U559/rg4dOig0NFQnTpzQnDlzFBwcrIiICEnSo48+qo8++khPPfWUEhMT1bRpU2VmZmrPnj366KOP7Pd2ybZ+/Xo1bdq0yH+IAFCCFdNsVACKwcaNG80999xj3N3dTVhYmJk3b54ZMWKE8fT0dKq7dOlSExERYby9vY23t7cJDw83zzzzjNm7d6+9Tk7Tehrz15SYoaGhhRpbZmammTBhggkMDDReXl4mKirK/PDDD05TuOY03eylS5fMc889Z+rXr298fX2Nt7e3qV+/vpkzZ45TP507dzYtW7Z0Kk9KSjLNmjUzHh4eJjg42EyZMsW89tprRpI5fvy4vV5oaGiuU4lePVZjjNm5c6eJjIw0np6epnLlyuZf//qXeffdd695utmrpwPNnra0MG0VVG7Tze7atctIMqNHj863jfT0dDN06FBTsWJF4+3tbTp16mSOHDniNN2sMcZs377dtGnTxvj4+JiyZcuaFi1amC+++KLQ487tc3nu3DkTGxtrgoKCTJkyZUyNGjXM9OnTHaY4Nuav6WZzmro4t6mO58yZYySZkSNHGmOMmThxorn//vuNv7+/8fLyMuHh4WbSpEnm8uXLhV6Wq/Xt29d4e3vn+vyPP/5oWrVqZXx8fMxtt91mnnjiCfP9998bSWb+/Pn2eldPN7tx40bz0EMPmaCgIOPu7m6CgoJM7969zb59+xzav3z5spk6daqpU6eO8fDwMOXLlzeNGjUyEyZMMGfOnLHXO336tHF3dzfz5s2zvMwASg+bMTf4CksAJUqXLl3sU2PeCrZs2aKoqCjt2bMn15mvsg0fPlxz587V+fPnc71o+lY0Z84cxcXF6eDBg7rjjjuKezgogWbNmqVp06bp4MGDxTrZAYAbq2jmFARQKqSnpzs83r9/f47z8N/MmjVrpujoaKfTa65eNydPntTChQsVERFBqLhKYmKihg4dSqhAjjIyMvTKK6/oH//4B6ECuMVwxAK4hQQGBqpfv3668847lZKSojfffFOXLl1SUlJSvr/eX6vU1FRlZmbm+ry7u7vTRaPFoUGDBoqKilKtWrX022+/6d1339WxY8e0ceNGNW/e/Lr1e/78eZ0/fz7POgEBAYQbScePH8/z+SunzwUA3HgEC+AW0r9/fyUmJur48ePy8PBQ48aNNXnyZDVs2PC69Vm1alWnm49dKTIyUps3b75u/RfU2LFjtWTJEh09elQ2m00NGzbUuHHjcr0RWVEZP368JkyYkGedQ4cO2WdKupXldxF9fheTAwCuL4IFgOtq27ZtTqcZXal8+fLXNIvRzeLnn3/Wzz//nGediIgIp5uw3Yo2bNiQ5/NBQUGqXbv2DRoNAOBqBAsAAAAAlnHxNgAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMreCVMrKytKxY8fk6+srm812vccEXHfGGJ07d05BQUFycSlcvmZ7wM3GyvYgsU3g5sN3BPA/hdkeChQsjh07ppCQkCIZHFCSHDlyRMHBwYV6DdsDblbXsj1IbBO4efEdAfxPQbaHAsVwX1/fIhkQUNJcy2eb7QE3q2v9bLNN4GbFdwTwPwX5bBcoWHAoDzera/lssz3gZnWtn222Cdys+I4A/qcgn20u3gYAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWOZWXB0bY4qra+TCZrMVeZtF/T5fjzGWCEW8OZiibhAl0k27PUhFvk3oOqyqW+17jO+I4lMa1hPbg3Wl4X3OD0csAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZW7F1bHNZiuurm8axpjiHkK+eJ8LyFa076VNrHeUckW8Teg6bBMl/e8b3xEozYr6s8H2cGNwxAIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmVtxdWyMKa6uC8wmWxE3WMTLbCvi8V0HRf0+20rBMpcMJX/7QlG4ebcHU9TLVgq+c25FfEfgRinyfbpS8T1747cHjlgAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADL3Ip7AEXFZrMV9xAKoGjHWCqWuFS8LyUB6+nWYIp7AKVGkW8R/C0qkfiOuHmU+Pey6P+oFHWDuhm+IzhiAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALHMr7gGUZMaYIm3PZrMVaXslfXxS6RhjSVC0a0lSEa/3W9HN+lkrLUrD346SPsaSPj6pdIzxZlTU6/1WxGctZxyxAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlrkVV8c2m624ui6wkj7Gkj4+qXSMsSSwyRRxg6x3lG6l4W9HSR9jSR+fVDrGWBKwnqwzpoi/Z5EjjlgAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALHMrro6NMUXans1mK9L2pJI/xpI+Pql0jPHmVLTrHbjRSsPfjpI+xpI+Pql0jLEkKA3rqTSMsSgV9fJKkop4mYtjDXLEAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWOZWXB3bbLbi6rrASvoYS/r4pNIxxpKB9QRcqTT87SjpYyzp45NKxxhLgtKwnkr6GEv6+G4WHLEAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUFChbGmOs9DqBYXMtnm+0BN6tr/WyzTeBmxXcE8D8F+WwXKFicO3fO8mCAkuhaPttsD7hZXetnm20CNyu+I4D/Kchn22YKED+ysrJ07Ngx+fr6ymazFcnggOJkjNG5c+cUFBQkF5fCnRHI9oCbjZXtQWKbwM2H7wjgfwqzPRQoWAAAAABAXrh4GwAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWPb/kv7isc688RkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw3klEQVR4nO3deXhN1+L/8c9JInOMjUpEIw0Vw62p1RoTcxGkZu41fhVXDVFt0N5WuMFFW0qrTaulhG+pqbfflpjSQau3A8ovilAJNZSixpiS9fvDk3MdJyGxQxLer+fxPM7a66y99j575+zP2XuvbTPGGAEAAACABS4F3QEAAAAARR/BAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQJAoRIbGyubzVbQ3cBdZLPZFBsb61D2ww8/qEGDBvLx8ZHNZtO2bdssz2PYsGGW2gAA3BzBAgAKWMuWLe/Kge+VK1dUrVo12Ww2vfrqq3d0XlZcuXJFXbt21cmTJzVjxgwtXLhQwcHBd7UPW7ZsUYcOHVS6dGl5e3urRo0amjVrlkOdyZMn68knn5S/v788PT1VuXJlRUdH6/jx4zdte9GiRbLZbPL19c12+ptvvqmqVavKw8ND5cuX13PPPafz58871Nm1a5diYmJUq1Yt+fn5KSAgQO3atdOPP/5obcEBwAK3gu4AANzPVqxYoc2bN9+Vec2ePVsHDhy4K/OyYt++fUpLS9N7772ngQMH3vX5r127Vu3bt1ft2rX18ssvy9fXV/v27dNvv/3mUO+nn35SrVq11KNHD/n5+emXX37Re++9p88++0zbtm2Tj4+PU9vnzp1TTExMttMkacyYMZo2bZq6dOmikSNHaufOnZo9e7aSk5OVmJhorzd37ly9//776ty5s4YOHarTp08rPj5eTz75pNasWaMWLVrk70oBgFwgWABAAbl48aJGjx6tMWPG6JVXXrmj8zp27JgmTpx4V+Zl1bFjxyRJJUuWvOvzPnPmjPr06aN27dpp2bJlcnHJ+cT+8uXLncrq16+vLl266NNPP1WPHj2cpsfFxcnPz09NmzbVqlWrHKYdOXJEr7/+unr37q0FCxbYyx955BENHz5cn376qdq3by9J6tmzp2JjYx3OegwYMEBVq1ZVbGwswQJAgeBSKAAFZtOmTXr88cfl6emp0NBQxcfHZ1svISFBdevWlZeXl0qXLq0ePXro4MGDDnUiIiJUo0YNbd++XeHh4fL29lalSpW0bNkySdKXX36pJ554Ql5eXqpSpYrWr1/vNJ+tW7eqTZs2Kl68uHx9fdW8eXN99913uV6etLQ0dejQQT4+PipbtqxGjRqlxMRE2Ww2ffHFF071p02bpszMTD3//PO5nockzZ8/XzabTd98842ee+45+fv7y8fHR08//XSOl+GMHTtWVapU0d/+9rc8zSstLU1Dhw5VlSpV5OXlpTJlyqhr165KTU3NUzuSdOnSJY0aNUr+/v7y8/NThw4dnM4C9OvXT+Hh4ZKkrl27ymazKSIiQpJ09OhR9e/fX0FBQfLw8FBAQIA6duyYp76sWrVKNWrUkIeHh6pXr641a9Y4TF+8eLF+//13TZo0SS4uLjp//rwyMzNz3X7FihUlSX/++afTtJSUFM2YMUOvv/663Nycf9fbvHmzrl696hRIsl5/9NFH9rK6des6XUpVpkwZNW7cWL/88kuu+wsA+YkzFgAKxI4dO9SqVSv5+/srNjZWV69e1fjx4/Xggw861Js0aZJefvlldevWTQMHDtTx48c1e/ZsNWnSRFu3bnX4VfvUqVOKjIxUjx491LVrV7399tvq0aOHFi1apOjoaA0ZMkS9evXS9OnT1aVLFx08eFB+fn6SpOTkZDVu3FjFixdXTEyMihUrpvj4eEVERNhDyc2cP39ezZo105EjRzRy5EiVK1dOixcvVlJSUrb1Dxw4oH/961/64IMP5OXldVvrcPjw4SpVqpTGjx+v1NRUzZw5U8OGDdOSJUsc6n3//ff68MMPtWnTpjzfGP/DDz/o22+/VY8ePRQUFKTU1FS9/fbbioiI0M6dO+Xt7Z3rtgYOHKiEhAT16tVLDRo00MaNG9WuXTuHOoMHD1b58uU1efJkjRgxQo8//rh9m+jcubOSk5M1fPhwVaxYUceOHdO6det04MAB+wH9zWzatEkrVqzQ0KFD5efnp1mzZqlz5846cOCAypQpI0lav369ihcvrkOHDikqKkp79uyRj4+PevfurRkzZsjT09OhTWOMTpw4oatXryolJUVjx46Vq6urPQxdLzo6Wk2bNlXbtm21dOlSp+mXLl2SJKftIWsd//TTT7dcxqNHj+qBBx64ZT0AuCMMABSAqKgo4+npadLS0uxlO3fuNK6uribrT1NqaqpxdXU1kyZNcnjvjh07jJubm0N5eHi4kWQWL15sL9u1a5eRZFxcXMx3331nL09MTDSSzLx58xz64+7ubvbt22cvO3z4sPHz8zNNmjS55fK89tprRpJZtWqVvSw9Pd2EhYUZSSYpKcmhfpcuXUyDBg3sryWZZ5999pbzMcaYefPmGUmmRYsWJjMz014+atQo4+rqav788097WWZmpqlXr57p2bOnMcaY/fv3G0lm+vTpuZrXhQsXnMo2b95sJJkFCxbkqg1jjNm2bZuRZIYOHepQ3qtXLyPJjB8/3l6WlJRkJJmPP/7YXnbq1Kk89ftGkoy7u7vZu3evveznn382kszs2bPtZY8++qjx9vY23t7eZvjw4Wb58uVm+PDhRpLp0aOHU7tHjhwxkuz/goKCzJIlS5zq/d///Z9xc3MzycnJxhhj+vbta3x8fBzq/PTTT0aS+ec//+lQvmbNGiPJ+Pr63nQZv/rqK2Oz2czLL7986xUCAHcAl0IBuOsyMjKUmJioqKgoPfTQQ/byqlWrqnXr1vbXK1asUGZmprp166Y//vjD/q9cuXKqXLmy09kAX19fh8tIqlSpopIlS6pq1aoOZxyy/v/rr7/a+7N27VpFRUXp4YcfttcLCAhQr169tGnTJp05c+amy7RmzRqVL19eHTp0sJd5enrqmWeecaqblJSk5cuXa+bMmTdt81YGDRrkcAaicePGysjIUFpamr1s/vz52rFjh6ZOnXpb87j+1/MrV67oxIkTqlSpkkqWLKktW7bkup3PP/9ckjRixAiH8ujo6Fz3w93dXV988YVOnTqV6/ler0WLFgoNDbW/fvTRR1W8eHH7diBdu7n6woUL6tOnj2bNmqVOnTpp1qxZGjx4sD766COlpKQ4tFm6dGmtW7dOn376qSZOnKgHHnhA586dc6hz+fJljRo1SkOGDFG1atVy7F+dOnX0xBNPaOrUqZo3b55SU1O1evVqDR48WMWKFVN6enqO7z127Jh69eqlkJAQxcTE5HXVAEC+4FIoAHfd8ePHlZ6ersqVKztNq1Kliv0gNCUlRcaYbOtJUrFixRxeBwUFOV3qU6JECVWoUMGpTJL9APX48eO6cOGCqlSp4jSPqlWrKjMzUwcPHlT16tV1/PhxZWRk2Kf7+vrK19dXaWlpCg0NdZp/pUqVHF5fvXpVI0aMUO/evfX4449nu1xZjh496tTv6w/0rw9lklSqVCmH5Tpz5ozGjRunF154wWkdXC8jI8Pp3ozSpUvL3d1d6enpmjJliubNm6dDhw7JGGOvc/r06Zv2/3ppaWlycXFxOLCXlO06z46Hh4emTp2q0aNH68EHH9STTz6pyMhI9enTR+XKlbP35/qDb3d3d5UuXdr++sb1JV1bZ9cHlaz127NnT4d6vXr1Unx8vDZv3uywPbq7u9tvlI6MjFTz5s3VsGFDlS1bVpGRkZKkGTNm6I8//tCECRNuuZzLly9X9+7dNWDAAEmSq6urnnvuOX355ZfavXt3tu85f/68IiMjdfbsWW3atCnHYWwB4E4jWAAotDIzM2Wz2bR69Wq5uro6Tb/xACq7Ojcrv/4gObcef/xxhzMC48ePd3q4280sWLBAu3fvVnx8vNNNx2fPnlVqaqrKli0rb29vBQQEOEyfN2+e+vXrZ399q+V69dVXdfnyZXXv3t0+r6ybpU+dOqXU1FQFBgbq8OHDCgkJcWgjKSlJERERGj58uObNm6fo6GjVr19fJUqUkM1mU48ePfJ0U3N+iI6OVvv27bVq1SolJibq5Zdf1pQpU7Rx40bVrl1bI0eO1IcffmivHx4e7nDTfG62g8DAQCUnJzvd61O2bFlJuuXZkgYNGiggIECLFi1SZGSkTp8+rbi4OA0dOlRnzpyxn/k6d+6cjDFKTU2Vt7e3vf3y5ctr06ZNSklJ0dGjR1W5cmWVK1dOgYGBeuSRR5zmd/nyZXXq1Enbt29XYmKiatSocdP+AcCdRLAAcNf5+/vLy8vL6bISSQ6/yoaGhsoYo5CQkGwPqvKzP97e3tn+Irxr1y65uLjYf/FftGiRw6/iWZdOBQcHa+fOnTLGOJy12Lt3r0N7Bw4c0JUrV9SwYUOneS1YsEALFizQypUrFRUVpXXr1jlMr169ep6W68CBAzp16lS275s8ebImT56srVu3KiwszGleNWvWlCQtW7ZMffv21WuvvWafdvHixWxHPbqZ4OBgZWZmat++fQ5nKXL6FT4noaGhGj16tEaPHq2UlBTVqlVLr732mhISEhQTE+Mw6lXWGZy8qFu3rtatW6dDhw459PPw4cOSrm0rt3Lx4kX72ZxTp07p3LlzmjZtmqZNm+ZUNyQkRB07dnQaerZy5cr2MyM7d+7UkSNHHEKldC149+nTRxs2bNDSpUvto2kBQEEhWAC461xdXdW6dWutWrVKBw4csF+i8ssvvzg8BKxTp04aN26cJkyYoISEBIcDdmOMTp48aR/Nx2p/WrVqpU8++USpqan2EYZ+//13LV68WI0aNVLx4sUlKdtAIEmtW7fWunXr9O9//1sdO3aUdO0A87333nOo16NHD9WqVcvp/U8//bTatm2rZ555xn4PiNVnEYwYMUJRUVEOZceOHdPgwYPVr18/dezYUSEhIfL09MxxXq6urk5ndmbPnu1wOVhutGnTRi+++KJmzZqlt956y16e2/tMLly4IBcXF4dRmUJDQ+Xn52cfTalatWo3vYchN7p166Z//etfev/999WsWTN7+dy5c+Xm5mYf7en8+fOy2WxOo2ItX75cp06d0mOPPSbp2pmOlStXOs1n1qxZ2rx5s/73f//X6czU9TIzMxUTEyNvb28NGTLEYdrw4cO1ZMkSxcfHq1OnTre7yACQbwgWAArEhAkTtGbNGjVu3FhDhw7V1atXNXv2bFWvXl3bt2+XdO3AMS4uTuPGjVNqaqqioqLk5+en/fv3a+XKlRo0aFCenwGRk7i4OK1bt06NGjXS0KFD5ebmpvj4eF26dCnbX5pvNHjwYL355pvq2bOnRo4cab8cJutAOCsUhYWFKSwsLNs2QkJCnIKAFXXq1FGdOnUcyrIuiapevXqu5hUZGamFCxeqRIkSqlatmjZv3qz169fnOdDVqlVLPXv21Jw5c3T69Gk1aNBAGzZscDqjk5M9e/aoefPm6tatm6pVqyY3NzetXLlSv//+e7YPortdtWvX1oABA/TBBx/o6tWr9supPv74Y40bN06BgYGSrt3/06JFC3Xv3l1hYWFycXHRjz/+qISEBFWsWFEjR46UdG2o2OzW86pVq/T99987TRs5cqQuXryoWrVq6cqVK1q8eLF9uODr7xGZOXOm5syZo/r168vb21sJCQkO7Tz99NM5Pt0bAO4UggWAAvHoo48qMTFRzz33nF555RUFBQVpwoQJOnLkiD1YSNce7PbII49oxowZ9ptfK1SooFatWjmMwGRV9erV9fXXX2vcuHGaMmWKMjMz9cQTTyghIeGWz7CQrt3vsXHjRg0fPlxvvPGGfH191adPHzVo0ECdO3d2ev5BUfHGG2/I1dVVixYt0sWLF9WwYUOtX7/eYfSu3Prggw/k7++vRYsWadWqVWrWrJk+++yzm95YnqVChQrq2bOnNmzYoIULF8rNzU1hYWFaunSpOnfufDuLlqN33nlHDz30kObNm6eVK1cqODhYM2bMcBjBKigoSJ07d9bGjRv14Ycf6sqVKwoODtawYcP00ksv3faZtNq1a2vmzJlatGiRXFxcVK9ePW3YsEFNmzZ1qLdt2zZJ1x6qt3nzZqd29u/fT7AAcNfZzO3cvQgAyJWZM2dq1KhR+u2331S+fPmC7g4AAHcMwQIA8kl6errDcLAXL15U7dq1lZGRoT179hRgzwAAuPO4FAoA8kmnTp300EMPqVatWjp9+rQSEhK0a9cuLVq0qKC7dkfd+LyNG3l5edmfHQIAuHdxxgIA8snMmTM1d+5cpaamKiMjQ9WqVVNMTIy6d+9e0F27o258KOCN+vbtq/nz59+dzgAACgzBAgBgyfr16286PTAw0PIwsACAwo9gAQAAAMAyl4LuAAAAAICij2ABoFCrWLGi+vXr51CWkpKiVq1aqUSJErLZbFq1alWe2sx6wnV+y66v2Zk/f75sNpv9YXX3I5vNptjY2DvS9tWrVxUTE6MKFSrIxcUl3x46mJqaKpvNpldffTVf2itIsbGxt7w35nZduXJFFSpU0Jw5c+5I+wAKL4IFgCKnb9++2rFjhyZNmqSFCxfqsccey/V7v/nmG61du1Zjxoy5gz0s+vbt2ydPT0/ZbDb9+OOPBd2dPPnggw80ffp0denSRR9++KFGjRpV0F3KN/369ZPNZsv235o1awq6e5KkYsWK6bnnntOkSZN08eLFgu4OgLuI4WYBFCnp6enavHmzXnrpJQ0bNizP758+fbqaN2+uSpUq5Xvfdu/eLReXe+P3mlGjRsnNzU2XLl0q6K7k2caNG1W+fHnNmDGjoLtyR3h4eGju3LlO5TVr1iyA3mSvf//+Gjt2rBYvXqwBAwYUdHcA3CUECwBFyvHjxyVJJUuWzPN7jx07ps8++0zvvPNOvvXHGKOLFy/Ky8tLHh4e+dZuQUpMTFRiYqJiYmIUFxdX0N3Js2PHjt3W9pGTzMxMXb58Od/as8rNzU1/+9vfCrobN1WyZEm1atVK8+fPJ1gA95F746c1ALnyxRdf6LHHHpOnp6dCQ0MVHx+f47XWCQkJqlu3rry8vFS6dGn16NFDBw8edKgTERGhGjVqaOfOnWratKm8vb1Vvnx5TZs2Lc99M8YoLi5OQUFB8vb2VtOmTZWcnOxQJzY2VsHBwZKkF154QTabTRUrVpQknT17VtHR0apYsaI8PDxUtmxZtWzZUlu2bLG//7PPPtPVq1fVokULp/lv375d4eHh8vLyUlBQkOLi4jRv3jyneyEqVqyoyMhIJSYm6rHHHpOXl5fi4+Pt0268xyI5OVnNmjVzaDczMzPP6yfrc9q7d6/69eunkiVLqkSJEurfv78uXLiQ5/ZycuXKFY0cOVIjR45UaGio5fYuXbqkUaNGyd/fX35+furQoYN+++23bOtu3bpVbdq0UfHixeXr66vmzZvru+++y/W8su6BSEpKUnJysv0SoS+++EKSdP78eY0ePVoVKlSQh4eHqlSpoldffVU3Do5os9k0bNgwLVq0SNWrV5eHh0eOlxkZYzRo0CC5u7trxYoVkq6twwkTJqhy5cry9PRUmTJl1KhRI61bty7Xy3K7vv76a3Xt2lUPPfSQPDw8VKFCBY0aNUrp6em3fO+6devUqFEjlSxZUr6+vqpSpYpefPFFhzqXLl3S+PHjValSJXv7MTEx2Z7ZatmypTZt2qSTJ0/m2/IBKNw4YwHcJ7Zu3aqnnnpKAQEBmjBhgjIyMjRx4kT5+/s71Z00aZJefvlldevWTQMHDtTx48c1e/ZsNWnSRFu3bnX4NfjUqVN66qmn1KlTJ3Xr1k3Lli3TmDFj9Je//EVt2rTJdf9eeeUVxcXFqW3btmrbtq22bNmiVq1aOfxS3KlTJ5UsWVKjRo1Sz5491bZtW/n6+kqShgwZomXLlmnYsGGqVq2aTpw4oU2bNumXX35RnTp1JEnffvutypQpYw8nWQ4dOqSmTZvKZrNp3Lhx8vHx0dy5c3M8A7F792717NlTgwcP1jPPPKMqVapkW+/o0aNq2rSprl69qrFjx8rHx0fvvvuuvLy8cr1ebtStWzeFhIRoypQp2rJli+bOnauyZctq6tSp9jqnT5/WlStXbtmWp6enff1lmTlzpk6dOqV//OMf9gNlKwYOHKiEhAT16tVLDRo00MaNG9WuXTunesnJyWrcuLGKFy+umJgYFStWTPHx8YqIiNCXX36pJ5544pbz8vf318KFCzVp0iSdO3dOU6ZMkSRVrVpVxhh16NBBSUlJ+p//+R/VqlVLiYmJeuGFF3To0CGny6Y2btyopUuXatiwYXrggQfsAfZ6GRkZGjBggJYsWaKVK1falys2NlZTpkzRwIEDVa9ePZ05c0Y//vijtmzZopYtW0q6doB+9uzZXK3DBx54wKnsjz/+cHhdrFgxlShRQh9//LEuXLigv//97ypTpoy+//57zZ49W7/99ps+/vjjHOeRnJysyMhIPfroo5o4caI8PDy0d+9effPNN/Y6mZmZ6tChgzZt2qRBgwapatWq2rFjh2bMmKE9e/Y4DaJQt25dGWP07bffKjIyMlfLCqCIMwDuC+3btzfe3t7m0KFD9rKUlBTj5uZmrv9TkJqaalxdXc2kSZMc3r9jxw7j5ubmUB4eHm4kmQULFtjLLl26ZMqVK2c6d+6c674dO3bMuLu7m3bt2pnMzEx7+Ysvvmgkmb59+9rL9u/fbySZ6dOnO7RRokQJ8+yzz950Po0aNTJ169Z1Kh8+fLix2Wxm69at9rITJ06Y0qVLG0lm//799vLg4GAjyaxZs8apneDgYIe+RkdHG0nmP//5j8OylihRwqndWxk/fryRZAYMGOBQ/vTTT5syZco4lGV9Lrf6d31fjTHmyJEjxs/Pz8THxxtjjJk3b56RZH744Ydc9/N627ZtM5LM0KFDHcp79eplJJnx48fby6Kiooy7u7vZt2+fvezw4cPGz8/PNGnSJE/zDQ8PN9WrV3coW7VqlZFk4uLiHMq7dOlibDab2bt3r71MknFxcTHJyckOda/f9q5cuWK6d+9uvLy8TGJiokO9mjVrmnbt2t20j1nrNjf/rte3b99s64SHhxtjjLlw4YLTvKZMmWJsNptJS0uzl2VtT1lmzJhhJJnjx4/n2OeFCxcaFxcX8/XXXzuUv/POO0aS+eabbxzKDx8+bCSZqVOn3nRdALh3cMYCuA9kZGRo/fr1evrppxUYGGgvr1Spktq0aaNPP/3UXrZixQplZmaqW7duDr+KlitXTpUrV1ZSUpLD5RG+vr4O13u7u7urXr16+vXXX3Pdv/Xr1+vy5csaPny4w2VZ0dHRmjx5cq7aKFmypP7zn//o8OHDDst4vRMnTqh8+fJO5WvWrFH9+vVVq1Yte1np0qX117/+VbNnz3aqHxISotatW9+yT59//rmefPJJ1atXz17m7++vv/71r7c9FOeQIUMcXjdu3FgrV67UmTNnVLx4cUnSa6+9plOnTt2yrRvX05gxY/Twww9r4MCBt9W3G33++eeSpBEjRjiUR0dHa/HixfbXGRkZWrt2raKiovTwww/bywMCAtSrVy+99957Dst3u31xdXV16svo0aO1bNkyrV692mEwgPDw8ByfFn758mV17dpV69at0+eff66IiAiH6SVLllRycrJSUlJUuXLlbNto3br1bV8a5enp6bDPSlKpUqUkyeFs2Pnz55Wenq4GDRrIGKOtW7fqoYceyrbNrLOQn3zyifr375/tIAQff/yxqlatqrCwMIe/Dc2aNZMkJSUlqUGDBk59uvHsCoB7F8ECuA8cO3ZM6enp2Y6EdGNZSkqKjDE5HhAVK1bM4XVQUJDTPRqlSpXS9u3bc92/tLQ0SXKap7+/v/3g5FamTZumvn37qkKFCqpbt67atm2rPn36OByoSnK6nj5r/vXr13cqz2nkqJCQkFz1KS0tLdtLeHK6dCo3bjwwzFo/p06dsh94161bN8/tfvfdd1q4cKE2bNiQbyNbpaWlycXFxelejRuX//jx47pw4UK266Vq1arKzMzUwYMHVb16dUt9CQwMlJ+fn1P7WdOvd7PPeMqUKTp37pxWr17tFCokaeLEierYsaMeeeQR1ahRQ0899ZR69+6tRx991F4nICBAAQEBt7Usrq6u2d4nJEkHDhzQK6+8on//+99O4fL06dM5ttm9e3fNnTtXAwcO1NixY9W8eXN16tRJXbp0sW8PKSkp+uWXX7K9fFK69nfmeln72p16XgaAwodgAcBBZmambDabVq9eLVdXV6fpN16Tn10dKfsD+DupW7du9l/v165dq+nTp2vq1KlasWKF/V6PMmXK5OqX/Fuxco+EVblZ3ydPnszVKEZeXl4qUaKEJCkmJkaNGzdWSEiI/Wb1rF+ajxw5ogMHDuT4a/e96GafcevWrbVmzRpNmzZNERER8vT0dJjepEkT7du3T5988onWrl2ruXPnasaMGXrnnXfsZ4PS09NveqB/vXLlyuWqXkZGhlq2bKmTJ09qzJgxCgsLk4+Pjw4dOqR+/frddNAALy8vffXVV0pKStJnn32mNWvWaMmSJWrWrJnWrl0rV1dXZWZm6i9/+Ytef/31bNuoUKGCw+usfS27e0QA3JsIFsB9oGzZsvL09NTevXudpt1YFhoaKmOMQkJC9Mgjj9yV/mXdTJ2SkuJwhuH48eN5CgIBAQEaOnSohg4dqmPHjqlOnTqaNGmSPViEhYVp+fLl2c4/N+smr4KDg5WSkuJUvnv3bkvt3kqnTp305Zdf3rJe3759NX/+fEnXfulOS0vL9pf6Dh06qESJEvrzzz/z1I/g4GBlZmZq3759Dmcjblx+f39/eXt7Z7tedu3aJRcXF6eD1rwKDg7W+vXrdfbsWYezFrt27bJPz60nn3xSQ4YMUWRkpLp27aqVK1fKzc3x67R06dLq37+/+vfvr3PnzqlJkyaKjY21B4slS5aof//+uZpfbkP6jh07tGfPHn344Yfq06ePvTy3l1y5uLioefPmat68uV5//XVNnjxZL730kpKSktSiRQuFhobq559/VvPmzXN1FmL//v2S/ntWCMC9j2AB3AeyLp1YtWqVwz0Ie/fu1erVqx3qdurUSePGjdOECROUkJDgcABhjNHJkydVpkyZfO1fixYtVKxYMc2ePVutWrWyz3PmzJm5en9GRobOnTtn//VduhamAgMDHYbBrF+/vubOnatff/3VIcC0bt1ab731lrZt22a/z+LkyZNatGiRpeVq27atZs6cqe+//95+n8Xx48ctt3srt3OPxbvvvus0bO3GjRs1e/ZsvfrqqwoLC8tzP9q0aaMXX3xRs2bN0ltvvWUvv/FzdXV1VatWrfTJJ58oNTXVPgLT77//rsWLF6tRo0aW7q+Qrn0W7777rt58802NGzfOXj5jxgzZbLY8jWAmXdtmP/roI3Xt2lW9e/fWokWL7JcMnThxwmEf8fX1VaVKlRyGa7Zyj0VOss5mXR9EjDF64403bvnekydPqnTp0g5lWftC1j7UrVs3ff7553rvvfc0aNAgh7rp6enKzMyUj4+Pveynn36SzWbL9jJDAPcmggVwn4iNjdXatWvVsGFD/f3vf1dGRobefPNN1ahRQ9u2bbPXCw0NVVxcnMaNG6fU1FRFRUXJz89P+/fv18qVKzVo0CA9//zz+do3f39/Pf/885oyZYoiIyPVtm1bbd26VatXr87VZRRnz55VUFCQunTpopo1a8rX11fr16/XDz/8oNdee81er127dnJzc9P69esdDoxiYmKUkJCgli1bavjw4fbhZh966CGdPHnytq8Rj4mJ0cKFC/XUU09p5MiR9uFmg4OD83QPSl7dzj0WrVq1cirLOkMRHh6uxx57zF6empqqkJAQhzMe2alVq5Z69uypOXPm6PTp02rQoIE2bNiQ7ZmguLg4+3MUhg4dKjc3N8XHx+vSpUu39VyUG7Vv315NmzbVSy+9pNTUVNWsWVNr167VJ598oujo6Nt6ZkdUVJTmzZunPn36qHjx4vbnmVSrVk0RERGqW7euSpcurR9//NE+FHIWK/dY5CQsLEyhoaF6/vnndejQIRUvXlzLly/PVcicOHGivvrqK7Vr107BwcE6duyY5syZo6CgIDVq1EiS1Lt3by1dulRDhgxRUlKSGjZsqIyMDO3atUtLly61P9sly7p169SwYcN8/yECQCFWQKNRASgAGzZsMLVr1zbu7u4mNDTUzJ0714wePdp4eno61V2+fLlp1KiR8fHxMT4+PiYsLMw8++yzZvfu3fY62Q3racy1ITGDg4Pz1LeMjAwzYcIEExAQYLy8vExERIT5f//v/zkN4ZrdcLOXLl0yL7zwgqlZs6bx8/MzPj4+pmbNmmbOnDlO8+nQoYNp3ry5U/nWrVtN48aNjYeHhwkKCjJTpkwxs2bNMpLM0aNH7fWCg4NzHEr0xr4aY8z27dtNeHi48fT0NOXLlzf//Oc/zfvvv3/bw83eOBxo1rCleWkrt3IabnbHjh1Gkhk7duwt20hPTzcjRowwZcqUMT4+PqZ9+/bm4MGDTsPNGmPMli1bTOvWrY2vr6/x9vY2TZs2Nd9++22e+53Tdnn27FkzatQoExgYaIoVK2YqV65spk+f7jDEsTHXhpvNbujinIY6njNnjpFknn/+eWOMMXFxcaZevXqmZMmSxsvLy4SFhZlJkyaZy5cv53lZbtS3b1/j4+OT4/SdO3eaFi1aGF9fX/PAAw+YZ555xvz8889Gkpk3b5693o3DzW7YsMF07NjRBAYGGnd3dxMYGGh69uxp9uzZ49D+5cuXzdSpU0316tWNh4eHKVWqlKlbt66ZMGGCOX36tL3en3/+adzd3c3cuXMtLzOAosNmzF2+wxJAoRIVFWUfGvN+8PXXXysiIkK7du3KceSrLNHR0YqPj9e5c+dyvGn6fjRnzhzFxMRo3759evDBBwu6OyiEZs6cqWnTpmnfvn0FOtgBgLsrf8YUBFAkpKenO7xOSUnJdhz+e1njxo3VqlUrp8trblw3J06c0MKFC9WoUSNCxQ2SkpI0YsQIQgWydeXKFb3++uv6xz/+QagA7jOcsQDuIwEBAerXr58efvhhpaWl6e2339alS5e0devWW/56f7uOHz+ujIyMHKe7u7s73TRaEGrVqqWIiAhVrVpVv//+u95//30dPnxYGzZsUJMmTe7YfM+dO6dz587dtI6/vz/hRtLRo0dvOv364XMBAHcfwQK4j/Tv319JSUk6evSoPDw8VL9+fU2ePFl16tS5Y/OsWLGi08PHrhceHq4vvvjijs0/t1588UUtW7ZMv/32m2w2m+rUqaPx48fn+CCy/BIbG6sJEybctM7+/fvtIyXdz251E/2tbiYHANxZBAsAd9Q333zjdJnR9UqVKnVboxjdK3799Vf9+uuvN63TqFEjp4ew3Y/Wr19/0+mBgYGqVq3aXeoNAOBGBAsAAAAAlnHzNgAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMrfcVMrMzNThw4fl5+cnm812p/sE3HHGGJ09e1aBgYFycclbvmZ/wL3Gyv4gsU/g3sN3BPBfedkfchUsDh8+rAoVKuRL54DC5ODBgwoKCsrTe9gfcK+6nf1BYp/AvYvvCOC/crM/5CqG+/n55UuHgMLmdrZt9gfcq25322afwL2K7wjgv3KzbecqWHAqD/eq29m22R9wr7rdbZt9AvcqviOA/8rNts3N2wAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAy9wKasbGmIKaNXJgs9nyvc38/pzvRB8LhXzeHUx+N4hC6Z7dH6R83yd0B1bV/fY9xndEwSkK64n9wbqi8DnfCmcsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZW4FNWObzVZQs75nGGMKugu3xOecS7b8/SxtYr2jiMvnfUJ3YJ8o7H/f+I5AUZbf2wb7w93BGQsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZW4FNWNjTEHNOtdssuVzg/m8zLZ87t8dkN+fs60ILHPhUPj3L+SHe3d/MPm9bEXgO+d+xHcE7pZ8P6YrEt+zd39/4IwFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwzK2gO5BfbDZbQXchF/K3j0ViiYvE51IYsJ7uD6agO1Bk5Psewd+iQonviHtHof8s8/+PSn43qHvhO4IzFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDK3gu5AYWaMydf2bDZbvrZX2PsnFY0+Fgb5u5Yk5fN6vx/dq9taUVEU/nYU9j4W9v5JRaOP96L8Xu/3I7a17HHGAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWOZWUDO22WwFNetcK+x9LOz9k4pGHwsDm0w+N8h6R9FWFP52FPY+Fvb+SUWjj4UB68k6Y/L5exbZ4owFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDK3gpqxMSZf27PZbPnanlT4+1jY+ycVjT7em/J3vQN3W1H421HY+1jY+ycVjT4WBkVhPRWFPuan/F5eSVI+L3NBrEHOWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMvcCmrGNputoGada4W9j4W9f1LR6GPhwHoCrlcU/nYU9j4W9v5JRaOPhUFRWE+FvY+FvX/3Cs5YAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMCyXAULY8yd7gdQIG5n22Z/wL3qdrdt9gncq/iOAP4rN9t2roLF2bNnLXcGKIxuZ9tmf8C96na3bfYJ3Kv4jgD+Kzfbts3kIn5kZmbq8OHD8vPzk81my5fOAQXJGKOzZ88qMDBQLi55uyKQ/QH3Giv7g8Q+gXsP3xHAf+Vlf8hVsAAAAACAm+HmbQAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYNn/B0srDEpheHQWAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -645,7 +639,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzFklEQVR4nO3deXhN1+LG8fdIZB5MScUcoWZFSlEkrbGmpoZctDW0hl4aw9Ua+qupNVRxBb1cqqWIDtLSahHSclulvVVRShEqUXNKTDUn6/dHn5zrOImEHRL6/TyP53HWXmevtffZ++S8Z++1js0YYwQAAAAAFhTI6w4AAAAAuPcRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwA5Ctjx46VzWbL627gLrLZbBo7dqxD2Q8//KCGDRvK29tbNptN27Zts9zGiy++aGkdAICbI1gAQB5r3rz5Xfnge/XqVVWtWlU2m01Tp069o21ZcfXqVXXu3FmnTp3S9OnTtXjxYpUtWzZP+jJhwgTZbDZVr1490+WbNm1So0aN5OXlpeLFi2vgwIE6f/68Q52ePXvKZrNl+e/w4cOSpKSkpJvW69Onj1P7W7duVfv27VWkSBF5eXmpevXqmjlzZu7vCADIAde87gAA/JV98skn2rx5811pa9asWTp48OBdacuK/fv3Kzk5WW+//bZ69+6dZ/04dOiQJk6cKG9v70yXb9u2TU2bNlWVKlX0z3/+U4cOHdLUqVOVmJio1atX2+v169dPzZo1c3iuMUYvvPCCypUrp5IlS0qSAgICtHjxYqd21qxZo5iYGLVo0cKhfO3atWrXrp1q166tUaNGycfHR/v379ehQ4esbjoA3BaCBQDkkUuXLmno0KEaPny4Ro8efUfbOnHihF577bW70pZVJ06ckCQVKlQoT/vx0ksvqX79+kpLS9Pvv//utPyVV15R4cKFtWHDBvn5+UmSypUrpz59+mjt2rX2INCgQQM1aNDA4bkbN27UhQsX9PTTT9vLvL299cwzzzi1s3DhQvn5+aldu3b2srNnz6p79+5q06aNYmNjVaAANyAAyHu8EwHIMxs3blTdunXl4eGhkJAQzZ07N9N6S5YsUWhoqDw9PVWkSBF16dJFv/32m0Od8PBwVa9eXdu3b1dYWJi8vLxUoUIFxcbGSpL+85//6JFHHpGnp6cqVaqk+Ph4p3YSEhL0xBNPyM/PTz4+PmratKm+++67HG9PcnKy2rdvL29vbwUGBmrIkCGKi4uTzWbThg0bnOq/+eabSk9P10svvZTjNqQ/P2jabDZ9++23+sc//qGAgAB5e3vrqaeeUkpKSqbPGTFihCpVqpTpB9fstql///6qVKmSPD09VbRoUXXu3FlJSUm3tB5Junz5soYMGaKAgAD5+vqqffv2Tt+u9+zZU2FhYZKkzp07y2azKTw8XJJ07Ngx9erVS6VKlZK7u7uCgoL05JNP3lJfVqxYoerVq8vd3V3VqlXTmjVrMq339ddfKzY2VtHR0ZkuP3v2rNatW6dnnnnGHiokqXv37vLx8dFHH310034sXbpUNptN3bp1u2m9o0ePav369erQoYM8PDwcnn/8+HFNmDBBBQoU0B9//KH09PSbrgsA7jSuWADIEzt27FCLFi0UEBCgsWPH6tq1axozZoweeOABh3oTJkzQqFGjFBkZqd69eyslJUWzZs1SkyZNlJCQ4PCtdmpqqtq2basuXbqoc+fOmjNnjrp06aKYmBgNHjxYL7zwgrp166YpU6aoU6dO+u233+Tr6ytJ2rlzpxo3biw/Pz8NGzZMBQsW1Ny5cxUeHm4PJTfzxx9/6PHHH9fRo0c1aNAgFS9eXEuXLtX69eszrX/w4EG98cYbevfdd+Xp6Xlb+zAqKkqFCxfWmDFjlJSUpOjoaL344ov68MMPHer997//1XvvvaeNGzfe8sD4H374QZs2bVKXLl1UqlQpJSUlac6cOQoPD9euXbvk5eWV43X17t1bS5YsUbdu3dSwYUN99dVXatOmjUOdfv36qWTJkpo4caIGDhyounXr2o+Jjh07aufOnYqKilK5cuV04sQJrVu3TgcPHlS5cuWybX/jxo365JNP1L9/f/n6+mrmzJnq2LGjDh48qKJFi9rrpaWlKSoqSr1791aNGjUyXdeOHTt07do1Pfzwww7lbm5uqlWrlhISErLsx9WrV/XRRx+pYcOG2fb7gw8+UHp6usOVDUmKj4+Xn5+fDh8+rIiICO3du1fe3t569tlnNX36dIcQAgB3jQGAPBAREWE8PDxMcnKyvWzXrl3GxcXFZLw1JSUlGRcXFzNhwgSH5+7YscO4uro6lIeFhRlJZunSpfay3bt3G0mmQIEC5rvvvrOXx8XFGUlmwYIFDv1xc3Mz+/fvt5cdOXLE+Pr6miZNmmS7PdOmTTOSzIoVK+xlFy9eNJUrVzaSzPr16x3qd+rUyTRs2ND+WJIZMGBAtu0YY8yCBQuMJNOsWTOTnp5uLx8yZIhxcXExp0+ftpelp6ebevXqma5duxpjjDlw4ICRZKZMmZKjti5cuOBUtnnzZiPJLFq0KEfrMMaYbdu2GUmmf//+DuXdunUzksyYMWPsZevXrzeSzLJly+xlqampt9TvG0kybm5uZt++ffayn376yUgys2bNcqj71ltvGX9/f3PixAljzJ/HVrVq1RzqLFu2zEgyX3/9tVNbnTt3NsWLF8+yLytXrjSSzOzZs7Ptd2hoqAkKCjJpaWkO5TVr1jReXl7Gy8vLREVFmY8//thERUUZSaZLly7ZrhcA7gRuhQJw16WlpSkuLk4REREqU6aMvbxKlSpq2bKl/fEnn3yi9PR0RUZG6vfff7f/K168uCpWrOh0NcDHx0ddunSxP65UqZIKFSqkKlWqOFxxyPj/r7/+au/P2rVrFRERofLly9vrBQUFqVu3btq4caPOnj17021as2aNSpYsqfbt29vLPDw8Mp3JZ/369fr444+zvM0mp/r27etwBaJx48ZKS0tTcnKyvWzhwoXasWOHJk+efFttXH815erVqzp58qQqVKigQoUKaevWrTlez6pVqyRJAwcOdCgfPHhwjvvh5uamDRs2KDU1NcftXq9Zs2YKCQmxP65Zs6b8/Pzsx4EknTx5UqNHj9aoUaMUEBCQ5bouXrwoSXJ3d3da5uHhYV+emaVLl6pgwYKKjIy8aX/37t2rH3/8UV26dHEaQ3H+/HlduHBB3bt318yZM9WhQwfNnDlT/fr10wcffKDExMSbrhsA7gSCBYC7LiUlRRcvXlTFihWdllWqVMn+/8TERBljVLFiRQUEBDj8++WXX+yDfDOUKlXK6VYff39/lS5d2qlMkv0DakpKii5cuODQdoYqVaooPT3dPqYjJSVFx44ds//LmFo0OTlZISEhTu1XqFDB4fG1a9c0cOBAPfvss6pbt27WO0lyaOfYsWNOH1avD2WSVLhwYYftOnv2rEaOHKmXX37ZaR9cLy0tzamtK1euSPrzA/To0aNVunRpubu7q1ixYgoICNDp06d15syZm/b/esnJySpQoIDDB3tJme7zzLi7u2vy5MlavXq1HnjgATVp0kRvvvmmjh07Zq9z5swZh204deqUwzpu3F/Sn/vs+qDy6quvqkiRIoqKirppfzIC1+XLl52WXbp0Kcvb286fP69PP/1ULVu2dLj9KjMxMTGS5HQb1PXtd+3a1aE8Y8zG3ZppDACuxxgLAPlWenq6bDabVq9eLRcXF6flPj4+Do8zq3OzcmPMLfepbt26DlcExowZ4/TjbjezaNEi7dmzR3PnznUadHzu3DklJSUpMDBQXl5eCgoKcli+YMEC9ezZ0/44u+2aOnWqrly5or/97W/2tjIGS6empiopKUklSpTQkSNHFBwc7LCO9evXKzw8XFFRUVqwYIEGDx6sBg0ayN/fXzabTV26dLnrg4UHDx6sdu3aacWKFYqLi9OoUaM0adIkffXVV6pdu7YGDRqk9957z14/LCzMYdB8dvsrMTFR8+bNU3R0tI4cOWJffunSJV29elVJSUny8/NTkSJF7K/N0aNHndZ39OhRlShRItO2VqxY4TQbVFaWLl2qSpUqKTQ01GlZiRIltHPnTqcxSYGBgZJ021d1AMAKggWAuy4gIECenp6Z3q6xZ88e+/9DQkJkjFFwcLAefPDBO9ofLy8vh7Yz7N69WwUKFLB/4x8TE+Nw5SDj1qmyZctq165dMsY4XLXYt2+fw/oOHjyoq1ev6tFHH3Vqa9GiRVq0aJGWL1+uiIgIrVu3zmF5tWrVbmm7Dh48qNTU1EyfN3HiRE2cOFEJCQmqXLmyU1sPPfSQJCk2NlY9evTQtGnT7MsuXbqk06dP31JfypYtq/T0dO3fv9/hKkVm+/xmQkJCNHToUA0dOlSJiYmqVauWpk2bpiVLlmjYsGEOs15lXMHJqcOHDys9PV0DBw50umVLkoKDgzVo0CBFR0erevXqcnV11ZYtWxxuabpy5Yq2bduW5W1OMTEx8vHxcbhlLjPff/+99u3bp9deey3T5aGhoVq3bp0OHz7ssD8zAtHNbuMCgDuFYAHgrnNxcVHLli21YsUKHTx40H6Lyi+//KK4uDh7vQ4dOmjkyJEaN26clixZ4vCB3RijU6dOZXs7SU7706JFC3366adKSkqyz9Rz/PhxLV26VI0aNbJPKZpZIJCkli1bat26dfrss8/05JNPSvrzA/jbb7/tUK9Lly6qVauW0/OfeuoptW7dWn369LGPAbnxR9Vu1cCBAxUREeFQduLECfXr1089e/bUk08+qeDgYHl4eGTZlouLi9OVnVmzZiktLe2W+vLEE0/olVde0cyZM/Wvf/3LXp7TcSYXLlxQgQIFHGY7CgkJka+vr/12pKpVq6pq1aq31K/rVa9eXcuXL3cqf/XVV3Xu3DnNmDHDfiuXv7+/mjVrpiVLlmjUqFH22cUWL16s8+fPq3Pnzk7rSUlJUXx8vLp27ZrtbFpLly6VpCyno42MjNQbb7yhd955R48//ri9fP78+XJ1dbVP0QsAdxPBAkCeGDdunNasWaPGjRurf//+unbtmmbNmqVq1app+/btkv784Dh+/HiNHDlSSUlJioiIkK+vrw4cOKDly5erb9++t/wbEFkZP3681q1bp0aNGql///5ydXXV3LlzdfnyZb355pvZPr9fv35666231LVrVw0aNEhBQUGKiYmxfxDOCEWVK1dW5cqVM11HcHCwUxCwok6dOqpTp45DWcYtUdWqVctRW23bttXixYvl7++vqlWravPmzYqPj7/lQFerVi117dpVs2fP1pkzZ9SwYUN9+eWXTld0srJ37141bdpUkZGRqlq1qlxdXbV8+XIdP37cYcC+FcWKFct0n2SEnxuXTZgwQQ0bNlRYWJj69u2rQ4cOadq0aWrRooVatWrltJ4PP/xQ165dy/Y2qLS0NH344YeqX7++05iUDLVr19Zzzz2nd999V9euXbPf9rVs2TKNHDkyy1uxAOBOIlgAyBM1a9ZUXFyc/vGPf2j06NEqVaqUxo0bp6NHj9qDhfTnD7s9+OCDmj59usaNGydJKl26tFq0aJHt7SS3olq1avrmm280cuRITZo0Senp6XrkkUe0ZMmSbH/DQvpzvMdXX32lqKgozZgxQz4+PurevbsaNmyojh073rO/KzBjxgy5uLgoJiZGly5d0qOPPqr4+HiH2bty6t1331VAQIBiYmK0YsUKPf744/riiy9uOrA8Q+nSpdW1a1d9+eWXWrx4sVxdXVW5cmV99NFH6tix4+1smmV16tRRfHy8hg8friFDhsjX11fPP/+8Jk2alGn9mJgYBQYGZnslKj4+XsePH9f//d//3bTev//9b5UpU0YLFizQ8uXLVbZsWU2fPj3HM20BQG6zmdsZvQgAyJHo6GgNGTJEhw4dUsmSJfO6OwAA3DEECwDIJRcvXnSYZvTSpUuqXbu20tLStHfv3jzsGQAAdx63QgFALunQoYPKlCmjWrVq6cyZM1qyZIl2795t/z2C+9X1vyWRGU9PT/tvhwAA7l9csQCAXBIdHa358+crKSlJaWlpqlq1qoYNG6a//e1ved21O+rGHwW8UY8ePbRw4cK70xkAQJ4hWAAALImPj7/p8hIlSliaBhYAcG8gWAAAAACwrEBedwAAAADAvY9gASBXlStXTj179nQoS0xMVIsWLeTv7y+bzaYVK1bc0jozfpE6t2XW18wsXLhQNpvN/uNyuHeFh4c7/Cr1hg0bZLPZFBsbm+1ze/bsaf9V9vzOZrNp7Nix9sf3+jF88uRJeXt7a9WqVXndFQA3QbAAcMf16NFDO3bs0IQJE7R48WI9/PDDOX7ut99+q7Vr12r48OF3sIf3vv3798vDw0M2m01btmzJ6+7gL+y3337TuHHjVK9ePRUuXFjFihVTeHh4lmNxTp8+rb59+yogIEDe3t567LHHtHXrVoc6RYsWVe/evTVq1Ki7sQkAbhPTzQK4oy5evKjNmzfr//7v//Tiiy/e8vOnTJmipk2bqkKFCrnetz179qhAgfvj+5UhQ4bI1dVVly9fzuuu5Gtr167N6y7c9z799FNNnjxZERER6tGjh65du6ZFixapefPmevfdd9WrVy973fT0dLVp00Y//fSTXn75ZRUrVkyzZ89WeHi4fvzxR1WsWNFe94UXXtDMmTP11Vdf6fHHH8+LTQOQjfvjLyqAfCslJUWSVKhQoVt+7okTJ/TFF18oMjIy1/pjjNHFixclSe7u7ipYsGCurTuvxMXFKS4uTkOGDMnrruR7bm5ucnNzy+tu3Ncee+wxHTx4UEuXLtWAAQM0aNAgbdq0SZUrV9bo0aMd6sbGxmrTpk1auHChxowZowEDBmjDhg1ycXHRmDFjHOpWqVJF1atXZ+piIB8jWAD52IYNG/Twww/Lw8NDISEhmjt3rsaOHZvp7wYsWbJEoaGh8vT0VJEiRdSlSxf99ttvDnXCw8NVvXp17dq1S4899pi8vLxUsmRJvfnmm7fcN2OMxo8fr1KlSsnLy0uPPfaYdu7c6VBn7NixKlu2rCTp5Zdfls1ms9+jfu7cOQ0ePFjlypWTu7u7AgMD1bx5c4dbIL744gtdu3ZNzZo1c2p/+/btCgsLk6enp0qVKqXx48drwYIFTveRlytXTm3btlVcXJwefvhheXp6au7cufZlN46x2Llzpx5//HGH9aanp9/y/sl4nfbt26eePXuqUKFC8vf3V69evXThwoVbXl9Wrl69qkGDBmnQoEEKCQmxvL4FCxbo8ccfV2BgoNzd3VW1alXNmTMn07qrV69WWFiYfH195efnp7p162rp0qUOdb7//nu1bt1ahQsXlre3t2rWrKkZM2Y41Nm9e7c6deqkIkWKyMPDQw8//LA+++wzp+0cN26cKlasKA8PDxUtWlSNGjXSunXr7HWOHTumXr16qVSpUnJ3d1dQUJCefPJJh+PhxjEWGdLS0vTKK6+oePHi8vb2Vvv27Z3On8ykp6crOjpa1apVk4eHhx544AH169dPqamp2T73RocPH9bzzz+vEiVKyN3dXcHBwfr73/+uK1eu2OucPn1agwcPVunSpeXu7q4KFSpo8uTJt3WMbtmyRS1btlSxYsXk6emp4OBgPffcc7e8nhtVq1ZNxYoVcyhzd3dX69atdejQIZ07d85eHhsbqwceeEAdOnSwlwUEBCgyMlKffvqp0xW45s2ba+XKlWJCSyB/4lYoIJ9KSEhQq1atFBQUpHHjxiktLU2vvfaaAgICnOpOmDBBo0aNUmRkpHr37q2UlBTNmjVLTZo0UUJCgsPVgtTUVLVq1UodOnRQZGSkYmNjNXz4cNWoUUNPPPFEjvs3evRojR8/Xq1bt1br1q21detWtWjRwuFDUIcOHVSoUCENGTJEXbt2VevWreXj4yPpz9saYmNj9eKLL6pq1ao6efKkNm7cqF9++UV16tSRJG3atElFixa1h5MMhw8f1mOPPSabzaaRI0fK29tb8+fPl7u7e6Z93bNnj7p27ap+/fqpT58+qlSpUqb1jh07pscee0zXrl3TiBEj5O3trXnz5snT0zPH++VGkZGRCg4O1qRJk7R161bNnz9fgYGBmjx5sr3OmTNndPXq1WzX5eHhYd9/GaKjo5WamqpXX31Vn3zyyW33M8OcOXNUrVo1tW/fXq6urlq5cqX69++v9PR0DRgwwF5v4cKFeu6551StWjWNHDlShQoVUkJCgtasWaNu3bpJktatW6e2bdsqKChIgwYNUvHixfXLL7/o888/16BBgyT9GeQeffRRlSxZ0r7PP/roI0VEROjjjz/WU089JenPoDZp0iT17t1b9erV09mzZ7VlyxZt3bpVzZs3lyR17NhRO3fuVFRUlMqVK6cTJ05o3bp1OnjwYLaDridMmCCbzabhw4frxIkTio6OVrNmzbRt27abvv79+vXTwoUL1atXLw0cOFAHDhzQW2+9pYSEBH377bc5viJ25MgR1atXzz7eoHLlyjp8+LBiY2N14cIFubm56cKFCwoLC9Phw4fVr18/lSlTRps2bdLIkSN19OhRRUdH56gt6c+rgS1atFBAQIBGjBihQoUKKSkpyekYSk1NVVpaWrbr8/LykpeX103rHDt2zKleQkKC6tSp43RLYr169TRv3jzt3btXNWrUsJeHhoZq+vTp2rlzp6pXr56TTQVwNxkA+VK7du2Ml5eXOXz4sL0sMTHRuLq6mutP3aSkJOPi4mImTJjg8PwdO3YYV1dXh/KwsDAjySxatMhedvnyZVO8eHHTsWPHHPftxIkTxs3NzbRp08akp6fby1955RUjyfTo0cNeduDAASPJTJkyxWEd/v7+ZsCAATdtp1GjRiY0NNSpPCoqythsNpOQkGAvO3nypClSpIiRZA4cOGAvL1u2rJFk1qxZ47SesmXLOvR18ODBRpL5/vvvHbbV39/fab3ZGTNmjJFknnvuOYfyp556yhQtWtShLON1ye7f9X01xpijR48aX19fM3fuXGOMMQsWLDCSzA8//JDjft7owoULTmUtW7Y05cuXtz8+ffq08fX1NY888oi5ePGiQ92M4+HatWsmODjYlC1b1qSmpmZaxxhjmjZtamrUqGEuXbrksLxhw4amYsWK9rKHHnrItGnTJst+p6amZnqc3SgsLMyEhYXZH69fv95IMiVLljRnz561l3/00UdGkpkxY4a9rEePHqZs2bL2x998842RZGJiYhzaWLNmTablN9O9e3dToECBTF+7jP31+uuvG29vb7N3716H5SNGjDAuLi7m4MGD9jJJZsyYMfbHGcdGxjG8fPnyHB0rGedPdv+ubysziYmJxsPDwzz77LMO5d7e3k7niDHGfPHFF5met5s2bTKSzIcffnjT9gDkDa5YAPlQWlqa4uPj9dRTT6lEiRL28goVKuiJJ57QypUr7WWffPKJ0tPTFRkZqd9//91eXrx4cVWsWFHr16/XK6+8Yi/38fHRM888Y3/s5uamevXq6ddff81x/+Lj43XlyhVFRUU53JY1ePBgTZw4MUfrKFSokL7//nsdOXLEYRuvd/LkSZUsWdKpfM2aNWrQoIFq1aplLytSpIiefvppzZo1y6l+cHCwWrZsmW2fVq1apfr166tevXr2soCAAD399NOaPXt2DrbK2QsvvODwuHHjxlq+fLnOnj0rPz8/SdK0adNydOvMjftp+PDhKl++vHr37n1bfcvM9d/OZ1xJCQsLU1xcnM6cOSN/f3+tW7dO586d04gRI+Th4eHw/IzjISEhQQcOHND06dOdxtdk1Dl16pS++uorvfbaazp37pzDLTItW7bUmDFjdPjwYZUsWVKFChXSzp07lZiY6DCg9/p+u7m5acOGDXr++edVuHDhW9ru7t27y9fX1/64U6dOCgoK0qpVqzRw4MBMn7Ns2TL5+/urefPmDudeaGiofHx8tH79evvVm5tJT0/XihUr1K5du0xnTMvYX8uWLVPjxo1VuHBhh/aaNWumN954Q19//bWefvrpHG1vxmvy+eef66GHHsryykpMTIx9TNLNlC9fPstlFy5cUOfOneXp6ak33njDYdnFixczvdKYcVzd2HbG63r99gPIPwgWQD504sQJXbx4MdOZkG4sS0xMlDEm0w9bkpw+MJQqVcppjEbhwoW1ffv2HPcvOTlZkpzaDAgIyPEHujfffFM9evRQ6dKlFRoaqtatW6t79+5OH1BMJvdSJycnq0GDBk7lWc0cFRwcnKM+JScn65FHHnEqz+rWqZwoU6aMw+OM/ZOammoPFqGhobe83u+++06LFy/Wl19+maszW3377bcaM2aMNm/e7DQWJCNY7N+/X5JueitKTurs27dPxhiNGjUqy2lET5w4oZIlS+q1117Tk08+qQcffFDVq1dXq1at9Oyzz6pmzZqS/ryHf/LkyRo6dKgeeOAB1a9fX23btlX37t1VvHjxbLf7xmPZZrOpQoUKN/3dh8TERJ05c0aBgYFZ9j0nUlJSdPbs2Wxv7UlMTNT27dszvR3yVtqTpLCwMHXs2FHjxo3T9OnTFR4eroiICHXr1s3hg/6jjz6a43VmJi0tTV26dNGuXbu0evVqp3Ds6emZ6Uxmly5dsi+/Xsb7QWbjzADkPYIFcI9LT0+XzWbT6tWr5eLi4rT8xnvyM6sjZf4B/k6KjIy0f3u/du1aTZkyRZMnT9Ynn3xiH+tRtGjR2xoEeyMrYySsysn+PnXqlMPYlKx4enrK399fkjRs2DA1btxYwcHB9g+/Gd/iHj16VAcPHnQKNdnZv3+/mjZtqsqVK+uf//ynSpcuLTc3N61atUrTp0+/rQHCN5OxvpdeeinLK0oZYbFJkybav3+/Pv30U61du1bz58/X9OnT9e9//9t+xWbw4MFq166dVqxYobi4OI0aNUqTJk3SV199pdq1a+dq3zP6HxgYqJiYmEyXZxUArLTXvHlzDRs2LNPlDz74YI7XlfGjgN99951WrlypuLg4Pffcc5o2bZq+++47+/tGSkpKjsZY+Pj4OL3XSFKfPn30+eefKyYmJtMpYoOCgnT06FGn8oyyG4NIxvvBjYPDAeQPBAsgHwoMDJSHh4f27dvntOzGspCQEBljFBwcfEsfLKzIGEydmJjocIUhJSXlloJAUFCQ+vfvr/79++vEiROqU6eOJkyYYA8WlStX1scff5xp+znZN7eqbNmySkxMdCrfs2ePpfVmp0OHDvrPf/6Tbb0ePXrYp9o8ePCgkpOTM70a0759e/n7++v06dO31I+VK1fq8uXL+uyzzxxCyfr16x3qZcw+9fPPP2d5lej6OpnN6iX97/aZggULZlnnekWKFFGvXr3Uq1cvnT9/Xk2aNNHYsWMdbgULCQnR0KFDNXToUCUmJqpWrVqaNm2alixZctN13/i6G2O0b98++xWRrLYxPj5ejz76qKXwGhAQID8/P/388883rRcSEqLz58/naF/lVP369VW/fn1NmDBBS5cu1dNPP60PPvjAvk/r1q1rv0J5M2PGjHH4pW/pz5ngFixYoOjoaHXt2jXT59WqVUvffPON0tPTHa68ff/99/Ly8nJ6Tztw4ICkP6eeBZD/MN0skA+5uLioWbNmWrFihY4cOWIv37dvn1avXu1Qt0OHDnJxcdG4ceOcrjoYY3Ty5Mlc71+zZs1UsGBBzZo1y6HNnM5Kk5aWpjNnzjiUBQYGqkSJEg63RTRo0ECpqalO4z9atmypzZs3a9u2bfayU6dOZfnNcU61bt1a3333nf773//ay1JSUiyvNzvTpk3TunXrsv13/TfV8+bN0/Llyx3+RUVFSZKmTp16W33OuLpy/Wt65swZLViwwKFeixYt5Ovrq0mTJtlvWcmQ8dw6deooODhY0dHRTgEno05gYKDCw8M1d+7cTL+1zvgNFElOx7GPj48qVKhgP14uXLjg1JeQkBD5+vrm6EcDFy1a5DQN6tGjR286U1pkZKTS0tL0+uuvOy27du1ajoNdgQIFFBERoZUrV2b6q+kZ+ysyMlKbN29WXFycU53Tp0/r2rVrOWpP+vOb/xvfLzLGLF2/v2JiYnJ0bHbv3t1hXVOmTNHUqVP1yiuv2GcAy0ynTp10/Phxh9mofv/9dy1btkzt2rVzGn/x448/yt/fX9WqVcvxtgK4e7hiAeRTY8eO1dq1a/Xoo4/q73//u9LS0vTWW2+pevXqDh+oQ0JCNH78eI0cOVJJSUmKiIiQr6+vDhw4oOXLl6tv37566aWXcrVvAQEBeumllzRp0iS1bdtWrVu3VkJCglavXp2jWxTOnTunUqVKqVOnTnrooYfk4+Oj+Ph4/fDDD5o2bZq9Xps2beTq6qr4+Hj17dvXXj5s2DAtWbJEzZs3V1RUlH262TJlyujUqVO3ff/1sGHDtHjxYrVq1UqDBg2yTzdbtmzZWxqDcqtuZ4xFixYtnMoyPsiGhYU5DAJOSkpScHCwwxWPrNbp5uamdu3aqV+/fjp//rzefvttBQYGOnzw9/Pz0/Tp09W7d2/VrVtX3bp1U+HChfXTTz/pwoULeu+991SgQAHNmTNH7dq1U61atdSrVy8FBQVp9+7d2rlzp/3D8b/+9S81atRINWrUUJ8+fVS+fHkdP35cmzdv1qFDh/TTTz9JkqpWrarw8HCFhoaqSJEi2rJli326Yknau3evmjZtqsjISFWtWlWurq5avny5jh8/ri5dumS7P4sUKaJGjRqpV69eOn78uKKjo1WhQgX16dMny+eEhYWpX79+mjRpkrZt26YWLVqoYMGCSkxM1LJlyzRjxgx16tQp27YlaeLEiVq7dq3CwsLUt29fValSRUePHtWyZcu0ceNGFSpUSC+//LI+++wztW3bVj179lRoaKj++OMP7dixQ7GxsUpKSsrxLULvvfeeZs+eraeeekohISE6d+6c3n77bfn5+al169b2erczxmL58uUaNmyYKlasqCpVqjhdLWrevLkeeOABSX8Gi/r166tXr17atWuX/Ze309LSNG7cOKd1r1u3Tu3atWOMBZBf3f2JqADk1Jdffmlq165t3NzcTEhIiJk/f74ZOnSo8fDwcKr78ccfm0aNGhlvb2/j7e1tKleubAYMGGD27NljrxMWFmaqVavm9Nwbp9HMibS0NDNu3DgTFBRkPD09TXh4uPn555+dpnDNbLrZy5cvm5dfftk89NBDxtfX13h7e5uHHnrIzJ4926md9u3bm6ZNmzqVJyQkmMaNGxt3d3dTqlQpM2nSJDNz5kwjyRw7dsxer2zZsllOU3pjX40xZvv27SYsLMx4eHiYkiVLmtdff9288847tz3dbEpKikP5jdN+5qasppvdsWOHkWRGjBiR7To+++wzU7NmTePh4WHKlStnJk+ebN59991M+/zZZ5+Zhg0bGk9PT+Pn52fq1atn3n//fYc6GzduNM2bN7e/zjVr1jSzZs1yqLN//37TvXt3U7x4cVOwYEFTsmRJ07ZtWxMbG2uvM378eFOvXj1TqFAh4+npaSpXrmwmTJhgrly5Yowx5vfffzcDBgwwlStXNt7e3sbf39888sgj5qOPPnJoK6vpZt9//30zcuRIExgYaDw9PU2bNm1McnKyw3OzOk/mzZtnQkNDjaenp/H19TU1atQww4YNM0eOHMl2f18vOTnZdO/e3QQEBBh3d3dTvnx5M2DAAHP58mV7nXPnzpmRI0eaChUqGDc3N1OsWDHTsGFDM3XqVPu+MCb76Wa3bt1qunbtasqUKWPc3d1NYGCgadu2rdmyZcst9TkzGcd+Vv/Wr1/vUP/UqVPm+eefN0WLFjVeXl4mLCws02lwf/nlFyPJxMfHW+4jgDvDZgw/XwncSyIiIuzTbv4VfPPNNwoPD9fu3buznPkqw+DBgzV37lydP38+y0HTf0WzZ8/WsGHDtH//fvs3xcC9ZvDgwfr666/1448/csUCyKcYYwHkYzfO4Z6YmKhVq1YpPDw8bzqUBxo3bqwWLVrozTffdCi/cd+cPHlSixcvVqNGjQgVN1i/fr0GDhxIqMA96+TJk5o/f77Gjx9PqADyMa5YAPlYUFCQevbsqfLlyys5OVlz5szR5cuXlZCQkO2397cru+kl3dzcVKRIkTvS9q2oVauWwsPDVaVKFR0/flzvvPOOjhw5oi+//FJNmjS5Y+2eP39e58+fv2mdgIAAwg0kcbwA+Gth8DaQj7Vq1Urvv/++jh07Jnd3dzVo0EATJ068Y6FCyn56ybCwMG3YsOGOtZ9TrVu3VmxsrObNmyebzaY6deronXfeuaOhQvpzxqXMBpVe78CBAypXrtwd7QfuDRwvAP5KuGIBwMG3337rdJvR9QoXLnxbsxjdL3799Ven6W9v1KhRI3l4eNylHiE/43gB8FdCsAAAAABgGYO3AQAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWueakUnp6uo4cOSJfX1/ZbLY73SfgjjPG6Ny5cypRooQKFLi1fM35gPuNlfNB4pzA/Ye/EcD/3Mr5kKNgceTIEZUuXTpXOgfkJ7/99ptKlSp1S8/hfMD96nbOB4lzAvcv/kYA/5OT8yFHMdzX1zdXOgTkN7dzbHM+4H51u8c25wTuV/yNAP4nJ8d2joIFl/Jwv7qdY5vzAfer2z22OSdwv+JvBPA/OTm2GbwNAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALDMNc9aNrm8Pltur1AysuXyCnO/j381Nlsuvyb5hMnlY+NO7Kfc7iOsu1/PB+keOd5ye//fC9ucz92v58Rf8W9E7vfxr3h+3f3zgSsWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMtc8a9mW71d4B7qYu2s0xuTq+my53D8p9/uIvHMnjo+/Gs6HvHNnjt9cfj05x4B7yD3wnpIHuGIBAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsMw1rxo2xuRV08B9j/PLOpvNltddACz5K74PcN7moVzf93+94/d+wBULAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmWtedyC32Gy2vO4CkG/cifPBGJOr6+OcBe6se+Ecy+33FeSd3D/a8v/xC2dcsQAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJa55nUH8jNjTK6uz2az5er6crt/wL2M8wF3ncnl93Tl72M4t/+GIe/wfmkd50PmuGIBAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsc82rhm02W141jSzwmuBm/mrHx19te3EbcvkQseXyCo0xubo+3D94f8OdwhULAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGWuedWwMSavms4z+X2b83v/JMlms+V1F+4J98Jrmdtsyu1jI/f3ocnlPnI25Ny9cE7k9/e3e2EfImfuxGuZ6+/BNo63exFXLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGWuedWwzWbLq6aBfIfzIT/K/deEVznnOCesYx/eP/6ar+VfcZvvfVyxAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlOQoWxpg73Q8gT9zOsc35gPvV7R7bnBO4X/E3AvifnBzbOQoW586ds9wZID+6nWOb8wH3q9s9tjkncL/ibwTwPzk5tm0mB/EjPT1dR44cka+vr2w2W650DshLxhidO3dOJUqUUIECt3ZHIOcD7jdWzgeJcwL3H/5GAP9zK+dDjoIFAAAAANwMg7cBAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBl/w/7bdjjCHBuwAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyRUlEQVR4nO3deVwV5eLH8e8RZBEQN0hEU0RTQc3ccgdzK1xyi4tWLuV2NVyuZdrN1HLJzKtl6dUsTcV+KallmaiptyztVlKatqAJlCspKl6XFJ7fH744eTwgBwcF7fN+vXy9PM88Z55n5swc5ntm5hmbMcYIAAAAACwoVtgdAAAAAHDrI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYACjyJk6cKJvNVtjdwE1ks9k0ceJEh7KvvvpKzZo1k4+Pj2w2m7799lvLbTzxxBOW5gEA+BPBAgCKoHbt2t2UA9+LFy8qLCxMNptNL7/88g1ty4qLFy/qoYce0okTJzRr1iwtXbpUlStXLpS+TJkyRTabTbVr13aadvHiRU2aNElVq1aVp6enqlatqsmTJ+vSpUsO9fr16yebzZbrv4MHD0qSzp49q9dff13t27dXUFCQ/Pz8dM8992jevHnKzMy8KcsLAK5yL+wOAAAcrVq1Stu3b78pbc2ZM0epqak3pS0r9u/fr5SUFL3xxhsaMGBAofXjt99+09SpU+Xj45Pj9EceeUQrV67UY489poYNG2rHjh0aP368UlNTtWDBAnu9wYMHq23btg7vNcZoyJAhqlKlioKDgyVJv/zyi2JjY9WmTRv94x//UMmSJZWQkKChQ4dqx44devvtt2/cwgJAPhEsAKAIOX/+vEaPHq2nn35azz333A1t69ixY3r++edvSltWHTt2TJJUqlSpQu3Hk08+qSZNmigzM1O///67w7SvvvpKK1as0Pjx4/X8889LkoYMGaJy5crpX//6l5544gnVrVtXktS0aVM1bdrU4f3btm3T2bNn9fDDD9vLypcvr927dys8PNxeNnjwYD322GNatGiRxo8fr2rVqt2oxQWAfOFSKABFyrZt29SoUSN5eXkpNDRU8+fPz7HesmXL1KBBA3l7e6tMmTKKiYnRr7/+6lAnMjJStWvX1q5duxQREaESJUqoWrVqio+PlyT95z//0b333itvb2/VqFFDmzZtcmonMTFRDzzwgEqWLClfX1+1adNGO3bscHl5UlJS1KVLF/n4+CgwMFCjRo1SQkKCbDabtm7d6lT/pZdeUlZWlp588kmX25CkxYsXy2az6fPPP9c//vEPBQQEyMfHR926dVNaWlqO7xk7dqxq1KihRx55JF9tpaSkaOjQoapRo4a8vb1VtmxZPfTQQ0pOTs7XfCTpwoULGjVqlAICAuTn56cuXbrot99+c6jTr18/RURESJIeeugh2Ww2RUZGSpKOHDmi/v37q2LFivL09FRQUJAefPDBfPVlzZo1ql27tjw9PRUeHq7169fnWO/TTz9VfHy8Zs+eneP0zz77TJIUExPjUB4TEyNjjN59991r9mP58uWy2Wzq3bu3vaxcuXIOoSJbt27dJEk//PDDNecJADcTZywAFBm7d+9W+/btFRAQoIkTJ+rSpUuaMGGC7rjjDod6U6ZM0fjx4xUdHa0BAwYoLS1Nc+bMUatWrZSYmOjwq3Z6ero6deqkmJgYPfTQQ5o3b55iYmIUFxenkSNHasiQIerdu7dmzJihnj176tdff5Wfn58kac+ePWrZsqVKliypMWPGqHjx4po/f74iIyPtoeRa/ve//+m+++7T4cOHNWLECJUvX17Lly/Xli1bcqyfmpqqF198UW+99Za8vb2vax3GxsaqdOnSmjBhgpKTkzV79mw98cQTTge1//3vf/X2229r27Zt+b4x/quvvtIXX3yhmJgYVaxYUcnJyZo3b54iIyO1d+9elShRwuV5DRgwQMuWLVPv3r3VrFkzbd68WR07dnSoM3jwYAUHB2vq1KkaPny4GjVqZN8mevTooT179ig2NlZVqlTRsWPHtHHjRqWmpqpKlSp5tr9t2zatWrVKQ4cOlZ+fn1599VX16NFDqampKlu2rL1eZmamYmNjNWDAANWpUyfHeV24cEGSnD677PXxzTff5NqPixcvasWKFWrWrJlL/T5y5Iiky8EDAIoMAwBFRNeuXY2Xl5dJSUmxl+3du9e4ubmZ7K+r5ORk4+bmZqZMmeLw3t27dxt3d3eH8oiICCPJLF++3F72448/GkmmWLFiZseOHfbyhIQEI8ksWrTIoT8eHh5m//799rJDhw4ZPz8/06pVqzyXZ+bMmUaSWbNmjb3s3LlzpmbNmkaS2bJli0P9nj17mmbNmtlfSzLDhg3Lsx1jjFm0aJGRZNq2bWuysrLs5aNGjTJubm7m5MmT9rKsrCzTuHFj06tXL2OMMQcOHDCSzIwZM1xq6+zZs05l27dvN5LMkiVLXJqHMcZ8++23RpIZOnSoQ3nv3r2NJDNhwgR72ZYtW4wks3LlSntZenp6vvp9NUnGw8PD7Nu3z1723XffGUlmzpw5DnVfe+014+/vb44dO2aMubxthYeHO9R57733jCSzdOlSh/J///vfRpKpXbt2rn1Zu3atkWTmzp2bZ78vXLhgwsLCTEhIiLl48WKe9QHgZuFSKABFQmZmphISEtS1a1fdeeed9vJatWqpQ4cO9terVq1SVlaWoqOj9fvvv9v/lS9fXtWrV3c6G+Dr6+twaUqNGjVUqlQp1apVy+GMQ/b/f/nlF3t/NmzYoK5du6pq1ar2ekFBQerdu7e2bdum06dPX3OZ1q9fr+DgYHXp0sVe5uXlpYEDBzrV3bJli957771cL7Nx1aBBgxzOQLRs2VKZmZlKSUmxly1evFi7d+/W9OnTr6uNK3+Rv3jxoo4fP65q1aqpVKlS2rlzp8vzWbdunSRp+PDhDuUjR450uR8eHh7aunWr0tPTXW73Sm3btlVoaKj9dd26dVWyZEn7diBJx48f13PPPafx48crICAg13lFRUWpcuXKevLJJ7Vq1SqlpKRoxYoV+uc//yl3d3edO3cu1/cuX75cxYsXV3R0dJ59fuKJJ7R371699tprcnfnwgMARQffSACKhLS0NJ07d07Vq1d3mlajRg37QWhSUpKMMTnWk6TixYs7vK5YsaLTpT7+/v6qVKmSU5kk+wFqWlqazp49qxo1aji1UatWLWVlZenXX39VeHi40tLSHIb+9PX1la+vr1JSUhQaGurU/tU32166dEnDhw/Xo48+qkaNGuW4XNmyL4G5st9XHuhfGcokqXTp0g7Ldfr0aY0bN05PPfWU0zq4UmZmptO9GWXKlJGHh4fOnTunadOmadGiRTp48KCMMfY6p06dumb/r5SSkqJixYo5HNhLynGd58TT01PTp0/X6NGjdccdd6hJkybq1KmT+vTpo/Lly9v7c+UBvYeHh8qUKWN/ffX6ki6vsyuDyrPPPqsyZcooNjb2mv3x8vLSRx99pOjoaPXo0cPex5deeklTpkyRr69vju87c+aM3n//fXXo0MHh8quczJgxQ2+88YZeeOEFRUVFXbMuANxsBAsAt5SsrCzZbDZ9/PHHcnNzc5p+9cFbTnWuVX7lQbKrGjVq5HBGYMKECU4Pd7uWJUuW6KefftL8+fOdbjrOyMhQcnKyAgMDVaJECQUFBTlMX7Rokfr162d/nddyvfzyy/rjjz/0t7/9zd5W9s3S6enpSk5OVoUKFXTo0CGFhIQ4zGPLli2KjIxUbGysFi1apJEjR6pp06by9/eXzWZTTEyMsrKyXF7ugjBy5Eh17txZa9asUUJCgsaPH69p06Zp8+bNuueeezRixAiHIVkjIiIcbprPa30lJSVpwYIFmj17tg4dOmSffv78eV28eFHJyckqWbKkPayEh4fr+++/1969e5Wenq6wsDB5e3tr1KhR9hvQr7ZmzRqn0aBysnjxYj399NMaMmSInn32WZfWDwDcTAQLAEVCQECAvL29lZSU5DTtp59+sv8/NDRUxhiFhITorrvuuqH9KVGihEPb2X788UcVK1bM/ot/XFycw6/i2ZdOVa5cWXv37pUxxuGsxb59+xzml5qaqosXL6p58+ZObS1ZskRLlizR6tWr1bVrV23cuNFhek4jBl1Lamqq0tPTc3zf1KlTNXXqVCUmJqpmzZpObd19992SpPj4ePXt21czZ860Tzt//rxOnjyZr75UrlxZWVlZ2r9/v8NZipzW+bWEhoZq9OjRGj16tJKSklSvXj3NnDlTy5Yt05gxYxxGvco+g+OqgwcPKisrS8OHD3e6ZEuSQkJCNGLECIdL2Gw2m8P6XbdunbKyspyeW5EtLi5Ovr6+DpfMXe3999/XgAED1L17d73++uv5WgYAuFkIFgCKBDc3N3Xo0EFr1qxRamqq/RKVH374QQkJCfZ63bt317hx4zRp0iQtW7bM4YDdGKMTJ07keTmJq/1p37693n//fSUnJ9tH6jl69KiWL1+uFi1aqGTJkpKUYyCQpA4dOmjjxo364IMP9OCDD0q6fAD+xhtvONSLiYlRvXr1nN7frVs3RUVFaeDAgfZ7QHI7OHXV8OHD1bVrV4eyY8eOafDgwerXr58efPBBhYSEyMvLK9e23NzcnM7szJkzJ99Pgn7ggQf0zDPP6NVXX3U4WHb1PpOzZ8+qWLFi8vLyspeFhobKz8/PPkJTWFiYwsLC8tWvK9WuXVurV692Kn/22WeVkZGhV155xelSriudO3dO48ePV1BQkHr16uU0PS0tTZs2bVKvXr1yHU3r008/VUxMjFq1aqW4uDgVK8btkQCKJoIFgCJj0qRJWr9+vVq2bKmhQ4fq0qVLmjNnjsLDw7Vr1y5Jlw8cJ0+erHHjxik5OVldu3aVn5+fDhw4oNWrV2vQoEH5fgZEbiZPnqyNGzeqRYsWGjp0qNzd3TV//nxduHBBL730Up7vHzx4sF577TX16tVLI0aMUFBQkOLi4uwHwtmhqGbNmqpZs2aO8wgJCXEKAlbUr19f9evXdyjLviQqPDzcpbY6deqkpUuXyt/fX2FhYdq+fbs2bdqU70BXr1499erVS3PnztWpU6fUrFkzffLJJ05ndHLz888/q02bNoqOjlZYWJjc3d21evVqHT161OlZEterXLlyOa6T7PBz9bTo6GhVqFBBYWFhOn36tN566y398ssv+uijj+zDGF/p3Xff1aVLl3K9DCr7OSg2m009e/bUypUrHabXrVvX/tA9AChsBAsARUbdunWVkJCgf/zjH3ruuedUsWJFTZo0SYcPH7YHC+nyg93uuusuzZo1S5MmTZIkVapUSe3bt7/m5ST5FR4ers8++0zjxo3TtGnTlJWVpXvvvVfLli3L8xkW0uX7PTZv3qzY2Fi98sor8vX1VZ8+fdSsWTP16NHD4Zf2W8krr7wiNzc3xcXF6fz582revLk2bdrkMHqXq9566y0FBAQoLi5Oa9as0X333aePPvromjeWZ6tUqZJ69eqlTz75REuXLpW7u7tq1qypFStW2G+evtkaNmyoRYsWaf78+fL29lbLli21fPnyHM9ISZcvgwoMDMz17NCBAwfsN8QPGzbMafqECRMIFgCKDJu5njsVAQDXbfbs2Ro1apR+++03BQcHF3Z3AAAoEAQLALiBzp075zAc7Pnz53XPPfcoMzNTP//8cyH2DACAgsWlUABwA3Xv3l133nmn6tWrp1OnTmnZsmX68ccfFRcXV9hdu6Guft7G1by9ve3PDgEA3B44YwEAN9Ds2bO1cOFCJScnKzMzU2FhYRozZoz+9re/FXbXbqirHwp4tb59+2rx4sU3pzMAgJuCYAEAKHCbNm265vTskZMAALcPggUAAAAAy3jKDgAAAADLCBYAClSVKlXUr18/h7KkpCS1b99e/v7+stlsWrNmTb7mmf306YKWU19zsnjxYtlsNvuD5HDrioyMVGRkpP311q1bZbPZFB8fn+d7+/XrZ38Ce1Fns9k0ceJE++tbfRs+fvy4fHx8tG7dusLuCoBrIFgAuOH69u2r3bt3a8qUKVq6dKkaNmzo8ns///xzbdiwQU8//fQN7OGtb//+/fLy8pLNZtPXX39d2N3BX9ivv/6qSZMmqXHjxipdurTKlSunyMjIXO+7OXnypAYNGqSAgAD5+PiodevW2rlzp0OdsmXLasCAARo/fvzNWAQA14nhZgHcUOfOndP27dv1z3/+U0888US+3z9jxgy1adNG1apVK/C+/fTTTypW7Pb4fWXUqFFyd3fXhQsXCrsrRdqGDRsKuwu3vffff1/Tp09X165d1bdvX126dElLlixRu3bt9NZbb6l///72ullZWerYsaO+++47PfXUUypXrpzmzp2ryMhIffPNN6pevbq97pAhQ/Tqq69q8+bNuu+++wpj0QDk4fb4iwqgyEpLS5MklSpVKt/vPXbsmD766CNFR0cXWH+MMTp37pwkydPTU8WLFy+weReWhIQEJSQkaNSoUYXdlSLPw8NDHh4ehd2N21rr1q2Vmpqq5cuXa9iwYRoxYoS++OIL1axZU88995xD3fj4eH3xxRdavHixJkyYoGHDhmnr1q1yc3PThAkTHOrWqlVLtWvXZphioAgjWABF2NatW9WwYUN5eXkpNDRU8+fP18SJE3N8RsCyZcvUoEEDeXt7q0yZMoqJidGvv/7qUCcyMlK1a9fW3r171bp1a5UoUULBwcF66aWX8t03Y4wmT56sihUrqkSJEmrdurX27NnjUGfixImqXLmyJOmpp56SzWazX6OekZGhkSNHqkqVKvL09FRgYKDatWvncAnERx99pEuXLqlt27ZO7e/atUsRERHy9vZWxYoVNXnyZC1atMjpOvIqVaqoU6dOSkhIUMOGDeXt7a358+fbp119j8WePXt03333Ocw3Kysr3+sn+3Pat2+f+vXrp1KlSsnf31/9+/fX2bNn8z2/3Fy8eFEjRozQiBEjFBoaanl+ixYt0n333afAwEB5enoqLCxM8+bNy7Huxx9/rIiICPn5+alkyZJq1KiRli9f7lDnyy+/VFRUlEqXLi0fHx/VrVtXr7zyikOdH3/8UT179lSZMmXk5eWlhg0b6oMPPnBazkmTJql69ery8vJS2bJl1aJFC23cuNFe58iRI+rfv78qVqwoT09PBQUF6cEHH3TYHq6+xyJbZmamnnnmGZUvX14+Pj7q0qWL0/6Tk6ysLM2ePVvh4eHy8vLSHXfcocGDBys9PT3P917t4MGDevzxx1WhQgV5enoqJCREf//73/XHH3/Y65w8eVIjR45UpUqV5OnpqWrVqmn69OnXtY1+/fXX6tChg8qVKydvb2+FhITosccey/d8rhYeHq5y5co5lHl6eioqKkq//fabMjIy7OXx8fG644471L17d3tZQECAoqOj9f777zudgWvXrp3Wrl0rBrQEiiYuhQKKqMTERN1///0KCgrSpEmTlJmZqeeff14BAQFOdadMmaLx48crOjpaAwYMUFpamubMmaNWrVopMTHR4WxBenq67r//fnXv3l3R0dGKj4/X008/rTp16uiBBx5wuX/PPfecJk+erKioKEVFRWnnzp1q3769w0FQ9+7dVapUKY0aNUq9evVSVFSUfH19JV2+rCE+Pl5PPPGEwsLCdPz4cW3btk0//PCD6tevL0n64osvVLZsWXs4yXbw4EG1bt1aNptN48aNk4+PjxYuXChPT88c+/rTTz+pV69eGjx4sAYOHKgaNWrkWO/IkSNq3bq1Ll26pLFjx8rHx0cLFiyQt7e3y+vlatHR0QoJCdG0adO0c+dOLVy4UIGBgZo+fbq9zqlTp3Tx4sU85+Xl5WVff9lmz56t9PR0Pfvss1q1atV19zPbvHnzFB4eri5dusjd3V1r167V0KFDlZWVpWHDhtnrLV68WI899pjCw8M1btw4lSpVSomJiVq/fr169+4tSdq4caM6deqkoKAgjRgxQuXLl9cPP/ygDz/8UCNGjJB0Ocg1b95cwcHB9nW+YsUKde3aVe+99566desm6XJQmzZtmgYMGKDGjRvr9OnT+vrrr7Vz5061a9dOktSjRw/t2bNHsbGxqlKlio4dO6aNGzcqNTU1z5uup0yZIpvNpqefflrHjh3T7Nmz1bZtW3377bfX/PwHDx6sxYsXq3///ho+fLgOHDig1157TYmJifr8889dPiN26NAhNW7c2H6/Qc2aNXXw4EHFx8fr7Nmz8vDw0NmzZxUREaGDBw9q8ODBuvPOO/XFF19o3LhxOnz4sGbPnu1SW9Lls4Ht27dXQECAxo4dq1KlSik5OdlpG0pPT1dmZmae8ytRooRKlChxzTpHjhxxqpeYmKj69es7XZLYuHFjLViwQD///LPq1KljL2/QoIFmzZqlPXv2qHbt2q4sKoCbyQAokjp37mxKlChhDh48aC9LSkoy7u7u5spdNzk52bi5uZkpU6Y4vH/37t3G3d3doTwiIsJIMkuWLLGXXbhwwZQvX9706NHD5b4dO3bMeHh4mI4dO5qsrCx7+TPPPGMkmb59+9rLDhw4YCSZGTNmOMzD39/fDBs27JrttGjRwjRo0MCpPDY21thsNpOYmGgvO378uClTpoyRZA4cOGAvr1y5spFk1q9f7zSfypUrO/R15MiRRpL58ssvHZbV39/fab55mTBhgpFkHnvsMYfybt26mbJlyzqUZX8uef27sq/GGHP48GHj5+dn5s+fb4wxZtGiRUaS+eqrr1zu59XOnj3rVNahQwdTtWpV++uTJ08aPz8/c++995pz58451M3eHi5dumRCQkJM5cqVTXp6eo51jDGmTZs2pk6dOub8+fMO05s1a2aqV69uL7v77rtNx44dc+13enp6jtvZ1SIiIkxERIT99ZYtW4wkExwcbE6fPm0vX7FihZFkXnnlFXtZ3759TeXKle2vP/vsMyPJxMXFObSxfv36HMuvpU+fPqZYsWI5fnbZ6+uFF14wPj4+5ueff3aYPnbsWOPm5mZSU1PtZZLMhAkT7K+zt43sbXj16tUubSvZ+09e/65sKydJSUnGy8vLPProow7lPj4+TvuIMcZ89NFHOe63X3zxhZFk3n333Wu2B6BwcMYCKIIyMzO1adMmdevWTRUqVLCXV6tWTQ888IDWrl1rL1u1apWysrIUHR2t33//3V5evnx5Va9eXVu2bNEzzzxjL/f19dUjjzxif+3h4aHGjRvrl19+cbl/mzZt0h9//KHY2FiHy7JGjhypqVOnujSPUqVK6csvv9ShQ4cclvFKx48fV3BwsFP5+vXr1bRpU9WrV89eVqZMGT388MOaM2eOU/2QkBB16NAhzz6tW7dOTZo0UePGje1lAQEBevjhhzV37lwXlsrZkCFDHF63bNlSq1ev1unTp1WyZElJ0syZM126dObq9fT000+ratWqGjBgwHX1LSdX/jqffSYlIiJCCQkJOnXqlPz9/bVx40ZlZGRo7Nix8vLycnh/9vaQmJioAwcOaNasWU7312TXOXHihDZv3qznn39eGRkZDpfIdOjQQRMmTNDBgwcVHBysUqVKac+ePUpKSnK4offKfnt4eGjr1q16/PHHVbp06Xwtd58+feTn52d/3bNnTwUFBWndunUaPnx4ju9ZuXKl/P391a5dO4d9r0GDBvL19dWWLVvsZ2+uJSsrS2vWrFHnzp1zHDEte32tXLlSLVu2VOnSpR3aa9u2rV588UV9+umnevjhh11a3uzP5MMPP9Tdd9+d65mVuLg4+z1J11K1atVcp509e1YPPfSQvL299eKLLzpMO3fuXI5nGrO3q6vbzv5cr1x+AEUHwQIogo4dO6Zz587lOBLS1WVJSUkyxuR4sCXJ6YChYsWKTvdolC5dWrt27XK5fykpKZLk1GZAQIDLB3QvvfSS+vbtq0qVKqlBgwaKiopSnz59nA5QTA7XUqekpKhp06ZO5bmNHBUSEuJSn1JSUnTvvfc6led26ZQr7rzzTofX2esnPT3dHiwaNGiQ7/nu2LFDS5cu1SeffFKgI1t9/vnnmjBhgrZv3+50L0h2sNi/f78kXfNSFFfq7Nu3T8YYjR8/PtdhRI8dO6bg4GA9//zzevDBB3XXXXepdu3auv/++/Xoo4+qbt26ki5fwz99+nSNHj1ad9xxh5o0aaJOnTqpT58+Kl++fJ7LffW2bLPZVK1atWs+9yEpKUmnTp1SYGBgrn13RVpamk6fPp3npT1JSUnatWtXjpdD5qc9SYqIiFCPHj00adIkzZo1S5GRkeratat69+7tcKDfvHlzl+eZk8zMTMXExGjv3r36+OOPncKxt7d3jiOZnT9/3j79StnfBzndZwag8BEsgFtcVlaWbDabPv74Y7m5uTlNv/qa/JzqSDkfwN9I0dHR9l/vN2zYoBkzZmj69OlatWqV/V6PsmXLXtdNsFezco+EVa6s7xMnTjjcm5Ibb29v+fv7S5LGjBmjli1bKiQkxH7wm/0r7uHDh5WamuoUavKyf/9+tWnTRjVr1tS//vUvVapUSR4eHlq3bp1mzZp1XTcIX0v2/J588slczyhlh8VWrVpp//79ev/997VhwwYtXLhQs2bN0r///W/7GZuRI0eqc+fOWrNmjRISEjR+/HhNmzZNmzdv1j333FOgfc/uf2BgoOLi4nKcnlsAsNJeu3btNGbMmByn33XXXS7PK/uhgDt27NDatWuVkJCgxx57TDNnztSOHTvs3xtpaWku3WPh6+vr9F0jSQMHDtSHH36ouLi4HIeIDQoK0uHDh53Ks8uuDiLZ3wdX3xwOoGggWABFUGBgoLy8vLRv3z6naVeXhYaGyhijkJCQfB1YWJF9M3VSUpLDGYa0tLR8BYGgoCANHTpUQ4cO1bFjx1S/fn1NmTLFHixq1qyp9957L8f2XVk3+VW5cmUlJSU5lf/000+W5puX7t276z//+U+e9fr27WsfajM1NVUpKSk5no3p0qWL/P39dfLkyXz1Y+3atbpw4YI++OADh1CyZcsWh3rZo099//33uZ4lurJOTqN6SX9ePlO8ePFc61ypTJky6t+/v/r3768zZ86oVatWmjhxosOlYKGhoRo9erRGjx6tpKQk1atXTzNnztSyZcuuOe+rP3djjPbt22c/I5LbMm7atEnNmze3FF4DAgJUsmRJff/999esFxoaqjNnzri0rlzVpEkTNWnSRFOmTNHy5cv18MMP6//+7//s67RRo0b2M5TXMmHCBIcnfUuXR4JbtGiRZs+erV69euX4vnr16umzzz5TVlaWw5m3L7/8UiVKlHD6Tjtw4ICky0PPAih6GG4WKILc3NzUtm1brVmzRocOHbKX79u3Tx9//LFD3e7du8vNzU2TJk1yOutgjNHx48cLvH9t27ZV8eLFNWfOHIc2XR2VJjMzU6dOnXIoCwwMVIUKFRwui2jatKnS09Od7v/o0KGDtm/frm+//dZeduLEiVx/OXZVVFSUduzYof/+97/2srS0NMvzzcvMmTO1cePGPP9d+Uv1ggULtHr1aod/sbGxkqSXX375uvqcfXblys/01KlTWrRokUO99u3by8/PT9OmTbNfspIt+73169dXSEiIZs+e7RRwsusEBgYqMjJS8+fPz/FX6+xnoEhy2o59fX1VrVo1+/Zy9uxZp76EhobKz8/PpYcGLlmyxGkY1MOHD19zpLTo6GhlZmbqhRdecJp26dIll4NdsWLF1LVrV61duzbHp6Znr6/o6Ght375dCQkJTnVOnjypS5cuudSedPmX/6u/L7LvWbpyfcXFxbm0bfbp08dhXjNmzNDLL7+sZ555xj4CWE569uypo0ePOoxG9fvvv2vlypXq3Lmz0/0X33zzjfz9/RUeHu7ysgK4eThjARRREydO1IYNG9S8eXP9/e9/V2Zmpl577TXVrl3b4YA6NDRUkydP1rhx45ScnKyuXbvKz89PBw4c0OrVqzVo0CA9+eSTBdq3gIAAPfnkk5o2bZo6deqkqKgoJSYm6uOPP3bpEoWMjAxVrFhRPXv21N133y1fX19t2rRJX331lWbOnGmv17FjR7m7u2vTpk0aNGiQvXzMmDFatmyZ2rVrp9jYWPtws3feeadOnDhx3ddfjxkzRkuXLtX999+vESNG2IebrVy5cr7uQcmv67nHon379k5l2QeyERERDjcBJycnKyQkxOGMR27z9PDwUOfOnTV48GCdOXNGb7zxhgIDAx0O/EuWLKlZs2ZpwIABatSokXr37q3SpUvru+++09mzZ/X222+rWLFimjdvnjp37qx69eqpf//+CgoK0o8//qg9e/bYD45ff/11tWjRQnXq1NHAgQNVtWpVHT16VNu3b9dvv/2m7777TpIUFhamyMhINWjQQGXKlNHXX39tH65Ykn7++We1adNG0dHRCgsLk7u7u1avXq2jR48qJiYmz/VZpkwZtWjRQv3799fRo0c1e/ZsVatWTQMHDsz1PRERERo8eLCmTZumb7/9Vu3bt1fx4sWVlJSklStX6pVXXlHPnj3zbFuSpk6dqg0bNigiIkKDBg1SrVq1dPjwYa1cuVLbtm1TqVKl9NRTT+mDDz5Qp06d1K9fPzVo0ED/+9//tHv3bsXHxys5OdnlS4TefvttzZ07V926dVNoaKgyMjL0xhtvqGTJkoqKirLXu557LFavXq0xY8aoevXqqlWrltPZonbt2umOO+6QdDlYNGnSRP3799fevXvtT97OzMzUpEmTnOa9ceNGde7cmXssgKLq5g9EBcBVn3zyibnnnnuMh4eHCQ0NNQsXLjSjR482Xl5eTnXfe+8906JFC+Pj42N8fHxMzZo1zbBhw8xPP/1krxMREWHCw8Od3nv1MJquyMzMNJMmTTJBQUHG29vbREZGmu+//95pCNechpu9cOGCeeqpp8zdd99t/Pz8jI+Pj7n77rvN3Llzndrp0qWLadOmjVN5YmKiadmypfH09DQVK1Y006ZNM6+++qqRZI4cOWKvV7ly5VyHKb26r8YYs2vXLhMREWG8vLxMcHCweeGFF8ybb7553cPNpqWlOZRfPexnQcptuNndu3cbSWbs2LF5zuODDz4wdevWNV5eXqZKlSpm+vTp5q233sqxzx988IFp1qyZ8fb2NiVLljSNGzc277zzjkOdbdu2mXbt2tk/57p165o5c+Y41Nm/f7/p06ePKV++vClevLgJDg42nTp1MvHx8fY6kydPNo0bNzalSpUy3t7epmbNmmbKlCnmjz/+MMYY8/vvv5thw4aZmjVrGh8fH+Pv72/uvfdes2LFCoe2chtu9p133jHjxo0zgYGBxtvb23Ts2NGkpKQ4vDe3/WTBggWmQYMGxtvb2/j5+Zk6deqYMWPGmEOHDuW5vq+UkpJi+vTpYwICAoynp6epWrWqGTZsmLlw4YK9TkZGhhk3bpypVq2a8fDwMOXKlTPNmjUzL7/8sn1dGJP3cLM7d+40vXr1Mnfeeafx9PQ0gYGBplOnTubrr7/OV59zkr3t5/Zvy5YtDvVPnDhhHn/8cVO2bFlTokQJExERkeMwuD/88IORZDZt2mS5jwBuDJsxPL4SuJV07drVPuzmX8Fnn32myMhI/fjjj7mOfJVt5MiRmj9/vs6cOZPrTdN/RXPnztWYMWO0f/9++y/FwK1m5MiR+vTTT/XNN99wxgIoorjHAijCrh7DPSkpSevWrVNkZGThdKgQtGzZUu3bt9dLL73kUH71ujl+/LiWLl2qFi1aECqusmXLFg0fPpxQgVvW8ePHtXDhQk2ePJlQARRhnLEAirCgoCD169dPVatWVUpKiubNm6cLFy4oMTExz1/vr1dew0t6eHioTJkyN6Tt/KhXr54iIyNVq1YtHT16VG+++aYOHTqkTz75RK1atbph7Z45c0Znzpy5Zp2AgADCDSSxvQD4a+HmbaAIu//++/XOO+/oyJEj8vT0VNOmTTV16tQbFiqkvIeXjIiI0NatW29Y+66KiopSfHy8FixYIJvNpvr16+vNN9+8oaFCujziUk43lV7pwIEDqlKlyg3tB24NbC8A/ko4YwHAweeff+50mdGVSpcufV2jGN0ufvnlF6fhb6/WokULeXl53aQeoShjewHwV0KwAAAAAGAZN28DAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACxzd6VSVlaWDh06JD8/P9lsthvdJ+CGM8YoIyNDFSpUULFi+cvX7A+43VjZHyT2Cdx++BsB/Ck/+4NLweLQoUOqVKlSgXQOKEp+/fVXVaxYMV/vYX/A7ep69geJfQK3L/5GAH9yZX9wKYb7+fkVSIeAouZ6tm32B9yurnfbZp/A7Yq/EcCfXNm2XQoWnMrD7ep6tm32B9yurnfbZp/A7Yq/EcCfXNm2uXkbAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGCZe6G1bAp4fraCnqFkZCvgGRZ8H/9qbLYC/kyKCFPA28aNWE8F3UdYd7vuD9Itsr0V9Pq/FZa5iLtd94m/4t+Igu/jX3H/uvn7A2csAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZe6F1rKtyM/wBnSxYOdojCnQ+dkKuH9SwfcRhedGbB9/NewPhefGbL8F/HmyjwG3kFvgO6UQcMYCAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYJl7YTVsjCmspoHbHvuXdTabrbC7AFjyV/weYL8tRAW+7v962+/tgDMWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMvfC7kBBsdlshd0FoMi4EfuDMaZA58c+C9xYt8I+VtDfKyg8Bb+1Ff3tF844YwEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACxzL+wOFGXGmAKdn81mK9D5FXT/gFsZ+wNuOlPA3+kq2ttwQf8NQ+Hh+9I69oecccYCAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABY5l5YDdtstsJqGrngM8G1/NW2j7/a8uI6FPAmYivgGRpjCnR+uH3w/YYbhTMWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMvcC6thY0xhNV1oivoyF/X+SZLNZivsLtwSboXPsqDZVNDbRsGvQ1PAfWRvcN2tsE8U9e+3W2EdwjU34rMs8O9gG9vbrYgzFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDL3wmrYZrMVVtNAkcP+UBQV/GfCp+w69gnrWIe3j7/mZ/lXXOZbH2csAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGCZS8HCGHOj+wEUiuvZttkfcLu63m2bfQK3K/5GAH9yZdt2KVhkZGRY7gxQFF3Pts3+gNvV9W7b7BO4XfE3AviTK9u2zbgQP7KysnTo0CH5+fnJZrMVSOeAwmSMUUZGhipUqKBixfJ3RSD7A243VvYHiX0Ctx/+RgB/ys/+4FKwAAAAAIBr4eZtAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABg2f8DsFRvrPKZjS0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -655,7 +649,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvsklEQVR4nO3de1RU9f7/8dcIchXxEuQFRcTygqVpVpoKlnctSZPUzklrWeYdsyg7p9TykprfTP1WlqWl1Le8Yf0yTQo7WlamdPR4xRIo0STFW+INPr8/WkyOw2VwDzJ4no+1XDWf2fPZ771n72G/Zu/9GZsxxggAAAAALKhU3gUAAAAAqPgIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAPMqkSZNks9nKuwxcRTabTZMmTXJo27Jli9q1a6fAwEDZbDb9+OOPlucxatQoS30AAIpHsACActalS5ercuB74cIFNWvWTDabTS+//HKZzsuKCxcuqH///jp27JheeeUVLVmyROHh4Vdl3lu2bNGoUaMUFRWlwMBA1a9fX3Fxcdq3b5/TtDabrch/Xbp0KXIeiYmJstlsqlKlylXpEwCuFu/yLgAA/putXLlSmzdvvirzmjdvnjIzM6/KvKz46aeflJGRobfeektDhw69qvOeMWOGvv76a/Xv318333yzDh8+rPnz56tVq1b69ttv1bx5c/u0S5YscXr9Dz/8oFdffVVdu3YttP/Tp08rISFBgYGBhT5fFn0CwNVCsACAcnL27FmNHz9eTz/9tJ5//vkyndeRI0f0wgsvXJV5WXXkyBFJUrVq1a76vJ944gm9//778vHxsbc98MADuummm/TSSy9p6dKl9va//e1vTq/fsGGDbDabBg4cWGj/U6ZMUVBQkDp16qSkpCSn58uiTwC4WrgUCkC52bRpk9q0aSM/Pz9FRkZqwYIFhU63dOlStW7dWv7+/qpRo4YGDBigX375xWGamJgYNW/eXNu3b1d0dLQCAgLUqFEjLV++XJL01Vdf6fbbb5e/v78aN26s5ORkp/mkpqaqR48eqlq1qqpUqaK7775b3377rcvLk5GRoXvvvVeBgYEKDQ3VuHHjtG7dOtlsNm3YsMFp+pkzZyo/P19PPvmky/OQpMWLF8tms+nrr7/WE088oZCQEAUGBuq+++5TdnZ2oa955pln1Lhx40IPXEtaphEjRqhx48by9/dXzZo11b9/f6Wnp5eqH0k6d+6cxo0bp5CQEAUFBenee+/Vr7/+6jDNkCFDFB0dLUnq37+/bDabYmJiJEmHDx/Www8/rLCwMPn6+qp27drq06dPqWpJSkpS8+bN5evrq6ioKK1du9bh+Xbt2jmECkm64YYbFBUVpd27d5e4fCtWrFB0dLTCwsKcnk9LS9Mrr7yi//mf/5G3t2vf65VFnwBQVvgUAlAuduzYoa5duyokJESTJk3SxYsXNXHiRF1//fUO002dOlXPPfec4uLiNHToUGVnZ2vevHnq2LGjUlNTHb7VzsnJUe/evTVgwAD1799fr7/+ugYMGKDExETFx8fr8ccf16BBgzRr1izdf//9+uWXXxQUFCRJ2rlzpzp06KCqVasqISFBlStX1oIFCxQTE2MPJcX5448/dNddd+nQoUMaO3asatWqpffff18pKSmFTp+ZmamXXnpJ77zzjvz9/a9oHY4ePVrVq1fXxIkTlZ6erjlz5mjUqFH68MMPHab7/vvv9e6772rTpk2lvjF+y5Yt+uabbzRgwACFhYUpPT1dr7/+umJiYrRr1y4FBAS43NfQoUO1dOlSDRo0SO3atdOXX36pXr16OUwzbNgw1a1bV9OmTdOYMWPUpk0b+zbRr18/7dy5U6NHj1aDBg105MgRrV+/XpmZmWrQoEGJ89+0aZNWrlypESNGKCgoSHPnzlW/fv2UmZmpmjVrFvk6Y4x+++03RUVFFdv/mjVrdPz4cT344IOFPh8fH69OnTqpZ8+e+uijj0qst6z6BIAyYwCgHMTGxho/Pz+TkZFhb9u1a5fx8vIyBR9N6enpxsvLy0ydOtXhtTt27DDe3t4O7dHR0UaSef/99+1te/bsMZJMpUqVzLfffmtvX7dunZFkFi1a5FCPj4+P+emnn+xtWVlZJigoyHTs2LHE5Zk9e7aRZJKSkuxtubm5pkmTJkaSSUlJcZj+/vvvN+3atbM/lmRGjhxZ4nyMMWbRokVGkuncubPJz8+3t48bN854eXmZ48eP29vy8/PNbbfdZgYOHGiMMebAgQNGkpk1a5ZL8zpz5oxT2+bNm40k895777nUhzHG/Pjjj0aSGTFihEP7oEGDjCQzceJEe1tKSoqRZJYtW2Zvy8nJKVXdl5NkfHx8zP79++1t//73v40kM2/evGJfu2TJEiPJvP3228VO169fP+Pr62tycnKcnvt//+//GW9vb7Nz505jjDGDBw82gYGBJdZdFn0CQFnhUigAV11eXp7WrVun2NhY1a9f397etGlTdevWzf545cqVys/PV1xcnH7//Xf7v1q1aumGG25wOhtQpUoVDRgwwP64cePGqlatmpo2bepwxqHg/3/++Wd7PZ9//rliY2PVsGFD+3S1a9fWoEGDtGnTJp08ebLYZVq7dq3q1q2re++9197m5+enRx991GnalJQUrVixQnPmzCm2z5I89thjDmcgOnTooLy8PGVkZNjbFi9erB07dmjGjBlXNI9Lz6ZcuHBBR48eVaNGjVStWjVt27bN5X7WrFkjSRozZoxDe3x8vMt1+Pj4aMOGDcrJyXF5vpfq3LmzIiMj7Y9vvvlmVa1a1b4dFGbPnj0aOXKk2rZtq8GDBxc53cmTJ/Xpp5+qZ8+eTveGnD9/XuPGjdPjjz+uZs2auVxvWfQJAGWJS6EAXHXZ2dnKzc3VDTfc4PRc48aN7QehaWlpMsYUOp0kVa5c2eFxWFiY06U+wcHBqlevnlObJPsBanZ2ts6cOaPGjRs7zaNp06bKz8/XL7/8oqioKGVnZysvL8/+fJUqVVSlShVlZGQoMjLSaf6NGjVyeHzx4kWNGTNGf//739WmTZtCl6vA4cOHneq+9ED/0lAmSdWrV3dYrpMnT2rChAl66qmnnNbBpfLy8pzuzahRo4Z8fHyUm5ur6dOna9GiRTp48KCMMfZpTpw4UWz9l8rIyFClSpUcDuwlFbrOC+Pr66sZM2Zo/Pjxuv7663XHHXeod+/eeuihh1SrVi17Pbm5ufbX+Pj4qEaNGvbHl68v6c91VlRQOXz4sHr16qXg4GAtX75cXl5eRda3YsUKnT17ttBLll555RX9/vvvmjx5skvLWpZ9AkBZIlgA8Fj5+fmy2Wz67LPPCj2ou3zM/qIO/Ipqv/Qg2VVt2rRxOCMwceJEpx93K857772nvXv3asGCBU43HZ86dUrp6ekKDQ1VQECAateu7fD8okWLNGTIEPvjkpbr5Zdf1vnz5/XAAw/Y51Vws3ROTo7S09NVp04dZWVlKSIiwqGPlJQUxcTEaPTo0Vq0aJHi4+PVtm1bBQcHy2azacCAAcrPz3d5ud0hPj5e99xzj5KSkrRu3To999xzmj59ur788kvdcsstGjt2rN5991379NHR0Q43zZdmOzhx4oR69Oih48ePa+PGjapTp06xtSUmJio4OFi9e/d26mfKlCkaMWKETp48aT/zdfr0aRljlJ6eroCAAIWGhl6VPgGgLBEsAFx1ISEh8vf3V1pamtNze/futf9/ZGSkjDGKiIjQjTfeWKb1BAQEOMy7wJ49e1SpUiX7N/6JiYkO34oXXDoVHh6uXbt2yRjjcNZi//79Dv1lZmbqwoULuvPOO53m9d577+m9997TqlWrFBsbq/Xr1zs8X9LNw5fLzMxUTk5Ooa+bNm2apk2bptTUVDVp0sRpXi1atJAkLV++XIMHD9bs2bPtz509e1bHjx8vVS3h4eHKz8/XTz/95HCWorB1XpzIyEiNHz9e48ePV1pamlq2bKnZs2dr6dKlSkhIcBj1quAMTmmdPXtW99xzj/bt26fk5OQSLzU6dOiQUlJSNGTIEPn6+jo8l5OTo9OnT2vmzJmaOXOm02sjIiLUp08fp2Fiy6JPAChrBAsAV52Xl5e6deumpKQkZWZm2i9R2b17t9atW2efrm/fvpowYYImT56spUuXOhywG2N07NixYkfzKU09Xbt21erVq5Wenm4fYei3337T+++/r/bt26tq1aqSVGggkKRu3bpp/fr1+vjjj9WnTx9Jfx6gvvXWWw7TDRgwQC1btnR6/X333aeePXvq0Ucftd8D0rlzZ0vLNWbMGMXGxjq0HTlyRMOGDdOQIUPUp08fRUREyM/Pr8h5eXl5OX2jP2/ePIfLwVzRo0cPPfvss5o7d67+93//197u6n0mZ86cUaVKleTn52dvi4yMVFBQkM6dOydJatasmeX7DfLy8vTAAw9o8+bNWr16tdq2bVvia/7v//5P+fn5hV6yFBoaqlWrVjm1z507V5s3b9YHH3zgdGaqrPoEgLJGsABQLiZPnqy1a9eqQ4cOGjFihC5evKh58+YpKipK27dvl/TngeOUKVM0YcIEpaenKzY2VkFBQTpw4IBWrVqlxx57rNS/AVGUKVOmaP369Wrfvr1GjBghb29vLViwQOfOnSv0W+HLDRs2TPPnz9fAgQM1duxY1a5dW4mJifYD4YJQ1KRJEzVp0qTQPiIiIpyCgBWtWrVSq1atHNoKLomKiopyaV69e/fWkiVLFBwcrGbNmmnz5s1KTk4udaBr2bKlBg4cqNdee00nTpxQu3bt9MUXXzid0SnKvn37dPfddysuLk7NmjWTt7e3Vq1apd9++83hhn2rxo8fr48//lj33HOPjh075vCDeFLhP2CXmJioOnXq2H9v41IBAQGFruekpCR9//33Rb4HZdEnAJQ1ggWAcnHzzTdr3bp1euKJJ/T8888rLCxMkydP1qFDh+zBQvrzh91uvPFGvfLKK/YbVevVq6euXbs6jMBkVVRUlDZu3KgJEyZo+vTpys/P1+23366lS5eW+BsW0p/3e3z55ZcaPXq0Xn31VVWpUkUPPfSQ2rVrp379+jl8016RvPrqq/Ly8lJiYqLOnj2rO++8U8nJyQ6jd7nqnXfeUUhIiBITE5WUlKS77rpLn376abE3lheoV6+eBg4cqC+++EJLliyRt7e3mjRpoo8++kj9+vW7kkUr1I8//ihJ+uSTT/TJJ584PX95sNi7d6+2bt2qJ554QpUquWegxbLoEwCuBpu5krsXAQAumTNnjsaNG6dff/1VdevWLe9yAAAoMwQLAHCT3Nxch+Fgz549q1tuuUV5eXnat29fOVYGAEDZ41IoAHCTvn37qn79+mrZsqVOnDihpUuXas+ePUpMTCzv0srU5b+3cTl/f3/7b4cAAK5dnLEAADeZM2eOFi5cqPT0dOXl5alZs2ZKSEjQAw88UN6llanLfxTwcoMHD9bixYuvTjEAgHJDsAAAWJKcnFzs83Xq1LE8DCwAwPMRLAAAAABYxjh2AAAAACwjWACwpEGDBhoyZIhDW1pamrp27arg4GDZbDYlJSWVqs+CX6B2t8JqLczixYtls9nsPyYHuMukSZNKvCelLMXExKh58+blNn93OXr0qAIDA7VmzZryLgXAJQgWANxu8ODB2rFjh6ZOnaolS5bo1ltvdfm1X3/9tT7//HM9/fTTZVhhxffTTz/Jz89PNptNP/zwQ3mXc9Xs2rVLkyZNIvQVIysrS5MmTbL/2N/Vlp+fr5kzZyoiIkJ+fn66+eab9cEHH7j02oJQX9i/S0cfq1mzpoYOHarnnnuurBYDwBVguFkAbpWbm6vNmzfrH//4h0aNGlXq18+aNUt33323GjVq5Pba9u7de838kvG4cePk7e2tc+fOlXcpV9WuXbs0efJkxcTEqEGDBuVdjkfKysrS5MmT1aBBA7Vs2fKqz/8f//iHXnrpJT366KNq06aNVq9erUGDBslms2nAgAEu9fHCCy8oIiLCoa1atWoOjx9//HHNnTtXX375pe666y53lQ/AAoIFALfKzs6W5HwQ4IojR47o008/1RtvvOG2eowxOnv2rPz9/eXr6+u2fsvTunXrtG7dOiUkJGjKlCnlXY7HuvS9x9Vx8OBBzZ49WyNHjtT8+fMlSUOHDlV0dLSeeuop9e/fX15eXiX206NHjxLPdDZt2lTNmzfX4sWLCRaAh7g2vroDrhEbNmzQrbfeKj8/P0VGRmrBggVFXpO9dOlStW7dWv7+/qpRo4YGDBigX375xWGaguupd+3apU6dOikgIEB169bVzJkzS12bMUZTpkxRWFiYAgIC1KlTJ+3cudNhmkmTJik8PFyS9NRTT8lms9m/VT516pTi4+PVoEED+fr6KjQ0VF26dNG2bdvsr//000918eJFde7c2Wn+27dvV3R0tPz9/RUWFqYpU6Zo0aJFTvdCNGjQQL1799a6det06623yt/fXwsWLLA/d/k9Fjt37tRdd93l0G9+fn6p10/B+7R//34NGTJE1apVU3BwsB5++GGdOXOm1P0V5cKFCxo7dqzGjh2ryMhIy/3ZbDaNGjVKy5YtU7NmzeTv76+2bdtqx44dkqQFCxaoUaNG8vPzU0xMjNMlSBs3blT//v1Vv359+fr6ql69eho3bpxyc3Pt0xw5ckQhISGKiYnRpQMR7t+/X4GBgS7/zsfixYvVv39/SVKnTp3sl8hs2LBBUvHv/fHjxxUfH6969erJ19dXjRo10owZM5ze6/z8fM2ZM0dRUVHy8/PT9ddfr2HDhiknJ6dU61WSNm3apDZt2jjsz0Upzf68detWtWvXTv7+/oqIiHAI4hs2bFCbNm0kSQ8//LB9HV3+OyLu+EwozOrVq3XhwgWNGDHC3maz2TR8+HD9+uuv2rx5s8t9nTp1Snl5ecVO06VLF33yySdigEvAM3DGAvAQqamp6t69u2rXrq3JkycrLy9PL7zwgkJCQpymnTp1qp577jnFxcVp6NChys7O1rx589SxY0elpqY6nC3IyclR9+7d1bdvX8XFxWn58uV6+umnddNNN6lHjx4u1/f8889rypQp6tmzp3r27Klt27apa9euOn/+vH2avn37qlq1aho3bpwGDhyonj17qkqVKpL+vGxh+fLlGjVqlJo1a6ajR49q06ZN2r17t1q1aiVJ+uabb1SzZk17OClw8OBB+4HkhAkTFBgYqIULFxZ5BmLv3r0aOHCghg0bpkcffVSNGzcudLrDhw+rU6dOunjxop555hkFBgbqzTfftPQNd1xcnCIiIjR9+nRt27ZNCxcuVGhoqGbMmGGf5sSJE7pw4UKJffn5+dnXX4E5c+YoJydH//znP7Vy5corrvNSGzdu1Mcff6yRI0dKkqZPn67evXsrISFBr732mkaMGKGcnBzNnDlTjzzyiL788kv7a5ctW6YzZ85o+PDhqlmzpr7//nvNmzdPv/76q5YtWyZJCg0N1euvv67+/ftr3rx5GjNmjPLz8zVkyBAFBQXptddec6nOjh07asyYMZo7d66effZZNW3aVJLs/5UKf+/PnDmj6OhoHTx4UMOGDVP9+vX1zTffaMKECTp06JDmzJljf/2wYcO0ePFiPfzwwxozZowOHDig+fPnKzU1VV9//bUqV67sUq07duxQ165dFRISokmTJunixYuaOHGirr/+eqdpS7s/9+zZU3FxcRo4cKA++ugjDR8+XD4+PnrkkUfUtGlTvfDCC3r++ef12GOPqUOHDpKkdu3aOfThymfC77//7tKyBgUF2ffF1NRUBQYGOrwnknTbbbfZn2/fvn2JfXbq1EmnT5+Wj4+PunXrptmzZ+uGG25wmq5169Z65ZVXtHPnzmvipnSgwjMAPMI999xjAgICzMGDB+1taWlpxtvb21y6q6anpxsvLy8zdepUh9fv2LHDeHt7O7RHR0cbSea9996zt507d87UqlXL9OvXz+Xajhw5Ynx8fEyvXr1Mfn6+vf3ZZ581kszgwYPtbQcOHDCSzKxZsxz6CA4ONiNHjix2Pu3btzetW7d2ah89erSx2WwmNTXV3nb06FFTo0YNI8kcOHDA3h4eHm4kmbVr1zr1Ex4e7lBrfHy8kWS+++47h2UNDg526rckEydONJLMI4884tB+3333mZo1azq0FbwvJf27tFZjjDl06JAJCgoyCxYsMMYYs2jRIiPJbNmyxeU6LyfJ+Pr6OizrggULjCRTq1Ytc/LkSXv7hAkTnNbLmTNnnPqcPn26sdlsJiMjw6F94MCBJiAgwOzbt8/MmjXLSDJJSUmlqnfZsmVGkklJSXF6rqj3/sUXXzSBgYFm3759Du3PPPOM8fLyMpmZmcYYYzZu3GgkmcTERIfp1q5dW2h7cWJjY42fn5/DOti1a5fx8vKyvD/Pnj3b3nbu3DnTsmVLExoaas6fP2+MMWbLli1Gklm0aJFTXaX5THBlG718Pr169TINGzZ0mu8ff/xhJJlnnnmm2PX24YcfmiFDhph3333XrFq1yvzzn/80AQEB5rrrrrO/T5f65ptvjCTz4YcfFtsvgKuDMxaAB8jLy1NycrLuu+8+1alTx97eqFEj9ejRQ5988om9beXKlcrPz1dcXJzDN4q1atXSDTfcoJSUFD377LP29ipVquhvf/ub/bGPj49uu+02/fzzzy7Xl5ycrPPnz2v06NEOl2XFx8dr2rRpLvVRrVo1fffdd8rKynJYxksdPXpUdevWdWpfu3at2rZt63Ajao0aNfTggw9q3rx5TtNHRESoW7duJda0Zs0a3XHHHfZvUyUpJCREDz74oMvfol/u8ccfd3jcoUMHrVq1SidPnlTVqlUlSbNnz3bp0prL19PTTz+thg0baujQoVdUW1Huvvtuhxuhb7/9dklSv379FBQU5NT+888/26e/9OzOH3/8odzcXLVr107GGKWmpqp+/fr25+fPn68NGzbo/vvv1759+/T3v/9dffr0ceuyFPbeL1u2TB06dFD16tUd9pnOnTvrpZde0r/+9S89+OCDWrZsmYKDg9WlSxeH6Vq3bq0qVaooJSVFgwYNKrGGvLw8rVu3TrGxsQ7L37RpU3Xr1s1hiNTS7s/e3t4aNmyY/bGPj4+GDRum4cOHa+vWrbrjjjtKrM/Vz4T169eX2JckRUVF2f8/Nze30DOJfn5+9ueLExcXp7i4OPvj2NhYdevWTR07dtTUqVOd7r+qXr26JNfPrgAoWwQLwAMcOXJEubm5hY6EdHlbWlqajDGFXhYgyelSjbCwMKd7NKpXr67t27e7XF9GRoYkOc0zJCTE/oe9JDNnztTgwYNVr149tW7dWj179tRDDz2khg0bOkxnCrlWOiMjQ23btnVqL2rkqMtHkylKRkaG/WD5UkVdOuWKSw8kpb8OfHJycuzBonXr1qXu99tvv9WSJUv0xRdfuH1kq8trDg4OliTVq1ev0PZLQ1FmZqaef/55ffzxx05h6cSJEw6Pa9Sooblz56p///66/vrrNXfuXLctQ4HC3vu0tDRt37690MsKpT/3v4LpTpw4odDQ0GKnK0l2drZyc3ML3UcbN27sECxKuz/XqVNHgYGBDm033nijJCk9Pd2lYOHqZ0Jh9zqVxN/fv9CRys6ePWt/vrTat2+v22+/XcnJyU7PFXxelOdvgwD4C8ECqGDy8/Nls9n02WefFTq6yuXX5Bc1AkthB/BlKS4uzv7t/eeff65Zs2ZpxowZWrlypf267po1a17RTbKXK89RgFxZ38eOHXO4N6Uo/v7+9oP5hIQEdejQQREREfYbqAu+pT106JAyMzOdAoLVmktalry8PHXp0kXHjh3T008/rSZNmigwMFAHDx7UkCFDCr0Jft26dZL+DCe//vrrFY0eVpzC3vv8/Hx16dJFCQkJhb6m4MA8Pz9foaGhSkxMLHS6ooKJFaXdn93B1c+ES383ojjBwcH29V67dm2lpKTIGONwsH/o0CFJzmfhXFWvXj3t3bvXqb3g8+K66667on4BuBfBAvAAoaGh8vPz0/79+52eu7wtMjJSxhhFRETYD4jKWsHN1GlpaQ5nGLKzs0sVBGrXrq0RI0ZoxIgROnLkiFq1aqWpU6fag0WTJk20YsWKQufvyroprfDwcKWlpTm1F3YA4059+/bVV199VeJ0gwcPto/mk5mZqYyMjEK/kb/33nsVHBys48ePu7nS4u3YsUP79u3Tu+++q4ceesjeXtQlNGvXrtXChQuVkJCgxMREDR48WN999528vV3/U3Ql30xHRkbq9OnTJX4DHxkZqeTkZN15552WwmlISIj8/f1d2rZKuz9nZWXpjz/+cDhrsW/fPkmyX57mrm/va9eu7dJ0ixYtso+21rJlSy1cuFC7d+9Ws2bN7NN899139uevxM8//1xosDtw4IAkOd0sDqB8MNws4AG8vLzUuXNnJSUlKSsry96+f/9+ffbZZw7T9u3bV15eXpo8ebLTN4zGGB09etTt9XXu3FmVK1fWvHnzHOZ56Wg6xcnLy3O6LCY0NFR16tRxuGyibdu2ysnJcbrWu1u3btq8ebPDLwkfO3asyG+WXdWzZ099++23+v777+1t2dnZlvstyezZs7V+/foS/136Dfubb76pVatWOfwbPXq0JOnll18u85oLU/DN96XbhDFGr776qtO0x48f19ChQ3Xbbbdp2rRpWrhwobZt2+byPToFCg6oSxOi4uLitHnzZvvZksvrunjxon26vLw8vfjii07TXbx40eV5enl5qVu3bkpKSlJmZqa9fffu3U41lHZ/vnjxosOwtefPn9eCBQsUEhJiv8TuStZRYVzZRtevX+9wT0ufPn1UuXJlh3uUjDF64403VLduXYfRqQ4dOqQ9e/Y4jJBW8Ds4l1qzZo22bt2q7t27Oz23detWBQcHO9znAaD8cMYC8BCTJk3S559/rjvvvFPDhw9XXl6e5s+fr+bNmzscUEdGRmrKlCmaMGGC0tPTFRsbq6CgIB04cECrVq3SY489pieffNKttYWEhOjJJ5+0D0Pas2dPpaam6rPPPnPpEoRTp04pLCxM999/v1q0aKEqVaooOTlZW7Zs0ezZs+3T9erVS97e3kpOTtZjjz1mb09ISNDSpUvVpUsXjR492j7cbP369XXs2LEr/oY2ISFBS5YsUffu3TV27Fj7cLPh4eGlugeltK7kHouuXbs6tRUcOEZHRzv8mFh6eroiIiIczniUhSZNmigyMlJPPvmkDh48qKpVq2rFihWFnsUaO3asjh49quTkZHl5eal79+4aOnSopkyZoj59+qhFixYuzbNly5by8vLSjBkzdOLECfn6+uquu+4q8r4I6c/fVPn444/Vu3dvDRkyRK1bt9Yff/yhHTt2aPny5UpPT9d1112n6OhoDRs2TNOnT9ePP/6orl27qnLlykpLS9OyZcv06quv6v7773epzsmTJ2vt2rXq0KGDRowYoYsXL2revHmKiopy2LZKuz/XqVNHM2bMUHp6um688UZ9+OGH+vHHH/Xmm2/a78eIjIxUtWrV9MYbbygoKEiBgYG6/fbbXb73qMCV3GMRFham+Ph4zZo1SxcuXFCbNm2UlJSkjRs3KjEx0eEyrAkTJujdd9/VgQMH7Gdb2rVrp1tuuUW33nqrgoODtW3bNr3zzjuqV6+ew03sBdavX6977rmHeywAT3F1B6ECUJwvvvjC3HLLLcbHx8dERkaahQsXmvHjxxs/Pz+naVesWGHat29vAgMDTWBgoGnSpIkZOXKk2bt3r32a6OhoExUV5fTawYMHm/Dw8FLVlpeXZyZPnmxq165t/P39TUxMjPnPf/7jNIRrYcPNnjt3zjz11FOmRYsWJigoyAQGBpoWLVqY1157zWk+9957r7n77rud2lNTU02HDh2Mr6+vCQsLM9OnTzdz5841kszhw4ft04WHh5tevXoVugyX12qMMdu3bzfR0dHGz8/P1K1b17z44ovm7bffvuLhZrOzsx3aC4aELU1fripquNkdO3a4NLSnMX8OKXr5MMBFDRmckpJiJJlly5bZ23bt2mU6d+5sqlSpYq677jrz6KOPmn//+98Ow5CuXr3aaZhUY4w5efKkCQ8PNy1atLAPleqKt956yzRs2NA+dGvB0LPFvfenTp0yEyZMMI0aNTI+Pj7muuuuM+3atTMvv/yy07zffPNN07p1a+Pv72+CgoLMTTfdZBISEkxWVpbLNRpjzFdffWVat25tfHx8TMOGDc0bb7xh304uV5r9+YcffjBt27Y1fn5+Jjw83MyfP9+pv9WrV5tmzZrZh6sueC/c+ZlQlLy8PDNt2jQTHh5ufHx8TFRUlFm6dGmh87x83/jHP/5hWrZsaYKDg03lypVN/fr1zfDhwx328QK7d+82kkxycrJb6gZgnc0Yfq4S8GSxsbHauXNnoddrX4s2btyomJgY7dmzp8iRcgrEx8drwYIFOn36dJE3pP43eu2115SQkKCffvqp0B9kQ8UUExOj33//Xf/5z3/KuxSPEB8fr3/961/aunUrZywAD8E9FoAHuXyM97S0NK1Zs0YxMTHlU1A56NChg7p27aqZM2c6tF++bo4ePaolS5aoffv2hIrLpKSkaMyYMYQKXLOOHj2qhQsXasqUKYQKwINwxgLwILVr19aQIUPUsGFDZWRk6PXXX9e5c+eUmppa4rf3Vyo7O1t5eXlFPu/j46MaNWqUybxLo2XLloqJiVHTpk3122+/6e2331ZWVpa++OILdezYsczme/r0aZ0+fbrYaUJCQgg3FuXm5jrd4H+5GjVqyMfH5ypVVLjy3B44YwHA03HzNuBBunfvrg8++ECHDx+Wr6+v2rZtq2nTppVZqJCkNm3a2H8ArzDR0dHasGFDmc3fVT179tTy5cv15ptvymazqVWrVnr77bfLNFRIf464NHny5GKnufTmU1yZDz/8UA8//HCx06SkpJT72Tu2BwAoGmcsgP9yX3/9tdNlRpeqXr36FY1idK34+eefnYa/vVz79u3l5+d3lSq6Nh06dEg7d+4sdprWrVu7/EvvZYXtAQCKRrAAAAAAYBk3bwMAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALPN2ZaL8/HxlZWUpKChINputrGsCypwxRqdOnVKdOnVUqVLp8jX7A641VvYHiX0C1x7+RgB/Kc3+4FKwyMrKUr169dxSHOBJfvnlF4WFhZXqNewPuFZdyf4gsU/g2sXfCOAvruwPLsXwoKAgtxQEeJor2bbZH3CtutJtm30C1yr+RgB/cWXbdilYcCoP16or2bbZH3CtutJtm30C1yr+RgB/cWXb5uZtAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBl3uU1Y+Pm/mxu7k+SjHFvlTabe6v09PqkilGjJ6gI68nTa/T0+qSKUaOncP/fCHf3CLcwbt6Gr9FdoiJ8dnh6jZ5en1QxaiwJZywAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBl3uU1Y5uM23t0N5vN/X26k6fXJ1WMGj1BRVhPnl6jp9cnVYwaPUUZfKK7vUdj3Pt3zN3bh6fX92en7u8SKExF+PytCDWWhDMWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMu8y7sAdzHGlHcJJbLZbG7tz93L7O76pIpRoyeoCOvJ42t090dAGWxqHr8OPQjr6r8D77Nr3L9Y7j9m8vgajZsL5G9EoThjAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALPMu7wLcxWazlXcJV11FWOaKUKMnYD25gc24u0M398f7XBoVYV15eo2eXp9UMWq8Nrl/vRvj3s9gt28bFWBTuxb2B85YAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAy7zLbc7G5t7uZNzaX1mw2dy8zMa9y+zu+qSKUaMncPd6KhNuX/eevcwV4T25VvcHqWJ8dnh6jZ5en1QxavQERu5drmtzLRWvImxrFaHGknDGAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWOZdXjM2Mm7tz2azubW/iqAiLHNFqNETVIT1ZIx791m5eZndXV9FeE+uZRVh/Xt6jZ5en1QxavQEFWEtefp76en1SRWjxpJwxgIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmXd5F+DJjDFu7c9ms7m1P0+vT6oYNXoC1tN/B95n11WEdeXpNXp6fVLFqNETVIT15Ok1enp9UsWosSScsQAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJZ5l9eMbTZbec3aZZ5eo6fXJ1WMGj1BRVhPnl6jp9cnVYwaPUVFWFeeXqOn1ydVjBo9QUVYT55eo6fXJ1WMGkvCGQsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWOZSsDDGlHUdQLm4km2b/QHXqivdttkncK3ibwTwF1e2bZeCxalTpywXA3iiK9m22R9wrbrSbZt9Atcq/kYAf3Fl27YZF+JHfn6+srKyFBQUJJvN5pbigPJkjNGpU6dUp04dVapUuisC2R9wrbGyP0jsE7j28DcC+Etp9geXggUAAAAAFIebtwEAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGX/HxbvjG0H2hTOAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw8ElEQVR4nO3deVxU5d//8fcIsoiIG5oKImKulRZZaSpUikqm5kJqi9ZPJc21hdK+uZRLat6ZeluWpan0vc297kyTwtKyMqWv5q4JlEua4o4LcP3+8MHkOAiDZ5TB+/V8PHgo11xznc85c85w3nOWsRljjAAAAADAghJFXQAAAACA4o9gAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAHA440aNUo2m62oy8ANZLPZNGrUKIe2DRs2qGnTpgoICJDNZtOvv/5qeRoDBgywNAYA4B8ECwDwQK1atbohO74XL15U/fr1ZbPZ9NZbb13XaVlx8eJFde3aVceOHdPbb7+tefPmKSws7IZNf+PGjWrTpo3KlCmjwMBAxcTE5BlsoqOjZbPZnH7atGnj0G/r1q3q2rWratasqVKlSqlixYpq0aKFPv/8c6cx8xov96dVq1bXa5YBoNC8i7oAAICjJUuWaP369TdkWtOmTVN6evoNmZYVe/fuVVpamj744AP17t37hk5706ZNatasmUJDQzVy5Ejl5ORoxowZioqK0s8//6w6deo49A8JCdH48eMd2qpWrerwe1pamk6dOqWePXuqatWqOnv2rBYvXqz27dtr5syZ6tu3r73vvHnznGr65Zdf9M477ygmJsaNcwoA1hAsAMCDnDt3Ti+88IJefvlljRgx4rpO6/Dhw3r99ddvyLSsOnz4sCSpbNmyN3zar732mvz9/bV+/XpVqFBBkvTEE0+odu3aGj58uBYvXuzQPygoSE888US+Y8bGxio2NtahbcCAAYqMjNR//dd/OQSLvMZas2aNbDabunfvfq2zBQBux6lQADzKunXr1LhxY/n5+SkiIkIzZ87Ms9/8+fMVGRkpf39/lS9fXt26ddMff/zh0Cc6Olq33XabNm/erKioKJUqVUq1atXSokWLJEnffvut7r33Xvn7+6tOnTpKSkpymk5KSoratm2rMmXKqHTp0nrooYf0448/ujw/aWlpat++vQICAlSpUiUNHTpUq1atks1m05o1a5z6T5w4UTk5OXrxxRddnoYkzZkzRzabTd9//72ef/55BQcHKyAgQI8++qiOHDmS53NeeeUV1alTp8Cd4LzmqX///qpTp478/f1VoUIFde3aVampqYUaR5LOnz+voUOHKjg4WIGBgWrfvr3+/PNPhz69evVSVFSUJKlr166y2WyKjo6WJB06dEhPP/20QkJC5OvrqypVqqhDhw6FqmXZsmW67bbb5OvrqwYNGmjlypUOj69du1YtW7a0hwpJqlKliqKiovS///u/On36tNOYWVlZebbnx8vLS6GhoTp+/Hi+/c6fP6/FixcrKipKISEhhZoGAFxPHLEA4DG2bNmimJgYBQcHa9SoUcrKytLIkSNVuXJlh35jx47Va6+9pri4OPXu3VtHjhzRtGnT1KJFC6WkpDh8qp2RkaF27dqpW7du6tq1q959911169ZNiYmJGjJkiJ599ln16NFDkyZNUpcuXfTHH38oMDBQ0qXz4Js3b64yZcooISFBJUuW1MyZMxUdHW0PJfk5c+aMHnzwQR08eFCDBw/WLbfcok8++UTJycl59k9PT9ebb76pjz76SP7+/te0DAcOHKhy5cpp5MiRSk1N1ZQpUzRgwAAtWLDAod/PP/+sjz/+WOvWrSv0hfEbNmzQDz/8oG7duikkJESpqal69913FR0drW3btqlUqVIuj9W7d2/Nnz9fPXr0UNOmTfXNN9/o4YcfdugTHx+vatWqady4cRo0aJAaN25sXyc6d+6srVu3auDAgapRo4YOHz6s1atXKz09XTVq1Chw+uvWrdOSJUvUv39/BQYGaurUqercubPS09PtQeL8+fN5vh6lSpXShQsX9Ntvv+m+++6zt+/atUsBAQG6cOGCKleurD59+mjEiBEqWbKk0xhnzpxRZmamTpw4oc8++0xffvmlHnvssXxrXrFihY4fP67HH3+8wPkDgBvKAICH6Nixo/Hz8zNpaWn2tm3bthkvLy+T+3aVmppqvLy8zNixYx2eu2XLFuPt7e3QHhUVZSSZTz75xN62Y8cOI8mUKFHC/Pjjj/b2VatWGUlm9uzZDvX4+PiYvXv32tsOHDhgAgMDTYsWLQqcn8mTJxtJZtmyZfa2zMxMU7duXSPJJCcnO/Tv0qWLadq0qf13Sea5554rcDrGGDN79mwjybRs2dLk5OTY24cOHWq8vLzM8ePH7W05OTnmnnvuMd27dzfGGLNv3z4jyUyaNMmlaZ09e9apbf369UaSmTt3rktjGGPMr7/+aiSZ/v37O7T36NHDSDIjR460tyUnJxtJZuHChfa2jIyMQtV9JUnGx8fH7Nmzx972n//8x0gy06ZNs7fdfvvtpnbt2iYrK8vedv78eVO9enUjySxatMje/swzz5hRo0aZxYsXm7lz55r27dsbSSYuLi7PGuLj440k+zrZpUsXc+zYsXzr7ty5s/H19TUZGRnXNN8AcL1wKhQAj5Cdna1Vq1apY8eOql69ur29Xr16at26tf33JUuWKCcnR3Fxcfr777/tP7fccotuvfVWp6MBpUuXVrdu3ey/16lTR2XLllW9evUcjjjk/v/333+31/PVV1+pY8eOqlmzpr1flSpV1KNHD61bt04nT57Md55WrlypatWqqX379vY2Pz8/9enTx6lvcnKyFi9erClTpuQ7ZkH69u3rcASiefPmys7OVlpamr1tzpw52rJliyZMmHBN07j80/uLFy/q6NGjqlWrlsqWLatNmza5PM6KFSskSYMGDXJoHzJkiMt1+Pj4aM2aNcrIyHB5updr2bKlIiIi7L/fcccdKlOmjH09kKT+/ftr165d+n//7/9p27Zt+u233/TUU0/p4MGDkqTMzEx73w8//FAjR45Up06d9OSTT2r58uXq06ePPv300zxPoRsyZIhWr16tjz/+WG3btlV2drYuXLhw1XpPnjypL774QrGxsUVyvQkA5IdgAcAjHDlyRJmZmbr11ludHrv8rju7d++WMUa33nqrgoODHX62b99uv8g3V0hIiNOpPkFBQQoNDXVqk2TfQT1y5IjOnj3rdMcf6VLYycnJsV/TceTIER06dMj+k3tufVpamiIiIpymX6tWLYffs7KyNGjQID355JNq3Ljx1ReS5DCdQ4cOOezUSnIIZZJUrlw5h/k6efKkhg0bppdeeslpGVwuOzvbaVq5O7yZmZkaMWKEQkND5evrq4oVKyo4OFjHjx/XiRMn8q3/cmlpaSpRooTDjr2kPJd5Xnx9fTVhwgR9+eWXqly5slq0aKGJEyfq0KFD9j4nTpxwmIdjx445jHHl8pIuLbPLg8qzzz6r4cOH65NPPlGDBg10++23a+/evUpISJB0Kbzm54UXXpCkPK/hqVu3rlq2bKmnnnrKfr3GI488ImNMnmMtXrxY586d4zQoAB6JYAGgWMnJyZHNZtPKlSu1evVqp58rL/b28vLKc5yrtV9thy4/jRs3VpUqVew/hf0+iLlz52rnzp2Kj49Xamqq/UeSTp06pdTUVJ09e1aSHKZTpUoVp2snCpqvt956SxcuXNBjjz1mn07uxdIZGRlKTU3VhQsX9McffzhN64cffpB06TqOsWPHKi4uTp9++qm++uorrV69WhUqVFBOTk6h5t2qIUOGaNeuXRo/frz8/Pz02muvqV69ekpJSZEkDR482GEeOnXq5PB8V9eDsWPH6q+//tLatWu1efNmbdiwwT6vtWvXzrfG3AB3ZajJS5cuXbRhwwbt2rUrz8cTExMVFBSkdu3aFTgWANxoXLwNwCMEBwfL399fu3fvdnps586d9v9HRETIGKPw8PACd+is1lOqVCmHaefasWOHSpQoYd9hTExMdDhykHvqVFhYmLZt2yZjjMNRiz179jiMl56erosXL+r+++93mtbcuXM1d+5cLV26VB07dtTq1asdHm/QoEGh5is9PV0ZGRl5Pm/cuHEaN26cUlJSVLduXadpNWzYUJK0aNEi9ezZU5MnT7Y/du7cuQLvZnSlsLAw5eTkaO/evQ5HKfJa5vmJiIjQCy+8oBdeeEG7d+9Wo0aNNHnyZM2fP18JCQkOd73KPYJzLcqVK6dmzZrZf09KSlJISIjq1q2b7/NyT6sKDg4ucBq561FeR34OHjyo5ORk9erVS76+voUpHQBuCIIFAI/g5eWl1q1ba9myZUpPT7eforJ9+3atWrXK3q9Tp04aNmyYRo8erfnz5zvssBtjdOzYMYfbglqpJyYmRsuXL1dqaqr9DkN//fWXPvnkEzVr1kxlypSRpDwDgSS1bt1aq1ev1meffaYOHTpIurQD/sEHHzj069atmxo1auT0/EcffVSxsbHq06eP/RqQli1bWpqvQYMGqWPHjg5thw8fVnx8vHr16qUOHTooPDxcfn5+V52Wl5eX0yf606ZNU3Z2dqFqadu2rYYPH66pU6fqv//7v+3trl5ncvbsWZUoUUJ+fn72toiICAUGBur8+fOSpPr166t+/fqFqssVCxYs0IYNG/TWW2+pRIlLB/9PnjwpX19fh51+Y4zGjBkjSQ7XCh0+fFiVKlVyGPPixYuaO3eu/P3986z5f/7nf5STk8NpUAA8FsECgMcYPXq0Vq5cqebNm6t///7KysrStGnT1KBBA23evFnSpR3HMWPGaNiwYUpNTVXHjh0VGBioffv2aenSperbt2+hvwPiasaMGaPVq1erWbNm6t+/v7y9vTVz5kydP39eEydOLPD58fHxmj59urp3724/JScxMdG+I5wbiurWrXvVT73Dw8OdgoAVd911l+666y6HttzTrho0aODStNq1a6d58+YpKChI9evX1/r165WUlFToQNeoUSN1795dM2bM0IkTJ9S0aVN9/fXXTkd0rmbXrl166KGHFBcXp/r168vb21tLly7VX3/95XDBvlXfffedXn/9dcXExKhChQr68ccfNXv2bLVp00aDBw+299u0aZO6d++u7t27q1atWsrMzNTSpUv1/fffq2/fvg7LPT4+XidPnlSLFi1UrVo1HTp0SImJidqxY4cmT56c53UbiYmJqlq1qv07PADA0xAsAHiMO+64Q6tWrdLzzz+vESNGKCQkRKNHj9bBgwftwUK69MVutWvX1ttvv63Ro0dLunQee0xMjMMdmKxq0KCB1q5dq2HDhmn8+PHKycnRvffeq/nz5xf4HRbSpYt6v/nmGw0cOFDvvPOOSpcuraeeekpNmzZV586dHT5pL07eeecdeXl5KTExUefOndP999+vpKQkh0/kXfXRRx8pODhYiYmJWrZsmR588EF98cUX+V5Ynis0NFTdu3fX119/rXnz5snb21t169bVp59+qs6dO1/LrOWpWrVq8vLy0qRJk3Tq1CmFh4drzJgxev755+Xt/c+f0bCwMDVv3lxLly7VoUOHVKJECdWrV0/vvfeewzdpS9Jjjz2mDz/8UO+++66OHj2qwMBARUZGasKECXmuwzt37tTGjRv1/PPP24+QAICnsZlruVIRAHDNpkyZoqFDh+rPP/9UtWrVirocAADcgmABANdRZmamw/c+nDt3Tnfeeaeys7OveucfAACKI06FAoDrqFOnTqpevboaNWqkEydOaP78+dqxY4cSExOLurTr6vLvksiLv7+//btDAAA3B45YAMB1NGXKFM2aNUupqanKzs5W/fr1lZCQoMcee6yoS7uurvxSwCv17NlTc+bMuTHFAABuCIIFAMDt8vqW6ctVrVr1utwGFgBQdAgWAAAAACzjnnUAAAAALCNYALCkRo0a6tWrl0Pb7t27FRMTo6CgINlsNi1btqxQY+Z+27S75VVrXubMmSObzWb/4jjAXUaNGlXg9SfXU3R0tG677bYim767HD16VAEBAVqxYkVRlwLgMgQLAG7Xs2dPbdmyRWPHjtW8efN09913u/zc77//Xl999ZVefvnl61hh8bd37175+fnJZrPpl19+Kepybpht27Zp1KhRhL58HDhwQKNGjdKvv/5aJNPPycnRxIkTFR4eLj8/P91xxx3697//7dJzc0N9Xj+X32msQoUK6t27t1577bXrNRsArgG3mwXgVpmZmVq/fr1effVVDRgwoNDPnzRpkh566CHVqlXL7bXt3LnzpvnW4qFDh8rb21vnz58v6lJuqG3btmn06NGKjo5WjRo1irocj3TgwAGNHj1aNWrUUKNGjW749F999VW9+eab6tOnjxo3bqzly5erR48estls6tatm0tjvP766woPD3doK1u2rMPvzz77rKZOnapvvvlGDz74oLvKB2ABwQKAWx05ckSS806AKw4fPqwvvvhC7733ntvqMcbo3Llz8vf3l6+vr9vGLUqrVq3SqlWrlJCQoDFjxhR1OR7r8tceN8b+/fs1efJkPffcc5o+fbokqXfv3oqKitJLL72krl27ysvLq8Bx2rZtW+CRznr16um2227TnDlzCBaAh7g5ProDbhJr1qzR3XffLT8/P0VERGjmzJlXPSd7/vz5ioyMlL+/v8qXL69u3brpjz/+cOiTez71tm3b9MADD6hUqVKqVq2aJk6cWOjajDEaM2aMQkJCVKpUKT3wwAPaunWrQ59Ro0YpLCxMkvTSSy/JZrPZP1U+deqUhgwZoho1asjX11eVKlVSq1attGnTJvvzv/jiC2VlZally5ZO09+8ebOioqLk7++vkJAQjRkzRrNnz3a6FqJGjRpq166dVq1apbvvvlv+/v6aOXOm/bErr7HYunWrHnzwQYdxc3JyCr18cl+nPXv2qFevXipbtqyCgoL09NNP6+zZs4Ue72ouXryowYMHa/DgwYqIiLA8ns1m04ABA7Rw4ULVr19f/v7+atKkibZs2SJJmjlzpmrVqiU/Pz9FR0c7nYK0du1ade3aVdWrV5evr69CQ0M1dOhQZWZm2vscPnxYwcHBio6O1uU3ItyzZ48CAgJc/k6POXPmqGvXrpKkBx54wH6KzJo1ayTl/9ofP35cQ4YMUWhoqHx9fVWrVi1NmDDB6bXOycnRlClT1KBBA/n5+aly5cqKj49XRkZGoZarJK1bt06NGzd22J6vpjDb88aNG9W0aVP5+/srPDzcIYivWbNGjRs3liQ9/fTT9mV05XeGuOM9IS/Lly/XxYsX1b9/f3ubzWZTv3799Oeff2r9+vUuj3Xq1CllZ2fn26dVq1b6/PPPxQ0uAc/AEQvAQ6SkpKhNmzaqUqWKRo8erezsbL3++usKDg526jt27Fi99tpriouLU+/evXXkyBFNmzZNLVq0UEpKisPRgoyMDLVp00adOnVSXFycFi1apJdfflm333672rZt63J9I0aM0JgxYxQbG6vY2Fht2rRJMTExunDhgr1Pp06dVLZsWQ0dOlTdu3dXbGysSpcuLenSaQuLFi3SgAEDVL9+fR09elTr1q3T9u3bddddd0mSfvjhB1WoUMEeTnLt37/fviM5bNgwBQQEaNasWVc9ArFz5051795d8fHx6tOnj+rUqZNnv0OHDumBBx5QVlaWXnnlFQUEBOj999+39Al3XFycwsPDNX78eG3atEmzZs1SpUqVNGHCBHufEydO6OLFiwWO5efnZ19+uaZMmaKMjAz961//0pIlS665zsutXbtWn332mZ577jlJ0vjx49WuXTslJCRoxowZ6t+/vzIyMjRx4kQ988wz+uabb+zPXbhwoc6ePat+/fqpQoUK+vnnnzVt2jT9+eefWrhwoSSpUqVKevfdd9W1a1dNmzZNgwYNUk5Ojnr16qXAwEDNmDHDpTpbtGihQYMGaerUqRo+fLjq1asnSfZ/pbxf+7NnzyoqKkr79+9XfHy8qlevrh9++EHDhg3TwYMHNWXKFPvz4+PjNWfOHD399NMaNGiQ9u3bp+nTpyslJUXff/+9SpYs6VKtW7ZsUUxMjIKDgzVq1ChlZWVp5MiRqly5slPfwm7PsbGxiouLU/fu3fXpp5+qX79+8vHx0TPPPKN69erp9ddf14gRI9S3b181b95cktS0aVOHMVx5T/j7779dmtfAwED7tpiSkqKAgACH10SS7rnnHvvjzZo1K3DMBx54QKdPn5aPj49at26tyZMn69Zbb3XqFxkZqbfffltbt269KS5KB4o9A8AjPPLII6ZUqVJm//799rbdu3cbb29vc/mmmpqaary8vMzYsWMdnr9lyxbj7e3t0B4VFWUkmblz59rbzp8/b2655RbTuXNnl2s7fPiw8fHxMQ8//LDJycmxtw8fPtxIMj179rS37du3z0gykyZNchgjKCjIPPfcc/lOp1mzZiYyMtKpfeDAgcZms5mUlBR729GjR0358uWNJLNv3z57e1hYmJFkVq5c6TROWFiYQ61DhgwxksxPP/3kMK9BQUFO4xZk5MiRRpJ55plnHNofffRRU6FCBYe23NeloJ/LazXGmIMHD5rAwEAzc+ZMY4wxs2fPNpLMhg0bXK7zSpKMr6+vw7zOnDnTSDK33HKLOXnypL192LBhTsvl7NmzTmOOHz/e2Gw2k5aW5tDevXt3U6pUKbNr1y4zadIkI8ksW7asUPUuXLjQSDLJyclOj13ttX/jjTdMQECA2bVrl0P7K6+8Yry8vEx6eroxxpi1a9caSSYxMdGh38qVK/Nsz0/Hjh2Nn5+fwzLYtm2b8fLysrw9T5482d52/vx506hRI1OpUiVz4cIFY4wxGzZsMJLM7NmzneoqzHuCK+voldN5+OGHTc2aNZ2me+bMGSPJvPLKK/kutwULFphevXqZjz/+2CxdutT861//MqVKlTIVK1a0v06X++GHH4wks2DBgnzHBXBjcMQC8ADZ2dlKSkrSo48+qqpVq9rba9WqpbZt2+rzzz+3ty1ZskQ5OTmKi4tz+ETxlltu0a233qrk5GQNHz7c3l66dGk98cQT9t99fHx0zz336Pfff3e5vqSkJF24cEEDBw50OC1ryJAhGjdunEtjlC1bVj/99JMOHDjgMI+XO3r0qKpVq+bUvnLlSjVp0sThQtTy5cvr8ccf17Rp05z6h4eHq3Xr1gXWtGLFCt133332T1MlKTg4WI8//rjLn6Jf6dlnn3X4vXnz5lq6dKlOnjypMmXKSJImT57s0qk1Vy6nl19+WTVr1lTv3r2vqbareeihhxwuhL733nslSZ07d1ZgYKBT+++//27vf/nRnTNnzigzM1NNmzaVMUYpKSmqXr26/fHp06drzZo16tKli3bt2qUnn3xSHTp0cOu85PXaL1y4UM2bN1e5cuUctpmWLVvqzTff1HfffafHH39cCxcuVFBQkFq1auXQLzIyUqVLl1ZycrJ69OhRYA3Z2dlatWqVOnbs6DD/9erVU+vWrR1ukVrY7dnb21vx8fH23318fBQfH69+/fpp48aNuu+++wqsz9X3hNWrVxc4liQ1aNDA/v/MzMw8jyT6+fnZH89PXFyc4uLi7L937NhRrVu3VosWLTR27Fin66/KlSsnyfWjKwCuL4IF4AEOHz6szMzMPO+EdGXb7t27ZYzJ87QASU6naoSEhDhdo1GuXDlt3rzZ5frS0tIkyWmawcHB9j/sBZk4caJ69uyp0NBQRUZGKjY2Vk899ZRq1qzp0M/kca50WlqamjRp4tR+tTtHXXk3matJS0uz7yxf7mqnTrni8h1J6Z8dn4yMDHuwiIyMLPS4P/74o+bNm6evv/7a7Xe2urLmoKAgSVJoaGie7ZeHovT0dI0YMUKfffaZU1g6ceKEw+/ly5fX1KlT1bVrV1WuXFlTp0512zzkyuu13717tzZv3pznaYXSpe0vt9+JEydUqVKlfPsV5MiRI8rMzMxzG61Tp45DsCjs9ly1alUFBAQ4tNWuXVuSlJqa6lKwcPU9Ia9rnQri7++f553Kzp07Z3+8sJo1a6Z7771XSUlJTo/lvl8U5XeDAPgHwQIoZnJycmSz2fTll1/meXeVK8/Jv9odWPLagb+e4uLi7J/ef/XVV5o0aZImTJigJUuW2M/rrlChwjVdJHulorwLkCvL+9ixYw7XplyNv7+/fWc+ISFBzZs3V3h4uP0C6txPaQ8ePKj09HSngGC15oLmJTs7W61atdKxY8f08ssvq27dugoICND+/fvVq1evPC+CX7VqlaRL4eTPP/+8pruH5Sev1z4nJ0etWrVSQkJCns/J3THPyclRpUqVlJiYmGe/qwUTKwq7PbuDq+8Jl39vRH6CgoLsy71KlSpKTk6WMcZhZ//gwYOSnI/CuSo0NFQ7d+50as99v6hYseI1jQvAvQgWgAeoVKmS/Pz8tGfPHqfHrmyLiIiQMUbh4eH2HaLrLfdi6t27dzscYThy5EihgkCVKlXUv39/9e/fX4cPH9Zdd92lsWPH2oNF3bp1tXjx4jyn78qyKaywsDDt3r3bqT2vHRh36tSpk7799tsC+/Xs2dN+N5/09HSlpaXl+Yl8+/btFRQUpOPHj7u50vxt2bJFu3bt0scff6ynnnrK3n61U2hWrlypWbNmKSEhQYmJierZs6d++ukneXu7/qfoWj6ZjoiI0OnTpwv8BD4iIkJJSUm6//77LYXT4OBg+fv7u7RuFXZ7PnDggM6cOeNw1GLXrl2SZD89zV2f3lepUsWlfrNnz7bfba1Ro0aaNWuWtm/frvr169v7/PTTT/bHr8Xvv/+eZ7Dbt2+fJDldLA6gaHC7WcADeHl5qWXLllq2bJkOHDhgb9+zZ4++/PJLh76dOnWSl5eXRo8e7fQJozFGR48edXt9LVu2VMmSJTVt2jSHaV5+N538ZGdnO50WU6lSJVWtWtXhtIkmTZooIyPD6Vzv1q1ba/369Q7fJHzs2LGrfrLsqtjYWP3444/6+eef7W1HjhyxPG5BJk+erNWrVxf4c/kn7O+//76WLl3q8DNw4EBJ0ltvvXXda85L7iffl68Txhi98847Tn2PHz+u3r1765577tG4ceM0a9Ysbdq0yeVrdHLl7lAXJkTFxcVp/fr19qMlV9aVlZVl75edna033njDqV9WVpbL0/Ty8lLr1q21bNkypaen29u3b9/uVENht+esrCyH29ZeuHBBM2fOVHBwsP0Uu2tZRnlxZR1dvXq1wzUtHTp0UMmSJR2uUTLG6L333lO1atUc7k518OBB7dixw+EOabnfg3O5FStWaOPGjWrTpo3TYxs3blRQUJDDdR4Aig5HLAAPMWrUKH311Ve6//771a9fP2VnZ2v69Om67bbbHHaoIyIiNGbMGA0bNkypqanq2LGjAgMDtW/fPi1dulR9+/bViy++6NbagoOD9eKLL9pvQxobG6uUlBR9+eWXLp2CcOrUKYWEhKhLly5q2LChSpcuraSkJG3YsEGTJ0+293v44Yfl7e2tpKQk9e3b196ekJCg+fPnq1WrVho4cKD9drPVq1fXsWPHrvkT2oSEBM2bN09t2rTR4MGD7bebDQsLK9Q1KIV1LddYxMTEOLXl7jhGRUU5fJlYamqqwsPDHY54XA9169ZVRESEXnzxRe3fv19lypTR4sWL8zyKNXjwYB09elRJSUny8vJSmzZt1Lt3b40ZM0YdOnRQw4YNXZpmo0aN5OXlpQkTJujEiRPy9fXVgw8+eNXrIqRL36ny2WefqV27durVq5ciIyN15swZbdmyRYsWLVJqaqoqVqyoqKgoxcfHa/z48fr1118VExOjkiVLavfu3Vq4cKHeeecddenSxaU6R48erZUrV6p58+bq37+/srKyNG3aNDVo0MBh3Srs9ly1alVNmDBBqampql27thYsWKBff/1V77//vv16jIiICJUtW1bvvfeeAgMDFRAQoHvvvdfla49yXcs1FiEhIRoyZIgmTZqkixcvqnHjxlq2bJnWrl2rxMREh9Owhg0bpo8//lj79u2zH21p2rSp7rzzTt19990KCgrSpk2b9NFHHyk0NNThIvZcq1ev1iOPPMI1FoCnuLE3oQKQn6+//trceeedxsfHx0RERJhZs2aZF154wfj5+Tn1Xbx4sWnWrJkJCAgwAQEBpm7duua5554zO3futPeJiooyDRo0cHpuz549TVhYWKFqy87ONqNHjzZVqlQx/v7+Jjo62vz2229Ot3DN63az58+fNy+99JJp2LChCQwMNAEBAaZhw4ZmxowZTtNp3769eeihh5zaU1JSTPPmzY2vr68JCQkx48ePN1OnTjWSzKFDh+z9wsLCzMMPP5znPFxZqzHGbN682URFRRk/Pz9TrVo188Ybb5gPP/zwmm83e+TIEYf23FvCFmYsV13tdrNbtmxx6daexly6peiVtwG+2i2Dk5OTjSSzcOFCe9u2bdtMy5YtTenSpU3FihVNnz59zH/+8x+H25AuX77c6Tapxhhz8uRJExYWZho2bGi/VaorPvjgA1OzZk37rVtzbz2b32t/6tQpM2zYMFOrVi3j4+NjKlasaJo2bWreeustp2m///77JjIy0vj7+5vAwEBz++23m4SEBHPgwAGXazTGmG+//dZERkYaHx8fU7NmTfPee+/Z15MrFWZ7/uWXX0yTJk2Mn5+fCQsLM9OnT3cab/ny5aZ+/fr221XnvhbufE+4muzsbDNu3DgTFhZmfHx8TIMGDcz8+fPznOaV28arr75qGjVqZIKCgkzJkiVN9erVTb9+/Ry28Vzbt283kkxSUpJb6gZgnc0Yvq4S8GQdO3bU1q1b8zxf+2a0du1aRUdHa8eOHVe9U06uIUOGaObMmTp9+vRVL0j9v2jGjBlKSEjQ3r178/xCNhRP0dHR+vvvv/Xbb78VdSkeYciQIfruu++0ceNGjlgAHoJrLAAPcuU93nfv3q0VK1YoOjq6aAoqAs2bN1dMTIwmTpzo0H7lsjl69KjmzZunZs2aESqukJycrEGDBhEqcNM6evSoZs2apTFjxhAqAA/CEQvAg1SpUkW9evVSzZo1lZaWpnfffVfnz59XSkpKgZ/eX6sjR44oOzv7qo/7+PiofPny12XahdGoUSNFR0erXr16+uuvv/Thhx/qwIED+vrrr9WiRYvrNt3Tp0/r9OnT+fYJDg4m3FiUmZnpdIH/lcqXLy8fH58bVFHeinJ94IgFAE/HxduAB2nTpo3+/e9/69ChQ/L19VWTJk00bty46xYqJKlx48b2L8DLS1RUlNasWXPdpu+q2NhYLVq0SO+//75sNpvuuusuffjhh9c1VEiX7rg0evTofPtcfvEprs2CBQv09NNP59snOTm5yI/esT4AwNVxxAL4P+777793Os3ocuXKlbumuxjdLH7//Xen299eqVmzZvLz87tBFd2cDh48qK1bt+bbJzIy0uVver9eWB8A4OoIFgAAAAAs4+JtAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBl3q50ysnJ0YEDBxQYGCibzXa9awKuO2OMTp06papVq6pEicLla7YH3GysbA8S2wRuPvyNAP5RmO3BpWBx4MABhYaGuqU4wJP88ccfCgkJKdRz2B5ws7qW7UFim8DNi78RwD9c2R5ciuGBgYFuKQjwNNeybrM94GZ1res22wRuVvyNAP7hyrrtUrDgUB5uVteybrM94GZ1res22wRuVvyNAP7hyrrNxdsAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMu8i2rCxs3j2dw8niQZ494qbTb3Vunp9UnFo0ZPUByWk6fX6On1ScWjRk/h/r8R7h4RbmHcvA7fpJtEcXjv8PQaPb0+qXjUWBCOWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMu8i2rCNhm3j+huNpv7x3QnT69PKh41eoLisJw8vUZPr08qHjV6iuvwju72EY1x798xd68fnl7fpUHdPySQl+Lw/lscaiwIRywAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlnkXdQHuYowp6hIKZLPZ3Dqeu+fZ3fVJxaNGT1AclpPH1+jut4DrsKp5/DL0ICyr/xt4nV3j/tly/z6Tx9do3FwgfyPyxBELAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmXdRF+AuNputqEu44YrDPBeHGj0By8kNbMbdA7p5PF7nwigOy8rTa/T0+qTiUePNyf3L3Rj3vge7fd0oBqvazbA9cMQCAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABY5l1kUzY29w4n49bxrgebzc3zbNw7z+6uTyoeNXoCdy+n68Lty96z57k4vCY36/YgFY/3Dk+v0dPrk4pHjZ7AyL3zdXMupfwVh3WtONRYEI5YAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAy7yLasJGxq3j2Ww2t45XHBSHeS4ONXqC4rCcjHHvNis3z7O76ysOr8nNrDgsf0+v0dPrk4pHjZ6gOCwlT38tPb0+qXjUWBCOWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAs8y7qAjyZMcat49lsNreO5+n1ScWjRk/Acvq/gdfZdcVhWXl6jZ5en1Q8avQExWE5eXqNnl6fVDxqLAhHLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGXeRTVhm81WVJN2mafX6On1ScWjRk9QHJaTp9fo6fVJxaNGT1EclpWn1+jp9UnFo0ZPUByWk6fX6On1ScWjxoJwxAIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlrkULIwx17sOoEhcy7rN9oCb1bWu22wTuFnxNwL4hyvrtkvB4tSpU5aLATzRtazbbA+4WV3rus02gZsVfyOAf7iybtuMC/EjJydHBw4cUGBgoGw2m1uKA4qSMUanTp1S1apVVaJE4c4IZHvAzcbK9iCxTeDmw98I4B+F2R5cChYAAAAAkB8u3gYAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJb9f431sm3GWOO7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -665,7 +659,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApDklEQVR4nO3de1hWVaLH8d8LqICQiAcvaOD9ljleUscEJTVveSHHa3nUzqSV5a3My+mYl6OOWSamZZRnUJPM0fLSjPfCEU1nesxJ02p0FMzM1FBTBCVY5w8f3vEVkBfWiwh9P8/j88ja61177Rvs37v32tthjDECAAAAAAtexd0BAAAAACUfwQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQJAkZk+fbocDkdxdwN3iZ07d8rhcGjnzp3OsuHDh6tmzZrF1qf81KxZUz179izubgBAiUCwAAAPevjhh+VwOPTcc88V6XwyMjLUuHFjORwOvfbaa0U6L+QvKSlJDocj138ffPBBnp8ryHaMj4+Xw+FQQEBAjmnDhw/Pdd4NGzbMUTcrK0vz5s1TrVq15Ovrq6ZNm2rVqlUFX2gAuIVPcXcAAEqLjz76SHv37r0j81q0aJFOnjx5R+blKe3bt1daWprKli1b3F0pMoMHD1aPHj1cytq2bZtnfXe345UrVzRx4kSVL18+zzrlypXT0qVLXcoqVKiQo95LL72kuXPnasSIEWrVqpU2bNigxx57TA6HQ4MGDcq3LwCQF4IFAHhAenq6XnjhBU2aNEkvv/xykc7r7Nmzmjlz5h2Zlyd5eXnJ19e3uLtRpFq0aKEhQ4a4Vbcg23HWrFkKDAzUQw89pPXr1+dax8fHJ995f//995o/f76effZZLV68WJL05JNPqkOHDnrxxRfVv39/eXt7u9V/ALgVt0IB8Ijdu3erVatW8vX1VZ06dRQbG5trvZUrV6ply5by8/NTcHCwBg0apO+++86lTlRUlJo0aaKDBw+qQ4cO8vf3V926dbV27VpJ0l//+le1adNGfn5+atCggXbs2JFjPgcOHFD37t11zz33KCAgQJ06ddK+ffvcXp7k5GT17t1b5cuXV+XKlTV+/Hht3bo1xxiBbPPmzVNWVpYmTJjg9jwkadmyZXI4HNqzZ4+ef/55hYSEqHz58nr00Ud17ty5XD8zefJkNWjQwO0T2JuXadSoUWrQoIH8/PxUqVIl9e/fX0lJSQVqp2/fvmrRooVLWa9eveRwOLRx40Zn2d/+9jc5HA5t3rxZUu5jLHLzwQcfqGXLlgoMDNQ999yj+++/XwsXLnSpc/z4cfXv31/BwcHy9/fXb3/7W/3lL39xqZM9vz/96U+aPXu2atSoIV9fX3Xq1EnHjh0r0DLv3r1brVu3lq+vr2rXrq0VK1bkWTc1NVXXr1/Pt013t+PRo0e1YMECvf766/Lxuf33gZmZmfr555/znL5hwwZlZGRo1KhRzjKHw6FnnnlGp06dumNX3ACUTgQLANYOHTqkLl266OzZs5o+fbqeeOIJTZs2TevWrXOpN3v2bA0dOlT16tXT66+/rnHjxumTTz5R+/btdfHiRZe6Fy5cUM+ePdWmTRvNmzdP5cqV06BBg7R69WoNGjRIPXr00Ny5c5Wamqp+/frp8uXLzs8ePnxYkZGR+vLLLzVx4kRNnTpVJ06cUFRUlP72t7/luzypqanq2LGjduzYoTFjxuill17SZ599pkmTJuVa/+TJk5o7d65eeeUV+fn5FXwFSho9erS+/PJLTZs2Tc8884w+/vjjXMdp/P3vf9fy5csVExNT4IHxn3/+uT777DMNGjRIb7zxhp5++ml98sknioqK0tWrV91uJ3vdZp/AGmO0Z88eeXl5KTEx0VkvMTFRXl5eateundttb9++XYMHD1bFihX1yiuvaO7cuYqKitKePXucdX788Uc9+OCD2rp1q0aNGqXZs2crPT1dvXv3zrHPSdLcuXO1bt06TZgwQVOmTNG+ffv0+OOPu92nY8eOqV+/fnr44Yc1f/58VaxYUcOHD9fhw4dz1J0xY4YCAgLk6+urVq1aadu2bbm2WZDtOG7cOD300EM5brG61dWrV3XPPfeoQoUKCg4O1rPPPqsrV6641Dlw4IDKly+vRo0auZS3bt3aOR0ACs0AgKXo6Gjj6+trkpOTnWVHjhwx3t7eJvvXTFJSkvH29jazZ892+eyhQ4eMj4+PS3mHDh2MJPP+++87y7755hsjyXh5eZl9+/Y5y7du3Wokmbi4OJf+lC1b1vzrX/9ylp0+fdoEBgaa9u3b57s88+fPN5LM+vXrnWVpaWmmYcOGRpJJSEhwqd+vXz/z4IMPOn+WZJ599tl852OMMXFxcUaS6dy5s8nKynKWjx8/3nh7e5uLFy86y7Kyskzr1q3N4MGDjTHGnDhxwkgyr776qlvzunr1ao6yvXv3GklmxYoVbrVhjDGff/65kWQ2bdpkjDHm4MGDRpLp37+/adOmjbNe7969TfPmzZ0/JyQk5Fh/w4YNM+Hh4c6fx44da+655x7zyy+/5Dn/cePGGUkmMTHRWXb58mVTq1YtU7NmTZOZmekyv0aNGplr16456y5cuNBIMocOHcp3WcPDw40ks2vXLmfZ2bNnTbly5cwLL7zgLEtOTjZdunQxS5YsMRs3bjQxMTEmLCzMeHl5mT//+c8ubRZkO/75z382Pj4+5vDhw871Vb58+Rz1Jk+ebCZNmmRWr15tVq1aZYYNG2YkmXbt2pmMjAxnvUceecTUrl07x+dTU1ONJDN58uR81wkA5IUrFgCsZGZmauvWrYqOjlZYWJizvFGjRuratavz548++khZWVkaMGCAzp8/7/xXtWpV1atXTwkJCS7tBgQEuAwkbdCggYKCgtSoUSO1adPGWZ79/+PHjzv7s23bNkVHR6t27drOetWqVdNjjz2m3bt33/ZWEUnasmWLqlevrt69ezvLfH19NWLEiBx1ExIS9OGHHyomJua2beZn5MiRLt9cR0ZGKjMzU8nJyc6yZcuW6dChQ3rllVcKNY+br6ZkZGTop59+Ut26dRUUFKQvvvjC7XaaN2+ugIAA7dq1S9KNKxM1atTQ0KFD9cUXX+jq1asyxmj37t2KjIwsUB+DgoKUmpqq7du351ln06ZNat26tSIiIpxlAQEBGjlypJKSknTkyBGX+k888YTLgPHsPmXvM/lp3Lixy3KEhISoQYMGLp8PCwvT1q1b9fTTT6tXr14aO3asDhw4oJCQEL3wwgsu7bm7Ha9fv67x48fr6aefVuPGjW9b9w9/+IPmzp2rAQMGaNCgQVq2bJlmz56tPXv2OG8hlKS0tDSVK1cux+ezx76kpaXddj4AcDsECwBWzp07p7S0NNWrVy/HtAYNGjj/f/ToURljVK9ePYWEhLj8+/rrr3X27FmXz9aoUSPHLSIVKlTQvffem6NMunHrVHZ/rl696jLvbI0aNVJWVpZzTMe5c+d05swZ57/s20aSk5NVp06dHPOvW7euy8+//PKLxowZo//8z/9Uq1at8l5Jkst8zpw5k+ME7uZQJkkVK1Z0Wa6ff/5ZU6ZM0YsvvphjHdwsMzMzx7yy7/dPS0vTyy+/rHvvvVflypXTf/zHfygkJEQXL17UpUuXbtv/m3l7e6tt27bO254SExMVGRmpiIgIZWZmat++fTpy5IhSUlIKHCxGjRql+vXrq3v37qpRo4b+67/+S1u2bHGpk5ycnOf2zZ5+s/zW7ZUrV1zW161jW279fHYb2Z/PS3BwsJ544gl9++23OnXqlCT3t6MkLViwQOfPn9eMGTNuWy8v48ePl5eXl8sYJD8/P127di1H3fT0dOd0ACgsngoF4I7IyspyDuTN7akztz6bP68n0+RVbowpcJ9atWrlchI6bdo0TZ8+3e3Pr1ixQt9++61iY2NzDIC+fPmykpKSVLlyZfn7+6tatWou0+Pi4jR8+HDnz/kt12uvvabr169r4MCBznlln6xeuHBBSUlJCg0N1enTp1WrVi2XNhISEhQVFaXRo0crLi5O48aNU9u2bVWhQgXnI0azsrLcXm5JioiIcI5tSExM1EsvvaSgoCA1adJEiYmJqlKliiQVOFhUrlxZ//jHP7R161Zt3rxZmzdvVlxcnIYOHarly5cXqK1s7qzbm0/ew8PDXbanzT6XHR5SUlJUo0YNt7djWlqaZs2apVGjRunnn392XmW7cuWKjDFKSkqSv7+/KleunOe8swfop6SkOMuqVaumhIQEGWNcgvMPP/wgSQoNDc13mQAgLwQLAFZCQkLk5+eno0eP5pj27bffOv9fp04dGWNUq1Yt1a9fv0j74+/v7zLvbN988428vLycJ3vx8fEuVw6yb50KDw/XkSNHcpx83fokoZMnTyojIyPXwckrVqzQihUrtG7dOkVHR+e4tee+++4r0HKdPHlSFy5cyPVzc+bM0Zw5c3TgwAE1bNgwx7x+85vfSJLWrl2rYcOGaf78+c5p6enpOQbOuyMyMlLXr1/XqlWr9P333zsDRPv27Z3Bon79+s6AURBly5ZVr1691KtXL2VlZWnUqFGKjY3V1KlTVbduXYWHh+e5faUb268ghg4d6nJblSe/tc++XSokJESS+9sxKChIV65c0bx58zRv3rwcdWvVqqU+ffrk+ehZ6Ua4PX/+vHPektSsWTMtXbpUX3/9tcvtVdkPNWjWrFlhFhMAJBEsAFjy9vZW165dtX79ep08edJ528jXX3+trVu3Ouv17dtXU6ZM0YwZM7Ry5UqXE3ZjjFJSUlSpUiWP9KdLly7asGGDkpKSVLNmTUk3niT0/vvvKyIiQvfcc48k5fm0oq5du2r79u3auHGj+vTpI+nGCfi7777rUm/QoEG5nog9+uij6tGjh0aMGOEcA9K5c2er5RozZoyio6Ndys6ePaunnnpKw4cPV58+fZxvUs5rXt7e3jm+ZV+0aJEyMzML3J82bdqoTJkyeuWVVxQcHOw8UY6MjFRcXJyCgoLUrVu3Arf7008/uewHXl5eatq0qSQ5b+Hp0aOHYmJitHfvXufL51JTU/XOO++oZs2a+Y5HuFXt2rVdxuMUxrlz51xO4KUb74z44x//qKZNmzqvWLm7HcuUKZPrE67eeOMN7d27V6tWrXK2mZ6eroyMDAUGBrrU/d///V8ZY1y2Q58+fTR+/Hi99dZbzvdYGGP09ttvq3r16nrwwQet1gOAXzeCBQBrM2bM0JYtWxQZGalRo0bpl19+0aJFi3Tffffp4MGDkm5csZg1a5amTJmipKQkRUdHKzAwUCdOnNC6des0cuTIAr8DIi+zZs3S9u3bFRERoVGjRsnHx0exsbG6du1art/+3uqpp57S4sWLNXjwYI0dO1bVqlVTfHy8c4Brdihq2LChGjZsmGsbtWrVynECaaNFixY53h2RfSvNfffd59a8evbsqffee08VKlRQ48aNtXfvXu3YsaNQgc7f318tW7bUvn37nO+wkG5csUhNTVVqamqBb4OSbrysLSUlRR07dlSNGjWUnJysRYsWqVmzZs4xFJMnT9aqVavUvXt3jRkzRsHBwVq+fLlOnDihDz/8UF5ed3744MSJE/Wvf/1LnTp1UmhoqJKSkhQbG6vU1FSXd3AUZDvmtk3Xr1+vv//97y7Tzpw5o+bNm2vw4MHO/XHr1q3atGmTunXr5gzH0o2xS+PGjdOrr76qjIwMtWrVSuvXr1diYqLi4+N5OR4AKwQLANaaNm2qrVu36vnnn9fLL7+sGjVqaMaMGfrhhx+cwUK6cUJYv359LViwwHlP+7333qsuXbq4PIHJ1n333afExERNmTJFf/jDH5SVlaU2bdpo5cqVLk+UyktAQIA+/fRTjR49WgsXLlRAQICGDh2qBx98UL/73e9K7NujFy5cKG9vb8XHxys9PV3t2rXTjh07XJ7eVRCRkZHat2+fy21EVatWVd26dXXs2LFCBYshQ4bonXfe0VtvvaWLFy+qatWqGjhwoKZPn+4MDFWqVHG+V2TRokVKT09X06ZN9fHHH+uRRx4p1LLY6tKli95++229+eabunDhgoKCgtS+fXv9z//8T44g4WlBQUHq2bOntm/fruXLlyszM1N169bVnDlzNGHChBxBa+7cuapYsaJiY2O1bNky1atXTytXrtRjjz1WpP0EUPo5TGFGPALAr1BMTIzGjx+vU6dOqXr16sXdHQAA7ioECwDIRVpamssg3vT0dDVv3lyZmZn65z//WYw9AwDg7sStUACQi759+yosLEzNmjXTpUuXtHLlSn3zzTeKj48v7q4VqTNnztx2up+fn/PdIQAA3IwrFgCQi5iYGC1dulRJSUnKzMxU48aNNXHiRA0cOLC4u1akbn0p4K2GDRumZcuW3ZnOAABKFIIFAMDp5rc05yY0NLTAj3MFAPw6ECwAAAAAWLvzD/sGAAAAUOoQLADgLpSUlCSHw+EynmH69On5joG4k0aNGqWHH37Y4+1GRUUpKioq33o7d+6Uw+HQzp07Pd6HO+Htt99WWFiY843iAFDSESwAAAV24sQJLV26VP/93/9d3F25q128eFGVK1eWw+HQ2rVrXaYNHz5c169fV2xsbDH1DgA8i8fNAsBdKDw8XGlpaSpTpkxxdyVXCxcuVK1atfTQQw95vO1t27Z5vM3i8vLLL+vq1au5TvP19dWwYcP0+uuva/To0XfV1SgAKAyuWADAXcjhcMjX11fe3t7F3ZUcMjIyFB8frwEDBni03ewT8LJly6ps2bIebbs4fPXVV1qyZIkmTZqUZ50BAwYoOTlZCQkJd7BnAFA0CBYASo2dO3fqgQcekK+vr+rUqaPY2NhcxyWsXLlSLVu2lJ+fn4KDgzVo0CB99913LnWioqLUpEkTHTlyRA899JD8/f1VvXp1zZs3r0B9ev7551WpUiXd/AC+7G+n33jjDWfZjz/+KIfDoSVLlkjKfYxFbrZv366IiAgFBQUpICBADRo0yHF70tmzZ/X73/9eVapUka+vr37zm99o+fLlLnWy5/faa6/pnXfeUZ06dVSuXDm1atVKn3/+uUvd3bt36/z58+rcuXOO/iQnJ6t3794qX768KleurPHjx2vr1q05xkJkr9/9+/erffv28vf3d/Y7tzEWp06dUnR0tEu7hRmbsGzZMjkcDu3Zs0fPP/+8QkJCVL58eT366KM6d+5cgdu7nbFjx+rRRx9VZGRknnVatmyp4OBgbdiwwaPzBoDiwK1QAEqFAwcOqFu3bqpWrZpmzJihzMxMzZw5UyEhIS71Zs+eralTp2rAgAF68sknde7cOS1atEjt27fXgQMHFBQU5Kx74cIFdevWTX379tWAAQO0du1aTZo0Sffff7+6d+/uVr8iIyO1YMECHT58WE2aNJEkJSYmysvLS4mJiRozZoyzTJLat2/v9jIfPnxYPXv2VNOmTTVz5kyVK1dOx44d0549e5x10tLSFBUVpWPHjum5555TrVq1tGbNGg0fPlwXL17U2LFjXdp8//33dfnyZT311FNyOByaN2+e+vbtq+PHjztvy/rss8/kcDjUvHlzl8+mpqaqY8eO+uGHHzR27FhVrVpV77//fp7fxv/000/q3r27Bg0apCFDhqhKlSq51ktLS1OnTp108uRJjRkzRqGhoXrvvff06aefur2ubjV69GhVrFhR06ZNU1JSkmJiYvTcc89p9erVzjpXrlxRenp6vm2VKVMmx9vI16xZo88++0xff/21kpKSbvv5Fi1auGwzACixDACUAr169TL+/v7m+++/d5YdPXrU+Pj4mOxfdUlJScbb29vMnj3b5bOHDh0yPj4+LuUdOnQwksyKFSucZdeuXTNVq1Y1v/vd79zu19mzZ40k89ZbbxljjLl48aLx8vIy/fv3N1WqVHHWGzNmjAkODjZZWVnGGGNOnDhhJJm4uDhnnWnTppmbf20vWLDASDLnzp3Lc/4xMTFGklm5cqWz7Pr166Zt27YmICDA/Pzzzy7zq1SpkklJSXHW3bBhg5FkPv74Y2fZkCFDTKVKlXLMa/78+UaSWb9+vbMsLS3NNGzY0EgyCQkJzvLs9fv222/naKdDhw6mQ4cOOZbhT3/6k7MsNTXV1K1bN0e7+YmLizOSTOfOnZ3r2hhjxo8fb7y9vc3FixedZcOGDTOS8v13c1+NMebq1asmLCzMTJkyxRhjTEJCgpFk1qxZk2ufRo4cafz8/NxeBgC4W3ErFIASLzMzUzt27FB0dLRCQ0Od5XXr1nW5svDRRx8pKytLAwYM0Pnz553/qlatqnr16uX4Zj0gIEBDhgxx/ly2bFm1bt1ax48fd7tvISEhatiwoXbt2iVJ2rNnj7y9vfXiiy/qxx9/1NGjRyXduGIRERFRoAG82VdXNmzYoKysrFzrbNq0SVWrVtXgwYOdZWXKlNGYMWN05coV/fWvf3WpP3DgQFWsWNH5c/ZtPDcv808//eRSJ9uWLVtUvXp19e7d21nm6+urESNG5Nq3cuXK6YknnshnKW8sQ7Vq1dSvXz9nmb+/v0aOHJnvZ/MycuRIl3UdGRmpzMxMJScnO8smTpyo7du35/tv/vz5Lm3PnTtXGRkZbj8xq2LFikpLS8tzkDcAlBTcCgWgxDt79qzS0tJUt27dHNNuLjt69KiMMapXr16u7dz6BKYaNWrkONGvWLGiDh48WKD+RUZGatOmTZJuBIgHHnhADzzwgIKDg5WYmKgqVaroyy+/1GOPPVagdgcOHKilS5fqySef1OTJk9WpUyf17dtX/fr1k5fXje+NkpOTVa9ePefP2Ro1auScfrOwsLAcyyvduC3sZuamMSPZkpOTVadOnRzrLLftIknVq1d3a5B2cnKy6tatm6PdBg0a5PvZvLiznI0bN1bjxo0L1G5SUpJeffVVvfnmmwoICHDrM9nrkqdCASjpCBYAfjWysrLkcDi0efPmXJ+2dOuJYF5PZMrtpPp2IiIi9O677+r48eNKTExUZGSkHA6HIiIilJiYqNDQUGVlZd12kG9u/Pz8tGvXLiUkJOgvf/mLtmzZotWrV6tjx47atm1boZ4o5c4yV6pUKUfQKAw/Pz/rNgrLneW8dOmS0tLS8m2rbNmyCg4OlnTj8bLVq1dXVFSUc2zFmTNnJEnnzp1TUlKSwsLCXILehQsX5O/vX6zrAwA8gWABoMSrXLmyfH19dezYsRzTbi6rU6eOjDGqVauW6tevf8f6lx0Ytm/frs8//1yTJ0+WdGOg9pIlSxQaGqry5curZcuWBW7by8tLnTp1UqdOnfT6669rzpw5eumll5SQkKDOnTsrPDxcBw8eVFZWlsvJ7DfffCPpxvsyCqphw4aKj4/XpUuXXAYth4eH68iRIzLGuHz7ntt2KYjw8HB99dVXOdr99ttvrdrNz9ixY3M8PSs3HTp0cD7x6uTJkzp27Jhq166do96oUaMk3QgSNz8k4MSJE84rSABQkhEsAJR43t7e6ty5s9avX6/Tp087x1kcO3ZMmzdvdtbr27evpkyZohkzZmjlypUuJ6nGGKWkpKhSpUoe71+tWrVUvXp1LViwQBkZGWrXrp2kG4FjwoQJWrt2rX7729/Kx6dgv5JTUlKc35Rna9asmSQ5H8Xao0cPbdu2TatXr3aOs/jll1+0aNEiBQQEqEOHDgVenrZt28oYo/3796tjx47O8q5du2r79u3auHGj+vTpI0lKT0/Xu+++W+B53Cx7GdauXav+/ftLuvHOi3feeceq3fxMnDjRZYxNXm4ebzJr1iydP3/eZfpXX32lqVOnauLEiWrbtq3Kly/vMv2LL77Q448/7plOA0AxIlgAKBWmT5+ubdu2qV27dnrmmWeUmZmpxYsXq0mTJvrHP/4h6cYVi1mzZmnKlClKSkpSdHS0AgMDdeLECa1bt04jR47UhAkTiqR/kZGR+uCDD3T//fc7T0RbtGih8uXL65///GeBx1dI0syZM7Vr1y498sgjCg8P19mzZ/XWW2+pRo0aioiIkHRjkHJsbKyGDx+u/fv3q2bNmlq7dq327NmjmJgYBQYGFni+ERERqlSpknbs2OESLJ566iktXrxYgwcP1tixY1WtWjXFx8fL19dXUuHHEIwYMUKLFy/W0KFDtX//flWrVk3vvfee/P39C9WeuwozxiJ7vd8s++pEq1atFB0d7TJt//79SklJcQYxACjJeCoUgFKhZcuW2rx5sypWrKipU6fq//7v/zRz5kx16tTJeWIrSZMnT9aHH34oLy8vzZgxQxMmTNDGjRvVpUsXl6cZeVr27VA3n3j6+Piobdu2LtMLonfv3goLC9Mf//hHPfvss3rzzTfVvn17ffrpp85blPz8/LRz5049/vjjWr58uV544QWlpKQoLi4uxzss3FW2bFk9/vjjWrNmjUt5QECAPv30U3Xs2FELFy7UrFmzFBkZqalTp0qSy3YoCH9/f33yySfq0qWLFi1apFmzZikiIqLALyu8G61Zs0ZhYWEuAQ0ASiqHKegoRAAoQaKjo3X48GHnY13hGcePH1fDhg21efNmderU6bZ1Y2JiNH78eJ06dUrVq1e/Qz28+127dk01a9bU5MmTCx3yAOBuwhULAKXGrU/wOXr0qDZt2qSoqKji6VApVrt2bf3+97/X3LlzXcpv3Qbp6emKjY1VvXr1CBW3iIuLU5kyZfT0008Xd1cAwCO4YgGg1KhWrZqGDx+u2rVrKzk5WUuWLNG1a9d04MCBPN9dYePcuXPKzMzMc/rNjyH9tejevbvCwsLUrFkzXbp0SStXrtThw4cVHx9fqHEk7kpLS9OlS5duWyc4ONit92YAAAqHwdsASo1u3bpp1apVOnPmjMqVK6e2bdtqzpw5RRIqpBuDcW99wdzNbn4M6a9F165dtXTpUsXHxyszM1ONGzfWBx98oIEDBxbpfFevXp3vW7wTEhK4egUARYgrFgBQSHv27LntC9QqVqxYqHdToOB++OEHHT58+LZ1WrZs6fJoWACAZxEsAAAAAFhj8DYAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWPNxp1JWVpZOnz6twMBAORyOou4TUOSMMbp8+bJCQ0Pl5VWwfM3xgNLG5niQOCZQ+vA3Avi3ghwPbgWL06dP69577/VI54C7yXfffacaNWoU6DMcDyitCnM8SBwTKL34GwH8mzvHg1sxPDAw0CMdAu42hdm3OR5QWhV23+aYQGnF3wjg39zZt90KFlzKQ2lVmH2b4wGlVWH3bY4JlFb8jQD+zZ19m8HbAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1nyKa8bGmOKatfscDs8259HWPL8OHR5eXqlk9PFu4OmjoWjW0l1+zBoPL3URrESOB/eVhL8RDk/vJB5uriSsQ08rrcfEr3Fbwl5xHA9csQAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1n+LugKc4HI4iaNV4uL2i6CNKA8evcl/zcB9LwiLDbUXzO93Tfl3HbVFsE2M8vQ7hjpKwLUvG7wDPKg3HA1csAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMCaT3F3AAA8wRhT3F2AB3l6ezocDo+2J0lGHm6TfRgoMiXhd0ppwBULAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWPMp7g4AgCc4HI7i7kK+jDHF3QV4kMf3uBKwDwN5KQm/g1H0uGIBAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAaz7F3YG7mnF4tjkZj7YH5O3u39eMufv7iNKD/Q0oWnf7Mebw7CmdiuLvrEMe7+QdxxULAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWPMp7g7c1Ryebs6zDRpjPNoeio+nN6XD4eGdV57f34qij3c7jln3lYT9g2PCHsdE6XH377+e3teK4O+sh/vo6fNOd3DFAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACs+RR3B+5mxpji7sId9WtbXhSvu31/czgcxd2FX7W7ff8oCnf7MnNMlB53+74meX5/M/JsexwNueOKBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKz5FNeMHQ5Hcc3abSWhjygdSsK+VhL6eLdjHbqPdfXrwHZ2D+vJXklYg6VhO3PFAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAa24FC2NMUfcDKBaF2bc5HlBaFXbf5phAacXfCODf3Nm33QoWly9ftu4McDcqzL7N8YDSqrD7NscESiv+RgD/5s6+7TBuxI+srCydPn1agYGBcjgcHukcUJyMMbp8+bJCQ0Pl5VWwOwI5HlDa2BwPEscESh/+RgD/VpDjwa1gAQAAAAC3w+BtAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIC1/wclpGs/xF3wawAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqnklEQVR4nO3de1xVVcL/8e8B5G4qhCkQeBe1GpPUsUBIzUsXI/OCaanPpJWVZprp+DMvoz5mWTY2leUzXtLK1NLmGc1LYaLW1GNWpl00BfMWGmqKqATr94cvdh4PyGUdQ+nzfr18vTzrrLP22vvsDfvL3mttlzHGCAAAAAAs+FR0BwAAAABc/ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAC6a8ePHy+VyVXQ3cIlYt26dXC6X1q1b55T1799fderUqbA+laROnTq6/fbbK7obAHBZIFgAgBfdcsstcrlceuSRRy7qcvLy8tS0aVO5XC49++yzF3VZKFlGRoZcLleR/9566y23uv379y+yXlxcXJFt//DDD7rnnntUs2ZNBQUFqWHDhhozZoxHvW+++UadO3dWaGiowsLCdO+99+rQoUMe9QoKCjRt2jTVrVtXgYGBuu666/Tmm296Z0MA+EPzq+gOAEBl8c477+jjjz/+XZY1c+ZM7dmz53dZlre0bdtWubm58vf3r+iuXDS9e/fWrbfe6lbWpk0bj3oBAQGaPXu2W1m1atU86n3xxRdKTk5WVFSUhg8frvDwcO3Zs0c//vijW729e/eqbdu2qlatmqZMmaITJ07o2Wef1datW/Xpp5+6bfMxY8Zo6tSpGjhwoFq2bKnly5frnnvukcvlUmpqqs3qA/iDI1gAgBecOnVKw4cP15NPPqmnnnrqoi4rKytLEydO/F2W5U0+Pj4KDAys6G5cVC1atFDfvn1LrOfn51divYKCAt17772Ki4tTWlqagoKCiq07ZcoU5eTkaPPmzYqJiZEktWrVSrfccovmzp2rQYMGSZL27dun6dOn6+GHH9aLL74oSbr//vuVlJSkJ554Qj169JCvr29pVxcA3HArFACv2LBhg1q2bKnAwEDVr19fs2bNKrLeggULFB8fr6CgIIWFhSk1NdXjr6/Jycm65ppr9NVXXykpKUnBwcFq0KCBlixZIkn66KOP1Lp1awUFBalx48Zau3atx3K2bNmiLl266IorrlBoaKjat2+vTz75pNTrk5mZqa5duyokJEQ1a9bUsGHDtGrVKo8xAoWmTZumgoICjRgxotTLkKS5c+fK5XJp48aNevzxxxUREaGQkBDdddddRd7GIkmjRo1S48aNS3UCe/46DR48WI0bN1ZQUJDCw8PVo0cPZWRklKmdbt26qUWLFm5ld9xxh1wul9577z2n7D//+Y9cLpdWrlwpqegxFkV56623FB8fr6pVq+qKK67QtddeqxdeeMGtzq5du9SjRw+FhYUpODhYf/7zn/Xvf//brU7h8t5++21NnjxZ0dHRCgwMVPv27bVz584yrfOGDRvUqlUrBQYGql69epo/f36xdXNycnTmzJkS28zPz9cvv/xS7PurV6/W119/rXHjxikoKEgnT55Ufn5+kXWXLl2q22+/3QkVktShQwc1atRIb7/9tlO2fPly5eXlafDgwU6Zy+XSQw89pL179/5uV9wAVE4ECwDWtm7dqo4dOyorK0vjx4/XgAEDNG7cOL377rtu9SZPnqz77rtPDRs21HPPPafHHntMH3zwgdq2baujR4+61T1y5Ihuv/12tW7dWtOmTVNAQIBSU1O1aNEipaam6tZbb9XUqVOVk5Oj7t276/jx485nt23bpsTERH355ZcaOXKkxo4dq927dys5OVn/+c9/SlyfnJwctWvXTmvXrtWQIUM0ZswYbdq0SU8++WSR9ffs2aOpU6fq6aefvuBflS/k0Ucf1Zdffqlx48bpoYce0r/+9a8ix2l8+umnmjdvnmbMmFHmgfGfffaZNm3apNTUVP3973/Xgw8+qA8++EDJyck6efJkqdsp3LaFJ8XGGG3cuFE+Pj5KT0936qWnp8vHx0c33XRTqdtes2aNevfurRo1aujpp5/W1KlTlZycrI0bNzp1fvrpJ914441atWqVBg8erMmTJ+vUqVPq2rWrxz4nSVOnTtW7776rESNGaPTo0frkk0/Up0+fUvdp586d6t69u2655RZNnz5dNWrUUP/+/bVt2zaPuhMmTFBoaKgCAwPVsmVLrV69usg2T548qSuuuELVqlVTWFiYHn74YZ04ccKtTmFgDggI0A033KCQkBAFBwcrNTVV2dnZTr19+/YpKytLN9xwg8dyWrVqpS1btjivt2zZopCQEDVp0sSjXuH7AFBuBgAspaSkmMDAQJOZmemUbd++3fj6+prCHzMZGRnG19fXTJ482e2zW7duNX5+fm7lSUlJRpJ54403nLJvv/3WSDI+Pj7mk08+ccpXrVplJJk5c+a49cff39/88MMPTtn+/ftN1apVTdu2bUtcn+nTpxtJZtmyZU5Zbm6uiYuLM5JMWlqaW/3u3bubG2+80XktyTz88MMlLscYY+bMmWMkmQ4dOpiCggKnfNiwYcbX19ccPXrUKSsoKDCtWrUyvXv3NsYYs3v3biPJPPPMM6Va1smTJz3KPv74YyPJzJ8/v1RtGGPMZ599ZiSZFStWGGOM+eqrr4wk06NHD9O6dWunXteuXc3111/vvE5LS/PYfv369TOxsbHO66FDh5orrrjC/Prrr8Uu/7HHHjOSTHp6ulN2/PhxU7duXVOnTh2Tn5/vtrwmTZqY06dPO3VfeOEFI8ls3bq1xHWNjY01ksz69eudsqysLBMQEGCGDx/ulGVmZpqOHTual19+2bz33ntmxowZJiYmxvj4+Jj//d//dWtz1KhR5sknnzSLFi0yb775punXr5+RZG666SaTl5fntv0kmfDwcNOnTx+zZMkSM3bsWOPn52duvPFGZ38p/D6K+g6feOIJI8mcOnXKGGPMbbfdZurVq+dRLycnx0gyo0aNKnGbAEBxuGIBwEp+fr5WrVqllJQUt9swmjRpok6dOjmv33nnHRUUFKhnz546fPiw869WrVpq2LCh0tLS3NoNDQ11G0jauHFjVa9eXU2aNFHr1q2d8sL/79q1y+nP6tWrlZKSonr16jn1ateurXvuuUcbNmy44O0nkvT+++8rKipKXbt2dcoCAwM1cOBAj7ppaWlaunSpZsyYccE2SzJo0CC3KxCJiYnKz89XZmamUzZ37lxt3bpVTz/9dLmWce7VlLy8PP38889q0KCBqlevrs8//7zU7Vx//fUKDQ3V+vXrJZ29MhEdHa377rtPn3/+uU6ePCljjDZs2KDExMQy9bF69erKycnRmjVriq2zYsUKtWrVSgkJCU5ZaGioBg0apIyMDG3fvt2t/oABA9wGLxf2qXCfKUnTpk3d1iMiIkKNGzd2+3xMTIxWrVqlBx98UHfccYeGDh2qLVu2KCIiQsOHD3dr77//+781depU9ezZU6mpqZo7d64mT56sjRs3Orf7SXKuYLRs2VILFizQ3XffrYkTJ+pvf/ubNm3apA8++ECSlJubK+nslY3zFY5pKayTm5tbqnoAUB4ECwBWDh06pNzcXDVs2NDjvcaNGzv/37Fjh4wxatiwoSIiItz+ffPNN8rKynL7bHR0tMetPtWqVdPVV1/tUSadvXWqsD8nT550W3ahJk2aqKCgwBnTcejQIR08eND5V3gil5mZqfr163ssv0GDBm6vf/31Vw0ZMkT33nuvWrZsWfxGktyWc/DgQY8TuHNDmSTVqFHDbb1++eUXjR49Wk888YTHNjhXfn6+x7IK7/fPzc3VU089pauvvloBAQG68sorFRERoaNHj+rYsWMX7P+5fH191aZNG+e2p/T0dCUmJiohIUH5+fn65JNPtH37dmVnZ5c5WAwePFiNGjVSly5dFB0drf/6r//S+++/71YnMzOz2O+38P1zlbRtT5w44ba9zh/bcv7nC9so/HxxwsLCNGDAAH333Xfau3fvBesOGzZMPj4+buOFCoNg79693erec889kqRNmza51Tt9+rRHu6dOnXKrExQUVKp6AFAezAoF4HdRUFDgDOQtataZ0NBQt9fFzUxTXLkxpsx9atmypdtJ6Lhx4zR+/PhSf37+/Pn67rvvNGvWLI8B0MePH1dGRoZq1qyp4OBg1a5d2+39OXPmqH///s7rktbr2Wef1ZkzZ9SrVy9nWYUnq0eOHFFGRoYiIyO1f/9+1a1b162NtLQ0JScn69FHH9WcOXP02GOPqU2bNqpWrZozxWhBQUGp11uSEhISnLEN6enpGjNmjKpXr65rrrlG6enpuuqqqySpzMGiZs2a+uKLL7Rq1SqtXLlSK1eu1Jw5c3Tfffdp3rx5ZWqrUGm27YQJE5zy2NhYt+/TZp8rDIHZ2dmKjo4utl7hYPpzx05ERkZKkrMtC9WsWVPSb8GocN86cOCAR7sHDhxQWFiYc5Widu3aSktLkzHGLTgXfrZwmQBQHgQLAFYiIiIUFBSkHTt2eLz33XffOf+vX7++jDGqW7euGjVqdFH7Exwc7LbsQt9++618fHyck72FCxe6XTkovHUqNjZW27dv9zj5On8moT179igvL6/Iwcnz58/X/Pnz9e677yolJcXj1p5mzZqVab327NmjI0eOFPm5KVOmaMqUKdqyZYvi4uI8lvWnP/1JkrRkyRL169dP06dPd947deqUx8D50khMTNSZM2f05ptvat++fU6AaNu2rRMsGjVq5HFSXBr+/v664447dMcdd6igoECDBw/WrFmzNHbsWDVo0ECxsbHFfr/S2e+vLO677z6326q8+Vf7wtulIiIiLljv+PHjOnz4sFu9+Ph4vfbaa9q3b59b3f3797u1GRUVpYiICP3f//2fR7uffvqpmjdv7rxu3ry5Zs+erW+++UZNmzZ1ygsnNTi3LgCUFcECgBVfX1916tRJy5Yt0549e5zbRr755hutWrXKqdetWzeNHj1aEyZM0IIFC9xO2I0xys7OVnh4uFf607FjRy1fvlwZGRmqU6eOpLMzCb3xxhtKSEjQFVdcIUnFzlbUqVMnrVmzRu+9957uvPNOSWdPwF977TW3eqmpqUWeiN1111269dZbNXDgQGcMSIcOHazWa8iQIUpJSXEry8rK0gMPPKD+/fvrzjvvdJ6kXNyyfH19Pf7KPnPmzGKnML2Q1q1bq0qVKnr66acVFhbmBJ7ExETNmTNH1atXV+fOncvc7s8//+y2H/j4+Oi6666T9NutPrfeeqtmzJihjz/+2Hn4XE5Ojl599VXVqVPH7YS5NOrVq+c2Hqc8Dh065BEe9u3bp3/+85+67rrrnKsKp06dUl5enqpWrepW929/+5uMMW7b7M4779TQoUOdq1s+PmfvXi58sN4tt9zi1L377rs1b948/fjjj05w/uCDD/T9999r2LBhbm0OGzZML730kvMcC2OMXnnlFUVFRenGG2+02g4A/tgIFgCsTZgwQe+//74SExM1ePBg/frrr5o5c6aaNWumr776StLZKxaTJk3S6NGjlZGRoZSUFFWtWlW7d+/Wu+++q0GDBpX5GRDFmTRpktasWaOEhAQNHjxYfn5+mjVrlk6fPq1p06aV+PkHHnhAL774onr37q2hQ4eqdu3aWrhwoTPAtTAUxcXFKS4ursg26tat6xEEbLRo0cLj2RGFt+s0a9asVMu6/fbb9frrr6tatWpq2rSpPv74Y61du7ZcgS44OFjx8fH65JNPnGdYSGevWOTk5CgnJ6fMt0FJZx/Wlp2drXbt2ik6OlqZmZmaOXOmmjdv7oyhGDVqlN5880116dJFQ4YMUVhYmObNm6fdu3dr6dKlzgn472nkyJH64Ycf1L59e0VGRiojI0OzZs1STk6O2zM4Dh48qOuvv169e/d29p1Vq1ZpxYoV6ty5sxNkJalWrVoaM2aMnnrqKXXu3FkpKSn68ssv9dprr6l3795u43r++te/avHixbr55ps1dOhQnThxQs8884yuvfZaDRgwwKkXHR2txx57TM8884zy8vLUsmVLLVu2TOnp6Vq4cCEPxwNgp0LmogJQ6Xz00UcmPj7e+Pv7m3r16plXXnnFjBs3zpz/Y2bp0qUmISHBhISEmJCQEBMXF2cefvhh89133zl1kpKSTLNmzTyWERsba2677TaPchUxvevnn39uOnXqZEJDQ01wcLC5+eabzaZNm0q9Prt27TK33XabCQoKMhEREWb48OFm6dKlRpLbdLdFKao/xSmcbvazzz5zKy9qatbzlXW62SNHjpgBAwaYK6+80oSGhppOnTqZb7/91sTGxpp+/fqVqo1zFU5l+vTTT7uVN2jQwEhym+7XmNJNN7tkyRLTsWNHU7NmTePv729iYmLMAw88YA4cOODW1g8//GC6d+9uqlevbgIDA02rVq08pnUtXN7ixYvdygu327lTFBenuH0uKSnJJCUlOa/feOMN07ZtWxMREWH8/PzMlVdeae666y6zefNmt88dOXLE9O3b1zRo0MAEBwebgIAA06xZMzNlyhRz5swZj+UUFBSYmTNnmkaNGpkqVaqYq6++2vy///f/iqz79ddfm44dO5rg4GBTvXp106dPH3Pw4EGPevn5+WbKlCkmNjbW+Pv7m2bNmpkFCxaUuC0AoCQuY8ox4hEA/oBmzJihYcOGae/evYqKiqro7gAAcEkhWABAEXJzc90G8Z46dUrXX3+98vPz9f3331dgzwAAuDQxxgIAitCtWzfFxMSoefPmOnbsmBYsWKBvv/1WCxcurOiuXVQHDx684PtBQUHOs0MAADgXVywAoAgzZszQ7NmzlZGRofz8fDVt2lQjR45Ur169KrprF9X5DwU8X79+/TR37tzfpzMAgMsKwQIA4Dj3yc9FiYyMLPN0rgCAPwaCBQAAAABrv/9k3wAAAAAqHYIFAFyCMjIy5HK53MYzjB8/vsQxEL+nwYMHuz392VuSk5OVnJxcYr1169bJ5XJp3bp1Xu/D7+GVV15RTEyM80RxALjcESwAAGW2e/duzZ49W3/9618ruiuXtKNHj6pmzZpyuVxasmSJ23v9+/fXmTNnNGvWrArqHQB4F9PNAsAlKDY2Vrm5uapSpUpFd6VIL7zwgurWraubb77Z622vXr3a621WlKeeekonT54s8r3AwED169dPzz33nB599NFL6moUAJQHVywA4BLkcrkUGBgoX1/fiu6Kh7y8PC1cuFA9e/b0aruFJ+D+/v7y9/f3atsV4euvv9bLL7+sJ598stg6PXv2VGZmptLS0n7HngHAxUGwAFBprFu3TjfccIMCAwNVv359zZo1q8hxCQsWLFB8fLyCgoIUFham1NRU/fjjj251kpOTdc0112j79u26+eabFRwcrKioKE2bNq1MfXr88ccVHh6ucyfgK/zr9N///nen7KeffpLL5dLLL78sqegxFkVZs2aNEhISVL16dYWGhqpx48YetydlZWXpL3/5i6666ioFBgbqT3/6k+bNm+dWp3B5zz77rF599VXVr19fAQEBatmypT777DO3uhs2bNDhw4fVoUMHj/5kZmaqa9euCgkJUc2aNTVs2DCtWrXKYyxE4fbdvHmz2rZtq+DgYKffRY2x2Lt3r1JSUtzaLc/YhLlz58rlcmnjxo16/PHHFRERoZCQEN111106dOhQmdu7kKFDh+quu+5SYmJisXXi4+MVFham5cuXe3XZAFARuBUKQKWwZcsWde7cWbVr19aECROUn5+viRMnKiIiwq3e5MmTNXbsWPXs2VP333+/Dh06pJkzZ6pt27basmWLqlev7tQ9cuSIOnfurG7duqlnz55asmSJnnzySV177bXq0qVLqfqVmJio559/Xtu2bdM111wjSUpPT5ePj4/S09M1ZMgQp0yS2rZtW+p13rZtm26//XZdd911mjhxogICArRz505t3LjRqZObm6vk5GTt3LlTjzzyiOrWravFixerf//+Onr0qIYOHerW5htvvKHjx4/rgQcekMvl0rRp09StWzft2rXLuS1r06ZNcrlcuv76690+m5OTo3bt2unAgQMaOnSoatWqpTfeeKPYv8b//PPP6tKli1JTU9W3b19dddVVRdbLzc1V+/bttWfPHg0ZMkSRkZF6/fXX9eGHH5Z6W53v0UcfVY0aNTRu3DhlZGRoxowZeuSRR7Ro0SKnzokTJ3Tq1KkS26pSpYrH08gXL16sTZs26ZtvvlFGRsYFP9+iRQu37wwALlsGACqBO+64wwQHB5t9+/Y5ZTt27DB+fn6m8EddRkaG8fX1NZMnT3b77NatW42fn59beVJSkpFk5s+f75SdPn3a1KpVy9x9992l7ldWVpaRZF566SVjjDFHjx41Pj4+pkePHuaqq65y6g0ZMsSEhYWZgoICY4wxu3fvNpLMnDlznDrjxo0z5/7Yfv75540kc+jQoWKXP2PGDCPJLFiwwCk7c+aMadOmjQkNDTW//PKL2/LCw8NNdna2U3f58uVGkvnXv/7llPXt29eEh4d7LGv69OlGklm2bJlTlpuba+Li4owkk5aW5pQXbt9XXnnFo52kpCSTlJTksQ5vv/22U5aTk2MaNGjg0W5J5syZYySZDh06ONvaGGOGDRtmfH19zdGjR52yfv36GUkl/ju3r8YYc/LkSRMTE2NGjx5tjDEmLS3NSDKLFy8usk+DBg0yQUFBpV4HALhUcSsUgMtefn6+1q5dq5SUFEVGRjrlDRo0cLuy8M4776igoEA9e/bU4cOHnX+1atVSw4YNPf6yHhoaqr59+zqv/f391apVK+3atavUfYuIiFBcXJzWr18vSdq4caN8fX31xBNP6KefftKOHTsknb1ikZCQUKYBvIVXV5YvX66CgoIi66xYsUK1atVS7969nbIqVapoyJAhOnHihD766CO3+r169VKNGjWc14W38Zy7zj///LNbnULvv/++oqKi1LVrV6csMDBQAwcOLLJvAQEBGjBgQAlreXYdateure7duztlwcHBGjRoUImfLc6gQYPctnViYqLy8/OVmZnplI0cOVJr1qwp8d/06dPd2p46dary8vJKPWNWjRo1lJubW+wgbwC4XHArFIDLXlZWlnJzc9WgQQOP984t27Fjh4wxatiwYZHtnD8DU3R0tMeJfo0aNfTVV1+VqX+JiYlasWKFpLMB4oYbbtANN9ygsLAwpaen66qrrtKXX36pe+65p0zt9urVS7Nnz9b999+vUaNGqX379urWrZu6d+8uH5+zfzfKzMxUw4YNndeFmjRp4rx/rpiYGI/1lc7eFnYuc86YkUKZmZmqX7++xzYr6nuRpKioqFIN0s7MzFSDBg082m3cuHGJny1OadazadOmatq0aZnazcjI0DPPPKN//OMfCg0NLdVnCrcls0IBuNwRLAD8YRQUFMjlcmnlypVFzrZ0/olgcTMyFXVSfSEJCQl67bXXtGvXLqWnpysxMVEul0sJCQlKT09XZGSkCgoKLjjItyhBQUFav3690tLS9O9//1vvv/++Fi1apHbt2mn16tXlmlGqNOscHh7uETTKIygoyLqN8irNeh47dky5ubkltuXv76+wsDBJZ6eXjYqKUnJysjO24uDBg5KkQ4cOKSMjQzExMW5B78iRIwoODq7Q7QEA3kCwAHDZq1mzpgIDA7Vz506P984tq1+/vowxqlu3rho1avS79a8wMKxZs0afffaZRo0aJensQO2XX35ZkZGRCgkJUXx8fJnb9vHxUfv27dW+fXs999xzmjJlisaMGaO0tDR16NBBsbGx+uqrr1RQUOB2Mvvtt99KOvu8jLKKi4vTwoULdezYMbdBy7Gxsdq+fbuMMW5/fS/qeymL2NhYff311x7tfvfdd1btlmTo0KEes2cVJSkpyZnxas+ePdq5c6fq1avnUW/w4MGSzgaJcycJ2L17t3MFCQAuZwQLAJc9X19fdejQQcuWLdP+/fudcRY7d+7UypUrnXrdunXT6NGjNWHCBC1YsMDtJNUYo+zsbIWHh3u9f3Xr1lVUVJSef/555eXl6aabbpJ0NnCMGDFCS5Ys0Z///Gf5+ZXtR3J2drbzl/JCzZs3lyRnKtZbb71Vq1ev1qJFi5xxFr/++qtmzpyp0NBQJSUllXl92rRpI2OMNm/erHbt2jnlnTp10po1a/Tee+/pzjvvlCSdOnVKr732WpmXca7CdViyZIl69Ogh6ewzL1599VWrdksycuRItzE2xTl3vMmkSZN0+PBht/e//vprjR07ViNHjlSbNm0UEhLi9v7nn3+uPn36eKfTAFCBCBYAKoXx48dr9erVuummm/TQQw8pPz9fL774oq655hp98cUXks5esZg0aZJGjx6tjIwMpaSkqGrVqtq9e7feffddDRo0SCNGjLgo/UtMTNRbb72la6+91jkRbdGihUJCQvT999+XeXyFJE2cOFHr16/XbbfdptjYWGVlZemll15SdHS0EhISJJ0dpDxr1iz1799fmzdvVp06dbRkyRJt3LhRM2bMUNWqVcu83ISEBIWHh2vt2rVuweKBBx7Qiy++qN69e2vo0KGqXbu2Fi5cqMDAQEnlH0MwcOBAvfjii7rvvvu0efNm1a5dW6+//rqCg4PL1V5plWeMReF2P1fh1YmWLVsqJSXF7b3NmzcrOzvbCWIAcDljVigAlUJ8fLxWrlypGjVqaOzYsfqf//kfTZw4Ue3bt3dObCVp1KhRWrp0qXx8fDRhwgSNGDFC7733njp27Og2m5G3Fd4Ode6Jp5+fn9q0aeP2fll07dpVMTEx+uc//6mHH35Y//jHP9S2bVt9+OGHzi1KQUFBWrdunfr06aN58+Zp+PDhys7O1pw5czyeYVFa/v7+6tOnjxYvXuxWHhoaqg8//FDt2rXTCy+8oEmTJikxMVFjx46VJLfvoSyCg4P1wQcfqGPHjpo5c6YmTZqkhISEMj+s8FK0ePFixcTEuAU0ALhcuUxZRyECwGUkJSVF27Ztc6Z1hXfs2rVLcXFxWrlypdq3b3/BujNmzNCwYcO0d+9eRUVF/U49vPSdPn1aderU0ahRo8od8gDgUsIVCwCVxvkz+OzYsUMrVqxQcnJyxXSoEqtXr57+8pe/aOrUqW7l538Hp06d0qxZs9SwYUNCxXnmzJmjKlWq6MEHH6zorgCAV3DFAkClUbt2bfXv31/16tVTZmamXn75ZZ0+fVpbtmwp9tkVNg4dOqT8/Pxi3z93GtI/ii5duigmJkbNmzfXsWPHtGDBAm3btk0LFy4s1ziS0srNzdWxY8cuWCcsLKxUz80AAJQPg7cBVBqdO3fWm2++qYMHDyogIEBt2rTRlClTLkqokM4Oxj3/AXPnOnca0j+KTp06afbs2Vq4cKHy8/PVtGlTvfXWW+rVq9dFXe6iRYtKfIp3WloaV68A4CLiigUAlNPGjRsv+AC1GjVqlOvZFCi7AwcOaNu2bResEx8f7zY1LADAuwgWAAAAAKwxeBsAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArPmVplJBQYH279+vqlWryuVyXew+ARedMUbHjx9XZGSkfHzKlq85HlDZ2BwPEscEKh9+RwC/KcvxUKpgsX//fl199dVe6RxwKfnxxx8VHR1dps9wPKCyKs/xIHFMoPLidwTwm9IcD6WK4VWrVvVKh4BLTXn2bY4HVFbl3bc5JlBZ8TsC+E1p9u1SBQsu5aGyKs++zfGAyqq8+zbHBCorfkcAvynNvs3gbQAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGt+FbVgY0xFLbr0XC7vNufV1ry/DV1eXl/p8ujjpcDbR8PF2UqX+DFrvLzWF2EjcjyU3uXwO8Ll7Z3Ey81dDtvQ2yrrMfFH/C5hryKOB65YAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwBrBAgAAAIA1ggUAAAAAawQLAAAAANYIFgAAAACsESwAAAAAWCNYAAAAALBGsAAAAABgjWABAAAAwJpfRXfAW1wu10Vo1Xi5vYvRR1QGrj/kvublPl4Oq4xSuzg/073tj3XcXozvxBhvb0OUxuXwXV4ePwO8qzIcD1yxAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrfhXdAQDwBmNMRXcBXuTt79Plcnm1PUky8nKb7MPARXM5/EypDLhiAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGt+Fd0BAPAGl8tV0V0okTGmorsAL/L6HncZ7MNAcS6Hn8G4+LhiAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGt+Fd2BS5pxebc5Ga+2BxTv0t/XjLn0+4jKg/0NuLgu9WPM5d1TOl2M37Mueb2TvzuuWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMCaX0V34JLm8nZz3m3QGOPV9lBxvP1Vulxe3nnl/f3tYvTxUscxW3qXw/7BMWGPY6LyuPT3X2/vaxfh96yX++jt887S4IoFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFjzq+gOXMqMMRXdhd/VH219UbEu9f3N5XJVdBf+0C71/eNiuNTXmWOi8rjU9zXJ+/ubkXfb42goGlcsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArBEsAAAAAFgjWAAAAACwRrAAAAAAYM2vohbscrkqatGldjn0EZXD5bCvXQ59vNSxDUuPbfXHwPdcOmwne5fDFqwM3zNXLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsEawAAAAAGCNYAEAAADAGsECAAAAgDWCBQAAAABrBAsAAAAA1ggWAAAAAKwRLAAAAABYI1gAAAAAsFaqYGGMudj9ACpEefZtjgdUVuXdtzkmUFnxOwL4TWn27VIFi+PHj1t3BrgUlWff5nhAZVXefZtjApUVvyOA35Rm33aZUsSPgoIC7d+/X1WrVpXL5fJK54CKZIzR8ePHFRkZKR+fst0RyPGAysbmeJA4JlD58DsC+E1ZjodSBQsAAAAAuBAGbwMAAACwRrAAAAAAYI1gAQAAAMAawQIAAACANYIFAAAAAGsECwAAAADWCBYAAAAArP1/ckR92G1pHCkAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -675,7 +669,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwm0lEQVR4nO3deXhMd///8dckZE9EiIotSOzqprm11QrRItyWht40utEqWrtWtdoSe7XaL622SnuXKlpF0cV+F/1Z2rpvbvteIZYSS6yxJZ/fH66ZGpMwyUkk4fm4LtdlPucz57zPnHMy85rzOWdsxhgjAAAAALDAI68LAAAAAFDwESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAEiShgwZIpvNltdlAA5TpkyRzWZTYmJijs0zMTFRNptNU6ZMybF5ZnXZ77333m1fNgDcDgQLAHetJk2ayGazqWfPnrm6nCtXrqh69ep8qLyNZsyYoXHjxuV1Gdl25MgRvf7662rUqJECAwNls9m0YsWKDPvGxMTIZrO5/GvWrFmG/devX6/WrVsrJCREfn5+qlmzpj788MNMa0lJSVGJEiVks9k0e/Zsl+m7d+9WfHy8ypQpIz8/P1WtWlXDhg3ThQsXsrXuAAquQnldAADkhe+++05r1669LcsaP368Dhw4cFuWhWtmzJihLVu2qG/fvk7t4eHhSk1NVeHChfOmMDft3LlT77zzjipVqqR77733lvtqmTJl9Pbbbzu1lSpVyqXfkiVL1KpVK9WpU0eDBg1SQECA9u7dq4MHD2Y678GDB2caEpKSknT//ferSJEi6tmzp0JCQrR27VolJCTov//9r+bPn+/G2gK4UxAsANx1Ll68qFdeeUWvvfaaBg8enKvLOnbsmIYNG3ZblpWXLl68KC8vL3l45O8T4TabTT4+Pnldxi1FRUXpxIkTCgkJ0ezZs9WuXbub9i9SpIiefvrpm/Y5c+aMnn32WbVo0UKzZ892a1tt2bJFEyZM0ODBgzPcf7/66iulpKRo1apVqlGjhiSpa9euSk9P19SpU3Xq1CkVLVr0lssBcGfI3+8AAHLFqlWrVLduXfn4+CgiIkITJ07MsN+0adMUFRUlX19fhYSEKD4+XklJSU59YmJiVLNmTW3atEkNGzaUn5+fIiMjHUMmVq5cqQceeEC+vr6qUqWKli1b5rKcDRs2qHnz5goKClJAQIAeffRR/frrr26vz/79+9W6dWv5+/urRIkS6tevnxYvXpzp8JF3331X6enp6t+/v9vLkP4a87969Wq9/PLLCg0Nlb+/v9q0aaPk5OQMn/P666+rSpUqt/zQl9E6de/eXVWqVJGvr6+KFSumdu3aZet6A/twr+nTp6tKlSry8fFRVFSUfvnlF5e+hw4d0vPPP6977rlH3t7eqlGjhr744gunPitWrJDNZtM333yjt956S6VLl5afn5/OnDkjSfrtt9/0j3/8Q0WLFpW/v79q1aqlDz74wGkeP//8s6Kjo+Xv76/g4GA99thj2r59+y3XZf78+WrRooVKlSolb29vRUREaPjw4UpLS3P0iYmJ0U8//aT9+/c7hgWVL19eUubXWLhTj/06pD179qhTp04KDg5WkSJF9Nxzz2V52M+kSZMUEREhb29v1a1bV+vWrXOaHhgYqJCQkCzN8+rVqzp37lym02fMmKGjR49q5MiR8vDw0Pnz55Wenn7Tefbp00dt2rRRdHR0htPt2/yee+5xag8LC5OHh4e8vLyytA4ACjbOWAB3mc2bN6tp06YKDQ3VkCFDdPXqVSUkJLh8MBg5cqQGDRqk9u3b64UXXlBycrLGjx+vBg0aaMOGDQoODnb0PXXqlFq2bKn4+Hi1a9dOEyZMUHx8vKZPn66+ffvqxRdf1JNPPqkxY8bon//8p5KSkhQYGChJ2rp1q6KjoxUUFKQBAwaocOHCmjhxomJiYhyh5GbOnz+vRx55REeOHFGfPn1UsmRJzZgxQ8uXL8+w/4EDBzR69Gh98cUX8vX1zdZr2KtXLxUtWlQJCQlKTEzUuHHj1LNnT82cOdOp3++//64vv/xSq1atyvKF8evWrdOaNWscY9cTExM1YcIExcTEaNu2bfLz88vS/FauXKmZM2eqd+/e8vb21ieffKJmzZrp999/V82aNSVJR48e1YMPPugIIqGhoVq4cKE6d+6sM2fOuAwrGj58uLy8vNS/f39dunRJXl5eWrp0qVq2bKmwsDDH9ti+fbt+/PFH9enTR5K0bNkyNW/eXBUrVtSQIUOUmpqq8ePH6+GHH9b69esdISAjU6ZMUUBAgF5++WUFBATo559/1uDBg3XmzBmNGTNGkvTmm2/q9OnTOnjwoMaOHStJCggIyHSeWa2nffv2qlChgt5++22tX79en3/+uUqUKKF33nnHrW0xY8YMnT17Vt26dZPNZtO7776rtm3b6o8//sj2EK1du3bJ399fly9f1j333KMuXbpo8ODBTvNbtmyZgoKCdOjQIcXFxTme88wzz2js2LEuZ3JmzZqlNWvWaPv27ZkG2piYGL3zzjvq3Lmzhg4dqmLFimnNmjWaMGGCevfuLX9//2ytD4ACygC4q8TFxRkfHx+zf/9+R9u2bduMp6ensf9JSExMNJ6enmbkyJFOz928ebMpVKiQU3vDhg2NJDNjxgxH244dO4wk4+HhYX799VdH++LFi40kM3nyZKd6vLy8zN69ex1thw8fNoGBgaZBgwa3XJ/333/fSDLz5s1ztKWmppqqVasaSWb58uVO/f/5z3+ahx56yPFYkunRo8ctl2OMMZMnTzaSTOPGjU16erqjvV+/fsbT09OkpKQ42tLT0839999vOnToYIwxZt++fUaSGTNmjFvLunDhgkvb2rVrjSQzdepUt+ZhJ8lIMv/5z38cbfv37zc+Pj6mTZs2jrbOnTubsLAwc/z4cafnx8fHmyJFijhqWr58uZFkKlas6FTn1atXTYUKFUx4eLg5deqU0zyuf71q165tSpQoYU6cOOFo27hxo/Hw8DDPPvuso83+eu/bt8/RltHr0q1bN+Pn52cuXrzoaGvRooUJDw936WvfDtfvg+7Wk5CQYCSZ559/3mmebdq0McWKFXNZVmbLLlasmDl58qSjff78+UaS+eGHHzJ83qxZszLcl+2ef/55M2TIEDNnzhwzdepU07p1ayPJtG/f3qlfrVq1jJ+fn/Hz8zO9evUyc+bMMb169TKSTHx8vFPfCxcumHLlypmBAwcaY/7a5rNmzXJZ/vDhw42vr69jP5Nk3nzzzVu+HgDuPAyFAu4iaWlpWrx4seLi4lSuXDlHe7Vq1RQbG+t4/N133yk9PV3t27fX8ePHHf9KliypSpUquZwNCAgIUHx8vONxlSpVFBwcrGrVqjmdcbD//48//nDUs2TJEsXFxalixYqOfmFhYXryySe1atUqx1CLzCxatEilS5dW69atHW0+Pj7q0qWLS9/ly5drzpw5lu8W1LVrV6czENHR0UpLS9P+/fsdbVOmTNHmzZvd/hb7RtefTbly5YpOnDihyMhIBQcHa/369VmeX7169RQVFeV4XK5cOT322GNavHix0tLSZIzRnDlz1KpVKxljnLZ7bGysTp8+7bLcjh07OtW5YcMG7du3T3379nU6oyXJ8XodOXJE//vf/9SpUyenoT61atVSkyZNtGDBArdfl7Nnz+r48eOKjo7WhQsXtGPHjiy/Ltmp58UXX3R6HB0drRMnTtxyX7V74oknnK47sA8zsh8XWfWvf/1LCQkJatu2rZ555hnNnz9fXbp00bfffus0pPDcuXO6cOGCnn32WX344Ydq27atPvzwQ3Xr1k3ffPONdu/e7eg7evRoXblyRW+88cYtl1++fHk1aNBAkyZN0pw5c/T8889r1KhR+uijj7K1PgAKLoZCAXeR5ORkpaamqlKlSi7TqlSp4vgQtXv3bhljMuwnyWW4RpkyZVyG+hQpUkRly5Z1aZOuDZ2y13PhwgVVqVLFZRnVqlVTenq6kpKSVKNGDSUnJzuNow8ICFBAQID279+viIgIl+VHRkY6Pb569ap69+6tZ555RnXr1s1wvez+/PNPl7qv/0B7fSiT5PiQaF+vM2fOaODAgXr11VddXoPrpaWluVybERISIi8vL6Wmpurtt9/W5MmTdejQIRljHH1Onz590/ozktG2rFy5si5cuKDk5GR5eHgoJSVFkyZN0qRJkzKcx7Fjx5weV6hQwenx3r17JckxtCoj9vCV2TZfvHixzp8/n+kQmq1bt+qtt97Szz//7PJBPjuvS3bqudn2DwoK0smTJ3X58mXHdF9fX8e+f6vn55RXXnlFn332mZYtW6YHH3zQUYckdejQwanvk08+qYkTJ2rt2rWqVKmSEhMTNWbMGH388cc3HUImSd988426du2qXbt2qUyZMpKktm3bKj09Xa+99po6dOigYsWK5dh6AcjfCBYAXKSnp8tms2nhwoXy9PR0mX7jh42M+tys/foPye6qW7eu0xmBhIQEDRkyxO3nT506VTt37tTEiRNdxoufPXtWiYmJKlGihPz8/BQWFuY0ffLkyerUqZPj8a3W67333tPly5f1xBNPOJZlv53nqVOnlJiYqFKlSunw4cMuH86XL1+umJgY9erVS5MnT1bfvn1Vr149FSlSRDabTfHx8be84DY77PN8+umn1bFjxwz71KpVy+lxdq9Rya6UlBQ1bNhQQUFBGjZsmCIiIuTj46P169frtddey5XXJSO32v5t27bVypUrHe0dO3Z0ulg8J4+LzNgD7cmTJx1tpUqV0tatW12upypRooSkv4LN4MGDVbp0acXExDj2X3vYTk5OVmJiosqVKycPDw998sknqlOnjiNU2LVu3VpTpkzRhg0b1Lhx4xxbLwD5G8ECuIuEhobK19fXaciD3c6dOx3/j4iIkDFGFSpUUOXKlXO1Hj8/P6dl2+3YsUMeHh6OD0jTp09XamqqY7p96FR4eLi2bdsmY4zTWYs9e/Y4ze/AgQO6cuWKHn74YZdlTZ06VVOnTtXcuXMVFxenpUuXOk2330bTXQcOHNCpU6cyfN6oUaM0atQobdiwQVWrVnVZ1t/+9jdJ0uzZs9WxY0e9//77jmkXL15USkpKlmqxy2ib79q1S35+fgoNDZV07U5EaWlp2f4gGBERIenaLUozm0d4eLgkZbrNixcvnunZihUrVujEiRP67rvv1KBBA0f7vn37XPq6e7G8lXoy8/777zudfcjo9yRym31YlX3bStduYbt06VIdOnTI6QzN4cOHnfoeOHBAe/bscRqeaNe9e3dJ10JIcHCwjh49muHtZK9cuSLp2plCAHcPggVwF/H09FRsbKzmzZunAwcOOIZkbN++XYsXL3b0a9u2rQYOHKihQ4dq2rRpTh/SjDE6efJkjgxv8PT0VNOmTTV//nwlJiY67r5z9OhRzZgxQ/Xr11dQUJAkZRgIJCk2NlZLly7V999/r8cee0zStQ/gn332mVO/+Ph41a5d2+X5bdq00T/+8Q916dLFcQ2I1W9Ye/furbi4OKe2Y8eOqVu3burUqZMee+wxVahQQT4+Ppkuy9PT0+Ub7PHjxzsNB8uKtWvXav369brvvvskXfths/nz56tZs2aOb9Aff/xxxw/L3TicKTk52elDakbuu+8+VahQQePGjXPcjtXOHvzCwsJUu3Ztffnllxo4cKCjz5YtW7RkyZKb3pbXXuf1r8vly5f1ySefuPT19/d3a2iUlXoyc/21LLntzJkz8vb2lre3t6PNGKMRI0ZIktO1U+3bt9fo0aP1r3/9S4888oij/fPPP1ehQoUUExMjSRoxYoSOHz/utJwtW7Zo0KBBGjBggOrVq+cIW5UrV9aSJUu0a9cupy8hvv76a3l4eLic5QJwZyNYAHeZoUOHatGiRYqOjlb37t119epVjR8/XjVq1NCmTZskXfvmecSIERo4cKASExMVFxenwMBA7du3T3PnzlXXrl2z/BsQmRkxYoSWLl2q+vXrq3v37ipUqJAmTpyoS5cu6d13373l87t166aPPvpIHTp0UJ8+fRQWFqbp06c7bp1pD0VVq1ZV1apVM5xHhQoVXIKAFffdd5/jA7ydfUhJjRo13FpWy5Yt9dVXX6lIkSKqXr261q5dq2XLlmU70NWsWVOxsbFOt5uVru0PdqNHj9by5cv1wAMPqEuXLqpevbpOnjyp9evXa9myZU7DajLi4eGhCRMmqFWrVqpdu7aee+45hYWFaceOHdq6dasjvI4ZM0bNmzdXvXr11LlzZ8ftXYsUKXLT4W0PPfSQihYtqo4dO6p3796y2Wz66quvMhxCFBUVpZkzZ+rll19W3bp1FRAQoFatWmU43+zWk9vs4WDr1q2Srv0Y3apVqyRJb731liRp/fr16tChgzp06KDIyEilpqZq7ty5Wr16tbp27eq0H9apU0fPP/+8vvjiC129elUNGzbUihUrNGvWLA0cONBxZqV+/foutdgDV926dZ3231dffVULFy5UdHS0evbsqWLFiunHH3/UwoUL9cILL+TJ2RoAeej234gKQF5buXKliYqKMl5eXqZixYrm008/ddxK83pz5swx9evXN/7+/sbf399UrVrV9OjRw+zcudPRp2HDhqZGjRouywgPDzctWrRwaVcGt3ddv369iY2NNQEBAcbPz880atTIrFmzxu31+eOPP0yLFi2Mr6+vCQ0NNa+88oqZM2eOkeR0u9uMZFRPZuy3P123bp1Tu/1WnJndDtSYrN9u9tSpU+a5554zxYsXNwEBASY2Ntbs2LHDhIeHm44dO7o1Dzv7Ok6bNs1UqlTJeHt7mzp16mRY79GjR02PHj1M2bJlTeHChU3JkiXNo48+aiZNmuSyvhndetQYY1atWmWaNGliAgMDjb+/v6lVq5YZP368U59ly5aZhx9+2Pj6+pqgoCDTqlUrs23bNqc+Gd1udvXq1ebBBx80vr6+plSpUmbAgAGO2xhfvz7nzp0zTz75pAkODjaSHLeezeh2s+7WYz9GkpOTb1lnRm62D0gyCQkJLm2Z/bP7448/TLt27Uz58uWNj4+P8fPzM1FRUebTTz91usWv3eXLl82QIUNMeHi4KVy4sImMjDRjx469ad3G3Hyb//bbb6Z58+amZMmSpnDhwqZy5cpm5MiR5sqVK7ecL4A7i82YHLxaDADyiXHjxqlfv346ePCgSpcundfl5CmbzaYePXpw+08AQK7idywAFHjXX9QtXbvGYuLEiapUqdJdHyoAALhduMYCQIHXtm1blStXTrVr19bp06c1bdo07dixQ9OnT8/r0nLVjb+3caMbfz8BAIDcRLAAUODFxsbq888/1/Tp05WWlqbq1avrm2++0RNPPJHXpeWqG39v40Y3/n4CAAC5iWssAKCAWrZs2U2nlypVStWrV79N1QAA7nYECwAAAACWcfE2AAAAAMsIFgCQg1asWCGbzaYVK1bk6HxtNttt+bG29PR01axZUyNHjszxebu7DkOGDHH6tXfkf4sWLVJAQICSk5PzuhQAeYhgAQD5xIIFC/L0l54l6euvv1ZSUpJ69uyZp3Xkd6tWrZLNZpPNZtPx48fzupxM7dy5U/369dNDDz0kHx8f2Ww2x6/Au2v79u1q1qyZAgICFBISomeeecYlQDRr1kyRkZF6++23c7B6AAUNwQIA8okFCxZo6NChGU5LTU3VW2+9les1jBkzRvHx8blym9rbtQ65LT09Xb169ZK/v39el3JLa9eu1YcffqizZ8+qWrVqWX7+wYMH1aBBA+3Zs0ejRo1S//799dNPP6lJkya6fPmyU99u3bpp4sSJOnv2bE6VD6CAIVgAuGtdvXrV5cNRfuXj46NChXL3DuEbNmzQxo0b1b59+xybZ3p6ui5evCjp9qzD7TBp0iQlJSXphRdeyOtSbql169ZKSUnR5s2b9dRTT2X5+aNGjdL58+f1888/q3fv3nrjjTf07bffauPGjS63Mn788cd16dIlzZo1K4eqB1DQECyAu9iKFSv097//XT4+PoqIiNDEiRMzHd8+bdo0RUVFydfXVyEhIYqPj1dSUpJTn5iYGNWsWVPbtm1To0aN5Ofnp9KlS+vdd9/Ncm3ly5dXy5YttWTJEtWuXVs+Pj6qXr26vvvuO5e+KSkp6tu3r8qWLStvb29FRkbqnXfeUXp6uqNPYmKibDab3nvvPY0bN04RERHy9vbWtm3bJEk7duxQ+/btFRoaKl9fX1WpUkVvvvmm03I2bNig5s2bKygoSAEBAXr00Uf166+/3nJd/t//+39q166dypUrJ29vb5UtW1b9+vVz+sXwTp066eOPP5YkxxCb67dDRtcnuFPPlClTZLPZtHr1ar388ssKDQ2Vv7+/2rRp4zKcZd68efLy8lKDBg1c1sHdfcVms6lnz56aPn26atSoIW9vby1atCjTdVi1apXq1q3rNN/s6NSpkwICAnTo0CHFxcUpICBAoaGh6t+/v9LS0rI1z4ycPHlSb731loYNG6bg4GBL87p+nxw7dqzCw8Pl6+urhg0basuWLTlSb0hIiAIDA7P9/Dlz5qhly5YqV66co61x48aqXLmyvv32W6e+JUqUUK1atTR//vxsLw9AwVbwvzoCkC0bNmxQs2bNFBYWpqFDhyotLU3Dhg1TaGioS9+RI0dq0KBBat++vV544QUlJydr/PjxatCggTZs2OD0AevUqVNq1qyZ2rZtq/bt22v27Nl67bXXdO+996p58+ZZqnH37t164okn9OKLL6pjx46aPHmy2rVrp0WLFqlJkyaSpAsXLqhhw4Y6dOiQunXrpnLlymnNmjUaOHCgjhw5onHjxjnNc/Lkybp48aK6du0qb29vhYSEaNOmTYqOjlbhwoXVtWtXlS9fXnv37tUPP/zguIh569atio6OVlBQkAYMGKDChQtr4sSJiomJ0cqVK/XAAw9kuh6zZs3ShQsX9NJLL6lYsWL6/fffNX78eB08eNDx7W63bt10+PBhLV26VF999dUtX5us1tOrVy8VLVpUCQkJSkxM1Lhx49SzZ0/NnDnT0WfNmjWqWbOmChcu7PTcrOwrkvTzzz/r22+/Vc+ePVW8eHGVL18+w36bN29W06ZNFRoaqiFDhujq1atKSEjQPffcc8v1z0haWppiY2P1wAMP6L333tOyZcv0/vvvKyIiQi+99JKj36lTp9wKG35+fvLz83NqGzRokEqWLKlu3bpp+PDh2arzRlOnTtXZs2fVo0cPXbx4UR988IEeeeQRbd682fFaXLp0ye0hRsWLF8+Rug4dOqRjx47p73//u8u0+++/XwsWLHBpj4qK0rx583Jk+QAKIAPgrtSqVSvj5+dnDh065GjbvXu3KVSokLn+T0NiYqLx9PQ0I0eOdHr+5s2bTaFChZzaGzZsaCSZqVOnOtouXbpkSpYsaR5//PEs1RceHm4kmTlz5jjaTp8+bcLCwkydOnUcbcOHDzf+/v5m165dTs9//fXXjaenpzlw4IAxxph9+/YZSSYoKMgcO3bMqW+DBg1MYGCg2b9/v1N7enq64/9xcXHGy8vL7N2719F2+PBhExgYaBo0aOBoW758uZFkli9f7mi7cOGCy/q9/fbbxmazOS2zR48eJrM/y5JMQkJCluuZPHmykWQaN27stD79+vUznp6eJiUlxdFWpkyZDLeTu/uKvU4PDw+zdetWt9bBx8fH6TXYtm2b8fT0zPR1yEzHjh2NJDNs2DCn9jp16pioqCinNvu+dat/19dqjDEbN240np6eZvHixcYYYxISEowkk5ycnKVa7ez7pK+vrzl48KCj/bfffjOSTL9+/Rxt9u3ozr/MjBkzxkgy+/btc6u+devWuRzPdq+++qqRZC5evOjUPmrUKCPJHD161K1lALizcMYCuAulpaVp2bJlatOmjUqVKuVoj4yMVPPmzfXDDz842r777julp6erffv2Tne/KVmypCpVqqTly5frjTfecLQHBATo6aefdjz28vLS/fffrz/++CPLdZYqVUpt2rRxPA4KCtKzzz6rd955R3/++adKliypWbNmKTo6WkWLFnWqr3Hjxho9erR++eUXp7Hljz/+uNM37cnJyfrll1/Up08fp+EekhzDfNLS0rRkyRLFxcWpYsWKjulhYWF68skn9dlnn+nMmTMKCgrKcD18fX0d/z9//rxSU1P10EMPyRijDRs2uCz3VrJTT9euXZ2GLUVHR2vs2LHav3+/atWqJUk6ceKEihYt6rIsd/cVu4YNG97yF7/T0tK0ePFixcXFOa1/tWrVFBsbm+G34e548cUXnR5HR0e7nAGaPn260zC0zFz/2kpS79691bx5czVt2jRbtWUmLi5OpUuXdjy+//779cADD2jBggX6v//7P0lSbGysli5dmqPLvRX7a+Tt7e0yzcfHx9Hn+un2/ef48eMqUaLEbagSQH5CsADuQseOHVNqaqoiIyNdpt3Ytnv3bhljVKlSpQzndeOwmTJlyriMuy9atKg2bdqU5TojIyNd5lW5cmVJ18anlyxZUrt379amTZsyHZZz7Ngxp8cVKlRwemwPPDVr1sy0juTkZF24cEFVqlRxmVatWjWlp6crKSlJNWrUyPD5Bw4c0ODBg/X999/r1KlTTtNOnz6d6XJzsp4bw4v9A+CN9RhjnB5nZV+xu/E1zmwdUlNTM9yvqlSpkq1g4ePj47IfFC1a1GUdH3744SzPe+bMmVqzZk2OXftwvYxegxuvYQgLC1NYWFiOL/tm7IH40qVLLtPsF+RfH5qlv/YffocEuDsRLADcVHp6umw2mxYuXChPT0+X6QEBAU6PM+ojuX5gzcn6mjRpogEDBmQ43R5E7G78IJTb0tLS1KRJE508eVKvvfaaqlatKn9/fx06dEidOnVyusA8N7mzXYoVK+byITw7bvdrbJfZOt4oOTnZrWssAgICHPv3q6++qnbt2snLy8vxOxApKSmSpKSkJF2+fNnpjE5OS01NdTuElixZMkeWaQ8yR44ccZl25MgRhYSEuJzNsO8/OXWdB4CChWAB3IVKlCghHx8f7dmzx2XajW0REREyxqhChQouH9Jz2549e2SMcfr2c9euXZLkuCA4IiJC586dU+PGjbO1DPtwl5t9Ex0aGio/Pz/t3LnTZdqOHTvk4eGhsmXLZvjczZs3a9euXfryyy/17LPPOtozGtbi7re8Vuq5mapVq2rfvn1ObVnZV7LCfvet3bt3u0zLaL1yUt26dbV///5b9ktISHDcxSopKUkzZszQjBkzXPrdd999+tvf/qb//e9/2aono9dg165dThe9z5w5U88995xb88upEF+6dGmFhobqP//5j8u033//XbVr13Zp37dvn4oXL57pGUQAdzaCBXAX8vT0VOPGjTVv3jwdPnzY8U3rnj17tHDhQqe+bdu21cCBAzV06FBNmzbN6cOvMUYnT55UsWLFcqXOw4cPa+7cuWrbtq0k6cyZM5o6dapq167t+Fa2ffv2GjJkiBYvXqzY2Fin56ekpCggIOCmv50QGhqqBg0a6IsvvtDLL7/sNGTIHmo8PT3VtGlTzZ8/X4mJiY4PfEePHtWMGTNUv379TK+vsH+Lfv2HPWOMPvjgA5e+9h9cS0lJuemtTK3UczP16tXT6NGjdenSJcc30VnZV7LC09NTsbGxmjdvng4cOOB43bdv367Fixdne77uyM41FnPnznWZ/s0332jmzJmaOnWqypQpk+165s2bp0OHDjmus/j999/122+/qW/fvo4+t+Mai71790q6FtbtHn/8cX355ZdKSkpyhNV///vf2rVrl/r16+cyj//+97+qV69ertYJIP8iWAB3qSFDhmjJkiV6+OGH9dJLLyktLU0fffSRatas6fTNa0REhEaMGKGBAwcqMTFRcXFxCgwM1L59+zR37lx17dpV/fv3z5UaK1eurM6dO2vdunW655579MUXX+jo0aOaPHmyo8+rr76q77//Xi1btlSnTp0UFRWl8+fPa/PmzZo9e7YSExNvOSzjww8/VP369XXfffepa9euqlChghITE/XTTz85XosRI0Zo6dKlql+/vrp3765ChQpp4sSJunTp0k1/p6Nq1aqKiIhQ//79dejQIQUFBWnOnDkZDjmKioqSdO0i4djYWHl6eio+Pj7D+Wa3npt57LHHNHz4cK1cudLpAmV395WsGjp0qBYtWqTo6Gh1795dV69e1fjx41WjRo1sXZPjruxcYxEXF+fSZl/35s2bO+1jK1asUKNGjZzOeNxMZGSk6tevr5deekmXLl3SuHHjVKxYMafhfdm9xuL06dMaP368JGn16tWSpI8++kjBwcEKDg5Wz549HX0fffRRSXIM9ZKkN954Q7NmzVKjRo3Up08fnTt3TmPGjNG9997rcgbl2LFj2rRpk3r06JHlOgHcIfLkXlQA8oV///vfpk6dOsbLy8tERESYzz//3LzyyivGx8fHpe+cOXNM/fr1jb+/v/H39zdVq1Y1PXr0MDt37nT0adiwoalRo4bLczt27GjCw8OzVFt4eLhp0aKFWbx4salVq5bx9vY2VatWNbNmzXLpe/bsWTNw4EATGRlpvLy8TPHixc1DDz1k3nvvPXP58mVjzF+39hwzZkyGy9uyZYtp06aNCQ4ONj4+PqZKlSpm0KBBTn3Wr19vYmNjTUBAgPHz8zONGjUya9asceqT0e1mt23bZho3bmwCAgJM8eLFTZcuXczGjRuNJDN58mRHv6tXr5pevXqZ0NBQY7PZnG4dqgxuf+pOPfbblK5bt+6WdRpjTK1atUznzp1dXh939xVJpkePHi7Pz2wdVq5caaKiooyXl5epWLGi+fTTTx23cc2Kjh07Gn9/f5f27MzLXZndbvaHH34wksynn3560+dfv0++//77pmzZssbb29tER0ebjRs35kiN9mVk9O/GYzI8PDzD43TLli2madOmxs/PzwQHB5unnnrK/Pnnny79JkyYYPz8/MyZM2dypHYABY/NmFy6ohJAgRQXF6etW7dmOO77dipfvrxq1qypH3/8MU/ruNt89dVX6tGjhw4cOHDLX5bOL/tKfjNgwAB9/fXX2rNnT4a3arVLTExUhQoVNGbMmFw763c71alTRzExMRo7dmxelwIgj3jkdQEA8s6N48x3796tBQsWKCYmJm8KQp576qmnVK5cOX388cdO7ewr7lu+fLkGDRp001Bxp1m0aJF2796tgQMH5nUpAPIQ11gAd7GKFSuqU6dOqlixovbv368JEybIy8sr01u35oRb3erTy8tLISEhubZ83JyHh0eGd8jKi31FunaNwK0utM6p26vmlHXr1uV1Cbdds2bNdO7cubwuA0AeI1gAd7FmzZrp66+/1p9//ilvb2/Vq1dPo0aNyvTH8HLCrW712bBhQ61YsSLXlo/syYt9RZL69OmjL7/88qZ9GNELAPkD11gAuK1Wr15902+gixYt6rg7ErBt2zYdPnz4pn2y+xsmAICcRbAAAAAAYBkXbwMAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCvkTqf09HQdPnxYgYGBstlsuV0TkOuMMTp79qxKlSolD4+s5WuOB9xprBwPEscE7jy8RwB/ycrx4FawOHz4sMqWLZsjxQH5SVJSksqUKZOl53A84E6VneNB4pjAnYv3COAv7hwPbsXwwMDAHCkIyG+ys29zPOBOld19m2MCdyreI4C/uLNvuxUsOJWHO1V29m2OB9ypsrtvc0zgTsV7BPAXd/ZtLt4GAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhWKK8WbIzJq0W7zWbL6wpuweRsgUYFYZvk942SPQXheED+c6ceDxLHBLLnTj0mOB6QHXlxPHDGAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWFYorwvIKTabLRfmanJ4fjlbo8nh+nLjNTQmp19DuKMgbMucrjG/1ydxPOSlgrA9OSZwuxSEbcnxUDBxxgIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgWaG8LiCnGGNyfJ42W87OLzdqzEn5vT64ryBsy/xeY36v705nUw7/ARbvEVbl9/rgvoKwLfN7jfm9vrzCGQsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGBZobwuIKfYbLZcmKvJ0bnldI3G5O/6pJyvEe4pCNuS4wE3Y3L67694j7CKY+LOURC2JcdDwcQZCwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYFmhPFuyzZbDMzQ5PL+cZ0z+rjG/1wf3FYRtmd9rzO/1IWtyY3vm9NtYft/n8nt9cF9B2Jb5vcb8Xl9e4YwFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwrFCeLdmYnJ2fzZaz85NkcrhGWw7XmN/rk3K+RrinIGxLjgfcTrmxPaX8vc9xTCAzBWFbcjwUTJyxAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhWKK8LyCnGmLwu4Zbye435vT64ryBsy5yu0SZbjs5PyoXX0JbTNcJduXJM5PT2zOfHbUH4uwL3FIRtyXtEwcQZCwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYFmhvFqwzWbLq0UD+Q7HQ36U89uErey+u/KYuBvXGW65K4+HfI/3iIxwxgIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlrkVLIwxuV0HkCeys29zPOBOld19m2MCdyreI4C/uLNvuxUszp49a7kYID/Kzr7N8YA7VXb3bY4J3Kl4jwD+4s6+bTNuxI/09HQdPnxYgYGBstlsOVIckJeMMTp79qxKlSolD4+sjQjkeMCdxsrxIHFM4M7DewTwl6wcD24FCwAAAAC4GS7eBgAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlv1/lOCa8RwSbHkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwTklEQVR4nO3deXxNd/7H8fdNyJ5YgyBSYqfGUpSKMEUYtEGrpu2UjpYWtbSqo63GUrrgVx2dKtNHU2ur9i4qaNEqLVNqra0VYimxBxGVfH9/9JFT173hJieRhNfz8fB4uN/zved8zpZ73vcs12GMMQIAAAAAG7zyuwAAAAAAhR/BAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQKAJGnkyJFyOBz5XQZg+fDDD+VwOJSYmJhr40xMTJTD4dCHH36Ya+PM7rQnTJhw06cNADcDwQLAbatt27ZyOBwaMGBAnk7n999/V+3atTmovInmzJmjSZMm5XcZOZYZqtz9++2336x+q1evzrKfw+HQ2LFjncZ75swZ9enTR6GhoQoMDFTr1q21adMml+nPnTtXjz76qKpVqyaHw6FWrVplWeuPP/6o9u3bKyQkRMHBwWrXrp1++umn3FoUAAqRIvldAADkh4ULF2r9+vU3ZVqTJ0/WwYMHb8q08Ic5c+Zo+/btGjx4sFN7RESEUlNTVbRo0fwpLJtGjx6typUrO7UVL17c+n+tWrU0c+ZMl/fNnDlTy5cvV7t27ay2jIwMdezYUVu2bNHzzz+v0qVL691331WrVq30448/qlq1albfKVOm6Mcff1Tjxo118uTJLOvbtGmTWrRoofDwcMXFxSkjI0PvvvuuoqOjtWHDBtWoUcPG3AMobAgWAG47ly5d0nPPPacXXnhBr7zySp5O6/jx4xo9evRNmVZ+unTpknx8fOTlVbBPhDscDvn5+eV3GR7r0KGD7rrrriyHly1bVo8++qhL+6hRo1StWjU1btzYaps/f77WrVunefPm6YEHHpAkde/eXdWrV1dcXJzmzJlj9Z05c6YqVKggLy8v1a1bN8vpjxgxQv7+/lq/fr1KlSolSXr00UdVvXp1vfjii1qwYEG25xlA4VWwPwEA5Im1a9eqcePG8vPzU2RkpKZOneq236xZs9SoUSP5+/urZMmS6tGjh5KSkpz6tGrVSnXr1tXWrVsVHR2tgIAAVa1aVfPnz5ckrVmzRk2bNpW/v79q1KihlStXukxn8+bN6tChg0JCQhQUFKR7771X33//vcfzc+DAAd13330KDAxUmTJlNGTIECUkJMjhcGj16tUu/d98801lZGRo6NChHk9D+vPylO+++07PPvusdTlJly5dlJyc7PY9//rXv1SjRg23B383mqd+/fqpRo0a8vf3V6lSpfTggw/m6H6DzMu9Zs+erRo1asjPz0+NGjXSN99849L38OHD+uc//6myZcvK19dXderU0QcffODUJ/Pym48//lgvv/yyKlSooICAAJ07d06S9MMPP+hvf/ubSpQoocDAQNWrV09vv/220zi+/vprRUVFKTAwUMWLF9f999+vn3/++YbzsmTJEnXs2FHly5eXr6+vIiMjNWbMGKWnp1t9WrVqpS+++EIHDhywLgm64447JGV9j4Un9WTeh7Rv3z716tVLxYsXV7FixfT444/r4sWLN6z9atOmTVNkZKR8fX3VuHFjbdy4Mcu+KSkpTvN3Ixs2bNC+ffv0yCOPOLXPnz9fZcuWVdeuXa220NBQde/eXUuWLFFaWprVHh4e7lFI/Pbbb9WmTRsrVEhSWFiYoqOj9fnnn+v8+fMe1w2g8OOMBXCb2bZtm9q1a6fQ0FCNHDlSV65cUVxcnMqWLevUb+zYsRoxYoS6d++uJ554QsnJyZo8ebJatmypzZs3O12Ocfr0aXXq1Ek9evTQgw8+qClTpqhHjx6aPXu2Bg8erKeeekoPP/ywxo8frwceeEBJSUkKDg6WJO3YsUNRUVEKCQnRsGHDVLRoUU2dOlWtWrWyQsn1XLhwQX/961919OhRDRo0SOXKldOcOXO0atUqt/0PHjyo119/XR988IH8/f1ztAyfeeYZlShRQnFxcUpMTNSkSZM0YMAAzZ0716nfhg0bNH36dK1duzbbN8Zv3LhR69atU48ePVSxYkUlJiZqypQpatWqlXbu3KmAgIBsjW/NmjWaO3euBg4cKF9fX7377rtq3769NmzYYH0jfezYMd19991WEAkNDdWXX36p3r1769y5cy6XFY0ZM0Y+Pj4aOnSo0tLS5OPjoxUrVqhTp04KCwuz1sfPP/+szz//XIMGDZIkrVy5Uh06dFCVKlU0cuRIpaamavLkybrnnnu0adMmKwS48+GHHyooKEjPPvusgoKC9PXXX+uVV17RuXPnNH78eEnSSy+9pLNnz+rQoUN66623JElBQUFZjjO79XTv3l2VK1fWa6+9pk2bNun9999XmTJl9MYbb3i0LubMmaOUlBT17dtXDodDb775prp27apff/3V5RKt1q1b6/z58/Lx8VFMTIwmTpzodMmSO7Nnz5Ykl2CxefNmNWzY0CUwNGnSRNOmTdOePXt05513ejQPmdLS0tzuRwEBAbp8+bK2b9+uu+++O1vjBFCIGQC3ldjYWOPn52cOHDhgte3cudN4e3ubzD8JiYmJxtvb24wdO9bpvdu2bTNFihRxao+OjjaSzJw5c6y2Xbt2GUnGy8vLfP/991Z7QkKCkWTi4+Od6vHx8TG//PKL1XbkyBETHBxsWrZsecP5mThxopFkFi9ebLWlpqaamjVrGklm1apVTv0feOAB07x5c+u1JNO/f/8bTscYY+Lj440k06ZNG5ORkWG1DxkyxHh7e5szZ85YbRkZGaZJkybm73//uzHGmP379xtJZvz48R5N6+LFiy5t69evN5LMjBkzPBpHJklGkvnf//5ntR04cMD4+fmZLl26WG29e/c2YWFh5sSJE07v79GjhylWrJhV06pVq4wkU6VKFac6r1y5YipXrmwiIiLM6dOnncZx9fKqX7++KVOmjDl58qTVtmXLFuPl5WUee+wxqy1zee/fv99qc7dc+vbtawICAsylS5esto4dO5qIiAiXvpnr4ept0NN64uLijCTzz3/+02mcXbp0MaVKlXKZVlbTLlWqlDl16pTVvmTJEiPJfPbZZ1bb3LlzTa9evcz06dPNokWLzMsvv2wCAgJM6dKlzcGDB7OcxpUrV0zZsmVNkyZNXIYFBga61G6MMV988YWRZJYtW+Z2nHXq1DHR0dFuh915552mevXq5sqVK1ZbWlqaqVSpkpFk5s+fn2WtAG49XAoF3EbS09OVkJCg2NhYVapUyWqvVauWYmJirNcLFy5URkaGunfvrhMnTlj/ypUrp2rVqrmcDQgKClKPHj2s1zVq1FDx4sVVq1YtpzMOmf//9ddfrXqWL1+u2NhYValSxeoXFhamhx9+WGvXrrUur8nKsmXLVKFCBd13331Wm5+fn5588kmXvqtWrdKCBQtsPy2oT58+TmcgoqKilJ6ergMHDlhtH374obZt2+bxt9jXuvpb4N9//10nT55U1apVVbx4cbdP8bmRZs2aqVGjRtbrSpUq6f7771dCQoLS09NljNGCBQvUuXNnGWOc1ntMTIzOnj3rMt2ePXs61bl582bt379fgwcPdjqjJclaXkePHtVPP/2kXr16qWTJktbwevXqqW3btlq6dKnHyyUlJUUnTpxQVFSULl68qF27dmV7ueSknqeeesrpdVRUlE6ePHnDbTXTQw89pBIlSji9X/pzv5D+OCsSHx+vxx57TLGxsRozZowSEhJ08uRJlyc9Xe2rr77SsWPHXM5WSFJqaqp8fX1d2jPvOUlNTfWo/qv169dPe/bsUe/evbVz505t375djz32mI4ePZrjcQIovLgUCriNJCcnKzU11e2lFDVq1LAOovbu3StjTJaXXFx7uUbFihVdLvUpVqyYwsPDXdqkPy6dyqzn4sWLbp8cU6tWLWVkZCgpKUl16tRRcnKy03XmQUFBCgoK0oEDBxQZGeky/apVqzq9vnLligYOHKh//OMfTje0unP14zwz6776gPbqUCbJOkjMnK9z585p+PDhev75512WwdXS09Nd7s0oWbKkfHx8lJqaqtdee03x8fE6fPiwjDFWn7Nnz163fnfcrcvq1avr4sWLSk5OlpeXl86cOaNp06Zp2rRpbsdx/Phxp9fXPq3ol19+kaTr3uybGb6yWucJCQm6cOGCAgMD3b5/x44devnll/X111+7HMjnZLnkpJ7rrf+QkBCdOnVKly9ftob7+/tb2/6N3n89LVq0UNOmTd3ep5Rp9uzZ8vb21kMPPeQyzN/f3+k+ikyXLl2yhmfXU089paSkJI0fP17Tp0+XJN11110aNmyYxo4de91L0ADceggWAFxkZGTI4XDoyy+/lLe3t8vwaw8W3PW5XvvVB8meaty4sdMZgbi4OI0cOdLj98+YMUO7d+/W1KlTXW6ATklJUWJiosqUKaOAgACFhYU5DY+Pj1evXr2s1zearwkTJujy5ct66KGHrGkdOnRI0h8Hj4mJiSpfvryOHDnicnC+atUqtWrVSs8884zi4+M1ePBgNWvWTMWKFZPD4VCPHj2UkZHh8Xx7KnOcjz76qHr27Om2T7169Zxe5/QelZw6c+aMoqOjFRISotGjRysyMlJ+fn7atGmTXnjhhTxZLu7caP137dpVa9assdp79uzpdLO4nf0iPDxcu3fvdjssNTVVixYtUps2bVzumZL+OBOYeSbhaplt5cuXv+H03Rk7dqyGDh2qHTt2qFixYrrzzjv14osvSvojvAK4fRAsgNtIaGio/P39tXfvXpdhVx+sREZGyhijypUr5+mBQWhoqAICAtweKO3atUteXl7WN/6zZ892uqwi89KpiIgI7dy5U8YYp7MW+/btcxrfwYMH9fvvv+uee+5xmdaMGTM0Y8YMLVq0SLGxsVqxYoXT8Dp16mRrvg4ePKjTp0+7fd+4ceM0btw4bd68WTVr1nSZ1l/+8hdJfzzBp2fPnpo4caI17NKlSzpz5ky2asnkbp3v2bNHAQEBCg0NlSQFBwcrPT1dbdq0ydE0IiMjJUnbt2/PchwRERGSlOU6L126dJZnK1avXq2TJ09q4cKFatmypdW+f/9+l76e3ixvp56sTJw40ensQ04P2N359ddfrfV1rU8//VQpKSluL4OSpPr16+vbb79VRkaG0w3cP/zwgwICAmzt6yVKlFCLFi2s1ytXrlTFihVVs2bNHI8TQOFDsABuI97e3oqJidHixYt18OBB65KMn3/+WQkJCVa/rl27avjw4Ro1apRmzZrldJBmjNGpU6ecHi9pp5527dppyZIlSkxMtJ6+c+zYMc2ZM0ctWrRQSEiIJLkNBJIUExOjFStW6NNPP9X9998v6Y8D8P/+979O/Xr06KH69eu7vL9Lly7629/+pieffNK6BySnB9aZBg4cqNjYWKe248ePq2/fvurVq5fuv/9+Va5cWX5+fllOy9vb2+Ub7MmTJ2frsaNXW79+vTZt2qSGDRtKkpKSkrRkyRK1b9/e+ga9W7du1g/LXXs5U3JycpYHtJkaNmyoypUra9KkSdbjWDNlBr+wsDDVr19f06dP1/Dhw60+27dv1/Lly6/7WN7MOq9eLpcvX9a7777r0jcwMNCjS6Ps1JOVq+9lySl3y3vp0qX68ccfNXDgQLfvmTNnjgICAtSlSxe3wx944AHNnz9fCxcutH7H4sSJE5o3b546d+7s9v6LnJg7d642btyoCRMmFPjfNQGQuwgWwG1m1KhRWrZsmaKiotSvXz9duXJFkydPVp06dbR161ZJf3zz/Oqrr2r48OFKTExUbGysgoODtX//fi1atEh9+vTJ9m9AZOXVV1/VihUr1KJFC/Xr109FihTR1KlTlZaWpjfffPOG7+/bt6/eeecd/f3vf9egQYMUFham2bNnWzekZoaimjVrZvntaeXKlV2CgB0NGza0DuAzZV4SVadOHY+m1alTJ82cOVPFihVT7dq1tX79eq1cuTLHga5u3bqKiYlxetys9Mf2kOn111/XqlWr1LRpUz355JOqXbu2Tp06pU2bNmnlypU6derUdafh5eWlKVOmqHPnzqpfv74ef/xxhYWFadeuXdqxY4cVXsePH68OHTqoWbNm6t27t/V412LFil338rbmzZurRIkS6tmzpwYOHCiHw6GZM2e6vYSoUaNGmjt3rp599lk1btxYQUFB6ty5s9vx5rSevNS8eXM1aNBAd911l4oVK6ZNmzbpgw8+UHh4uHWZ0dVOnTqlL7/8Ut26dcvyvoYHHnhAd999tx5//HHt3LnT+uXt9PR0p+1Akr755hvrd06Sk5N14cIFvfrqq5Kkli1bWmeMvvnmG40ePVrt2rVTqVKl9P333ys+Pl7t27e3Hi8M4DaSD0+iApDP1qxZYxo1amR8fHxMlSpVzHvvvWc9SvNqCxYsMC1atDCBgYEmMDDQ1KxZ0/Tv39/s3r3b6hMdHW3q1KnjMo2IiAjTsWNHl3a5ebzrpk2bTExMjAkKCjIBAQGmdevWZt26dR7Pz6+//mo6duxo/P39TWhoqHnuuefMggULjCSnx926466erGQ+/nTjxo1O7ZmPX7320bZXy+7jZk+fPm0ef/xxU7p0aRMUFGRiYmLMrl27TEREhOnZs6dH48iUOY+zZs0y1apVM76+vqZBgwZu6z127Jjp37+/CQ8PN0WLFjXlypUz9957r5k2bZrL/M6bN8/t9NauXWvatm1rgoODTWBgoKlXr56ZPHmyU5+VK1eae+65x/j7+5uQkBDTuXNns3PnTqc+7h43+91335m7777b+Pv7m/Lly5thw4ZZjzG+en7Onz9vHn74YVO8eHEjyXr0rLvHzXpaT+Y+kpycfMM63bneNiDJxMXFWa9feuklU79+fVOsWDFTtGhRU6lSJfP000+b3377ze2433vvPSPJfPrpp9et4dSpU6Z3796mVKlSJiAgwERHR7tsz1fPq7t/V9e5b98+065dO1O6dGnj6+tratasaV577TWTlpZ23ToA3JocxuTgLkoAKOAmTZqkIUOG6NChQ6pQoUJ+l5OvHA6H+vfvr3feeSe/SwEA3MK4+BFAoXfts/IvXbqkqVOnqlq1ard9qAAA4GbhHgsAhV7Xrl1VqVIl1a9fX2fPntWsWbO0a9cuzZ49O79Ly1PX/t7Gta79/QQAAPISwQJAoRcTE6P3339fs2fPVnp6umrXrq2PP/7Y7Y+E3Uqu/b2Na137+wkAAOQl7rEAgELqer/ALP3x+wm1a9e+SdUAAG53BAsAAAAAtnHzNgAAAADbCBYAkItWr14th8Oh1atX5+p4HQ7HTfmxtoyMDNWtW1djx47N9XF7Og8jR450+rV3FHzLli1TUFCQkpOT87sUAPmIYAEABcTSpUvz7ZeeM3300UdKSkrSgAED8rWOgm7t2rVyOBxyOBw6ceJEfpeTpd27d2vIkCFq3ry5/Pz85HA4rF+B99TPP/+s9u3bKygoSCVLltQ//vEPlwDRvn17Va1aVa+99louVg+gsCFYAEABsXTpUo0aNcrtsNTUVL388st5XsP48ePVo0ePPHlM7c2ah7yWkZGhZ555RoGBgfldyg2tX79e//73v5WSkqJatWpl+/2HDh1Sy5YttW/fPo0bN05Dhw7VF198obZt2+ry5ctOffv27aupU6cqJSUlt8oHUMgQLADctq5cueJycFRQ+fn5qUiRvH1C+ObNm7VlyxZ1794918aZkZGhS5cuSbo583AzTJs2TUlJSXriiSfyu5Qbuu+++3TmzBlt27ZNjzzySLbfP27cOF24cEFff/21Bg4cqBdffFGffPKJtmzZ4vIo427duiktLU3z5s3LpeoBFDYEC+A2tnr1at11113y8/NTZGSkpk6dmuX17bNmzVKjRo3k7++vkiVLqkePHkpKSnLq06pVK9WtW1c7d+5U69atFRAQoAoVKujNN9/Mdm133HGHOnXqpOXLl6t+/fry8/NT7dq1tXDhQpe+Z86c0eDBgxUeHi5fX19VrVpVb7zxhjIyMqw+iYmJcjgcmjBhgiZNmqTIyEj5+vpq586dkqRdu3ape/fuCg0Nlb+/v2rUqKGXXnrJaTqbN29Whw4dFBISoqCgIN177736/vvvbzgv3377rR588EFVqlRJvr6+Cg8P15AhQ5x+MbxXr176z3/+I0nWJTZXrwd39yd4Us+HH34oh8Oh7777Ts8++6xCQ0MVGBioLl26uFzOsnjxYvn4+Khly5Yu8+DptuJwODRgwADNnj1bderUka+vr5YtW5blPKxdu1aNGzd2Gm9O9OrVS0FBQTp8+LBiY2MVFBSk0NBQDR06VOnp6TkapzunTp3Syy+/rNGjR6t48eK2xnX1NvnWW28pIiJC/v7+io6O1vbt23Ol3pIlSyo4ODjH71+wYIE6deqkSpUqWW1t2rRR9erV9cknnzj1LVOmjOrVq6clS5bkeHoACrfC/9URgBzZvHmz2rdvr7CwMI0aNUrp6ekaPXq0QkNDXfqOHTtWI0aMUPfu3fXEE08oOTlZkydPVsuWLbV582anA6zTp0+rffv26tq1q7p376758+frhRde0J133qkOHTpkq8a9e/fqoYce0lNPPaWePXsqPj5eDz74oJYtW6a2bdtKki5evKjo6GgdPnxYffv2VaVKlbRu3ToNHz5cR48e1aRJk5zGGR8fr0uXLqlPnz7y9fVVyZIltXXrVkVFRalo0aLq06eP7rjjDv3yyy/67LPPrJuYd+zYoaioKIWEhGjYsGEqWrSopk6dqlatWmnNmjVq2rRplvMxb948Xbx4UU8//bRKlSqlDRs2aPLkyTp06JD17W7fvn115MgRrVixQjNnzrzhssluPc8884xKlCihuLg4JSYmatKkSRowYIDmzp1r9Vm3bp3q1q2rokWLOr03O9uKJH399df65JNPNGDAAJUuXVp33HGH237btm1Tu3btFBoaqpEjR+rKlSuKi4tT2bJlbzj/7qSnpysmJkZNmzbVhAkTtHLlSk2cOFGRkZF6+umnrX6nT5/2KGwEBAQoICDAqW3EiBEqV66c+vbtqzFjxuSozmvNmDFDKSkp6t+/vy5duqS3335bf/3rX7Vt2zZrWaSlpXl8iVHp0qVzpa7Dhw/r+PHjuuuuu1yGNWnSREuXLnVpb9SokRYvXpwr0wdQCBkAt6XOnTubgIAAc/jwYatt7969pkiRIubqPw2JiYnG29vbjB071un927ZtM0WKFHFqj46ONpLMjBkzrLa0tDRTrlw5061bt2zVFxERYSSZBQsWWG1nz541YWFhpkGDBlbbmDFjTGBgoNmzZ4/T+//1r38Zb29vc/DgQWOMMfv37zeSTEhIiDl+/LhT35YtW5rg4GBz4MABp/aMjAzr/7GxscbHx8f88ssvVtuRI0dMcHCwadmypdW2atUqI8msWrXKart48aLL/L322mvG4XA4TbN///4mqz/LkkxcXFy264mPjzeSTJs2bZzmZ8iQIcbb29ucOXPGaqtYsaLb9eTptpJZp5eXl9mxY4dH8+Dn5+e0DHbu3Gm8vb2zXA5Z6dmzp5FkRo8e7dTeoEED06hRI6e2zG3rRv+urtUYY7Zs2WK8vb1NQkKCMcaYuLg4I8kkJydnq9ZMmdukv7+/OXTokNX+ww8/GElmyJAhVlvmevTkX1bGjx9vJJn9+/d7VN/GjRtd9udMzz//vJFkLl265NQ+btw4I8kcO3bMo2kAuLVwxgK4DaWnp2vlypXq0qWLypcvb7VXrVpVHTp00GeffWa1LVy4UBkZGerevbvT02/KlSunatWqadWqVXrxxRet9qCgID366KPWax8fHzVp0kS//vprtussX768unTpYr0OCQnRY489pjfeeEO//fabypUrp3nz5ikqKkolSpRwqq9NmzZ6/fXX9c033zhdW96tWzenb9qTk5P1zTffaNCgQU6Xe0iyLvNJT0/X8uXLFRsbqypVqljDw8LC9PDDD+u///2vzp07p5CQELfz4e/vb/3/woULSk1NVfPmzWWM0ebNm12meyM5qadPnz5Oly1FRUXprbfe0oEDB1SvXj1J0smTJ1WiRAmXaXm6rWSKjo6+4S9+p6enKyEhQbGxsU7zX6tWLcXExLj9NtwTTz31lNPrqKgolzNAs2fPdroMLStXL1tJGjhwoDp06KB27drlqLasxMbGqkKFCtbrJk2aqGnTplq6dKn+7//+T5IUExOjFStW5Op0byRzGfn6+roM8/Pzs/pcPTxz+zlx4oTKlClzE6oEUJAQLIDb0PHjx5WamqqqVau6DLu2be/evTLGqFq1am7Hde1lMxUrVnS57r5EiRLaunVrtuusWrWqy7iqV68u6Y/r08uVK6e9e/dq69atWV6Wc/z4cafXlStXdnqdGXjq1q2bZR3Jycm6ePGiatSo4TKsVq1aysjIUFJSkurUqeP2/QcPHtQrr7yiTz/9VKdPn3Yadvbs2Synm5v1XBteMg8Ar63HGOP0OjvbSqZrl3FW85Camup2u6pRo0aOgoWfn5/LdlCiRAmXebznnnuyPe65c+dq3bp1uXbvw9XcLYNr72EICwtTWFhYrk/7ejIDcVpamsuwzBvyrw7N0p/bD79DAtyeCBYArisjI0MOh0NffvmlvL29XYYHBQU5vXbXR3I9YM3N+tq2bathw4a5HZ4ZRDJdeyCU19LT09W2bVudOnVKL7zwgmrWrKnAwEAdPnxYvXr1crrBPC95sl5KlSrlchCeEzd7GWfKah6vlZyc7NE9FkFBQdb2/fzzz+vBBx+Uj4+P9TsQZ86ckSQlJSXp8uXLTmd0cltqaqrHIbRcuXK5Ms3MIHP06FGXYUePHlXJkiVdzmZkbj+5dZ8HgMKFYAHchsqUKSM/Pz/t27fPZdi1bZGRkTLGqHLlyi4H6Xlt3759MsY4ffu5Z88eSbJuCI6MjNT58+fVpk2bHE0j83KX630THRoaqoCAAO3evdtl2K5du+Tl5aXw8HC37922bZv27Nmj6dOn67HHHrPa3V3W4um3vHbquZ6aNWtq//79Tm3Z2VayI/PpW3v37nUZ5m6+clPjxo114MCBG/aLi4uznmKVlJSkOXPmaM6cOS79GjZsqL/85S/66aefclSPu2WwZ88ep5ve586dq8cff9yj8eVWiK9QoYJCQ0P1v//9z2XYhg0bVL9+fZf2/fv3q3Tp0lmeQQRwayNYALchb29vtWnTRosXL9aRI0esb1r37dunL7/80qlv165dNXz4cI0aNUqzZs1yOvg1xujUqVMqVapUntR55MgRLVq0SF27dpUknTt3TjNmzFD9+vWtb2W7d++ukSNHKiEhQTExMU7vP3PmjIKCgq772wmhoaFq2bKlPvjgAz377LNOlwxlhhpvb2+1a9dOS5YsUWJionXAd+zYMc2ZM0ctWrTI8v6KzG/Rrz7YM8bo7bffdumb+YNrZ86cue6jTO3Ucz3NmjXT66+/rrS0NOub6OxsK9nh7e2tmJgYLV68WAcPHrSW+88//6yEhIQcj9cTObnHYtGiRS7DP/74Y82dO1czZsxQxYoVc1zP4sWLdfjwYes+iw0bNuiHH37Q4MGDrT434x6LX375RdIfYT1Tt27dNH36dCUlJVlh9auvvtKePXs0ZMgQl3H8+OOPatasWZ7WCaDgIlgAt6mRI0dq+fLluueee/T0008rPT1d77zzjurWrev0zWtkZKReffVVDR8+XImJiYqNjVVwcLD279+vRYsWqU+fPho6dGie1Fi9enX17t1bGzduVNmyZfXBBx/o2LFjio+Pt/o8//zz+vTTT9WpUyf16tVLjRo10oULF7Rt2zbNnz9fiYmJN7ws49///rdatGihhg0bqk+fPqpcubISExP1xRdfWMvi1Vdf1YoVK9SiRQv169dPRYoU0dSpU5WWlnbd3+moWbOmIiMjNXToUB0+fFghISFasGCB20uOGjVqJOmPm4RjYmLk7e2tHj16uB1vTuu5nvvvv19jxozRmjVrnG5Q9nRbya5Ro0Zp2bJlioqKUr9+/XTlyhVNnjxZderUydE9OZ7KyT0WsbGxLm2Z896hQwenbWz16tVq3bq10xmP66latapatGihp59+WmlpaZo0aZJKlSrldHlfTu+xOHv2rCZPnixJ+u677yRJ77zzjooXL67ixYtrwIABVt97771XkqxLvSTpxRdf1Lx589S6dWsNGjRI58+f1/jx43XnnXe6nEE5fvy4tm7dqv79+2e7TgC3iHx5FhWAAuGrr74yDRo0MD4+PiYyMtK8//775rnnnjN+fn4ufRcsWGBatGhhAgMDTWBgoKlZs6bp37+/2b17t9UnOjra1KlTx+W9PXv2NBEREdmqLSIiwnTs2NEkJCSYevXqGV9fX1OzZk0zb948l74pKSlm+PDhpmrVqsbHx8eULl3aNG/e3EyYMMFcvnzZGPPnoz3Hjx/vdnrbt283Xbp0McWLFzd+fn6mRo0aZsSIEU59Nm3aZGJiYkxQUJAJCAgwrVu3NuvWrXPq4+5xszt37jRt2rQxQUFBpnTp0ubJJ580W7ZsMZJMfHy81e/KlSvmmWeeMaGhocbhcDg9OlRuHn/qST2ZjynduHHjDes0xph69eqZ3r17uywfT7cVSaZ///4u789qHtasWWMaNWpkfHx8TJUqVcx7771nPcY1O3r27GkCAwNd2nMyLk9l9bjZzz77zEgy77333nXff/U2OXHiRBMeHm58fX1NVFSU2bJlS67UmDkNd/+u3ScjIiLc7qfbt2837dq1MwEBAaZ48eLmkUceMb/99ptLvylTppiAgABz7ty5XKkdQOHjMCaP7qgEUCjFxsZqx44dbq/7vpnuuOMO1a1bV59//nm+1nG7mTlzpvr376+DBw/e8JelC8q2UtAMGzZMH330kfbt2+f2Ua2ZEhMTVblyZY0fPz7PzvrdTA0aNFCrVq301ltv5XcpAPKJV34XACD/XHud+d69e7V06VK1atUqfwpCvnvkkUdUqVIl/ec//3FqZ1vx3KpVqzRixIjrhopbzbJly7R3714NHz48v0sBkI+4xwK4jVWpUkW9evVSlSpVdODAAU2ZMkU+Pj5ZPro1N9zoUZ8+Pj4qWbJknk0f1+fl5eX2CVn5sa1If9wjcKMbrXPr8aq5ZePGjfldwk3Xvn17nT9/Pr/LAJDPCBbAbax9+/b66KOP9Ntvv8nX11fNmjXTuHHjsvwxvNxwo0d9RkdHa/Xq1Xk2feRMfmwrkjRo0CBNnz79un24ohcACgbusQBwU3333XfX/Qa6RIkS1tORgJ07d+rIkSPX7ZPT3zABAOQuggUAAAAA27h5GwAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgWxFPOmVkZOjIkSMKDg6Ww+HI65qAPGeMUUpKisqXLy8vr+zla/YH3Grs7A8S+wRuPXxGAH/Kzv7gUbA4cuSIwsPDc6U4oCBJSkpSxYoVs/Ue9gfcqnKyP0jsE7h18RkB/MmT/cGjGB4cHJwrBQEFTU62bfYH3Kpyum2zT+BWxWcE8CdPtm2PggWn8nCrysm2zf6AW1VOt232Cdyq+IwA/uTJts3N2wAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA24rk14SNMfk1aY85HPldwQ2Y3C3QqDCsk4K+UnKmMOwPKHhu1f1BYp9Aztyq+wT7A3IiP/YHzlgAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbiuR3AbnF4XDkwVhNLo8vd2s0uVxfXixDY3J7GcIThWFd5naNBb0+if0hPxWG9ck+gZulMKxL9ofCiTMWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANuK5HcBucUYk+vjdDhyd3x5UWNuKuj1wXOFYV0W9BoLen23Oody+Q+w+Iywq6DXB88VhnVZ0Gss6PXlF85YAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA24rkdwG5xeFw5MFYTa6OLbdrNKZg1yflfo3wTGFYl+wPuB6T239/xWeEXewTt47CsC7ZHwonzlgAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbiuTblB2OXB6hyeXx5T5jCnaNBb0+eK4wrMuCXmNBrw/ZkxfrM7c/xgr6NlfQ64PnCsO6LOg1FvT68gtnLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG1F8m3KxuTu+ByO3B2fJJPLNTpyucaCXp+U+zXCM4VhXbI/4GbKi/UpFextjn0CWSkM65L9oXDijAUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADAtiL5XUBuMcbkdwk3VNBrLOj1wXOFYV3mdo0OOXJ1fFIeLENHbtcIT+XJPpHb67OA77eF4e8KPFMY1iWfEYUTZywAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtBAsAAAAAthEsAAAAANhGsAAAAABgG8ECAAAAgG0ECwAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYBvBAgAAAIBtRfJrwg6HI78mDRQ47A8FUe6vE9ay527LfeJ2nGd45LbcHwo8PiPc4YwFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGwjWAAAAACwjWABAAAAwDaCBQAAAADbCBYAAAAAbCNYAAAAALCNYAEAAADANoIFAAAAANsIFgAAAABsI1gAAAAAsI1gAQAAAMA2ggUAAAAA2wgWAAAAAGzzKFgYY/K6DiBf5GTbZn/ArSqn2zb7BG5VfEYAf/Jk2/YoWKSkpNguBiiIcrJtsz/gVpXTbZt9ArcqPiOAP3mybTuMB/EjIyNDR44cUXBwsBwOR64UB+QnY4xSUlJUvnx5eXll74pA9gfcauzsDxL7BG49fEYAf8rO/uBRsAAAAACA6+HmbQAAAAC2ESwAAAAA2EawAAAAAGAbwQIAAACAbQQLAAAAALYRLAAAAADYRrAAAAAAYNv/A1jTe7z3ZLQKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -685,7 +679,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1JklEQVR4nO3de1wVZeLH8e8B5I4KhgpZqKR4a72Q2XpDNxPvkbfQLuBqVl5IF6tftQV4Ky9tbrZeqk0jdatVsW1LTQory8qMNss0VEBXKy9JYaIo5/n94YuzHA8IOCBin/frxevFec4zM8/MeQbme2bmGZsxxggAAAAALHCr6QYAAAAAqP0IFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBbAFSA5OVk2m62mm4FLyGazKTk52als27Zt6tq1q/z8/GSz2fTll1/WSNsuJ02bNlV8fHyVzjM+Pl5Nmzat0nlWZtn+/v41smwAKA/BAkCtdMstt8hms2nSpEnVupwzZ86oTZs2stlsmj9/frUuy4ozZ85oxIgR+umnn/TMM8/olVdeUVhYWE03q9Y6dOiQkpOTa20427x5s2w2W5k/s2bNcqq/adMmde/eXb6+vgoMDNTw4cOVk5PjMt+pU6eqU6dOCgoKkq+vr1q3bq3k5GSdOHHCpW5WVpZiY2PVpEkT+fr6qlWrVpo+fbpOnjzpVO+dd97R2LFj1a5dO7m7u9dYaANgnUdNNwAAKmvt2rXaunXrJVnWwoULtX///kuyLCv27t2r3NxcvfDCCxo3blxNN6fWO3TokFJSUtS0aVN16NDB6b0XXnhBdru9ZhpWQa1bt9Yrr7ziUv7KK6/onXfeUd++fR1l//73v3XrrbeqU6dOeuqpp/TLL7/or3/9q7p3767MzEwFBwc76m7btk09evTQmDFj5O3trczMTD311FNKT0/XBx98IDe3c99XHjhwQDfeeKPq1aunSZMmKSgoSFu3blVSUpK2b9+uN954wzHPVatW6bXXXlOnTp0UGhpajVsFQHUjWACoVU6dOqXExEQ9/PDDeuKJJ6p1WYcPH9b06dMvybKsOnz4sCSpfv36NdsQC06ePClfX9+abka56tSpU9NNKFejRo105513upSnpKSoRYsW6ty5s6Ps4YcfVvPmzfXRRx/J09NTkjR48GBH0Hj66acddbds2eIyz/DwcE2bNk2fffaZbrrpJknnAkxeXp62bNmitm3bSpLGjx8vu92u1NRUHT9+XIGBgZKk2bNn64UXXlCdOnU0aNAgff3111W3IQBcUlwKBdQyW7ZsUefOneXt7a3w8HAtXbq01HorVqxQZGSkfHx8FBQUpNjYWB04cMCpTq9evdSuXTt99dVXioqKkq+vr6677jqtXr1akvT++++rS5cu8vHxUUREhNLT012Wk5mZqf79+6tu3bry9/fXzTffrE8++aTC65Obm6shQ4bIz89PDRs21NSpU7Vx40bZbDZt3rzZpf7cuXNlt9s1bdq0Ci9DkpYvXy6bzaaPPvpIf/rTnxQcHCw/Pz/ddtttOnLkSKnT/N///Z8iIiJKPUArb50mTJigiIgI+fj4qEGDBhoxYkSpl5aU5/Tp05o6daqCg4MVEBCgIUOG6L///a9Tnfj4eEVFRUmSRowYIZvNpl69ekmSfvjhB40ZM0ZNmjSRl5eXQkJCdOutt1aqLcX38OzatUsjR45U3bp11aBBAz3wwAM6deqUS/3K9L3t27erZ8+e8vX11aOPPirpXHhMTk5Wy5Yt5e3trZCQEA0dOlR79+51TP/rr78qMTFR11xzjby8vBQREaH58+fLGHPBdfnpp580bdo0XX/99fL391fdunXVv39//ec//3HU2bx5s+PAe8yYMY7Lh5YvX+7Y3udfrlPR9hRfvrdu3Tq1a9dOXl5eatu2rTZs2HDhD+E8Bw8eVExMjPz9/RUcHKxp06apqKjogtN89tln2rNnj+644w6n7bFz507ddtttjlAhSe3bt1fr1q316quvltuW4m2Rl5fnKPvll18knQs4JYWEhMjNzc1pWaGhobUirAEoH2csgFpkx44d6tu3r4KDg5WcnKyzZ88qKSnJ5Z/3rFmz9Pjjj2vkyJEaN26cjhw5ooULF6pnz57KzMx0+lb7+PHjGjRokGJjYzVixAgtXrxYsbGxWrlypaZMmaL77rtPo0eP1rx58zR8+HAdOHBAAQEBkqRvvvlGPXr0UN26dfXQQw+pTp06Wrp0qXr16uUIJRfy66+/6g9/+IO+//57PfDAA2rcuLFWrVqljIyMUuvv379fTz31lF566SX5+Phc1DacPHmyAgMDlZSUpJycHC1YsECTJk3Sa6+95lTvs88+08svv6wtW7ZU+sb4bdu26eOPP3ZcX56Tk6PFixerV69e2rlzZ6W+lR83bpxWrFih0aNHq2vXrnrvvfc0cOBApzr33nuvrr76as2ePVsJCQnq3Lmzo08MGzZM33zzjSZPnqymTZvq8OHD2rRpk/bv31/pa9lHjhyppk2b6sknn9Qnn3yiZ599VsePH1dqaqqjTmX63rFjx9S/f3/FxsbqzjvvVKNGjVRUVKRBgwbp3XffVWxsrB544AHl5+dr06ZN+vrrrxUeHi5jjIYMGaKMjAyNHTtWHTp00MaNG/Xggw/q4MGDeuaZZ8pch3379mndunUaMWKEmjVrph9//FFLly5VVFSUdu7cqdDQULVu3VrTp0/XE088ofHjx6tHjx6SpK5du5Y6z8q2Z8uWLVq7dq0mTJiggIAAPfvssxo2bJj279+vBg0alPs5FBUVKTo6Wl26dNH8+fOVnp6up59+WuHh4br//vvLnG7lypWS5BQsTp8+LUml7k++vr765ptv9MMPP6hx48aO8rNnzyovL0+FhYX6+uuv9ec//1kBAQG68cYbHXV69eqlOXPmaOzYsUpJSVGDBg308ccfa/HixUpISJCfn1+56wmgFjIAao2YmBjj7e1tcnNzHWU7d+407u7upnh3zsnJMe7u7mbWrFlO0+7YscN4eHg4lUdFRRlJZtWqVY6yXbt2GUnGzc3NfPLJJ47yjRs3Gklm2bJlTu3x9PQ0e/fudZQdOnTIBAQEmJ49e5a7Pk8//bSRZNatW+coKygoMK1atTKSTEZGhlP94cOHm65duzpeSzITJ04sdznGGLNs2TIjyfTp08fY7XZH+dSpU427u7vJy8tzlNntdnPjjTeaUaNGGWOMyc7ONpLMvHnzKrSskydPupRt3brVSDKpqakVmocxxnz55ZdGkpkwYYJT+ejRo40kk5SU5CjLyMgwksw///lPR9nx48cr1e6yJCUlGUlmyJAhTuUTJkwwksx//vMfY8zF9b0lS5Y41X3ppZeMJPOXv/zFpR3Fn9u6deuMJDNz5kyn94cPH25sNpvZs2ePoywsLMzExcU5Xp86dcoUFRU5TZednW28vLzM9OnTHWXbtm1z6e/F4uLiTFhYmON1ZdojyXh6ejqV/ec//zGSzMKFC12WVdqyJTm11RhjOnbsaCIjI8uc7uzZs6ZRo0bmxhtvdCovKioy9evXNzfffLNT+dGjR42fn5+RZD7//HOn94r7cvFPRESEy75qjDEzZswwPj4+TnUfe+yxC67fwIEDnbYtgNqFS6GAWqKoqEgbN25UTEyMrr32Wkd569atFR0d7Xi9du1a2e12jRw5UkePHnX8NG7cWC1atHA5G+Dv76/Y2FjH64iICNWvX1+tW7d2OuNQ/Pu+ffsc7XnnnXcUExOj5s2bO+qFhIRo9OjR2rJli+NyiLJs2LBBV199tYYMGeIo8/b21j333ONSNyMjQ2vWrNGCBQsuOM/yjB8/3ukMRI8ePVRUVKTc3FxH2fLly7Vjxw7NmTPnopZR8tvfM2fO6NixY7ruuutUv359ffHFFxWez9tvvy1JSkhIcCqfMmVKhdvh6empzZs36/jx4xVeblkmTpzo9Hry5MlO7axs3/Py8tKYMWOcytasWaOrrrrKMe+Sij+3t99+W+7u7i7bJTExUcYYrV+/vsx18PLyctxgXFRUpGPHjsnf318RERGV+mxKqmx7+vTpo/DwcMfr3/3ud6pbt65j36qI++67z+l1jx49Ljj9u+++qx9//NHpbIUkubm56d5779W7776rRx55RFlZWdq+fbtGjhypwsJCSVJBQYHTNG3atNGmTZu0bt06PfTQQ/Lz8yt1VKimTZuqZ8+eev7557VmzRr98Y9/1OzZs/Xcc89VeD0B1C5cCgXUEkeOHFFBQYFatGjh8l5ERITj4C4rK0vGmFLrSa43njZp0sTlUp969erpmmuucSmT5DhAPXLkiE6ePKmIiAiXZbRu3Vp2u10HDhxQ27ZtdeTIEafrv/39/eXv76/c3FyFh4e7LP+6665zen327FklJCTorrvucrrptDQ//PCDS7tLHuiXDGWSHDeQFq/XL7/8okceeUQPPvigyzYoqaioyOXejKCgIHl6eqqgoEBPPvmkli1bpoMHDzpdZ//zzz9fsP0l5ebmys3NzekgVFKp27w0Xl5emjNnjhITE9WoUSPddNNNGjRokO6++26nS1sq6vw+FR4eLjc3N8f9GpXte1dffbXTtfbSudGtIiIi5OFR9r+n3NxchYaGOi7JK9a6dWvH+2Wx2+3661//qkWLFik7O9upX1bkMqSqaM/5fVA61w+L+2BhYaF++uknp/eDg4Pl7u4u6Vz4LjlS0/nTl2blypVyd3fX7bff7vLe9OnTdfToUc2dO1dPPfWUJKlv374aO3aslixZ4vLcjLp166pPnz6SpFtvvVWrVq3Srbfeqi+++ELt27eXJL366qsaP368vvvuOzVp0kSSNHToUNntdj388MMaNWrURW9vAJcvggVwhbHb7bLZbFq/fr3jQKSk8w8SSqtzoXJTzs2xpencubPTwVVSUpLLw90uJDU1Vbt379bSpUtdbjrOz89XTk6OGjZsKF9fX4WEhDi9v2zZMqcHpJW3XvPnz1dhYaFuv/12x7KKb5Y+fvy4cnJyFBoaqkOHDqlZs2ZO88jIyFCvXr00efJkLVu2TFOmTNHvf/971atXTzabTbGxsZd8mNIpU6Zo8ODBWrdunTZu3KjHH39cTz75pN577z117NjR0rzPD4SV7XsXe5+MFbNnz9bjjz+uP/7xj5oxY4aCgoLk5uamKVOmXLLPprw++PHHH6t3795O72VnZzvuiSlr+rIUFBQoLS1Nffr0cbkfS5I8PT314osvatasWfruu+/UqFEjtWzZUqNHj5abm5tL0D/f0KFDddddd+nVV191BItFixapY8eOjlBRbMiQIVq+fLkyMzMd4QTAlYNgAdQSwcHB8vHxUVZWlst7u3fvdvxefHNrs2bN1LJly2ptj6+vr9Oyi+3atUtubm6Ob/xXrlzpdDlF8aVTYWFh2rlzp4wxTgepe/bscZrf/v37debMGXXr1s1lWampqUpNTVVaWppiYmK0adMmp/eLh7qsqP379+v48eOlTjd79mzNnj1bmZmZatWqlcuyig+qVq9erbi4OKdhOk+dOuU0ak5FhIWFyW63O77FL1baNr+Q8PBwJSYmKjExUVlZWerQoYOefvpprVixolLzycrKcgpTe/bskd1udxzwVkXfCw8P16effqozZ86UOVJQWFiY0tPTlZ+f73SWYNeuXY73y7J69Wr17t1bf//7353K8/LydNVVVzleV+aGfSvtKU379u1d+tbFnGEq9q9//Uv5+fkul0Gdr1GjRo7gUVRUpM2bN6tLly7lPun79OnTstvtTmfjfvzxR8fZwJLOnDkj6dxZSABXHu6xAGoJd3d3RUdHa926dU4PbPv222+1ceNGx+uhQ4fK3d1dKSkpLmcXjDE6duxYlbWnb9++euONN5zOIvz4449atWqVunfvrrp160qSunXrpj59+jh+ioNFdHS0Dh48qH/961+O6U+dOqUXXnjBaVmxsbFKS0tz+ZGkAQMGKC0tzXEPSMnl9OnTx+UMRnkSEhJcllM8pG98fLzS0tLUrFkzeXt7uyyr+EDK3d3dZdsvXLiw3OFAz9e/f39J0rPPPutUXtH7TE6ePOkyHGx4eLgCAgIcowFVxt/+9jen1wsXLnRqZ1X0vWHDhuno0aOlXodfPM8BAwaoqKjIpc4zzzwjm83maE9pSvts/vnPf+rgwYNOZcWjFlUkDFppT2kCAwNd+pa3t3el5lHSqlWr5Ovrq9tuu63C08yfP1/ff/+9EhMTHWV5eXmOYFDSiy++KEm64YYbHGUtW7ZUZmamvvvuO6e6//jHP+Tm5qbf/e53lV0NALUAZyyAWiQlJUUbNmxQjx49NGHCBJ09e1YLFy5U27Zt9dVXX0k6d+A4c+ZMPfLII8rJyVFMTIwCAgKUnZ2ttLQ0jR8/vtLPgCjLzJkztWnTJnXv3l0TJkyQh4eHli5dqtOnT2vu3LnlTn/vvffqueee06hRo/TAAw8oJCREK1eudBxEFX9r3KpVK7Vq1arUeTRr1kwxMTFVsj6S1KlTJ3Xq1MmprDg4tW3btkLLGjRokF555RXVq1dPbdq00datW5Wenl7pa8o7dOigUaNGadGiRfr555/VtWtXvfvuuy5ndMry3Xff6eabb9bIkSPVpk0beXh4KC0tTT/++KPTDfsVlZ2drSFDhqhfv37aunWrYxjc4jM1VdH37r77bqWmpupPf/qTPvvsM/Xo0UO//vqr0tPTNWHCBN16660aPHiwevfurccee0w5OTlq37693nnnHb3xxhuaMmWKyz0pJQ0aNEjTp0/XmDFj1LVrV+3YsUMrV650GoCgeF3q16+vJUuWKCAgQH5+furSpYvL5W+SLLWnuv30009av369hg0bVuaZhxUrVmjNmjXq2bOn/P39lZ6ertdff13jxo3TsGHDHPU2b96shIQEDR8+XC1atFBhYaE+/PBDrV27VjfccIPT814efPBBrV+/Xj169NCkSZPUoEED/fvf/9b69es1btw4pydsf/XVV44vF/bs2aOff/5ZM2fOlHTu7M3gwYOrY9MAqA6XehgqANa8//77JjIy0nh6eprmzZubJUuWOIYDLWnNmjWme/fuxs/Pz/j5+ZlWrVqZiRMnmt27dzvqREVFmbZt27osIywszAwcONClXKUM7/rFF1+Y6Oho4+/vb3x9fU3v3r3Nxx9/XOH12bdvnxk4cKDx8fExwcHBJjEx0axZs8ZIchrutjSltacsxcPNbtu2zam8eJjW0obLLFbZ4WaPHz9uxowZY6666irj7+9voqOjza5du1yGPq2IgoICk5CQYBo0aGD8/PzM4MGDzYEDByo03OzRo0fNxIkTTatWrYyfn5+pV6+e6dKli3n99dcr1Ybi/rVz504zfPhwExAQYAIDA82kSZNMQUGBS30rfc+Yc8P1PvbYY6ZZs2amTp06pnHjxmb48OFOwxrn5+ebqVOnmtDQUFOnTh3TokULM2/ePKehhI0pfbjZxMREExISYnx8fEy3bt3M1q1bTVRUlImKinKa9o033jBt2rQxHh4eTkPPnj/cbGXaU1afrWjfiIuLM35+fi7lpf0NMMaYJUuWGEnmX//6V5nz/PTTT03Pnj1NYGCg8fb2Nu3btzdLlixxafuePXvM3XffbZo3b258fHyMt7e3adu2rUlKSjInTpwodb79+/c3jRs3NnXq1DEtW7Y0s2bNMmfOnHGqV7xvlvZT2f0FQM2yGXMRd2ICQDVasGCBpk6dqv/+97+6+uqra7o5v3nJyclKSUnRkSNHnO5DAACgJO6xAFCjzh8j/9SpU1q6dKlatGhBqAAAoBbhHgsANWro0KG69tpr1aFDB/38889asWKFdu3apZUrV9Z006rV+c/bOJ+Pj4/j2SHV5cSJE6U+2Kyk85+XAABAWQgWAGpUdHS0XnzxRa1cuVJFRUVq06aNXn311VIf5HUlKW+0qri4OC1fvrxa2zB//nylpKRcsE52dna1tgEAcOXgHgsAqAHp6ekXfD80NFRt2rSp1jbs27dP+/btu2Cd7t27WxrqFADw20GwAAAAAGAZN28DAAAAsIxgAeCSadq0qeLj453KsrKy1LdvX9WrV082m03r1q2rkbZdTnr16qVevXpV6TyTk5MdDxysbq+//rqCgoLKvTG8siqzDjabTcnJyVW6fFSvm266SQ899FBNNwOABQQLADUqLi5OO3bs0KxZs/TKK6/ohhtuqOkm1VonT55UcnKyNm/eXGNtKCoqUlJSkiZPnlzmk55xzi233CKbzaZJkybVdFPK9fe//12tW7eWt7e3WrRooYULF1ZouhMnTigpKUn9+vVTUFCQbDZbmYMSPPzww/rb3/5W7ohpAC5fBAsANaagoEBbt27V2LFjNWnSJN15551q0qRJTTer1jp58qRSUlJKDRZ//vOfXZ4ZUh3efPNN7d69W+PHj6/yeV+qdbgU1q5dq61bt9Z0Mypk6dKlGjdunNq2bauFCxfq97//vRISEjRnzpxypz169KimT5+ub7/9Vu3bt79g3VtvvVV169bVokWLqqrpAC4xggWAGnPkyBFJUv369Wu2IRb8+uuvNd2ECvHw8LgkozstW7ZM3bp1q9KHGxZv40u1DtXt1KlTSkxM1MMPP1zTTSlXQUGBHnvsMQ0cOFCrV6/WPffco9TUVN1xxx2aMWOGjh8/fsHpQ0JC9P333ys3N1fz5s27YF03NzcNHz5cqampYlwZoHYiWAC11ObNm3XDDTfI29tb4eHhWrp0aZnXoK9YsUKRkZHy8fFRUFCQYmNjdeDAAac6vXr1Urt27bRz50717t1bvr6+uvrqqzV37txKt80Yo5kzZ6pJkyby9fVV79699c033zjVSU5OVlhYmCTpwQcflM1mU9OmTSVJ+fn5mjJlipo2bSovLy81bNhQt9xyi7744osKt2H58uWy2Wz64IMPdO+996pBgwaqW7eu7r777lIPhtavX68ePXrIz89PAQEBGjhwoEub4+Pj5e/vr71792rAgAEKCAjQHXfcIUmy2+3661//quuvv17e3t4KDg5Wv3799PnnnzumP3v2rGbMmKHw8HB5eXmpadOmevTRR3X69OkLrkthYaGeeOIJRUZGql69evLz81OPHj2UkZHhqJOTk+N4mF1KSopsNpvTfQal9Y2Ktqdp06YaNGiQtmzZohtvvFHe3t5q3ry5UlNTneqdOnVKGzZsUJ8+fVzWoaCgQAkJCbrqqqsUEBCgIUOG6ODBgy73QhS3c+fOnRo9erQCAwPVvXv3Mtfh9OnTmjp1qoKDgx3z/e9//3vB7VmanJwc2Ww2zZ8/X88//7xjm3Tu3Fnbtm2r9PwuZO7cubLb7Zo2bZrleRX3yX379ik6Olp+fn4KDQ3V9OnTq+TgPCMjQ8eOHdOECROcyidOnKhff/1Vb7311gWn9/LyUuPGjSu8vFtuuUW5ubn68ssvL6a5AGoYD8gDaqHMzEz169dPISEhSklJUVFRkaZPn17qU5JnzZqlxx9/XCNHjtS4ceN05MgRLVy4UD179lRmZqbT2YLjx4+rX79+Gjp0qEaOHKnVq1fr4Ycf1vXXX6/+/ftXuH1PPPGEZs6cqQEDBmjAgAH64osv1LdvXxUWFjrqDB06VPXr19fUqVM1atQoDRgwwHFN/n333afVq1dr0qRJatOmjY4dO6YtW7bo22+/VadOnSq1rSZNmqT69esrOTlZu3fv1uLFi5Wbm6vNmzc7DlJfeeUVxcXFKTo6WnPmzNHJkye1ePFide/eXZmZmY7AI507GI+Ojlb37t01f/58+fr6SpLGjh2r5cuXq3///ho3bpzOnj2rDz/8UJ988onjvpFx48bp5Zdf1vDhw5WYmKhPP/1UTz75pL799lulpaWVuQ6//PKLXnzxRY0aNUr33HOP8vPz9fe//13R0dH67LPP1KFDBwUHB2vx4sW6//77ddttt2no0KGSpN/97ndlzrcy7dmzZ4+GDx+usWPHKi4uTi+99JLi4+MVGRmptm3bSpK2b9+uwsLCUj+j+Ph4vf7667rrrrt000036f3339fAgQPLbNuIESPUokULzZ49+4IHyOPGjdOKFSs0evRode3aVe+9994F51ueVatWKT8/X/fee69sNpvmzp2roUOHat++fapTp46kc2EmPz+/QvO76qqrnF7v379fTz31lF566SX5+PhcdDtLKioqUr9+/XTTTTdp7ty52rBhg5KSknT27FlNnz7dUe/48eMqKioqd36+vr6Ofp2ZmSlJLvc+RUZGys3NTZmZmbrzzjurZD2K5ytJH330kTp27Fhl8wVwiRgAtc7gwYONr6+vOXjwoKMsKyvLeHh4mJK7dU5OjnF3dzezZs1ymn7Hjh3Gw8PDqTwqKspIMqmpqY6y06dPm8aNG5thw4ZVuG2HDx82np6eZuDAgcZutzvKH330USPJxMXFOcqys7ONJDNv3jynedSrV89MnDixwssszbJly4wkExkZaQoLCx3lc+fONZLMG2+8YYwxJj8/39SvX9/cc889TtP/8MMPpl69ek7lcXFxRpL5v//7P6e67733npFkEhISXNpRvA2+/PJLI8mMGzfO6f1p06YZSea9995zlEVFRZmoqCjH67Nnz5rTp087TXf8+HHTqFEj88c//tFRduTIESPJJCUlubQjKSnJqW9Upj1hYWFGkvnggw8cZYcPHzZeXl4mMTHRUfbiiy8aSWbHjh1O89y+fbuRZKZMmeJUHh8f79Le4naOGjWqwuswYcIEp3qjR48uczuUpbgvNmjQwPz000+O8jfeeMNIMm+++aajrLhvVeTnfMOHDzddu3Z1vJZkqa8X98nJkyc7yux2uxk4cKDx9PQ0R44ccZQXf47l/ZTcbhMnTjTu7u6lLjs4ONjExsZWuK3btm0zksyyZcsuWM/T09Pcf//9FZ4vgMsHZyyAWqaoqEjp6em67bbbFBoa6ii/7rrr1L9/f7355puOsrVr18put2vkyJE6evSoo7xx48Zq0aKFMjIy9OijjzrK/f39nb599PT01I033lju05lLSk9PV2FhoSZPnux02cqUKVM0e/bsCs2jfv36+vTTT3Xo0CGndbwY48ePd3zTLEn333+/Hn30Ub399tsaMmSINm3apLy8PI0aNcppG7m7u6tLly5OlxuVnEdJa9askc1mU1JSkkvd4m3w9ttvS5L+9Kc/Ob2fmJio+fPn66233lLv3r1LXQd3d3e5u7tLOnfJVV5enux2u2644YZKXR5WUmXb06ZNG/Xo0cPxOjg4WBEREU5949ixY5KkwMBAp3lu2LBBklwup5k8eXKZIwTdd999FV6HhIQEp/IpU6Zo1apV5U5fmttvv92p/cXrXHI9o6OjtWnTpkrPOyMjQ2vWrNGnn356UW27kJIjSxWPNPXWW28pPT1dsbGxkqSVK1dW6Ob35s2bO34vKCiQp6dnqfW8vb2r5Wb6wMBAp30RQO1BsABqmcOHD6ugoEDXXXedy3vnl2VlZckYoxYtWpQ6r5IH3JLUpEkTl2vYAwMD9dVXX1W4fbm5uZLksszg4GCXA86yzJ07V3FxcbrmmmsUGRmpAQMG6O6773Y64Kmo89vh7++vkJAQ5eTkSDq3jSTpD3/4Q6nT161b1+m1h4eHy8hVe/fuVWhoqIKCgspsR25urtzc3Fw+o8aNG6t+/fqO7VaWl19+WU8//bR27dqlM2fOOMqbNWt2wemqqj3XXnutyzwCAwNLvV/FnHfpUvGyzm9raX24WEXWq3i+4eHhTuURERHlTluW89ezuM+WXM+QkBCFhIRUar5nz55VQkKC7rrrLnXu3Pmi21caNzc3l32jZcuWkuTo55LUrVu3Ss/bx8fH6RLGkk6dOlVll3OVZIy5ZM9cAVC1CBbAFcxut8tms2n9+vWOb7xLOv85A6XVkVwPFKvbyJEj1aNHD6Wlpemdd97RvHnzNGfOHK1du7ZS93pUhN1ul3TuPovSbjL18HD+M+nl5SU3t4sf9+JiDphWrFih+Ph4xcTE6MEHH1TDhg3l7u6uJ598Unv37r3otlSmPRXpGw0aNJB07iDc6rDB1XHAWhEVWc+CggL9/PPPFZpfcZ9KTU3V7t27tXTpUqeDfencYAU5OTlq2LCh496G6nDkyJEK3WPh7+/v+NsQEhKioqIiHT58WA0bNnTUKSws1LFjxyyfUSxNXl6ey70pAGoHggVQyzRs2FDe3t7as2ePy3vnl4WHh8sYo2bNmjm+waxuxSM9ZWVlOX2LeuTIkXKHpiwpJCREEyZM0IQJE3T48GF16tRJs2bNqnSwyMrKcrqk58SJE/r+++81YMAASXJ8292wYcNSRzOqiPDwcG3cuFE//fRTmWctwsLCZLfblZWVpdatWzvKf/zxR+Xl5Tm2W2lWr16t5s2ba+3atU5B4PxLryoTWqy0pyytWrWSJGVnZ+v66693WVZ2drbTGaTS+nBlFM937969Tmcpdu/ebWm+5Xnttdc0ZsyYCtUtDiT79+/XmTNnSj1rkJqaqtTUVKWlpSkmJqbS7bHb7dq3b5/TPv7dd99JktPAA507dy73zJh0rl8Vj9TVoUMHSdLnn3/u2GeKX9vtdsf7VeXgwYMqLCx06pMAag+GmwVqGXd3d/Xp00fr1q3ToUOHHOV79uzR+vXrneoOHTpU7u7uSklJcTnrYIxxXBNflfr06aM6depo4cKFTstcsGBBhaYvKipy+Ta4YcOGCg0NLXdY1tI8//zzTpcOLV68WGfPnnUElOjoaNWtW1ezZ892qles+FkbFzJs2DAZY5SSkuLyXvE2KD4oO387/OUvf5GkC45kVPwtesnt+emnn7o8YK342+68vLxy22ylPWWJjIyUp6en0xC70rltLMnlwWcVfXpzWYo/w2effdapvKJ97WIV32NRkZ9isbGxSktLc/mRzn0WaWlp6tKly0W36bnnnnP8bozRc889pzp16ujmm292lK9cubJCbb777rsd0/zhD39QUFCQFi9e7LS8xYsXy9fX16mfHD16VLt27dLJkycvej22b98uSeratetFzwNAzeGMBVALJScn65133lG3bt10//33q6ioSM8995zatWvnNP57eHi4Zs6cqUceeUQ5OTmKiYlRQECAsrOzlZaWpvHjx1fJWPolBQcHa9q0aXryySc1aNAgDRgwQJmZmVq/fn2FLm/Iz89XkyZNNHz4cLVv317+/v5KT0/Xtm3b9PTTT1e6PYWFhbr55ps1cuRI7d69W4sWLVL37t01ZMgQSefuoVi8eLHuuusuderUSbGxsQoODtb+/fv11ltvqVu3bk4HbaXp3bu37rrrLj377LPKyspSv379ZLfb9eGHH6p3796aNGmS2rdvr7i4OD3//PPKy8tTVFSUPvvsM7388suKiYkp88ZtSRo0aJDWrl2r2267TQMHDlR2draWLFmiNm3a6MSJE456Pj4+atOmjV577TW1bNlSQUFBateundq1a+cyTyvtKYu3t7f69u2r9PR0p2FOIyMjNWzYMC1YsEDHjh1zDDdb/K36xV5P36FDB40aNUqLFi3Szz//rK5du+rdd9+1fCakPBdzj0WrVq0cZ3TO16xZM5czFb169dL7779focsQvb29tWHDBsXFxalLly5av3693nrrLT366KNOQ1Bf7D0WM2bM0MSJEzVixAhFR0frww8/1IoVKzRr1iynM3TPPfecUlJSlJGRoV69ejmV5+XlOb4IefPNNx3PGpk8ebLq1avnqLtp0yZde+21DDUL1FaXfiAqAFXh3XffNR07djSenp4mPDzcvPjiiyYxMdF4e3u71F2zZo3p3r278fPzM35+fqZVq1Zm4sSJZvfu3Y46UVFRpm3bti7TxsXFmbCwsEq1raioyKSkpJiQkBDj4+NjevXqZb7++msTFhZW7nCzp0+fNg8++KBp3769CQgIMH5+fqZ9+/Zm0aJFlWpD8ZCg77//vhk/frwJDAw0/v7+5o477jDHjh1zqZ+RkWGio6NNvXr1jLe3twkPDzfx8fHm888/d9oWfn5+pS7v7NmzZt68eaZVq1bG09PTBAcHm/79+5vt27c76pw5c8akpKSYZs2amTp16phrrrnGPPLII+bUqVNO8zp/uFm73W5mz55twsLCjJeXl+nYsaP597//Xepn8/HHH5vIyEjj6enpNHTo+UO1VqY9YWFhZuDAgS7rfH47jTFm7dq1xmazmf379zuV//rrr2bixIkmKCjI+Pv7m5iYGLN7924jyTz11FOOesXtLDlM6vnvlVRQUGASEhJMgwYNjJ+fnxk8eLA5cODARQ83e/7Qx8aYSs+rMlTGcLORkZGmcePG5U5f3Cf37t1r+vbta3x9fU2jRo1MUlKSKSoqqrJ2Pv/88yYiIsLx9+aZZ55xGk7amP99PhkZGU7lFxrmNjs721GvqKjIhISEmD//+c9V1m4Al5bNmEt8VyaAahMTE6NvvvnGMdLRb9ny5cs1ZswYbdu2zeXhXqg+RUVFatOmjUaOHKkZM2ZcsO6XX36pjh07asWKFY4nmOPcWbugoCAtWLBAEydOvGDd+Ph4rV692unMVW21bt06jR49Wnv37q30GSEAlwfusQBqqfPHj8/KytLbb7/tdAkCcKm5u7tr+vTp+tvf/uZ0sFva8w4WLFggNzc39ezZ81I28bL3wQcf6Oqrr9Y999xT0025pObMmaNJkyYRKoBajHssgFqqefPmio+PV/PmzZWbm6vFixfL09NTDz30ULUts7zhKj09PS/4LIeqUJGhPqu7Dbiw22+/XbfffrtT2dy5c7V9+3b17t1bHh4eWr9+vdavX6/x48frmmuuqba2FBUVlXsDfsnhVS8HAwcOvKib52u78wcjAFD7ECyAWqpfv376xz/+oR9++EFeXl76/e9/r9mzZ5f5MLyqUN5wlVFRUdq8eXO1LV+q2FCfpT0tGzWra9eu2rRpk2bMmKETJ07o2muvVXJysh577LFqXe6BAwfKfdheyeFVAQAXj3ssAFTYRx99VOolLcUCAwMVGRlZrW34/vvv9c0331ywTmRkZIWf8o0r26lTp7Rly5YL1mnevPlFPdUdAOCMYAEAAADAMm7eBgAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABY5lGRSna7XYcOHVJAQIBsNlt1twmodsYY5efnKzQ0VG5ulcvX7A+40ljZHyT2CVx5+B8B/E9l9ocKBYtDhw7pmmuuqZLGAZeTAwcOqEmTJpWahv0BV6qL2R8k9glcufgfAfxPRfaHCsXwgICAKmkQcLm5mL7N/oAr1cX2bfYJXKn4HwH8T0X6doWCBafycKW6mL7N/oAr1cX2bfYJXKn4HwH8T0X6NjdvAwAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAs86ipBRtjamrRqMVsNltNN6FaVPX+UB3biX328nOl7g/n/Bb7W1V/nmzDKwX/I3AxauJ/BGcsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZR41tWCbzVZTi75iGGOqdH7V8ZlUdRtx5fgt/g1gf6hJ1dHffmufJ9sQlw7/I2onzlgAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALPOoqQUbY2pq0biUbLaabgF+I/ibcmUxqtq/HbXjLxF9GJdGbfh7ebm30cbxTak4YwEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACzzqOkGVBWbzVbTTUApbDJVPkegNLXhb4AxVb0/XMGqeltVS/+4/Pscrgy14e/b5Y6/v5cGZywAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlHjXdgMuZMaZK52ez2ap0fqra5km2qp4hULaq3r+qWpXvr+dmWvXzRI253PtwVauWfQIV8lvra7VBtXwmV8A+xhkLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmUdNLdhms9XUoq8YRqZK52cTnwnKxj5rna2K91mxz15R2MdwqdDXLle1/38EZywAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlnnU1IKNMTW16Bpzua/z5d4+SbLZbDXdhFqhNnyWVc2mKu4btt/eNkTlVHmfE30Olwb/I6pihr+9bVgRnLEAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWedTUgm02W00tGrjssD9cjvhMalKt2CeqvIm1YJ1RI2rF/vCbw2dSGs5YAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMCyCgULY0x1twOoERfTt9kfcKW62L7NPoErFf8jgP+pSN+uULDIz8+33BjgcnQxfZv9AVeqi+3b7BO4UvE/AvifivRtm6lA/LDb7Tp06JACAgJks9mqpHFATTLGKD8/X6GhoXJzq9wVgewPuNJY2R8k9glcefgfAfxPZfaHCgULAAAAALgQbt4GAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACW/T/cSk0gGkwbUAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0wElEQVR4nO3de1wVZeLH8e8B5I4XDBPUUMnw1mqRWd7QMlExM0VDK8HNtERJw+rXFfBWeSk328y20kjbrfXWtqUmhZVlZmWtm+l6AXS10gwLFUU5z+8PX+csxwNycEDEPu/Xi9eL85xnZp6Z8wzM98zMMzZjjBEAAAAAWOBV0w0AAAAAUPsRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESyAi0BGRoZsNltNNwPnkc1mU0ZGhkvZpk2b1KVLFwUFBclms+mbb76pkbZdSJo3b67k5OQqnWdycrKaN29epfOszLKDg4NrZNkAUBGCBYBa6aabbpLNZtP48eOrdTknT55U27ZtZbPZNHv27GpdlhUnT57U0KFD9csvv+jZZ5/V66+/rsjIyJpuVq21f/9+ZWRk1OpwNmnSJF199dUKDQ1VYGCg2rRpo4yMDB05csSl3nfffaehQ4eqZcuWCgwM1CWXXKIePXronXfecalnt9u1aNEiDRw4UM2aNVNQUJDat2+vadOm6fjx42W24ZVXXlGbNm3k7++vVq1aad68eRW2+3zt2wCqnk9NNwAAKmv58uXasGHDeVnWvHnztGfPnvOyLCt27dql/Px8/eUvf9Ho0aNrujm13v79+5WZmanmzZurY8eOLu/95S9/kd1ur5mGVcKmTZvUvXt3jRo1Sv7+/tq8ebOeeuopZWdn6+OPP5aX1+nvFvPz81VYWKikpCRFRETo2LFjWrZsmQYOHKgFCxZozJgxkqRjx45p1KhRuu6663TPPfeoUaNG2rBhg9LT0/XBBx/oww8/dDlzumDBAt1zzz0aMmSI7r//fn3yySdKTU3VsWPH9NBDD5XZ5vO5bwOoegQLALXK8ePHlZaWpoceekhPPPFEtS7rwIEDmjJlynlZllUHDhyQJNWvX79mG2LBsWPHFBgYWNPNqFCdOnVqugkeWb9+vVtZVFSUJk+erC+++ELXXXedJKl///7q37+/S73x48crJiZGzzzzjDNY+Pr66tNPP1WXLl2c9e6++241b97cGS569+4tSSoqKtKjjz6q+Ph4LV261FnXbrdr6tSpGjNmjBo0aOCyzPO5bwOoHlwKBdQy69evV6dOneTv76+oqCgtWLCgzHqLFy9WTEyMAgICFBoaqsTERO3du9elTs+ePdW+fXv961//UmxsrAIDA3X55Zc7DwQ++ugjde7cWQEBAYqOjlZ2drbbcjZv3qx+/fqpbt26Cg4O1o033qjPP//c4/XJz8/XwIEDFRQUpEaNGmnSpElas2aNbDab1q1b51Z/5syZstvtmjx5ssfLkKRFixbJZrPp008/1f3336+wsDAFBQXp1ltv1cGDB8uc5v/+7/8UHR2tO+64o1LLys/P17hx4xQdHa2AgAA1bNhQQ4cOVV5eXqXmI0knTpzQpEmTFBYWppCQEA0cOFD//e9/XeokJycrNjZWkjR06FDZbDb17NlTkvTjjz9q1KhRatq0qfz8/BQeHq5bbrmlUm1x3MOzbds2DRs2THXr1lXDhg113333lXkJTGX63ldffaUePXooMDBQjzzyiKTTB5gZGRm64oor5O/vr/DwcA0ePFi7du1yTn/06FGlpaWpWbNm8vPzU3R0tGbPni1jzFnX5ZdfftHkyZN15ZVXKjg4WHXr1lW/fv307bffOuusW7dOnTp1kiSNGjVKNptNNptNixYtcm7vM++x8LQ9jkt8Vq5cqfbt28vPz0/t2rXT6tWrz/4hnGHfvn0aNGiQgoODFRYWpsmTJ6ukpKTC6RztPnz48FnreXt7q1mzZi71fH19XUKFw6233ipJ+v77751lOTk5OnTokMaNG+dSNyUlRUePHtW7777rNp9z3bcBXDg4YwHUIlu2bFGfPn0UFhamjIwMnTp1Sunp6br00ktd6k2fPl2PP/64hg0bptGjR+vgwYOaN2+eevTooc2bN7t8q11QUKABAwYoMTFRQ4cO1fz585WYmKglS5Zo4sSJuueeezRixAjNmjVLCQkJ2rt3r0JCQiSdvja7e/fuqlu3rh588EHVqVNHCxYsUM+ePZ2h5GyOHj2qG264QT/88IPuu+8+NW7cWG+88YZycnLKrL9nzx499dRTevXVVxUQEHBO23DChAlq0KCB0tPTlZeXp7lz52r8+PF68803Xep98cUXeu2117R+/fpK3xi/adMmffbZZ0pMTFTTpk2Vl5en+fPnq2fPntq6dWulvpUfPXq0Fi9erBEjRqhLly768MMPFR8f71Jn7NixatKkiWbMmKHU1FR16tTJ2SeGDBmi7777ThMmTFDz5s114MABrV27Vnv27Kn0DcjDhg1T8+bN9eSTT+rzzz/Xc889p4KCAmVlZTnrVKbvHTp0SP369VNiYqLuuOMOXXrppSopKdGAAQP0wQcfKDExUffdd58KCwu1du1a/fvf/1ZUVJSMMRo4cKBycnJ01113qWPHjlqzZo0eeOAB7du3T88++2y567B7926tXLlSQ4cOVYsWLfTTTz9pwYIFio2N1datWxUREaE2bdpoypQpeuKJJzRmzBh1795dkso8qJZU6fasX79ey5cv17hx4xQSEqLnnntOQ4YM0Z49e9SwYcMKP4eSkhLFxcWpc+fOmj17trKzszVnzhxFRUXp3nvvdal76tQpHT58WMXFxfr3v/+txx57TCEhIbr22mvd5nv06FEVFRXp119/1T/+8Q+tWrVKt912W4Xt+fHHHyVJl1xyibNs8+bNkqRrrrnGpW5MTIy8vLy0efNml8BeFfs2gAuAAVBrDBo0yPj7+5v8/Hxn2datW423t7dx7M55eXnG29vbTJ8+3WXaLVu2GB8fH5fy2NhYI8m88cYbzrJt27YZScbLy8t8/vnnzvI1a9YYSWbhwoUu7fH19TW7du1ylu3fv9+EhISYHj16VLg+c+bMMZLMypUrnWVFRUWmdevWRpLJyclxqZ+QkGC6dOnifC3JpKSkVLgcY4xZuHChkWR69+5t7Ha7s3zSpEnG29vbHD582Flmt9vNtddea4YPH26MMSY3N9dIMrNmzfJoWceOHXMr27Bhg5FksrKyPJqHMcZ88803RpIZN26cS/mIESOMJJOenu4sy8nJMZLM3//+d2dZQUFBpdpdnvT0dCPJDBw40KV83LhxRpL59ttvjTHn1vdefPFFl7qvvvqqkWSeeeYZt3Y4PreVK1caSWbatGku7yckJBibzWZ27tzpLIuMjDRJSUnO18ePHzclJSUu0+Xm5ho/Pz8zZcoUZ9mmTZvc+rtDUlKSiYyMdL6uTHskGV9fX5eyb7/91kgy8+bNc1tWWcuW5NJWY4y56qqrTExMjFt9R79z/ERHR7vtVw5jx4511vPy8jIJCQnml19+qbBNvXv3NnXr1jUFBQXOspSUFOPt7V1m/bCwMJOYmOhSZmXfBnDh4FIooJYoKSnRmjVrNGjQIF122WXO8jZt2iguLs75evny5bLb7Ro2bJh+/vln50/jxo3VqlUrt7MBwcHBSkxMdL6Ojo5W/fr11aZNG5czDo7fd+/e7WzP+++/r0GDBqlly5bOeuHh4RoxYoTWr1+v33777azrtHr1ajVp0kQDBw50lvn7++vuu+92q5uTk6Nly5Zp7ty5Z51nRcaMGeNyBqJ79+4qKSlRfn6+s2zRokXasmWLnn766XNaRulvXE+ePKlDhw7p8ssvV/369fX11197PJ/33ntPkpSamupSPnHiRI/b4evrq3Xr1qmgoMDj5ZYnJSXF5fWECRNc2lnZvufn56dRo0a5lC1btkyXXHKJc96lOT639957T97e3m7bJS0tTcYYrVq1qtx18PPzc960XFJSokOHDik4OFjR0dGV+mxKq2x7evfuraioKOfrP/zhD6pbt65z3/LEPffc4/K6e/fuZU7ftm1brV27VitXrtSDDz6ooKAgt1GhHCZOnKi1a9fqtddeU79+/VRSUqLi4uKztmPGjBnKzs7WU0895XI2qqioSL6+vmVO4+/vr6KiIufrqtq3AdQ8LoUCaomDBw+qqKhIrVq1cnsvOjraeXC3Y8cOGWPKrCe533jatGlTt0t96tWrp2bNmrmVSXIeoB48eFDHjh1TdHS02zLatGkju92uvXv3ql27djp48KDL9d/BwcEKDg5Wfn6+oqKi3JZ/+eWXu7w+deqUUlNTdeeddzqvfS+P47KM0u0ufaBfOpRJct5A6liv3377TQ8//LAeeOABt21QWklJidu9GaGhofL19VVRUZGefPJJLVy4UPv27XO5zv7XX389a/tLy8/Pl5eXl8tBqKQyt3lZ/Pz89PTTTystLU2XXnqprrvuOg0YMEAjR45U48aNPW6Hw5l9KioqSl5eXs77NSrb95o0aeJ28Llr1y5FR0fLx6f8f0/5+fmKiIhwXpLn0KZNG+f75bHb7frTn/6kF154Qbm5uS790pPLkKqiPWf2Qel0P3T0weLiYv3yyy8u74eFhcnb21vS6QPzsLCwcqcvrW7dus4bqm+55Ra98cYbuuWWW/T111+rQ4cOLnVbt26t1q1bS5JGjhypPn366Oabb9bGjRvLvBzwzTff1GOPPaa77rrL7RKsgICAckPJ8ePHnftkZfZtABc+ggVwkbHb7bLZbFq1apXzQKS0Mx+uVVads5WbCm6OLUunTp1cDq7S09PdHu52NllZWdq+fbsWLFjgdtNxYWGh8vLy1KhRIwUGBio8PNzl/YULF7o8IK2i9Zo9e7aKi4t12223OZfluFm6oKBAeXl5ioiI0P79+9WiRQuXeeTk5Khnz56aMGGCFi5cqIkTJ+r6669XvXr1ZLPZlJiYeN6HKZ04caJuvvlmrVy5UmvWrNHjjz+uJ598Uh9++KGuuuoqS/M+82Czsn2vJq6lnzFjhh5//HH98Y9/1NSpUxUaGiovLy9NnDjxvH02FfXBzz77TL169XJ5Lzc313lPTHnTe2Lw4MG688479be//c0tWJwpISFBY8eO1X/+8x+3MLt27VqNHDlS8fHxevHFF92mDQ8PV0lJiQ4cOKBGjRo5y4uLi3Xo0CFFRERIqty+DeDCR7AAaomwsDAFBARox44dbu9t377d+bvj5tYWLVroiiuuqNb2BAYGuizbYdu2bfLy8nJ+479kyRKXSx8cl05FRkZq69atMsa4HKTu3LnTZX579uzRyZMn1bVrV7dlZWVlKSsrSytWrNCgQYO0du1al/fbtWtXqfXas2ePCgoKypxuxowZmjFjhjZv3qzWrVu7LctxoLZ06VIlJSVpzpw5zveOHz9e4Ug8Z4qMjJTdbnd+i+9Q1jY/m6ioKKWlpSktLU07duxQx44dNWfOHC1evLhS89mxY4dLmNq5c6fsdrvzgLcq+l5UVJQ2btyokydPljusa2RkpLKzs1VYWOhylmDbtm3O98uzdOlS9erVS6+88opL+eHDh11uPq7MDftW2lOWDh06uPWtcznDVJYTJ07Ibrd7dObMsc+eWXfjxo269dZbdc011+itt94q8+yS49kfX375pctQtl9++aXsdrvz/crs2wAufNxjAdQS3t7eiouL08qVK10e2Pb9999rzZo1zteDBw+Wt7e3MjMz3c4uGGN06NChKmtPnz599Pbbb7t80/jTTz/pjTfeULdu3VS3bl1JUteuXdW7d2/njyNYxMXFad++ffrHP/7hnP748eP6y1/+4rKsxMRErVixwu1HOj0G/4oVK5z3gJReTu/evd3OYFQkNTXVbTmOIX2Tk5O1YsUKtWjRQv7+/m7LclxW5e3t7bbt582b59FwoKX169dPkvTcc8+5lHt6LfqxY8fchoONiopSSEiITpw4Uam2SNKf//xnl9eOpyg72lkVfW/IkCH6+eef9fzzz7u955hn//79VVJS4lbn2Weflc1mc7anLGV9Nn//+9+1b98+l7KgoCBJFQ/LarU9ZWnQoIFb3/L396/UPA4fPqyTJ0+6lb/88suSXEdrcjwDpbSTJ08qKytLAQEBatu2rbP8+++/V3x8vJo3b65//vOf5Z51uuGGGxQaGqr58+e7lM+fP1+BgYHOkc0qs28DuPBxxgKoRTIzM7V69Wp1795d48aN06lTpzRv3jy1a9dO//rXvySdPnCcNm2aHn74YeXl5WnQoEEKCQlRbm6uVqxYoTFjxlTZOPHTpk3T2rVr1a1bN40bN04+Pj5asGCBTpw4oZkzZ1Y4/dixY/X8889r+PDhuu+++xQeHq4lS5Y4D6Ic3xqXvvb7TC1atKjSbzOvvvpqXX311S5ljuDUrl07j5Y1YMAAvf7666pXr57atm2rDRs2KDs7u9LX8Hfs2FHDhw/XCy+8oF9//VVdunTRBx984HZGpzz/+c9/dOONN2rYsGFq27atfHx8tGLFCv30008uN+x7Kjc3VwMHDlTfvn21YcMG5zC4jjM1VdH3Ro4cqaysLN1///364osv1L17dx09elTZ2dkaN26cbrnlFt18883q1auXHn30UeXl5alDhw56//339fbbb2vixIlu96SUNmDAAE2ZMkWjRo1Sly5dtGXLFi1ZssRlAALHutSvX18vvviiQkJCFBQUpM6dO7td/ibJUnuqy7p165SamqqEhAS1atVKxcXF+uSTT7R8+XJdc801LkO9jh07Vr/99pt69OihJk2a6Mcff9SSJUu0bds2zZkzx3kJW2FhoeLi4lRQUKAHHnjA7VkUUVFRuv766yWdvsxt6tSpSklJ0dChQxUXF6dPPvlEixcv1vTp0xUaGirp/O7bAM6D8z0MFQBrPvroIxMTE2N8fX1Ny5YtzYsvvugcDrS0ZcuWmW7dupmgoCATFBRkWrdubVJSUsz27duddWJjY027du3clhEZGWni4+PdylXGEJBff/21iYuLM8HBwSYwMND06tXLfPbZZx6vz+7du018fLwJCAgwYWFhJi0tzSxbtsxIchnutixltac8juFmN23a5FLuGKa1vCE4jan8cLMFBQVm1KhR5pJLLjHBwcEmLi7ObNu2zW3oU08UFRWZ1NRU07BhQxMUFGRuvvlms3fvXo+Gm/35559NSkqKad26tQkKCjL16tUznTt3Nm+99Val2uDoX1u3bjUJCQkmJCTENGjQwIwfP94UFRW51bfS94w5PVzvo48+alq0aGHq1KljGjdubBISElyGNS4sLDSTJk0yERERpk6dOqZVq1Zm1qxZLkMJG1P2cLNpaWkmPDzcBAQEmK5du5oNGzaY2NhYExsb6zLt22+/bdq2bWt8fHxchp49c7jZyrSnvD7rad9ISkoyQUFBbuVn/g3YuXOnGTlypGnZsqUJCAgw/v7+pl27diY9Pd0cOXLEZdq//vWvpnfv3ubSSy81Pj4+pkGDBqZ3797m7bffdqnn2A/K+ymr/S+99JKJjo42vr6+Jioqyjz77LNu26Qsldm3AVw4bMacw52YAFCN5s6dq0mTJum///2vmjRpUtPN+d3LyMhQZmamDh486HIfAgAApXGPBYAaVfqmbun0PRYLFixQq1atCBUAANQi3GMBoEYNHjxYl112mTp27Khff/1Vixcv1rZt27RkyZKablq1OvN5G2cKCAhwPjukuhw5cqTch6U5nPm8BAAAykOwAFCj4uLi9PLLL2vJkiUqKSlR27Zt9be//U233XZbTTetWlU0WlVSUpIWLVpUrW2YPXu2MjMzz1onNze3WtsAALh4cI8FANSA7Ozss74fERHhMsxnddi9e7d279591jrdunWr9FCnAIDfJ4IFAAAAAMu4eRsAAACAZQQLAOdN8+bNlZyc7FK2Y8cO9enTR/Xq1ZPNZtPKlStrpG0Xkp49e6pnz55VOs+MjAznAwer21tvvaXQ0NAKbwyvrMqsg81mU0ZGRpUuH9Xruuuu04MPPljTzQBgAcECQI1KSkrSli1bNH36dL3++uu65pprarpJtdaxY8eUkZGhdevW1VgbSkpKlJ6ergkTJjif2Iyy3XTTTbLZbBo/fnxNN6VCr7zyitq0aSN/f3+1atVK8+bN82i6I0eOKD09XX379lVoaKhsNlu5gxI89NBD+vOf/1zhiGkALlwECwA1pqioSBs2bNBdd92l8ePH64477lDTpk1rulm11rFjx5SZmVlmsHjsscfcnhlSHd555x1t375dY8aMqfJ5n691OB+WL1+uDRs21HQzPLJgwQKNHj1a7dq107x583T99dcrNTVVTz/9dIXT/vzzz5oyZYq+//57dejQ4ax1b7nlFtWtW1cvvPBCVTUdwHlGsABQYw4ePChJql+/fs02xIKjR4/WdBM84uPjc15Gd1q4cKG6du1apQ83dGzj87UO1e348eNKS0vTQw89VNNNqVBRUZEeffRRxcfHa+nSpbr77ruVlZWl22+/XVOnTlVBQcFZpw8PD9cPP/yg/Px8zZo166x1vby8lJCQoKysLDGuDFA7ESyAWmrdunW65ppr5O/vr6ioKC1YsKDca9AXL16smJgYBQQEKDQ0VImJidq7d69LnZ49e6p9+/baunWrevXqpcDAQDVp0kQzZ86sdNuMMZo2bZqaNm2qwMBA9erVS999951LnYyMDEVGRkqSHnjgAdlsNjVv3lySVFhYqIkTJ6p58+by8/NTo0aNdNNNN+nrr7/2uA2LFi2SzWbTxx9/rLFjx6phw4aqW7euRo4cWebB0KpVq9S9e3cFBQUpJCRE8fHxbm1OTk5WcHCwdu3apf79+yskJES33367JMlut+tPf/qTrrzySvn7+yssLEx9+/bVl19+6Zz+1KlTmjp1qqKiouTn56fmzZvrkUce0YkTJ866LsXFxXriiScUExOjevXqKSgoSN27d1dOTo6zTl5envNhdpmZmbLZbC73GZTVNzxtT/PmzTVgwACtX79e1157rfz9/dWyZUtlZWW51Dt+/LhWr16t3r17u61DUVGRUlNTdckllygkJEQDBw7Uvn373O6FcLRz69atGjFihBo0aKBu3bqVuw4nTpzQpEmTFBYW5pzvf//737Nuz7Lk5eXJZrNp9uzZeumll5zbpFOnTtq0aVOl53c2M2fOlN1u1+TJky3Py9End+/erbi4OAUFBSkiIkJTpkypkoPznJwcHTp0SOPGjXMpT0lJ0dGjR/Xuu++edXo/Pz81btzY4+XddNNNys/P1zfffHMuzQVQw3hAHlALbd68WX379lV4eLgyMzNVUlKiKVOmlPmU5OnTp+vxxx/XsGHDNHr0aB08eFDz5s1Tjx49tHnzZpezBQUFBerbt68GDx6sYcOGaenSpXrooYd05ZVXql+/fh6374knntC0adPUv39/9e/fX19//bX69Omj4uJiZ53Bgwerfv36mjRpkoYPH67+/fs7r8m/5557tHTpUo0fP15t27bVoUOHtH79en3//fe6+uqrK7Wtxo8fr/r16ysjI0Pbt2/X/PnzlZ+fr3Xr1jkPUl9//XUlJSUpLi5OTz/9tI4dO6b58+erW7du2rx5szPwSKcPxuPi4tStWzfNnj1bgYGBkqS77rpLixYtUr9+/TR69GidOnVKn3zyiT7//HPnfSOjR4/Wa6+9poSEBKWlpWnjxo168skn9f3332vFihXlrsNvv/2ml19+WcOHD9fdd9+twsJCvfLKK4qLi9MXX3yhjh07KiwsTPPnz9e9996rW2+9VYMHD5Yk/eEPfyh3vpVpz86dO5WQkKC77rpLSUlJevXVV5WcnKyYmBi1a9dOkvTVV1+puLi4zM8oOTlZb731lu68805dd911+uijjxQfH19u24YOHapWrVppxowZZz1AHj16tBYvXqwRI0aoS5cu+vDDD88634q88cYbKiws1NixY2Wz2TRz5kwNHjxYu3fvVp06dSSdDjOFhYUeze+SSy5xeb1nzx499dRTevXVVxUQEHDO7SytpKREffv21XXXXaeZM2dq9erVSk9P16lTpzRlyhRnvYKCApWUlFQ4v8DAQGe/3rx5syS53fsUExMjLy8vbd68WXfccUeVrIdjvpL06aef6qqrrqqy+QI4TwyAWufmm282gYGBZt++fc6yHTt2GB8fH1N6t87LyzPe3t5m+vTpLtNv2bLF+Pj4uJTHxsYaSSYrK8tZduLECdO4cWMzZMgQj9t24MAB4+vra+Lj443dbneWP/LII0aSSUpKcpbl5uYaSWbWrFku86hXr55JSUnxeJllWbhwoZFkYmJiTHFxsbN85syZRpJ5++23jTHGFBYWmvr165u7777bZfoff/zR1KtXz6U8KSnJSDL/93//51L3ww8/NJJMamqqWzsc2+Cbb74xkszo0aNd3p88ebKRZD788ENnWWxsrImNjXW+PnXqlDlx4oTLdAUFBebSSy81f/zjH51lBw8eNJJMenq6WzvS09Nd+kZl2hMZGWkkmY8//thZduDAAePn52fS0tKcZS+//LKRZLZs2eIyz6+++spIMhMnTnQpT05Odmuvo53Dhw/3eB3GjRvnUm/EiBHlbofyOPpiw4YNzS+//OIsf/vtt40k88477zjLHH3Lk58zJSQkmC5dujhfS7LU1x19csKECc4yu91u4uPjja+vrzl48KCz3PE5VvRTerulpKQYb2/vMpcdFhZmEhMTPW7rpk2bjCSzcOHCs9bz9fU19957r8fzBXDh4IwFUMuUlJQoOztbt956qyIiIpzll19+ufr166d33nnHWbZ8+XLZ7XYNGzZMP//8s7O8cePGatWqlXJycvTII484y4ODg12+ffT19dW1115b4dOZS8vOzlZxcbEmTJjgctnKxIkTNWPGDI/mUb9+fW3cuFH79+93WcdzMWbMGOc3zZJ077336pFHHtF7772ngQMHau3atTp8+LCGDx/uso28vb3VuXNnl8uNSs+jtGXLlslmsyk9Pd2trmMbvPfee5Kk+++/3+X9tLQ0zZ49W++++6569epV5jp4e3vL29tb0ulLrg4fPiy73a5rrrmmUpeHlVbZ9rRt21bdu3d3vg4LC1N0dLRL3zh06JAkqUGDBi7zXL16tSS5XU4zYcKEckcIuueeezxeh9TUVJfyiRMn6o033qhw+rLcdtttLu13rHPp9YyLi9PatWsrPe+cnBwtW7ZMGzduPKe2nU3pkaUcI029++67ys7OVmJioiRpyZIlHt383rJlS+fvRUVF8vX1LbOev79/tdxM36BBA5d9EUDtQbAAapkDBw6oqKhIl19+udt7Z5bt2LFDxhi1atWqzHmVPuCWpKZNm7pdw96gQQP961//8rh9+fn5kuS2zLCwMLcDzvLMnDlTSUlJatasmWJiYtS/f3+NHDnS5YDHU2e2Izg4WOHh4crLy5N0ehtJ0g033FDm9HXr1nV57ePj4zZy1a5duxQREaHQ0NBy25Gfny8vLy+3z6hx48aqX7++c7uV57XXXtOcOXO0bds2nTx50lneokWLs05XVe257LLL3ObRoEGDMu9XMWdcuuRY1pltLasPO3iyXo75RkVFuZRHR0dXOG15zlxPR58tvZ7h4eEKDw+v1HxPnTql1NRU3XnnnerUqdM5t68sXl5ebvvGFVdcIUnOfi5JXbt2rfS8AwICXC5hLO348eNVdjlXacaY8/bMFQBVi2ABXMTsdrtsNptWrVrl/Ma7tDOfM1BWHcn9QLG6DRs2TN27d9eKFSv0/vvva9asWXr66ae1fPnySt3r4Qm73S7p9H0WZd1k6uPj+mfSz89PXl7nPu7FuRwwLV68WMnJyRo0aJAeeOABNWrUSN7e3nryySe1a9euc25LZdrjSd9o2LChpNMH4VaHDa6OA1ZPeLKeRUVF+vXXXz2an6NPZWVlafv27VqwYIHLwb50erCCvLw8NWrUyHlvQ3U4ePCgR/dYBAcHO/82hIeHq6SkRAcOHFCjRo2cdYqLi3Xo0CHLZxTLcvjwYbd7UwDUDgQLoJZp1KiR/P39tXPnTrf3ziyLioqSMUYtWrRwfoNZ3RwjPe3YscPlW9SDBw9WODRlaeHh4Ro3bpzGjRunAwcO6Oqrr9b06dMrHSx27NjhcknPkSNH9MMPP6h///6S5Py2u1GjRmWOZuSJqKgorVmzRr/88ku5Zy0iIyNlt9u1Y8cOtWnTxln+008/6fDhw87tVpalS5eqZcuWWr58uUsQOPPSq8qEFivtKU/r1q0lSbm5ubryyivdlpWbm+tyBqmsPlwZjvnu2rXL5SzF9u3bLc23Im+++aZGjRrlUV1HINmzZ49OnjxZ5lmDrKwsZWVlacWKFRo0aFCl22O327V7926Xffw///mPJLkMPNCpU6cKz4xJp/uVY6Sujh07SpK+/PJL5z7jeG23253vV5V9+/apuLjYpU8CqD0YbhaoZby9vdW7d2+tXLlS+/fvd5bv3LlTq1atcqk7ePBgeXt7KzMz0+2sgzHGeU18Verdu7fq1KmjefPmuSxz7ty5Hk1fUlLi9m1wo0aNFBERUeGwrGV56aWXXC4dmj9/vk6dOuUMKHFxcapbt65mzJjhUs/B8ayNsxkyZIiMMcrMzHR7z7ENHAdlZ26HZ555RpLOOpKR41v00ttz48aNbg9Yc3zbffjw4QrbbKU95YmJiZGvr6/LELvS6W0sye3BZ54+vbk8js/wueeecyn3tK+dK8c9Fp78OCQmJmrFihVuP9Lpz2LFihXq3LnzObfp+eefd/5ujNHzzz+vOnXq6MYbb3SWL1myxKM2jxw50jnNDTfcoNDQUM2fP99lefPnz1dgYKBLP/n555+1bds2HTt27JzX46uvvpIkdenS5ZznAaDmcMYCqIUyMjL0/vvvq2vXrrr33ntVUlKi559/Xu3bt3cZ/z0qKkrTpk3Tww8/rLy8PA0aNEghISHKzc3VihUrNGbMmCoZS7+0sLAwTZ48WU8++aQGDBig/v37a/PmzVq1apVHlzcUFhaqadOmSkhIUIcOHRQcHKzs7Gxt2rRJc+bMqXR7iouLdeONN2rYsGHavn27XnjhBXXr1k0DBw6UdPoeivnz5+vOO+/U1VdfrcTERIWFhWnPnj1699131bVrV5eDtrL06tVLd955p5577jnt2LFDffv2ld1u1yeffKJevXpp/Pjx6tChg5KSkvTSSy/p8OHDio2N1RdffKHXXntNgwYNKvfGbUkaMGCAli9frltvvVXx8fHKzc3Viy++qLZt2+rIkSPOegEBAWrbtq3efPNNXXHFFQoNDVX79u3Vvn17t3laaU95/P391adPH2VnZ7sMcxoTE6MhQ4Zo7ty5OnTokHO4Wce36ud6PX3Hjh01fPhwvfDCC/r111/VpUsXffDBB5bPhFTkXO6xaN26tfOMzplatGjhdqaiZ8+e+uijjzy6DNHf31+rV69WUlKSOnfurFWrVundd9/VI4884jIE9bneYzF16lSlpKRo6NChiouL0yeffKLFixdr+vTpLmfonn/+eWVmZionJ0c9e/Z0KT98+LDzi5B33nnH+ayRCRMmqF69es66a9eu1WWXXcZQs0Btdf4HogJQFT744ANz1VVXGV9fXxMVFWVefvllk5aWZvz9/d3qLlu2zHTr1s0EBQWZoKAg07p1a5OSkmK2b9/urBMbG2vatWvnNm1SUpKJjIysVNtKSkpMZmamCQ8PNwEBAaZnz57m3//+t4mMjKxwuNkTJ06YBx54wHTo0MGEhISYoKAg06FDB/PCCy9Uqg2OIUE/+ugjM2bMGNOgQQMTHBxsbr/9dnPo0CG3+jk5OSYuLs7Uq1fP+Pv7m6ioKJOcnGy+/PJLl20RFBRU5vJOnTplZs2aZVq3bm18fX1NWFiY6devn/nqq6+cdU6ePGkyMzNNixYtTJ06dUyzZs3Mww8/bI4fP+4yrzOHm7Xb7WbGjBkmMjLS+Pn5mauuusr885//LPOz+eyzz0xMTIzx9fV1GTr0zKFaK9OeyMhIEx8f77bOZ7bTGGOWL19ubDab2bNnj0v50aNHTUpKigkNDTXBwcFm0KBBZvv27UaSeeqpp5z1HO0sPUzqme+VVlRUZFJTU03Dhg1NUFCQufnmm83evXvPebjZM4c+NsZUel6VoXKGm42JiTGNGzeucHpHn9y1a5fp06ePCQwMNJdeeqlJT083JSUlVdbOl156yURHRzv/3jz77LMuw0kb87/PJycnx6X8bMPc5ubmOuuVlJSY8PBw89hjj1VZuwGcXzZjzvNdmQCqzaBBg/Tdd985Rzr6PVu0aJFGjRqlTZs2uT3cC9WnpKREbdu21bBhwzR16tSz1v3mm2901VVXafHixc4nmOP0WbvQ0FDNnTtXKSkpZ62bnJyspUuXupy5qq1WrlypESNGaNeuXZU+IwTgwsA9FkAtdeb48Tt27NB7773ncgkCcL55e3trypQp+vOf/+xysFvW8w7mzp0rLy8v9ejR43w28YL38ccfq0mTJrr77rtruinn1dNPP63x48cTKoBajHssgFqqZcuWSk5OVsuWLZWfn6/58+fL19dXDz74YLUts6LhKn19fc/6LIeq4MlQn9XdBpzdbbfdpttuu82lbObMmfrqq6/Uq1cv+fj4aNWqVVq1apXGjBmjZs2aVVtbSkpKKrwBv/TwqheC+Pj4c7p5vrY7czACALUPwQKopfr27au//vWv+vHHH+Xn56frr79eM2bMKPdheFWhouEqY2NjtW7dumpbvuTZUJ9lPS0bNatLly5au3atpk6dqiNHjuiyyy5TRkaGHn300Wpd7t69eyt82F7p4VUBAOeOeywAeOzTTz8t85IWhwYNGigmJqZa2/DDDz/ou+++O2udmJgYj5/yjYvb8ePHtX79+rPWadmy5Tk91R0A4IpgAQAAAMAybt4GAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFjm40klu92u/fv3KyQkRDabrbrbBFQ7Y4wKCwsVEREhL6/K5Wv2B1xsrOwPEvsELj78jwD+pzL7g0fBYv/+/WrWrFmVNA64kOzdu1dNmzat1DTsD7hYncv+ILFP4OLF/wjgfzzZHzyK4SEhIVXSIOBCcy59m/0BF6tz7dvsE7hY8T8C+B9P+rZHwYJTebhYnUvfZn/Axepc+zb7BC5W/I8A/seTvs3N2wAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAy3xqasHGmJpaNGoxm81W002oFlW9P1THdmKfvfBcrPvDab/H/lbVnyfb8GLB/wici5r4H8EZCwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYJlPTS3YZrPV1KIvGsaYKp1fdXwmVd1GXDx+j38D2B9qUnX0t9/b58k2xPnD/4jaiTMWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMt8amrBxpiaWjTOJ5utpluA3wn+plxcjKr2b0ft+EtEH8b5URv+Xl7obbRxfFMmzlgAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLfGq6AVXFZrPVdBNQBptMlc8RKEtt+BtgTFXvDxexqt5W1dI/Lvw+h4tDbfj7dqHj7+/5wRkLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmU9NN+BCZoyp0vnZbLYqnZ+qtnmSrapnCJSvqvevqlbl++vpmVb9PFFjLvQ+XNWqZZ+AR35vfa02qJbP5CLYxzhjAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALPOpqQXbbLaaWvRFw8hU6fxs4jNB+dhnrbNV8T4r9tmLCvsYzhf62oWq9v+P4IwFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKfmlqwMaamFl1jLvR1vtDbJ0k2m62mm1Ar1IbPsqrZVMV9w/b724aonCrvc6LP4fzgf0RVzPD3tw09wRkLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgmU9NLdhms9XUooELDvvDhYjPpCbVin2iyptYC9YZNaJW7A+/O3wmZeGMBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAs8yhYGGOqux1AjTiXvs3+gIvVufZt9glcrPgfAfyPJ33bo2BRWFhouTHAhehc+jb7Ay5W59q32SdwseJ/BPA/nvRtm/Egftjtdu3fv18hISGy2WxV0jigJhljVFhYqIiICHl5Ve6KQPYHXGys7A8S+wQuPvyPAP6nMvuDR8ECAAAAAM6Gm7cBAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBl/w/PWokOCneg/gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -695,7 +689,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1MElEQVR4nO3deVyVZf7/8fcBZMcFxcQlVDLXRovMwr1M3HLIBdEssMzKLQ2baRkTzCWXyklH0xbN1O+3RkWnr6lpYeVkZWaNk+mQAppWkmGhggLn+v3h75zheECWG0Ts9Xw8fDw817nPfX/u+1w357zPfd/XbTPGGAEAAACABR5VXQAAAACA6o9gAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAFcBRITE2Wz2aq6DFxGNptNiYmJLm27d+9WZGSkAgICZLPZ9NVXX1VJbVeSpk2bKj4+vkLnGR8fr6ZNm1boPMuy7MDAwCpZNgCUhGABoFq68847ZbPZNH78+EpdTl5entq0aSObzab58+dX6rKsyMvL09ChQ/XLL7/oxRdf1JtvvqmwsLCqLqvaOn78uBITE6t1OHvrrbc0cuRItWjRQjabTT169Chyuvj4eNlstmL/HTt2zDltXl6ekpKS1Lx5c/n4+Kh58+aaMWOG8vPzXea5Y8eOYuf36aefukw7a9Ys3XrrrQoJCZGvr69atGihSZMmKTMzs8K3CYDK5VXVBQBAWa1fv167du26LMtauHChjhw5clmWZcWhQ4eUkZGhV155RaNHj67qcqq948ePKykpSU2bNlWHDh1cnnvllVdkt9urprAyWLJkifbs2aOOHTvq5MmTxU730EMPqVevXi5txhg9/PDDatq0qRo1auRsHzlypP7+97/r/vvv180336xPP/1UU6dO1ZEjR7Rs2TK3eU+cOFEdO3Z0abvuuutcHu/Zs0cdOnRQbGysgoKC9O233+qVV17Rpk2b9NVXXykgIKA8qw+gChAsAFQrubm5SkhI0J///Gc988wzlbqsEydOaPr06ZdlWVadOHFCklS7du2qLcSCs2fPyt/fv6rLKFGNGjWquoRSefPNN9WoUSN5eHioXbt2xU5322236bbbbnNp27lzp86ePat77rnH2bZ79269/fbbmjp1qqZPny5Jevjhh1WvXj298MILGj9+vP7whz+4zKdr164aMmTIJetct25dkTUNGTJE77zzjmJjY0tcVwBXBk6FAqqZnTt3qmPHjvL19VV4eLiWLl1a5HSrVq1SRESE/Pz8FBwcrNjYWB09etRlmh49eqhdu3b617/+pe7du8vf31/XXXed1q5dK0n68MMP1alTJ/n5+ally5bavn2723L27t2rvn37qmbNmgoMDNQdd9zhdqrDpWRkZGjgwIEKCAhQ/fr1NXnyZG3dulU2m007duxwm37u3Lmy2+2aMmVKqZchSStWrJDNZtM///lPPfbYYwoJCVFAQIDuvvvuYk+5eOKJJ9SyZUuNHDmyTMvKyMjQ2LFj1bJlS/n5+alu3boaOnSo0tPTyzQfSTp37pwmT56skJAQBQUFaeDAgfr+++9dpomPj1f37t0lSUOHDnU57eXHH3/UqFGj1LhxY/n4+Cg0NFR//OMfy1SL4xqeAwcOKCYmRjVr1lTdunX16KOPKjc31236svS9PXv2qFu3bvL399dTTz0l6UJ4TExM1PXXXy9fX1+FhoZq0KBBOnTokPP1Z86cUUJCgpo0aSIfHx+1bNlS8+fPlzHmkuvyyy+/aMqUKbrhhhsUGBiomjVrqm/fvvr666+d0+zYscP5K/uoUaOcp/CsWLHCub0vvsaitPU4Tt/bsGGD2rVrJx8fH7Vt21Zbtmy59JtwkWPHjik6OlqBgYEKCQnRlClTVFBQ4DJNkyZN5OFRvo/5NWvWyGazacSIEc62jz/+WJLcvujHxsbKGKO33nqryHllZ2e7nSpVEsf2PXXqVJleB6BqccQCqEb27dun3r17KyQkRImJicrPz9e0adN0zTXXuEw3c+ZMTZ06VTExMRo9erQyMzO1cOFCdevWTXv37nX5VTsrK0sDBgxQbGyshg4dqiVLlig2NlarV6/WpEmT9PDDD2vEiBGaN2+ehgwZoqNHjyooKEiS9M0336hr166qWbOm/vSnP6lGjRpaunSpevTo4Qwll3LmzBndfvvt+uGHH/Too4+qQYMGWrNmjVJSUoqc/siRI3ruuef0+uuvy8/Pr1zbcMKECapTp46mTZum9PR0LViwQOPHj3f7UvT555/rjTfe0M6dO8t8Yfzu3bv1ySefKDY2Vo0bN1Z6erqWLFmiHj16aP/+/WX6VX706NFatWqVRowYocjISH3wwQfq37+/yzQPPfSQGjVqpFmzZjlPPXH0icGDB+ubb77RhAkT1LRpU504cULbtm3TkSNHynwBckxMjJo2barZs2fr008/1UsvvaSsrCytXLnSOU1Z+t7JkyfVt29fxcbGauTIkbrmmmtUUFCgAQMG6P3331dsbKweffRRZWdna9u2bfr3v/+t8PBwGWM0cOBApaSk6IEHHlCHDh20detWPf744zp27JhefPHFYtfh8OHD2rBhg4YOHapmzZrpp59+0tKlS9W9e3ft379fDRs2VOvWrTV9+nQ988wzGjNmjLp27SpJioyMLHKeZa1n586dWr9+vcaOHaugoCC99NJLGjx4sI4cOaK6deuW+D4UFBQoKipKnTp10vz587V9+3Y9//zzCg8P1yOPPFLi60uSl5ent99+W5GRkS595Ny5c5Lktu85+vOePXvc5jVq1CidPn1anp6e6tq1q+bNm6ebb77ZbTpjjE6ePKn8/HylpqbqiSeekKenZ7HXhQC4QhkA1UZ0dLTx9fU1GRkZzrb9+/cbT09P49id09PTjaenp5k5c6bLa/ft22e8vLxc2rt3724kmTVr1jjbDhw4YCQZDw8P8+mnnzrbt27daiSZ5cuXu9Tj7e1tDh065Gw7fvy4CQoKMt26dStxfZ5//nkjyWzYsMHZlpOTY1q1amUkmZSUFJfphwwZYiIjI52PJZlx48aVuBxjjFm+fLmRZHr16mXsdruzffLkycbT09OcOnXK2Wa3280tt9xihg8fbowxJi0tzUgy8+bNK9Wyzp4969a2a9cuI8msXLmyVPMwxpivvvrKSDJjx451aR8xYoSRZKZNm+ZsS0lJMZLM3//+d2dbVlZWmeouzrRp04wkM3DgQJf2sWPHGknm66+/NsaUr++9/PLLLtO+/vrrRpJ54YUX3OpwvG8bNmwwksyMGTNcnh8yZIix2Wzmu+++c7aFhYWZuLg45+Pc3FxTUFDg8rq0tDTj4+Njpk+f7mzbvXu3W393iIuLM2FhYc7HZalHkvH29nZp+/rrr40ks3DhQrdlFbVsSS61GmPMjTfeaCIiIop9Xdu2bU337t1LnL8xxrzzzjtGklm8eLFL+7p164wk8+abb7q0v/zyy0aSadeunbPtn//8pxk8eLB57bXXzMaNG83s2bNN3bp1ja+vr/nyyy/dlvnDDz8YSc5/jRs3Nm+99Vap6gVw5eBUKKCaKCgo0NatWxUdHa1rr73W2d66dWtFRUU5H69fv152u10xMTH6+eefnf8aNGigFi1auB0NCAwMdDm1oWXLlqpdu7Zat27tcsTB8f/Dhw8763nvvfcUHR2t5s2bO6cLDQ3ViBEjtHPnTv3222+XXKctW7aoUaNGGjhwoLPN19dXDz74oNu0KSkpWrdunRYsWHDJeZZkzJgxLkcgunbtqoKCAmVkZDjbVqxYoX379mnOnDnlWkbhX3Tz8vJ08uRJXXfddapdu7a+/PLLUs/n3XfflXThAtjCJk2aVOo6vL29tWPHDmVlZZV6ucUZN26cy+MJEya41FnWvufj46NRo0a5tK1bt0716tVzzrswx/v27rvvytPT0227JCQkyBijzZs3F7sOPj4+ztODCgoKdPLkSQUGBqply5Zlem8KK2s9vXr1Unh4uPPxH/7wB9WsWdO5b5XGww8/7PK4a9euZXr9paxZs0Y1atRQTEyMS3u/fv0UFhamKVOmaP369crIyNDbb7+tp59+Wl5eXsrJyXFOGxkZqbVr1+r+++/XwIED9cQTT+jTTz+VzWbTk08+6bbM4OBgbdu2Te+8846mT5+uevXq6fTp0xWyPgAuH06FAqqJzMxM5eTkqEWLFm7PtWzZ0vnlLjU1VcaYIqeT3C88bdy4sdupPrVq1VKTJk3c2iQ5v6BmZmbq7NmzatmypdsyWrduLbvdrqNHj6pt27bKzMx0Of87MDBQgYGBysjIUHh4uNvyLx41Jj8/XxMnTtS9997rNsLMxX788Ue3ugt/0S8cyiSpTp06Luv122+/6cknn9Tjjz/utg0KKygocLs2Izg4WN7e3srJydHs2bO1fPlyHTt2zOU8+19//fWS9ReWkZEhDw8Ply+hkorc5kXx8fHRnDlzlJCQoGuuuUa33nqrBgwYoPvuu08NGjQodR0OF/ep8PBweXh4OK/XKGvfa9Sokby9vV3aDh06pJYtW8rLq/iPp4yMDDVs2NB5Sp5D69atnc8Xx263669//asWL16stLQ0l35ZmtOQKqKei/ugdKEfOvrg+fPn9csvv7g8HxISIk9PT0kXwndISEixr7fi9OnT2rhxo6Kioty2h6+vrzZt2qSYmBgNHjxY0oU+NnfuXM2cObPE+2tcd911+uMf/6j169eroKDAuT6S5O3t7RyZasCAAbrjjjvUuXNn1a9fXwMGDLC8XgAuD4IFcJWx2+2y2WzavHmzywe3w8Uf/kVNc6l2U8LFsUXp2LGjy5eradOmud3c7VJWrlypgwcPaunSpW4XHWdnZys9PV3169eXv7+/QkNDXZ5fvny5yw3SSlqv+fPn6/z58xo2bJhzWY6LpbOyspSenq6GDRvq+PHjatasmcs8UlJS1KNHD02YMEHLly/XpEmTdNttt6lWrVqy2WyKjY297MOUTpo0SXfddZc2bNigrVu3aurUqZo9e7Y++OAD3XjjjZbmfXEgLGvfK+91MlbMmjVLU6dO1f33369nn31WwcHB8vDw0KRJky7be1NSH/zkk0/Us2dPl+fS0tKc1zsU9/qKsGHDBrfRoApr27at/v3vf2v//v3KyspSmzZt5Ofnp8mTJzsHELiUJk2a6Pz58zpz5oxq1qxZ7HSRkZEKDQ3V6tWrCRZANUKwAKqJkJAQ+fn5KTU11e25gwcPOv/vuLi1WbNmuv766yu1Hn9/f5dlOxw4cEAeHh7OX/xXr17tcpqE49SpsLAw7d+/X8YYly+p3333ncv8jhw5ory8PHXu3NltWStXrtTKlSuVnJys6Ohobdu2zeX5tm3blmm9jhw5oqysrCJfN2vWLM2aNUt79+5Vq1at3JbVvn17SdLatWsVFxen559/3vlcbm5umUe4CQsLk91ud/6K71DUNr+U8PBwJSQkKCEhQampqerQoYOef/55rVq1qkzzSU1NdQlT3333nex2u/MLb0X0vfDwcH322WfKy8srdljXsLAwbd++XdnZ2S5HCQ4cOOB8vjhr165Vz5499dprr7m0nzp1SvXq1XM+LssF+1bqKUr79u3d+lZ5jjCVx+rVqxUYGOhyeuLFbDaby/7x7rvvym63u90LoyiHDx+Wr69vqe4enpubW6YjfACqHtdYANWEp6enoqKitGHDBpcbtn377bfaunWr8/GgQYPk6emppKQkt6ML5v+PvFJR9fTu3VsbN250OYrw008/ac2aNerSpYvzF8nOnTurV69ezn+OYBEVFaVjx47pH//4h/P1ubm5euWVV1yWFRsbq+TkZLd/0oXzvpOTk53XgBReTq9evdyOYJRk4sSJbstxDOkbHx+v5ORkNWvWTL6+vm7LcpxW5enp6bbtFy5c6DYcaEn69u0rSXrppZdc2kt7ncnZs2fdhoMNDw9XUFCQc4Sfsvjb3/7m8njhwoUudVZE3xs8eLB+/vlnLVq0yO05xzz79eungoICt2lefPFF2Ww2Zz1FKeq9+fvf/+5yd2lJzpuylSYMWqmnKHXq1HHrW76+vmWaR3lkZmZq+/btuvvuu0s9cllOTo6mTp2q0NBQDR8+3GVeF/v666/1j3/8Q71793Ze53LmzBmdPXvWbdp169YpKyuryBGkAFy5OGIBVCNJSUnasmWLunbtqrFjxyo/P18LFy5U27Zt9a9//UvShS+OM2bM0JNPPqn09HRFR0crKChIaWlpSk5O1pgxY8p8D4jizJgxQ9u2bVOXLl00duxYeXl5aenSpTp37pzmzp1b4usfeughLVq0SMOHD9ejjz7qPPXB8SXK8atxq1at1KpVqyLn0axZM0VHR1fI+kjSTTfdpJtuusmlzRGc2rZtW6plDRgwQG+++aZq1aqlNm3aaNeuXdq+fXuZz+Hv0KGDhg8frsWLF+vXX39VZGSk3n//fbcjOsX5z3/+ozvuuEMxMTFq06aNvLy8lJycrJ9++qlcNx1LS0vTwIED1adPH+3atcs5DK7jSE1F9L377rtPK1eu1GOPPabPP/9cXbt21ZkzZ7R9+3aNHTtWf/zjH3XXXXepZ8+eevrpp5Wenq727dvrvffe08aNGzVp0iS3a1IKGzBggKZPn65Ro0YpMjJS+/bt0+rVq10GIHCsS+3atfXyyy8rKChIAQEB6tSpk9vpb5Is1VOZPvroI3300UeSLnzRP3PmjGbMmCFJ6tatm7p16+Yy/VtvvaX8/PxiT4OSLgw53LBhQ7Vp00a//fabXn/9dR0+fFibNm1yOVozbNgw+fn5KTIyUvXr19f+/fu1bNky+fv767nnnnNOl5qaql69emnYsGFq1aqVPDw89MUXX2jVqlVq2rSpHn300YrcJAAq2+UehgqANR9++KGJiIgw3t7epnnz5ubll192Dgda2Lp160yXLl1MQECACQgIMK1atTLjxo0zBw8edE7TvXt307ZtW7dlhIWFmf79+7u1q4jhXb/88ksTFRVlAgMDjb+/v+nZs6f55JNPSr0+hw8fNv379zd+fn4mJCTEJCQkOIe1LDzcbVGKqqc4juFmd+/e7dLuGKb14qFtCyvrcLNZWVlm1KhRpl69eiYwMNBERUWZAwcOuA19Who5OTlm4sSJpm7duiYgIMDcdddd5ujRo6Uabvbnn38248aNM61atTIBAQGmVq1aplOnTubtt98uUw2O/rV//34zZMgQExQUZOrUqWPGjx9vcnJy3Ka30veMuTBc79NPP22aNWtmatSoYRo0aGCGDBniMqxxdna2mTx5smnYsKGpUaOGadGihZk3b57LUMLGFD3cbEJCggkNDTV+fn6mc+fOZteuXaZ79+5uw7Fu3LjRtGnTxnh5ebkMPXvxcLNlqae4PlvavhEXF2cCAgLc2ov6G+BoK+pf4b7jcOutt5r69eub/Pz8Ypc/Z84c06pVK+Pr62vq1KljBg4caPbu3es23V//+ldzyy23mODgYOPl5WVCQ0PNyJEjTWpqqst0mZmZZsyYMc4+6u3tbVq0aGEmTZpkMjMzS9weAK4sNmPKcSUmAFSiBQsWaPLkyfr+++/VqFGjqi7ndy8xMVFJSUnKzMx0uQ4BAIDCuMYCQJUqfFG3dOEai6VLl6pFixaECgAAqhGusQBQpQYNGqRrr71WHTp00K+//qpVq1bpwIEDWr16dVWXVqkuvt/Gxfz8/Jz3Dqksp0+fLvEmZBffLwEAgOIQLABUqaioKL366qtavXq1CgoK1KZNG/3v//6vhg0bVtWlVaqSRquKi4vTihUrKrWG+fPnKykp6ZLTpKWlVWoNAICrB9dYAEAV2L59+yWfd4y8U5kOHz6sw4cPX3KaLl26XJahTgEA1R/BAgAAAIBlXLwNAAAAwDKCBYDLpmnTpoqPj3dpS01NVe/evVWrVi3ZbDZt2LChSmq7kvTo0UM9evSo0HkmJiY6bzhY2d5++20FBweXeGF4WZVlHWw2mxITEyt0+ag8eXl5atKkiRYvXlzVpQCwgGABoErFxcVp3759mjlzpt58803dfPPNVV1StXX27FklJiZqx44dVVZDQUGBpk2bpgkTJigwMLDK6qgO7rzzTtlsNo0fP76qSynRa6+9ptatW8vX11ctWrTQwoULyzWfmTNnymazqV27di7tNWrU0GOPPaaZM2cqNze3IkoGUAUIFgCqTE5Ojnbt2qUHHnhA48eP18iRI9W4ceOqLqvaOnv2rJKSkooMFn/5y1/c7hlSGd555x0dPHhQY8aMqfB5X651uBzWr1+vXbt2VXUZpbJ06VKNHj1abdu21cKFC3Xbbbdp4sSJmjNnTpnm8/3332vWrFkKCAgo8vlRo0bp559/1po1ayqibABVgGABoMpkZmZKkmrXrl21hVhw5syZqi6hVLy8vC7L6E7Lly9X586dK/Tmho5tfLnWobLl5uYqISFBf/7zn6u6lBLl5OTo6aefVv/+/bV27Vo9+OCDWrlype655x49++yzysrKKvW8pkyZoltvvbXYo5K1a9dW7969K32YZQCVh2ABVFM7duzQzTffLF9fX4WHh2vp0qXFnoO+atUqRUREyM/PT8HBwYqNjdXRo0ddpunRo4fatWun/fv3q2fPnvL391ejRo00d+7cMtdmjNGMGTPUuHFj+fv7q2fPnvrmm29cpklMTFRYWJgk6fHHH5fNZlPTpk0lSdnZ2Zo0aZKaNm0qHx8f1a9fX3feeae+/PLLUtewYsUK2Ww2ffTRR3rooYdUt25d1axZU/fdd1+RX4Y2b96srl27KiAgQEFBQerfv79bzfHx8QoMDNShQ4fUr18/BQUF6Z577pEk2e12/fWvf9UNN9wgX19fhYSEqE+fPvriiy+cr8/Pz9ezzz6r8PBw+fj4qGnTpnrqqad07ty5S67L+fPn9cwzzygiIkK1atVSQECAunbtqpSUFOc06enpzpvZJSUlyWazuVxnUFTfKG09TZs21YABA7Rz507dcsst8vX1VfPmzbVy5UqX6XJzc7Vlyxb16tXLbR1ycnI0ceJE1atXT0FBQRo4cKCOHTvmdi2Eo879+/drxIgRqlOnjrp06VLsOpw7d06TJ09WSEiIc77ff//9JbdnUdLT02Wz2TR//nwtW7bMuU06duyo3bt3l3l+lzJ37lzZ7XZNmTLF8rwcffLw4cOKiopSQECAGjZsqOnTp6siBn1MSUnRyZMnNXbsWJf2cePG6cyZM9q0aVOp5vPRRx9p7dq1WrBgwSWnu/POO7Vz50798ssv5S0ZQBXiBnlANbR371716dNHoaGhSkpKUkFBgaZPn17kXZJnzpypqVOnKiYmRqNHj1ZmZqYWLlyobt26ae/evS5HC7KystSnTx8NGjRIMTExWrt2rf785z/rhhtuUN++fUtd3zPPPKMZM2aoX79+6tevn7788kv17t1b58+fd04zaNAg1a5dW5MnT9bw4cPVr18/5zn5Dz/8sNauXavx48erTZs2OnnypHbu3Klvv/1WN910U5m21fjx41W7dm0lJibq4MGDWrJkiTIyMrRjxw7nl9Q333xTcXFxioqK0pw5c3T27FktWbJEXbp00d69e52BR7rwZTwqKkpdunTR/Pnz5e/vL0l64IEHtGLFCvXt21ejR49Wfn6+Pv74Y3366afOX2hHjx6tN954Q0OGDFFCQoI+++wzzZ49W99++62Sk5OLXYfffvtNr776qoYPH64HH3xQ2dnZeu211xQVFaXPP/9cHTp0UEhIiJYsWaJHHnlEd999twYNGiRJ+sMf/lDsfMtSz3fffachQ4bogQceUFxcnF5//XXFx8crIiJCbdu2lSTt2bNH58+fL/I9io+P19tvv617771Xt956qz788EP179+/2NqGDh2qFi1aaNasWZf8gjx69GitWrVKI0aMUGRkpD744INLzrcka9asUXZ2th566CHZbDbNnTtXgwYN0uHDh1WjRg1JF8JMdnZ2qeZXr149l8dHjhzRc889p9dff11+fn7lrrOwgoIC9enTR7feeqvmzp2rLVu2aNq0acrPz9f06dOd02VlZamgoKDE+fn7+zv79d69eyXJ7ShDRESEPDw8tHfvXo0cObLE+iZMmKDRo0frhhtuuOS0ERERMsbok08+0YABA0qsFcAVxgCodu666y7j7+9vjh075mxLTU01Xl5epvBunZ6ebjw9Pc3MmTNdXr9v3z7j5eXl0t69e3cjyaxcudLZdu7cOdOgQQMzePDgUtd24sQJ4+3tbfr372/sdruz/amnnjKSTFxcnLMtLS3NSDLz5s1zmUetWrXMuHHjSr3MoixfvtxIMhEREeb8+fPO9rlz5xpJZuPGjcYYY7Kzs03t2rXNgw8+6PL6H3/80dSqVculPS4uzkgyTzzxhMu0H3zwgZFkJk6c6FaHYxt89dVXRpIZPXq0y/NTpkwxkswHH3zgbOvevbvp3r2783F+fr45d+6cy+uysrLMNddcY+6//35nW2ZmppFkpk2b5lbHtGnTXPpGWeoJCwszksxHH33kbDtx4oTx8fExCQkJzrZXX33VSDL79u1zmeeePXuMJDNp0iSX9vj4eLd6HXUOHz681OswduxYl+lGjBhR7HYojqMv1q1b1/zyyy/O9o0bNxpJ5p133nG2OfpWaf5dbMiQISYyMtL5WJKlvu7okxMmTHC22e12079/f+Pt7W0yMzOd7Y73saR/hbfbuHHjjKenZ5HLDgkJMbGxsSXWuGjRIlOrVi1z4sQJY8yF/t22bdsipz1+/LiRZObMmVOa1QdwheGIBVDNFBQUaPv27br77rvVsGFDZ/t1112nvn376p133nG2rV+/Xna7XTExMfr555+d7Q0aNFCLFi2UkpKip556ytkeGBjo8uujt7e3brnllhLvzlzY9u3bdf78eU2YMMHltJVJkyZp1qxZpZpH7dq19dlnn+n48eMu61geY8aMcf7SLEmPPPKInnrqKb377rsaOHCgtm3bplOnTmn48OEu28jT01OdOnVyOd2o8DwKW7dunWw2m6ZNm+Y2rWMbvPvuu5Kkxx57zOX5hIQEzZ8/X5s2bVLPnj2LXAdPT095enpKunDK1alTp2S323XzzTeX6fSwwspaT5s2bdS1a1fn45CQELVs2dKlb5w8eVKSVKdOHZd5btmyRZLcTqeZMGFCsefTP/zww6Veh4kTJ7q0T5o0qdwXAA8bNsylfsc6F17PqKgobdu2rczzTklJ0bp16/TZZ5+Vq7ZLKTyylGOkqU2bNmn79u2KjY2VJK1evbpUF783b97c+f+cnBx5e3sXOZ2vr2+J8zt58qSeeeYZTZ06tcgjqhdzbPvC+yKA6oNgAVQzJ06cUE5Ojq677jq35y5uS01NlTFGLVq0KHJehb9wS1Ljxo3dzmGvU6eO/vWvf5W6voyMDElyW2ZISIjbF87izJ07V3FxcWrSpIkiIiLUr18/3XfffS5feErr4joCAwMVGhqq9PR0SRe2kSTdfvvtRb6+Zs2aLo+9vLzcRq46dOiQGjZsqODg4GLryMjIkIeHh9t71KBBA9WuXdu53Yrzxhtv6Pnnn9eBAweUl5fnbG/WrNklX1dR9Vx77bVu86hTp06R16uYi05dcizr4lqL6sMOpVkvx3zDw8Nd2lu2bFnia4tz8Xo6+mzh9QwNDVVoaGiZ5pufn6+JEyfq3nvvVceOHctdX1E8PDzc9o3rr79ekpz9XJI6d+5c5nn7+fm5nMJYWG5ubomnc/3lL39RcHCwJkyYUKrlOfrO5brnCoCKRbAArmJ2u102m02bN292/uJd2MX3GShqGsn9i2Jli4mJUdeuXZWcnKz33ntP8+bN05w5c7R+/foyXetRGna7XdKF6ywaNGjg9ryXl+ufSR8fH3l4lH/ci/J8YVq1apXi4+MVHR2txx9/XPXr15enp6dmz56tQ4cOlbuWstRTmr5Rt25dSRe+hFsdNriirj8oq9KsZ05Ojn799ddSzc/Rp1auXKmDBw9q6dKlLl/2pQuDFaSnp6t+/frOaxsqQ2ZmZqmusQgMDHT+bQgNDVVBQYFOnDih+vXrO6c5f/68Tp48eckjiqmpqVq2bJkWLFig48ePO9tzc3OVl5en9PR01axZ0yWQOwLcxdemAKgeCBZANVO/fn35+vrqu+++c3vu4rbw8HAZY9SsWTPnL5iVzTHSU2pqqsuvqJmZmWUamjI0NFRjx47V2LFjdeLECd10002aOXNmmYNFamqqyyk9p0+f1g8//KB+/fpJkvPX7vr16xc5mlFphIeHa+vWrfrll1+KPWoRFhYmu92u1NRUtW7d2tn+008/6dSpU87tVpS1a9eqefPmWr9+vUsQuPjUq7KEFiv1FKdVq1aSpLS0NJeLdB3LSktLczmCVFQfLgvHfA8dOuRylOLgwYOW5luSt956S6NGjSrVtI5AcuTIEeXl5RV51GDlypVauXKlkpOTFR0dXeZ67Ha7Dh8+7LKP/+c//5Ekl4EHOnbsWOKRMelCv3KM1NWhQwdJ0hdffOHcZxyP7Xa78/miHDt2THa7XRMnTnQ7XU26cFTq0UcfdRkpKi0tTZJc+iSA6oPhZoFqxtPTU7169dKGDRtcfgX87rvvtHnzZpdpBw0aJE9PTyUlJbkddTDGOM+Jr0i9evVSjRo1tHDhQpdlljTMpENBQYHbr8H169dXw4YNSxyWtSjLli1zOXVoyZIlys/PdwaUqKgo1axZU7NmzXKZzsFxr41LGTx4sIwxSkpKcnvOsQ0cX8ou3g4vvPCCJF1yJCPHr+iFt+dnn33mdoM1x6/dp06dKrFmK/UUJyIiQt7e3i5D7EoXtrEkLV682KW9vHdvdnC8hy+99JJLe2n7Wnk5rrEozT+H2NhYJScnu/2TLrwXycnJ6tSpU7lrWrRokfP/xhgtWrRINWrU0B133OFsX716dalqvu+++5yvuf322xUcHKwlS5a4LG/JkiXy9/d36Sc///yzDhw4oLNnz0qS2rVrV+Q6t23bVtdee62Sk5P1wAMPuMx3z549stlsuu2228q9LQBUHY5YANVQYmKi3nvvPXXu3FmPPPKICgoKtGjRIrVr105fffWVc7rw8HDNmDFDTz75pNLT0xUdHa2goCClpaUpOTlZY8aMqZCx9AsLCQnRlClTNHv2bA0YMED9+vXT3r17tXnz5lKd3pCdna3GjRtryJAhat++vQIDA7V9+3bt3r1bzz//fJnrOX/+vO644w7FxMTo4MGDWrx4sbp06aKBAwdKunANxZIlS3TvvffqpptuUmxsrEJCQnTkyBFt2rRJnTt3dvnSVpSePXvq3nvv1UsvvaTU1FT16dNHdrtdH3/8sXr27Knx48erffv2iouL07Jly3Tq1Cl1795dn3/+ud544w1FR0cXe+G2JA0YMEDr16/X3Xffrf79+ystLU0vv/yy2rRpo9OnTzun8/PzU5s2bfTWW2/p+uuvV3BwsNq1a6d27dq5zdNKPcXx9fVV7969tX37dpdhTiMiIjR48GAtWLBAJ0+edA436/hVvbzn03fo0EHDhw/X4sWL9euvvyoyMlLvv/++5SMhJSnPNRatWrVyHtG5WLNmzdyOVPTo0UMffvhhqU5D9PX11ZYtWxQXF6dOnTpp8+bN2rRpk5566imXC6bLe43Fs88+q3Hjxmno0KGKiorSxx9/rFWrVmnmzJkuR+gWLVqkpKQkpaSkqEePHqpXr16RR2Acwa+o57Zt26bOnTs7T6sDUM1c/oGoAFSE999/39x4443G29vbhIeHm1dffdUkJCQYX19ft2nXrVtnunTpYgICAkxAQIBp1aqVGTdunDl48KBzmuKGgIyLizNhYWFlqq2goMAkJSWZ0NBQ4+fnZ3r06GH+/e9/m7CwsBKHmz137px5/PHHTfv27U1QUJAJCAgw7du3N4sXLy5TDY4hQT/88EMzZswYU6dOHRMYGGjuuecec/LkSbfpU1JSTFRUlKlVq5bx9fU14eHhJj4+3nzxxRcu2yIgIKDI5eXn55t58+aZVq1aGW9vbxMSEmL69u1r9uzZ45wmLy/PJCUlmWbNmpkaNWqYJk2amCeffNLk5ua6zOvi4WbtdruZNWuWCQsLMz4+PubGG280//d//1fke/PJJ5+YiIgI4+3t7TJ06MVDtZalnrCwMNO/f3+3db64TmOMWb9+vbHZbObIkSMu7WfOnDHjxo0zwcHBJjAw0ERHR5uDBw8aSea5555zTueos/AwqRc/V1hOTo6ZOHGiqVu3rgkICDB33XWXOXr0aLmHm7146GNjTJnnVRYqZrjZiIgI06BBgxJf7+iThw4dMr179zb+/v7mmmuuMdOmTTMFBQUVVueyZctMy5YtnX9vXnzxRZfhpI357/uTkpJyyXkV97fm1KlTxtvb27z66qsVVjeAy8tmzGW+KhNApYmOjtY333zjHOno92zFihUaNWqUdu/e7XZzL1SegoICtWnTRjExMXr22WcvOe1XX32lG2+8UatWrXLewRwXjtoFBwdrwYIFGjdu3CWnjY+P19q1a12OXFVXCxYs0Ny5c3Xo0KEqu3gfgDVcYwFUUxePH5+amqp3331XPXr0qJqCAF24HmT69On629/+5vJlt6j7HSxYsEAeHh7q1q3b5SzxivfRRx+pUaNGevDBB6u6lMsmLy9PL7zwgv7yl78QKoBqjGssgGqqefPmio+PV/PmzZWRkaElS5bI29tbf/rTnyptmSUNV+nt7X3JezlUhNIM9VnZNeDShg0bpmHDhrm0zZ07V3v27FHPnj3l5eWlzZs3a/PmzRozZoyaNGlSabUUFBSUeAF+4eFVrwT9+/cv18Xz1VmNGjV05MiRqi4DgEUEC6Ca6tOnj/7nf/5HP/74o3x8fHTbbbdp1qxZxd4MryKUNFxl9+7dtWPHjkpbvlS6oT6Luls2qlZkZKS2bdumZ599VqdPn9a1116rxMREPf3005W63KNHj5Z4s73Cw6sCAMqPaywAlNo///nPIk9pcahTp44iIiIqtYYffvhB33zzzSWniYiIKPVdvnF1y83N1c6dOy85TfPmzct1V3cAgCuCBQAAAADLuHgbAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGCZV2kmstvtOn78uIKCgmSz2Sq7JqDSGWOUnZ2thg0bysOjbPma/QFXGyv7g8Q+gasPnxHAf5VlfyhVsDh+/LiaNGlSIcUBV5KjR4+qcePGZXoN+wOuVuXZHyT2CVy9+IwA/qs0+0OpYnhQUFCFFARcacrTt9kfcLUqb99mn8DVis8I4L9K07dLFSw4lIerVXn6NvsDrlbl7dvsE7ha8RkB/Fdp+jYXbwMAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALPOqqgUbY6pq0ajGbDZbVZdQKdgfUB5X6/4g/T73iYp+P9mGV4/f43sJ66pif+CIBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsMyrqguoKDabrapLuOyMMRU6v8rYhhVdI0qnOryX7LO4nKrDPnGlYxteParDe8lnRPXEEQsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZV5VXUBFMcZUdQmXnc1W0XOshG1Y8UWiFKrD/lAdakQVqvC/HRXf3yq6RPYJXC7Voa9VhxrhjiMWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMq+qLqCi2Gy2qi6hCpgKnl8lbENTwTX+Lt/nsquM/cFU8HtZ0TVe6fVJFV/jVa1a/O248vscrg7VoW9c6X+Dr/T6pKvjM4IjFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKvqi7gSmaMqeoSLskmW4XOz+jKXl9cXa70/atS2Cp2n8XV5UrfJ2z03ypzpfeNynClr3Ol1HcV7GMcsQAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJZ5VdWCbTZbVS26ylT0OhtjKnR+v8f3BKVH/7DOpordZyXek6vJlf4ZgasHf8+vVNX/M4IjFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLvKpqwcaYqlp0lbnS1/lKr0+SbDZbVZdQLVSH97Ki2VTBfcP2+9uGKCNTsX3O6Mruc7/HvytXq9/je8lnxOXBEQsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGCZV1Ut2GazVdWigSsO+8OViPekKlWLfaKCS7TR51CMarE//O7wnhSFIxYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsKxUwcIYU9l1AFWiPH2b/QFXq/L2bfYJXK34jAD+qzR9u1TBIjs723IxwJWoPH2b/QFXq/L2bfYJXK34jAD+qzR922ZKET/sdruOHz+uoKAg2Wy2CikOqErGGGVnZ6thw4by8CjbGYHsD7jaWNkfJPYJXH34jAD+qyz7Q6mCBQAAAABcChdvAwAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAy/4fbGp8qpgY/tAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAEnCAYAAAA0B9WGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1k0lEQVR4nO3deXQUZb7G8aeTkD3sQRKWAAFZFTAiyhZQJGwykSUGRklQRGUTDOqgAyRsyqIywIA4KojgdQGCdy4CggaVAZVBnEEQJkASEFQigkYIENLv/YPTPWk6eyWE4PdzDufQb1dX/ar6rXQ/XVVv2YwxRgAAAABggUdFFwAAAACg8iNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWADXgcTERNlstoouA1eRzWZTYmKiS9uuXbvUqVMnBQQEyGaz6euvv66Q2q4ljRo1Unx8fJnOMz4+Xo0aNSrTeZZk2YGBgRWybAAoCsECQKV09913y2azaezYseW6nJycHLVq1Uo2m03z588v12VZkZOToyFDhujnn3/WSy+9pDfffFNhYWEVXValdeLECSUmJlbqcPbOO+/o/vvvV7NmzWSz2dS9e/dCp//qq680YMAA1axZU/7+/mrTpo0WLlzoMk1OTo6SkpLUpEkT+fj4qEmTJpo5c6YuXbrkNr8LFy7o6aefVmhoqPz8/NSxY0dt2bKl0BrOnDmjOnXqyGazac2aNSVeZwAVy6uiCwCAklq3bp127tx5VZa1aNEiHT169Kosy4rDhw8rIyNDf/vb3zRy5MiKLqfSO3HihJKSktSoUSO1a9fO5bm//e1vstvtFVNYCSxdulS7d+9Whw4ddOrUqUKn/fDDD3XPPfeoffv2mjJligIDA3X48GF99913LtPdf//9eu+99/Tggw/q1ltv1eeff64pU6bo6NGjeuWVV1ymjY+P15o1azRhwgQ1a9ZMK1asUN++fZWSkqIuXbrkW8fUqVN17tw5aysOoMIQLABUKufPn1dCQoKefvppTZ06tVyXdfLkSU2fPv2qLMuqkydPSpKqV69esYVYcO7cOfn7+1d0GUWqUqVKRZdQLG+++abq1asnDw8PtWnTpsDpfv31Vw0fPlz9+vXTmjVr5OGR/8kMu3bt0rvvvqspU6Zo+vTpkqRHH31UtWvX1osvvqixY8fq5ptvliR9+eWXevvttzVv3jxNmjRJkjR8+HC1adNGTz31lHbs2OE2/2+++UZLly7V1KlTr/n9DUD+OBUKqGS2b9+uDh06yNfXV+Hh4Vq2bFm+061atUoRERHy8/NTzZo1FRsbq2PHjrlM0717d7Vp00b//ve/FRkZKX9/fzVt2tR5CsInn3yijh07ys/PT82bN9fWrVvdlrNnzx716dNHVatWVWBgoO666y59/vnnxV6fjIwMDRgwQAEBAapTp44mTpyozZs3y2azadu2bW7Tz507V3a73fllpbhWrFghm82mf/zjH3riiScUHBysgIAA3XvvvcrMzMz3NX/605/UvHlz3X///SVaVkZGhkaPHq3mzZvLz89PtWrV0pAhQ5Senl6i+UiXTyeZOHGigoODFRQUpAEDBrj9ihwfH6/IyEhJ0pAhQ1xOe/nhhx80YsQI1a9fXz4+PgoJCdEf/vCHEtXiuIbnwIEDiomJUdWqVVWrVi09/vjjOn/+vNv0Jel7u3fvVrdu3eTv769nnnlG0uXwmJiYqBtvvFG+vr4KCQnRwIEDdfjwYefrz549q4SEBDVo0EA+Pj5q3ry55s+fL2NMoevy888/a9KkSbrpppsUGBioqlWrqk+fPvrXv/7lnGbbtm3q0KGDJGnEiBGy2Wyy2WxasWKFc3tfeY1FcetxnL63fv16tWnTRj4+PmrdurU2bdpU+JtwhePHjys6OlqBgYEKDg7WpEmTlJub6zJNgwYNCgwJeb311lv68ccfNWvWLHl4eOjs2bP5HpH57LPPJEmxsbEu7bGxsTLG6J133nG2rVmzRp6enho1apSzzdfXVw899JB27tzp1h8k6fHHH9e9996rrl27FlkzgGsTRyyASmTv3r3q1auXgoODlZiYqEuXLmnatGm64YYbXKabNWuWpkyZopiYGI0cOVKZmZlatGiRunXrpj179rj8qn369Gn1799fsbGxGjJkiJYuXarY2FitXr1aEyZM0KOPPqphw4Zp3rx5Gjx4sI4dO6agoCBJ0r59+9S1a1dVrVpVTz31lKpUqaJly5ape/fuzlBSmLNnz+rOO+/U999/r8cff1x169bVW2+9pZSUlHynP3r0qJ5//nm9/vrr8vPzK9U2HDdunGrUqKFp06YpPT1dCxYs0NixY12+FEmXf3F94403tH379hJfGL9r1y7t2LFDsbGxql+/vtLT07V06VJ1795d+/fvL9Gv8iNHjtSqVas0bNgwderUSR9//LH69evnMs0jjzyievXqafbs2Ro/frw6dOjg7BODBg3Svn37NG7cODVq1EgnT57Uli1bdPTo0RJfgBwTE6NGjRrpueee0+eff66FCxfq9OnTWrlypXOakvS9U6dOqU+fPoqNjdX999+vG264Qbm5uerfv78++ugjxcbG6vHHH1dWVpa2bNmib775RuHh4TLGaMCAAUpJSdFDDz2kdu3aafPmzXryySd1/PhxvfTSSwWuw5EjR7R+/XoNGTJEjRs31o8//qhly5YpMjJS+/fvV2hoqFq2bKnp06dr6tSpGjVqlPOLbqdOnfKdZ0nr2b59u9atW6fRo0crKChICxcu1KBBg3T06FHVqlWryPchNzdXUVFR6tixo+bPn6+tW7fqhRdeUHh4uB577LEiX3+lrVu3qmrVqs6w8p///EcBAQF64IEH9NJLL8nX11fS5ZAryW3fc/Tn3bt3O9v27NmjG2+8UVWrVnWZ9rbbbpMkff3112rQoIGz/b333tOOHTv07bffliqAA7hGGACVRnR0tPH19TUZGRnOtv379xtPT0/j2J3T09ONp6enmTVrlstr9+7da7y8vFzaIyMjjSTz1ltvOdsOHDhgJBkPDw/z+eefO9s3b95sJJnly5e71OPt7W0OHz7sbDtx4oQJCgoy3bp1K3J9XnjhBSPJrF+/3tmWnZ1tWrRoYSSZlJQUl+kHDx5sOnXq5HwsyYwZM6bI5RhjzPLly40k07NnT2O3253tEydONJ6enubMmTPONrvdbm677TYzdOhQY4wxaWlpRpKZN29esZZ17tw5t7adO3caSWblypXFmocxxnz99ddGkhk9erRL+7Bhw4wkM23aNGdbSkqKkWTee+89Z9vp06dLVHdBpk2bZiSZAQMGuLSPHj3aSDL/+te/jDGl63svv/yyy7Svv/66kWRefPFFtzoc79v69euNJDNz5kyX5wcPHmxsNps5dOiQsy0sLMzExcU5H58/f97k5ua6vC4tLc34+PiY6dOnO9t27drl1t8d4uLiTFhYmPNxSeqRZLy9vV3a/vWvfxlJZtGiRW7Lym/ZklxqNcaY9u3bm4iIiAJf17p1axMZGZnvczfffLPx9/c3/v7+Zty4cWbt2rVm3LhxRpKJjY11Trd27Vojybz55psur3/55ZeNJNOmTRuX5d15551uy9q3b5/b+37u3DnTsGFDM3nyZGNM/n0ZQOXAqVBAJZGbm6vNmzcrOjpaDRs2dLa3bNlSUVFRzsfr1q2T3W5XTEyMfvrpJ+e/unXrqlmzZm5HAwIDA11ObWjevLmqV6+uli1buhxxcPz/yJEjzno+/PBDRUdHq0mTJs7pQkJCNGzYMG3fvl2//vproeu0adMm1atXTwMGDHC2+fr66uGHH3abNiUlRWvXrtWCBQsKnWdRRo0a5XIEomvXrsrNzVVGRoazbcWKFdq7d6/mzJlTqmXk/UU3JydHp06dUtOmTVW9enV99dVXxZ7PBx98IEkaP368S/uECROKXYe3t7e2bdum06dPF3u5BRkzZozL43HjxrnUWdK+5+PjoxEjRri0rV27VrVr13bOOy/H+/bBBx/I09PTbbskJCTIGKONGzcWuA4+Pj7O04Nyc3N16tQpBQYGqnnz5iV6b/IqaT09e/ZUeHi48/HNN9+sqlWrOvet4nj00UddHnft2rVEr8/rt99+07lz5zR8+HAtXLhQAwcO1MKFC/XII4/o7bffVmpqqiSpb9++CgsL06RJk7Ru3TplZGTo3Xff1bPPPisvLy9lZ2c755mdnS0fHx+3ZTmOfuSd9vnnn1dOTo7zVDgAlRenQgGVRGZmprKzs9WsWTO355o3b+78cpeamipjTL7TSe4XntavX9/tVJ9q1aq5nKbgaJPk/IKamZmpc+fOqXnz5m7LaNmypex2u44dO6bWrVsrMzPT5fzvwMBABQYGKiMjQ+Hh4W7Lb9q0qcvjS5cuafz48XrggQec574X5IcffnCrO+8X/byhTJJq1Kjhsl6//vqrJk+erCeffNJtG+SVm5vrdm1GzZo15e3trezsbD333HNavny5jh8/7nKe/S+//FJo/XllZGTIw8PD5UuopHy3eX58fHw0Z84cJSQk6IYbbtDtt9+u/v37a/jw4apbt26x63C4sk+Fh4fLw8PDeepKSftevXr15O3t7dJ2+PBhNW/eXF5eBX88ZWRkKDQ01HlKnkPLli2dzxfEbrfrL3/5i5YsWaK0tDSXflmc05DKop4r+6B0uR86+uDFixf1888/uzwfHBwsT09PSZe/nAcHBxf4+pJy7B9Dhw51aR82bJiWLVumnTt3qlmzZvL19dWGDRsUExOjQYMGSbrcx+bOnatZs2a53F/Dz8/PeepUXo5rchzLTE9P17x58/TXv/6V+3MA1wGCBXCdsdvtstls2rhxo/OLSF5XfnjnN01h7aaIi2Pz06FDB5cvV9OmTXO7uVthVq5cqYMHD2rZsmVu519nZWUpPT1dderUkb+/v0JCQlyeX758ucsN0opar/nz5+vixYu67777nMtyXCx9+vRppaenKzQ0VCdOnFDjxo1d5pGSkqLu3btr3LhxWr58uSZMmKA77rhD1apVk81mU2xs7FUfpnTChAm65557tH79em3evFlTpkzRc889p48//ljt27e3NO8rA2FJ+15pr5OxYvbs2ZoyZYoefPBBzZgxQzVr1pSHh4cmTJhw1d6bovrgjh071KNHD5fn0tLSnNfEFPT60goNDdW+ffvcrtWqU6eOJLkEltatW+ubb77R/v37dfr0abVq1Up+fn6aOHGicwAB6fKRy+PHj7st6/vvv3cuU7o8vGy9evXUvXt35/7m+HEgMzNT6enpatiwYbEuQgdQ8QgWQCURHBwsPz8/52kJeR08eND5f8fFrY0bN9aNN95YrvX4+/u7LNvhwIED8vDwcP7iv3r1apdTHxynToWFhWn//v0yxrh8ST106JDL/I4ePaqcnBx17tzZbVkrV67UypUrlZycrOjoaLcbcLVu3bpE63X06FGdPn0639fNnj1bs2fP1p49e9SiRQu3ZbVt21bS5RFx4uLi9MILLzifO3/+vM6cOVOiWsLCwmS3252/4jvkt80LEx4eroSEBCUkJCg1NVXt2rXTCy+8oFWrVpVoPqmpqS5h6tChQ7Lb7c4vvGXR98LDw/XFF18oJyenwGFdw8LCtHXrVmVlZbkcJThw4IDz+YKsWbNGPXr00GuvvebSfubMGdWuXdv5uCQX7FupJz9t27Z161ulOcJUXBEREdqyZYuOHz/u0s9OnDghSW5HR2w2m8v+8cEHH8hut6tnz57Otnbt2iklJUW//vqrywXcX3zxhfN56fL+dujQIZfTKR1Gjx4t6XKwqczDKAO/J/wEAFQSnp6eioqK0vr1611u2Pbtt99q8+bNzscDBw6Up6enkpKS3I4uGGOKvFFWSerp1auX3n//fZejCD/++KPeeustdenSxfmFonPnzurZs6fzn+NLRFRUlI4fP67//d//db7+/Pnz+tvf/uayrNjYWCUnJ7v9ky6f952cnOy8BiTvcnr27Ol2BKMo48ePd1uOY0jf+Ph4JScnq3HjxvL19XVbluO0Kk9PT7dtv2jRIrfhQIvSp08fSXK7+3FxrzM5d+6c23Cw4eHhCgoKyvc0laL89a9/dXm8aNEilzrLou8NGjRIP/30kxYvXuz2nGOeffv2VW5urts0L730kmw2m7Oe/OT33rz33ntuv64HBARIUrHCoJV68lOjRg23vuW4NqE8xMTESJJb2Hr11Vfl5eVV6B27s7OzNWXKFIWEhLicSjV48GDl5ua63DTvwoULWr58uTp27Oj80WHmzJlu+9uMGTMkSU899ZSSk5Od7wWAax9HLIBKJCkpSZs2bVLXrl01evRoXbp0SYsWLVLr1q3173//W9LlL44zZ87U5MmTlZ6erujoaAUFBSktLU3JyckaNWpUie8BUZCZM2dqy5Yt6tKli0aPHi0vLy8tW7ZMFy5c0Ny5c4t8/SOPPKLFixdr6NChevzxxxUSEqLVq1c7v0Q5fjVu0aKFWrRoke88GjdurOjo6DJZH0m65ZZbdMstt7i0OYJT69ati7Ws/v37680331S1atXUqlUr7dy5U1u3bi3xOfzt2rXT0KFDtWTJEv3yyy/q1KmTPvroI7cjOgX5z3/+o7vuuksxMTFq1aqVvLy8lJycrB9//NHtXgTFkZaWpgEDBqh3797auXOncxhcx5Gasuh7w4cP18qVK/XEE0/oyy+/VNeuXXX27Flt3bpVo0eP1h/+8Afdc8896tGjh5599lmlp6erbdu2+vDDD/X+++9rwoQJbtek5NW/f39Nnz5dI0aMUKdOnbR3716tXr3a7Rfz8PBwVa9eXS+//LKCgoIUEBCgjh07up3+JslSPeXp008/1aeffirp8mlFZ8+e1cyZMyVJ3bp1U7du3SRJ7du314MPPqjXX39dly5dUmRkpLZt26b33ntPkydPdp62JF0OIaGhoWrVqpV+/fVXvf766zpy5Ig2bNjgcrSmY8eOGjJkiCZPnqyTJ0+qadOmeuONN5Senu4SYPK7A7fj6ESHDh3KdN8GcBVc7WGoAFjzySefmIiICOPt7W2aNGliXn75ZedwoHmtXbvWdOnSxQQEBJiAgADTokULM2bMGHPw4EHnNJGRkaZ169ZuywgLCzP9+vVza1c+w7t+9dVXJioqygQGBhp/f3/To0cPs2PHjmKvz5EjR0y/fv2Mn5+fCQ4ONgkJCc5hLfMOd5uf/OopiGO42V27drm0O4a2vHJo27xKOtzs6dOnzYgRI0zt2rVNYGCgiYqKMgcOHHAb+rQ4srOzzfjx402tWrVMQECAueeee8yxY8eKNdzsTz/9ZMaMGWNatGhhAgICTLVq1UzHjh3Nu+++W6IaHP1r//79ZvDgwSYoKMjUqFHDjB071mRnZ7tNb6XvGXN5+NFnn33WNG7c2FSpUsXUrVvXDB482GVY46ysLDNx4kQTGhpqqlSpYpo1a2bmzZvnMpSwMfkPN5uQkGBCQkKMn5+f6dy5s9m5c6eJjIx0G471/fffN61atTJeXl4uQ89eOdxsSeopqM8Wt2/ExcWZgIAAt/b8/gY42vL7l7fvGGPMxYsXTWJiogkLCzNVqlQxTZs2NS+99JLbcubMmWNatGhhfH19TY0aNcyAAQPMnj178q01OzvbTJo0ydStW9f4+PiYDh06mE2bNhW5jgw3C1ReNmNKcSUmAJSjBQsWaOLEifruu+9Ur169ii7ndy8xMVFJSUnKzMx0uQ4BAIC8uMYCQIXKe1G3dPkai2XLlqlZs2aECgAAKhGusQBQoQYOHKiGDRuqXbt2+uWXX7Rq1SodOHBAq1evrujSytWV99u4kp+fn/PeIeXlt99+02+//VboNFeOCAQAQEEIFgAqVFRUlF599VWtXr1aubm5atWqld5++23dd999FV1auSpqtKq4uDitWLGiXGuYP3++kpKSCp0mLS2tXGsAAFw/uMYCACrA1q1bC33eMfJOeTpy5IiOHDlS6DRdunQp16FOAQDXD4IFAAAAAMu4eBsAAACAZQQLAFdNo0aNFB8f79KWmpqqXr16qVq1arLZbFq/fn2F1HYt6d69e6F3Oy6NxMRE5w0Hy9u7776rmjVrFnlheEmVZB1sNpsSExPLdPkoPzk5OWrQoIGWLFlS0aUAsIBgAaBCxcXFae/evZo1a5befPNN3XrrrRVdUqV17tw5JSYmatu2bRVWQ25urqZNm6Zx48YpMDCwwuqoDO6++27ZbDaNHTu2oksp0muvvaaWLVvK19dXzZo106JFi0o1n1mzZslms6lNmzYu7VWqVNETTzyhWbNm6fz582VRMoAKQLAAUGGys7O1c+dOPfTQQxo7dqzuv/9+1a9fv6LLqrTOnTunpKSkfIPFn//8Z7d7hpSHv//97zp48KBGjRpV5vO+WutwNaxbt047d+6s6DKKZdmyZRo5cqRat26tRYsW6Y477tD48eM1Z86cEs3nu+++0+zZsxUQEJDv8yNGjNBPP/2kt956qyzKBlABCBYAKkxmZqYkqXr16hVbiAVnz56t6BKKxcvL66qM7rR8+XJ17ty5TG9u6NjGV2sdytv58+eVkJCgp59+uqJLKVJ2draeffZZ9evXT2vWrNHDDz+slStX6o9//KNmzJih06dPF3tekyZN0u23317gUcnq1aurV69e5T7MMoDyQ7AAKqlt27bp1ltvla+vr8LDw7Vs2bICz0FftWqVIiIi5Ofnp5o1ayo2NlbHjh1zmaZ79+5q06aN9u/frx49esjf31/16tXT3LlzS1ybMUYzZ85U/fr15e/vrx49emjfvn0u0yQmJiosLEyS9OSTT8pms6lRo0aSpKysLE2YMEGNGjWSj4+P6tSpo7vvvltfffVVsWtYsWKFbDabPv30Uz3yyCOqVauWqlatquHDh+f7ZWjjxo3q2rWrAgICFBQUpH79+rnVHB8fr8DAQB0+fFh9+/ZVUFCQ/vjHP0qS7Ha7/vKXv+imm26Sr6+vgoOD1bt3b/3zn/90vv7SpUuaMWOGwsPD5ePjo0aNGumZZ57RhQsXCl2XixcvaurUqYqIiFC1atUUEBCgrl27KiUlxTlNenq682Z2SUlJstlsLtcZ5Nc3iltPo0aN1L9/f23fvl233XabfH191aRJE61cudJluvPnz2vTpk3q2bOn2zpkZ2dr/Pjxql27toKCgjRgwAAdP37c7VoIR5379+/XsGHDVKNGDXXp0qXAdbhw4YImTpyo4OBg53y/++67QrdnftLT02Wz2TR//ny98sorzm3SoUMH7dq1q8TzK8zcuXNlt9s1adIky/Ny9MkjR44oKipKAQEBCg0N1fTp01UWgz6mpKTo1KlTGj16tEv7mDFjdPbsWW3YsKFY8/n000+1Zs0aLViwoNDp7r77bm3fvl0///xzaUsGUIG4QR5QCe3Zs0e9e/dWSEiIkpKSlJubq+nTp+d7l+RZs2ZpypQpiomJ0ciRI5WZmalFixapW7du2rNnj8vRgtOnT6t3794aOHCgYmJitGbNGj399NO66aab1KdPn2LXN3XqVM2cOVN9+/ZV37599dVXX6lXr166ePGic5qBAweqevXqmjhxooYOHaq+ffs6z8l/9NFHtWbNGo0dO1atWrXSqVOntH37dn377be65ZZbSrStxo4dq+rVqysxMVEHDx7U0qVLlZGRoW3btjm/pL755puKi4tTVFSU5syZo3Pnzmnp0qXq0qWL9uzZ4ww80uUv41FRUerSpYvmz58vf39/SdJDDz2kFStWqE+fPho5cqQuXbqkzz77TJ9//rnzF9qRI0fqjTfe0ODBg5WQkKAvvvhCzz33nL799lslJycXuA6//vqrXn31VQ0dOlQPP/ywsrKy9NprrykqKkpffvml2rVrp+DgYC1dulSPPfaY7r33Xg0cOFCSdPPNNxc435LUc+jQIQ0ePFgPPfSQ4uLi9Prrrys+Pl4RERFq3bq1JGn37t26ePFivu9RfHy83n33XT3wwAO6/fbb9cknn6hfv34F1jZkyBA1a9ZMs2fPLvQL8siRI7Vq1SoNGzZMnTp10scff1zofIvy1ltvKSsrS4888ohsNpvmzp2rgQMH6siRI6pSpYqky2EmKyurWPOrXbu2y+OjR4/q+eef1+uvvy4/P79S15lXbm6uevfurdtvv11z587Vpk2bNG3aNF26dEnTp093Tnf69Gnl5uYWOT9/f39nv96zZ48kuR1liIiIkIeHh/bs2aP777+/yPrGjRunkSNH6qabbip02oiICBljtGPHDvXv37/IWgFcYwyASueee+4x/v7+5vjx48621NRU4+XlZfLu1unp6cbT09PMmjXL5fV79+41Xl5eLu2RkZFGklm5cqWz7cKFC6Zu3bpm0KBBxa7t5MmTxtvb2/Tr18/Y7XZn+zPPPGMkmbi4OGdbWlqakWTmzZvnMo9q1aqZMWPGFHuZ+Vm+fLmRZCIiIszFixed7XPnzjWSzPvvv2+MMSYrK8tUr17dPPzwwy6v/+GHH0y1atVc2uPi4owk86c//cll2o8//thIMuPHj3erw7ENvv76ayPJjBw50uX5SZMmGUnm448/drZFRkaayMhI5+NLly6ZCxcuuLzu9OnT5oYbbjAPPvigsy0zM9NIMtOmTXOrY9q0aS59oyT1hIWFGUnm008/dbadPHnS+Pj4mISEBGfbq6++aiSZvXv3usxz9+7dRpKZMGGCS3t8fLxbvY46hw4dWux1GD16tMt0w4YNK3A7FMTRF2vVqmV+/vlnZ/v7779vJJm///3vzjZH3yrOvysNHjzYdOrUyflYkqW+7uiT48aNc7bZ7XbTr18/4+3tbTIzM53tjvexqH95t9uYMWOMp6dnvssODg42sbGxRda4ePFiU61aNXPy5EljzOX+3bp163ynPXHihJFk5syZU5zVB3CN4YgFUMnk5uZq69atuvfeexUaGupsb9q0qfr06aO///3vzrZ169bJbrcrJiZGP/30k7O9bt26atasmVJSUvTMM8842wMDA11+ffT29tZtt91W5N2Z89q6dasuXryocePGuZy2MmHCBM2ePbtY86hevbq++OILnThxwmUdS2PUqFHOX5ol6bHHHtMzzzyjDz74QAMGDNCWLVt05swZDR061GUbeXp6qmPHji6nG+WdR15r166VzWbTtGnT3KZ1bIMPPvhAkvTEE0+4PJ+QkKD58+drw4YN6tGjR77r4OnpKU9PT0mXT7k6c+aM7Ha7br311hKdHpZXSetp1aqVunbt6nwcHBys5s2bu/SNU6dOSZJq1KjhMs9NmzZJktvpNOPGjSvwfPpHH3202Oswfvx4l/YJEyaU+gLg++67z6V+xzrnXc+oqCht2bKlxPNOSUnR2rVr9cUXX5SqtsLkHVnKMdLUhg0btHXrVsXGxkqSVq9eXayL35s0aeL8f3Z2try9vfOdztfXt8j5nTp1SlOnTtWUKVPyPaJ6Jce2z7svAqg8CBZAJXPy5EllZ2eradOmbs9d2ZaamipjjJo1a5bvvPJ+4Zak+vXru53DXqNGDf373/8udn0ZGRmS5LbM4OBgty+cBZk7d67i4uLUoEEDRUREqG/fvho+fLjLF57iurKOwMBAhYSEKD09XdLlbSRJd955Z76vr1q1qstjLy8vt5GrDh8+rNDQUNWsWbPAOjIyMuTh4eH2HtWtW1fVq1d3breCvPHGG3rhhRd04MAB5eTkONsbN25c6OvKqp6GDRu6zaNGjRr5Xq9irjh1ybGsK2vNrw87FGe9HPMNDw93aW/evHmRry3Ilevp6LN51zMkJEQhISElmu+lS5c0fvx4PfDAA+rQoUOp68uPh4eH275x4403SpKzn0tS586dSzxvPz8/l1MY8zp//nyRp3P9+c9/Vs2aNTVu3LhiLc/Rd67WPVcAlC2CBXAds9vtstls2rhxo/MX77yuvM9AftNI7l8Uy1tMTIy6du2q5ORkffjhh5o3b57mzJmjdevWlehaj+Kw2+2SLl9nUbduXbfnvbxc/0z6+PjIw6P0416U5gvTqlWrFB8fr+joaD355JOqU6eOPD099dxzz+nw4cOlrqUk9RSnb9SqVUvS5S/hVocNLqvrD0qqOOuZnZ2tX375pVjzc/SplStX6uDBg1q2bJnLl33p8mAF6enpqlOnjvPahvKQmZlZrGssAgMDnX8bQkJClJubq5MnT6pOnTrOaS5evKhTp04VekQxNTVVr7zyihYsWKATJ04428+fP6+cnBylp6eratWqLoHcEeCuvDYFQOVAsAAqmTp16sjX11eHDh1ye+7KtvDwcBlj1LhxY+cvmOXNMdJTamqqy6+omZmZJRqaMiQkRKNHj9bo0aN18uRJ3XLLLZo1a1aJg0VqaqrLKT2//fabvv/+e/Xt21eSnL9216lTJ9/RjIojPDxcmzdv1s8//1zgUYuwsDDZ7XalpqaqZcuWzvYff/xRZ86ccW63/KxZs0ZNmjTRunXrXILAladelSS0WKmnIC1atJAkpaWluVyk61hWWlqayxGk/PpwSTjme/jwYZejFAcPHrQ036K88847GjFiRLGmdQSSo0ePKicnJ9+jBitXrtTKlSuVnJys6OjoEtdjt9t15MgRl338P//5jyS5DDzQoUOHIo+MSZf7lWOkrnbt2kmS/vnPfzr3Gcdju93ufD4/x48fl91u1/jx491OV5MuH5V6/PHHXUaKSktLkySXPgmg8mC4WaCS8fT0VM+ePbV+/XqXXwEPHTqkjRs3ukw7cOBAeXp6Kikpye2ogzHGeU58WerZs6eqVKmiRYsWuSyzqGEmHXJzc91+Da5Tp45CQ0OLHJY1P6+88orLqUNLly7VpUuXnAElKipKVatW1ezZs12mc3Dca6MwgwYNkjFGSUlJbs85toHjS9mV2+HFF1+UpEJHMnL8ip53e37xxRduN1hz/Np95syZImu2Uk9BIiIi5O3t7TLErnR5G0vSkiVLXNpLe/dmB8d7uHDhQpf24va10nJcY1Gcfw6xsbFKTk52+yddfi+Sk5PVsWPHUte0ePFi5/+NMVq8eLGqVKmiu+66y9m+evXqYtU8fPhw52vuvPNO1axZU0uXLnVZ3tKlS+Xv7+/ST3766ScdOHBA586dkyS1adMm33Vu3bq1GjZsqOTkZD300EMu8929e7dsNpvuuOOOUm8LABWHIxZAJZSYmKgPP/xQnTt31mOPPabc3FwtXrxYbdq00ddff+2cLjw8XDNnztTkyZOVnp6u6OhoBQUFKS0tTcnJyRo1alSZjKWfV3BwsCZNmqTnnntO/fv3V9++fbVnzx5t3LixWKc3ZGVlqX79+ho8eLDatm2rwMBAbd26Vbt27dILL7xQ4nouXryou+66SzExMTp48KCWLFmiLl26aMCAAZIuX0OxdOlSPfDAA7rlllsUGxur4OBgHT16VBs2bFDnzp1dvrTlp0ePHnrggQe0cOFCpaamqnfv3rLb7frss8/Uo0cPjR07Vm3btlVcXJxeeeUVnTlzRpGRkfryyy/1xhtvKDo6usALtyWpf//+Wrdune69917169dPaWlpevnll9WqVSv99ttvzun8/PzUqlUrvfPOO7rxxhtVs2ZNtWnTRm3atHGbp5V6CuLr66tevXpp69atLsOcRkREaNCgQVqwYIFOnTrlHG7W8at6ac+nb9eunYYOHaolS5bol19+UadOnfTRRx9ZPhJSlNJcY9GiRQvnEZ0rNW7c2O1IRffu3fXJJ58U6zREX19fbdq0SXFxcerYsaM2btyoDRs26JlnnnG5YLq011jMmDFDY8aM0ZAhQxQVFaXPPvtMq1at0qxZs1yO0C1evFhJSUlKSUlR9+7dVbt27XyPwDiCX37PbdmyRZ07d3aeVgegkrn6A1EBKAsfffSRad++vfH29jbh4eHm1VdfNQkJCcbX19dt2rVr15ouXbqYgIAAExAQYFq0aGHGjBljDh486JymoCEg4+LiTFhYWIlqy83NNUlJSSYkJMT4+fmZ7t27m2+++caEhYUVOdzshQsXzJNPPmnatm1rgoKCTEBAgGnbtq1ZsmRJiWpwDAn6ySefmFGjRpkaNWqYwMBA88c//tGcOnXKbfqUlBQTFRVlqlWrZnx9fU14eLiJj483//znP122RUBAQL7Lu3Tpkpk3b55p0aKF8fb2NsHBwaZPnz5m9+7dzmlycnJMUlKSady4salSpYpp0KCBmTx5sjl//rzLvK4cbtZut5vZs2ebsLAw4+PjY9q3b2/+7//+L9/3ZseOHSYiIsJ4e3u7DB165VCtJaknLCzM9OvXz22dr6zTGGPWrVtnbDabOXr0qEv72bNnzZgxY0zNmjVNYGCgiY6ONgcPHjSSzPPPP++czlFn3mFSr3wur+zsbDN+/HhTq1YtExAQYO655x5z7NixUg83e+XQx8aYEs+rJFTAcLMRERGmbt26Rb7e0ScPHz5sevXqZfz9/c0NN9xgpk2bZnJzc8uszldeecU0b97c+ffmpZdechlO2pj/vj8pKSmFzqugvzVnzpwx3t7e5tVXXy2zugFcXTZjrvJVmQDKTXR0tPbt2+cc6ej3bMWKFRoxYoR27drldnMvlJ/c3Fy1atVKMTExmjFjRqHTfv3112rfvr1WrVrlvIM5Lh+1q1mzphYsWKAxY8YUOm18fLzWrFnjcuSqslqwYIHmzp2rw4cPV9jF+wCs4RoLoJK6cvz41NRUffDBB+revXvFFATo8vUg06dP11//+leXL7v53e9gwYIF8vDwULdu3a5mide8Tz/9VPXq1dPDDz9c0aVcNTk5OXrxxRf15z//mVABVGJcYwFUUk2aNFF8fLyaNGmijIwMLV26VN7e3nrqqafKbZlFDVfp7e1d6L0cykJxhvos7xpQuPvuu0/33XefS9vcuXO1e/du9ejRQ15eXtq4caM2btyoUaNGqUGDBuVWS25ubpEX4OcdXvVa0K9fv1JdPF+ZValSRUePHq3oMgBYRLAAKqnevXvrf/7nf/TDDz/Ix8dHd9xxh2bPnl3gzfDKQlHDVUZGRmrbtm3ltnypeEN95ne3bFSsTp06acuWLZoxY4Z+++03NWzYUImJiXr22WfLdbnHjh0r8mZ7eYdXBQCUHtdYACi2f/zjH/me0uJQo0YNRURElGsN33//vfbt21foNBEREcW+yzeub+fPn9f27dsLnaZJkyaluqs7AMAVwQIAAACAZVy8DQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwzKs4E9ntdp04cUJBQUGy2WzlXRNQ7owxysrKUmhoqDw8Spav2R9wvbGyP0jsE7j+8BkB/FdJ9odiBYsTJ06oQYMGZVIccC05duyY6tevX6LXsD/gelWa/UFin8D1i88I4L+Ksz8UK4YHBQWVSUHAtaY0fZv9Ader0vZt9glcr/iMAP6rOH27WMGCQ3m4XpWmb7M/4HpV2r7NPoHrFZ8RwH8Vp29z8TYAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKvilqwMaaiFo1KzGazVXQJ5YL9AaVxve4P0u9znyjr95NteP34Pb6XsK4i9geOWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMu8KrqAsmKz2Sq6hKvOGFOm8yuPbVjWNaJ4KsN7yT6Lq6ky7BPXOrbh9aMyvJd8RlROHLEAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWOZV0QWUFWNMRZdw1dlsZT3HctiGZV8kiqEy7A+VoUZUoDL/21H2/a2sS2SfwNVSGfpaZagR7jhiAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALPOq6ALKis1mq+gSKoAp4/mVwzY0ZVzj7/J9Lrny2B9MGb+XZV3jtV6fVPY1Xtcqxd+Oa7/P4fpQGfrGtf43+FqvT7o+PiM4YgEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACzzqugCrmXGmIouoVA22cp0fkbX9vri+nKt71/lwla2+yyuL9f6PmGj/1aYa71vlIdrfZ3Lpb7rYB/jiAUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALDMq6IWbLPZKmrRFaas19kYU6bz+z2+Jyg++od1NpXtPivxnlxPrvXPCFw/+Ht+rar8nxEcsQAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABY5lVRCzbGVNSiK8y1vs7Xen2SZLPZKrqESqEyvJdlzaYy7hu23982RAmZsu1zRtd2n/s9/l25Xv0e30s+I64OjlgAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLvCpqwTabraIWDVxz2B+uRbwnFalS7BNlXKKNPocCVIr94XeH9yQ/HLEAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZQQLAAAAAJYRLAAAAABYRrAAAAAAYBnBAgAAAIBlBAsAAAAAlhEsAAAAAFhGsAAAAABgGcECAAAAgGXFChbGmPKuA6gQpenb7A+4XpW2b7NP4HrFZwTwX8Xp28UKFllZWZaLAa5Fpenb7A+4XpW2b7NP4HrFZwTwX8Xp2zZTjPhht9t14sQJBQUFyWazlUlxQEUyxigrK0uhoaHy8CjZGYHsD7jeWNkfJPYJXH/4jAD+qyT7Q7GCBQAAAAAUhou3AQAAAFhGsAAAAABgGcECAAAAgGUECwAAAACWESwAAAAAWEawAAAAAGAZwQIAAACAZf8POMLJruLvROgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -713,9 +707,9 @@ ], "metadata": { "kernelspec": { - "display_name": "maze-transformer", + "display_name": "maze-transformer-2cGx2R0F-py3.11", "language": "python", - "name": "maze-transformer" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -727,7 +721,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.4" }, "orig_nbformat": 4 }, diff --git a/notebooks/eval_tasks_table.ipynb b/notebooks/eval_tasks_table.ipynb index df48d3fd..6c133c5c 100644 --- a/notebooks/eval_tasks_table.ipynb +++ b/notebooks/eval_tasks_table.ipynb @@ -71,7 +71,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -104,15 +104,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "c:\\Users\\mivan\\AppData\\Local\\pypoetry\\Cache\\virtualenvs\\maze-transformer-2cGx2R0F-py3.11\\Lib\\site-packages\\maze_dataset\\dataset\\dataset.py:61: UserWarning:\n", + "c:\\Users\\mivan\\AppData\\Local\\pypoetry\\Cache\\virtualenvs\\maze-transformer-2cGx2R0F-py3.11\\Lib\\site-packages\\maze_dataset\\dataset\\dataset.py:83: UserWarning:\n", "\n", "in GPTDatasetConfig self.name='forkless', self.seed=46 is trying to override GLOBAL_SEED=42 which has already been changed elsewhere from DEFAULT_SEED=42\n", "\n", - "c:\\Users\\mivan\\AppData\\Local\\pypoetry\\Cache\\virtualenvs\\maze-transformer-2cGx2R0F-py3.11\\Lib\\site-packages\\maze_dataset\\dataset\\dataset.py:61: UserWarning:\n", + "c:\\Users\\mivan\\AppData\\Local\\pypoetry\\Cache\\virtualenvs\\maze-transformer-2cGx2R0F-py3.11\\Lib\\site-packages\\maze_dataset\\dataset\\dataset.py:83: UserWarning:\n", "\n", "in GPTDatasetConfig self.name='RDFS', self.seed=46 is trying to override GLOBAL_SEED=42 which has already been changed elsewhere from DEFAULT_SEED=42\n", "\n", - "c:\\Users\\mivan\\AppData\\Local\\pypoetry\\Cache\\virtualenvs\\maze-transformer-2cGx2R0F-py3.11\\Lib\\site-packages\\maze_dataset\\dataset\\dataset.py:61: UserWarning:\n", + "c:\\Users\\mivan\\AppData\\Local\\pypoetry\\Cache\\virtualenvs\\maze-transformer-2cGx2R0F-py3.11\\Lib\\site-packages\\maze_dataset\\dataset\\dataset.py:83: UserWarning:\n", "\n", "in GPTDatasetConfig self.name='pRDFS', self.seed=46 is trying to override GLOBAL_SEED=42 which has already been changed elsewhere from DEFAULT_SEED=42\n", "\n" @@ -189,7 +189,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAF2CAYAAAB3dr7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADSSklEQVR4nOzdeVhN2/8H8PcpDad50KBBZEpClJChhEIopLiGMmUermvKlFwkQ7jmsUgurss1hUjGLhmueZ4zp7k0n/X7o9/Z33bn1DmRKZ/X8+znqXXW3mvtaZ3P2XvttQWMMQZCCCGEEEIIj8K3rgAhhBBCCCHfIwqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFEip8mUL506RIcHR2hrq4OgUCAa9euVchy/fz8oKGhITOfs7MznJ2dK6RM8u2Fh4dDIBDg2bNnvPTFixfD0tISioqKsLW1rZAyLl++/FnLIYQQQsin+SkC5fz8fPTu3RvJyclYtmwZIiIiYGFh8a2r9UPKyMjAlClTULNmTaioqMDU1BReXl74+PFjhZf17t07DB8+HKamplBVVUWNGjUwZMiQCi+nokRHR2PKlClo1aoVwsLCsGDBgq9WtkAgKHXq2LEjL+/8+fPRvXt3GBkZQSAQYM6cOWUue9euXWjZsiXU1dWho6MDR0dHnDx5kvs8ISEBQUFBcHBwgK6uLqpWrQpnZ2ecOHFCYlni4F/a9Pbt2wrZFj+D+Ph4jBo1CnZ2dlBSUoJAICg1b2nbe+HChRJ5X716BW9vb+jo6EBLSwseHh548uTJl1wVQr5r5TnX3r17h0GDBsHQ0BBCoRBNmzbFX3/99RVrS76EKt+6Al/D48eP8fz5c2zcuBFDhw791tX5YaWlpcHJyQkvX76Ev78/ateujcTERJw9exa5ublQU1OrsLISEhLQqlUrAMCIESNgamqK169fIz4+vsLKqGgnT56EgoICNm/eDGVl5a9adkREhETa5cuXsWLFCri6uvLSZ86cCWNjYzRp0gTHjh0rc7lz5szB3Llz4eXlBT8/P+Tn5+PWrVt49eoVl2f//v0ICQmBp6cnfH19UVBQgG3btqFjx47YsmULBg0aJLHcuXPnombNmrw0HR2dcqzxzy0qKgqbNm1Co0aNYGlpiQcPHpSZv2PHjhg4cCAvrUmTJrz/MzMz0a5dO6SlpWH69OlQUlLCsmXL4OTkhGvXrkFfX7/C14OQ752851p6ejpat26Nd+/eYfz48TA2Nsbu3bvh7e2NyMhI/PLLL1+55qTCsJ/A6dOnGQD2119/VdgyMzMzGWOM+fr6MnV1dZn5nZycmJOTU4WV/y2MHDmS6ejosCdPnnzxsjp37sxq1qzJPnz48MXL+hRhYWEMAHv69CmXNmjQILmOhfKWcenSpU+af8iQIUwgELCEhAReurjOiYmJDAALDAyUOv+///7LBAIBCw0NLbOcW7duscTERF5aTk4Os7KyYmZmZrz0z10nUuTt27fs48ePjDHGRo8ezcpqygGw0aNHy1xmSEgIA8Di4+O5tLt37zJFRUUWEBDw+ZUm5Ack77m2aNEiBoDFxMRwaYWFhaxZs2bM2NiY5ebmfpX6kopX6bte+Pn5wcnJCQDQu3dvCAQCXl/hkydPok2bNtxtZQ8PD9y9e5e3jDlz5kAgEODOnTv45ZdfoKuri9atW5da5rVr12BgYABnZ2dkZmaWmi83NxeBgYGoXbs2VFRUYG5ujilTpiA3N5eX7/jx42jdujV0dHSgoaGBevXqYfr06bw8K1euRIMGDaCmpgZdXV3Y29tjx44dcm2jv/76C9bW1lBVVYWNjQ327dsHPz8/1KhRg8uTmpqKsLAw+Pv7o2bNmsjLy5OopyzOzs6wsbHBnTt30K5dO6ipqcHU1BSLFi3i5bt37x6OHDmCyZMnQ19fHzk5OcjPzy9XWfv374e7uztMTEygoqKCWrVq4ffff0dhYWG5lgMAt2/fhouLC4RCIczMzDBv3jyIRCJeHoFAgLCwMGRlZXG3tsPDwwHIt//Kkpubi4kTJ8LAwADq6uro0aMHEhMTZc7z999/w8nJCWZmZrzPiu/XsixfvhzGxsYYP348GGOlHssNGjRA1apVeWkqKiro0qULXr58iYyMDKnzZWRkfNL+KEl8fj548AD9+/eHtrY2DAwMMGvWLDDGkJCQAA8PD2hpacHY2BhLly7lzZ+Xl4fZs2fDzs4O2traUFdXR5s2bRAbG8vLFxgYCAUFBcTExPDS/f39oaysjOvXr3/2usjLyMgIQqGwXPNkZ2cjJyen1M/37NmDZs2aoVmzZlyalZUV2rdvj927d39yXUnlQeda6c6ePQsDAwO4uLhwaQoKCvD29sbbt29x+vTpL1lN8gVV+kB5+PDhXFAybtw4REREYMaMGQCAEydOwM3NDe/fv8ecOXMwceJExMXFoVWrVhIPaQFFgfbHjx+xYMECDBs2TGp5ly5dgouLC5o0aYIjR46U+qCfSCRC9+7dsWTJEnTr1g0rV66Ep6cnli1bBh8fHy7f7du30bVrV+Tm5mLu3LlYunQpunfvjvPnz3N5Nm7ciHHjxsHa2hrLly9HUFAQbG1tcfHiRZnb5/Dhw/Dx8YGSkhKCg4PRs2dPDBkyBFeuXOHlO3fuHHJyclC7dm14eXlBTU0NQqEQrVq1KteDkSkpKejUqRMaN26MpUuXwsrKClOnTsWRI0e4POK+rUZGRmjfvj2EQiGEQiE6d+4sdb9IEx4eDg0NDUycOBErVqyAnZ0dZs+ejWnTpsldVwB4+/Yt2rVrh2vXrmHatGmYMGECtm3bhhUrVvDyRUREoE2bNlBRUUFERAQiIiLQtm1bufafLGPHjsX169cRGBiIkSNH4uDBgxgzZkyZ80RFRSE1NRX9+vUr1/oWFxMTg2bNmuGPP/6AgYEBNDU1Ua1aNaxatUqu+d++fQs1NTWpXXLatWsHLS0tqKmpoXv37nj48OEn11PMx8cHIpEICxcuRPPmzTFv3jwsX74cHTt2hKmpKUJCQlC7dm1MmjQJZ86c4eZLT0/Hpk2b4OzsjJCQEMyZMweJiYlwc3PjHdszZ86Era0thgwZwgX/x44dw8aNGzF79mw0bty4zPqlpaXhw4cPMqeyflx/qvDwcKirq0MoFMLa2lriR7RIJMKNGzdgb28vMa+DgwMeP35c6g8e8vOhc01Sbm6u1IBa3P6V/E4lP5BvfEX7q4iNjZXa9cLW1pYZGhqypKQkLu369etMQUGBDRw4kEsLDAxkAFjfvn0lll2868W5c+eYlpYWc3d3Zzk5Obx8JbteREREMAUFBXb27FlevnXr1jEA7Pz584wxxpYtW8YASNzaLs7Dw4M1aNBAxlaQrmHDhszMzIxlZGRwaadOnWIAmIWFBZcWGhrKADB9fX3m4ODAIiMj2Zo1a5iRkRHT1dVlr1+/llmWk5MTA8C2bdvGpeXm5jJjY2PWq1cvLm3cuHFcWZ06dWK7du1iixcvZhoaGqxWrVosKytLZlniW2XFDR8+nKmpqUnsm7JMmDCBAWAXL17k0t6/f8+0tbUlul5I64Yjz/4rjbibQocOHZhIJOLSf/31V6aoqMhSU1NLnbdXr15MRUWFpaSklJqnrK4XycnJ3D7Q0NBgixcvZrt27WKdOnViANi6devKrPvDhw+ZqqoqGzBgAC99165dzM/Pj23dupXt27ePzZw5k6mpqbGqVauyFy9elLnM0ojPT39/fy6toKCAmZmZMYFAwBYuXMilp6SkMKFQyHx9fXl5S94WTUlJYUZGRmzw4MG89Js3bzJlZWU2dOhQlpKSwkxNTZm9vT3Lz8+XWU/x8S9rKl43ecjqeuHo6MiWL1/O9u/fz9auXctsbGwYALZmzRouj/hYmDt3rsT8q1evZgDYvXv3ylUvUvnQuVb6uTZ27FimoKDAnj17xkvv06cPA8DGjBlTrrLI9+OneJhPmjdv3uDatWuYMmUK9PT0uPRGjRqhY8eOiIqKkphnxIgRpS4vNjYW3bp1g6urK3bu3CnzYa6//voL9evXh5WVFT58+MCli2/bxMbGwtHRkXvAaf/+/Rg0aBAUFCRvAujo6ODly5e4dOkS77apLK9fv8bNmzcxffp03pVvJycnNGzYEOnp6Vya+Je3QCBATEwMl79JkyZo2bIlVq9ejXnz5sksU0NDA/379+f+V1ZWhoODA+/JenFZxsbGOHz4MLfOZmZm6Nu3L3bs2CHzocziv+wzMjKQm5uLNm3aYP369bh3757MKxJiUVFRaNGiBRwcHLg0AwMD9OvXD2vWrJE5vzz7TxZ/f3/ek9Zt2rTBsmXL8Pz5czRq1Egif3p6Og4fPowuXbp88gNy4n2QlJSEnTt3cnc5vLy80LBhQ8ybNw/Dhw+XOu/Hjx/Ru3dvCIVCiZEVvL294e3tzf3v6ekJNzc3tG3bFvPnz8e6des+qb4AeMeEoqIi7O3t8fLlS95IKTo6OqhXrx7veFNUVISioiKAoiurqampEIlEsLe3x9WrV3ll2NjYICgoCAEBAbhx4wY+fPiA6OhoVKkiuyldunQpUlJSZOYzMTGRmac8St69GDx4MOzs7DB9+nT4+flBKBQiOzsbQFGXmZJUVVUBgMtDCJ1rkoYOHYp169bB29sby5Ytg5GREXbv3o19+/YBoPPnR/bTBsrPnz8HANSrV0/is/r16+PYsWPIysqCuro6l17yKX2xnJwcuLu7w87ODrt375brRH748CHu3r0LAwMDqZ+/f/8eQNEtrk2bNmHo0KGYNm0a2rdvj549e8LLy4sLuqZOnYoTJ07AwcEBtWvXhqurK3755Rdu1Ii8vDwkJyfzlm9gYMBtg9q1a0uUX7t2bV7DJQ48u3XrxguqW7RogZo1ayIuLg5AUWOQlpbGW5axsTH3t5mZmcTwOrq6urhx44ZEWd7e3rzAsnfv3hgwYADi4uIwdOhQZGZm8m6dKSoqctvz9u3bmDlzJk6ePMkL+AFI1K8sz58/R/PmzSXSpR030siz/0oOi6atrc0L9KtXr877XFdXFwBK/SL4+++/kZOT81ndLsTlKykpwcvLi0tXUFCAj48PAgMD8eLFC4m6FRYWok+fPrhz5w6OHDki1xdR69at0bx5c6nDyZVHybpoa2tDVVVVov+0trY2kpKSeGlbt27F0qVLce/ePV5/eGnn/OTJk7Fz507Ex8djwYIFsLa2lqt+dnZ28q7KF6WsrIwxY8ZgxIgRuHLlClq3bs3tb2nPHYj7NZe3TzSpvOhck9SoUSPs2LEDI0aM4L57jY2NsXz5cowcOVKu9y2Q79NPGyh/itK+KMQPLu3fvx9Hjx5F165dZS5LJBKhYcOGCA0Nlfq5ubk5V+aZM2cQGxuLw4cP4+jRo9i1axdcXFwQHR0NRUVF1K9fH/fv38ehQ4dw9OhR/P3331izZg1mz56NoKAgxMXFoV27drzlP336tFzrLg54jIyMJD4zNDTkgrZdu3ZJDAfGGOP+Fl9NKKl4ntLKUlRUhL6+PlfWkiVLEBQUxH1uYWGBZ8+eITU1FU5OTtDS0sLcuXNRq1YtqKqq4urVq5g6darEg3hfkjz7r1q1arx5wsLC4Ofnx/0vzzYrLjIyEtra2nIdh6XR09ODqqoqdHR0JMo3NDQEUBSol/zCHDZsGA4dOoTIyEjeQy2ymJub4/79+59cX0D6dpJn223fvh1+fn7w9PTE5MmTYWhoCEVFRQQHB+Px48cS8z558oTrU33z5k2565ecnIy8vDyZ+YRCIbS1teVe7qcQty/iH9B6enpQUVHBmzdvJPKK0yr6Sjf5cdG5Jp2Xlxe6d++O69evo7CwEE2bNsWpU6cAAHXr1q2wcsjX9dMGyuIXjkj7cr537x6qVq3Ku5pcFoFAgMjISHh4eKB37944cuSIzLfw1apVC9evX0f79u3LHMAcKLqK1759e7Rv3x6hoaFYsGABZsyYgdjYWHTo0AEAoK6uDh8fH/j4+CAvLw89e/bE/PnzERAQgMaNG+P48eO8ZRobG3PdQx49eiRRZsk08S/04uPnir1+/RpWVlYAADc3N4myyqu0svLy8vDhwwfuqvHAgQN5o4+If8icOnUKSUlJ2Lt3L9q2bct9Xt4fB0DRcSLtQbPyBHWy9l/J7dWgQYNy11PszZs3iI2NhZ+fn9Tb6OWps62tLS5duoS8vDxeV6LXr18DgMTdkMmTJyMsLAzLly9H3759y1XekydPSr278qXt2bMHlpaW2Lt3L+9cDAwMlMgrEong5+cHLS0tTJgwAQsWLICXlxd69uwps5yePXvK9eS7r68vN2LKlyK+HS7e5goKCmjYsKHUt0BevHgRlpaW0NTU/KJ1IpXfz3CuKSsr87pAiu+Uib+ryY/npw2Uq1WrBltbW2zduhUBAQFcX85bt24hOjqa149WHsrKyti7dy/c3NzQrVs3xMTE8Pq1luTt7Y2oqChs3LgR/v7+vM+ys7MhEomgrq6O5ORkXh9qANyrkcW3SZOSkngvA1BWVoa1tTWOHDmC/Px86OrqSj1JTUxMYGNjg23btiEgIIC7NXT69GncvHmT9/bCevXqoXHjxti/fz8+fPjA3WKLjo5GQkICxo4dC6Bou5a8Qlpezs7OMDQ0RGRkJKZPn871kQwPD0dhYSH3pjlLS0tYWlpKzC++slH8SkZeXp5cfYpL6tKlC5YvX474+HhufyYmJiIyMlKu+eXZfxXZgO7cuRMikeizul2I+fj44MKFC9i6dSs3yktOTg4iIyNhbW3Nu8K4ePFiLFmyBNOnT8f48eNLXWZiYqJEQBwVFYUrV65g3Lhxn13nT1H8eBF/eV+8eBH//vuvxBXz0NBQxMXF4cCBA3B3d8epU6cwcuRItG3bVuK2c0nfot+ktO2dkZGB5cuXo2rVqrxb1F5eXpg2bRouX77MjX5x//59nDx5EpMmTaqwOpGfV2U+16R5+PAh1q1bh65du9IV5R/YTxsoA0Vf7p07d0bLli0xZMgQZGdnY+XKldDW1pb5Wl9phEIhDh06BBcXF3Tu3BmnT5+GjY2N1LwDBgzA7t27MWLECMTGxqJVq1YoLCzEvXv3sHv3bhw7dgz29vaYO3cuzpw5A3d3d1hYWOD9+/dYs2YNzMzMuKuprq6uMDY2RqtWrWBkZIS7d+9i1apVcHd3l3kVaMGCBfDw8ECrVq0waNAgpKSkYNWqVbCxsZEYOmfZsmXo2LEjWrdujeHDhyMtLQ2hoaGoW7cuRo4cWe7tVRoVFRUsXrwYvr6+aNu2LQYMGIAXL15gxYoVaNOmjcwrCo6OjtDV1YWvry/GjRsHgUCAiIiIUrsqlGXKlCmIiIhAp06dMH78eKirq2PDhg2wsLDg9asujTz7ryJFRkbCxMSkzDsaEREReP78Offa8TNnznAPYg4YMID7gTR8+HBs2rQJo0ePxoMHD1C9enVu3oMHD3LL27dvH6ZMmYI6deqgfv362L59O6+8jh07ct1oHB0d0aRJE9jb20NbWxtXr17Fli1bYG5uLjG2tJ+fH7Zu3YqnT5/KPfbzp+jatSv27t2LHj16wN3dHU+fPsW6detgbW3NOwfu3r2LWbNmwc/PD926dQNQ9OPN1tYWo0aNkjnWcEX2m3z+/Dn3NkbxVWDxPrSwsMCAAQMAAKtXr8Y///yDbt26oXr16njz5g22bNmCFy9eICIignenYNSoUdi4cSPc3d0xadIkKCkpITQ0FEZGRvjtt98qrO7k51WZzzUAsLa2Ru/evVG9enU8ffoUa9euhZ6e3mc9pEy+A99svI2vqLTh4Rhj7MSJE6xVq1ZMKBQyLS0t1q1bN3bnzh1eHvGQONKG+JI2JNiHDx+YtbU1MzY2Zg8fPmSMSX8zX15eHgsJCWENGjRgKioqTFdXl9nZ2bGgoCCWlpbGGGMsJiaGeXh4MBMTE6asrMxMTExY37592YMHD7jlrF+/nrVt25bp6+szFRUVVqtWLTZ58mRuGbLs3LmTWVlZMRUVFWZjY8MOHDjAevXqxaysrCTyHj9+nLVo0YKpqqoyPT09NmDAAPbmzRu5ynFycpI6jJ2vry9vKDqxP//8kzVu3JipqKgwIyMjNmbMGJaeni5XWefPn2ctWrRgQqGQmZiYsClTprBjx44xACw2NlauZYjduHGDOTk5MVVVVWZqasp+//13tnnzZrmGh5Nn/5WmtLfYiY/nkutx7949BoBNnDixzOWWNXRSyWW+e/eO+fr6Mj09PaaiosKaN2/Ojh49yssjPj/kWeaMGTOYra0t09bWZkpKSqx69eps5MiR7O3btxL17NWrFxMKhWUOcVe8/JLnZ2lvzSx5HIpEIrZgwQJmYWHBVFRUWJMmTdihQ4d4x2VBQQFr1qwZMzMzkxiWb8WKFQwA27VrV5n1rEjiY0DaVLydiY6OZh07dmTGxsZMSUmJ6ejoMFdXV97bw4pLSEhgXl5eTEtLi2loaLCuXbtybRghdK6Vfq4xVjQUnLm5OdfWjxgxgr179+6r1ZV8GQLGPuEyG6n0bG1tYWBg8Nn9jQn5VEZGRhg4cCAWL178ratCCCHkJ1Xp38xHypafn4+CggJe2qlTp3D9+nWZDyQS8qXcvn0b2dnZmDp16reuCiGEkJ8YXVH+yT179gwdOnRA//79YWJignv37mHdunXQ1tbGrVu3eA8JVibSxnsuSU9PT+aLYwghhBBSef3UD/ORopdX2NnZYdOmTUhMTIS6ujrc3d2xcOHCShskA9LHey4pNjaWrqoTQgghPzG6okx+Sm/evMHt27fLzGNnZ8e9BY8QQgghPx8KlAkhhBBCCJGCHuYrJjg4GM2aNYOmpiYMDQ3h6en52a/VJYSQn82ZM2fQrVs3mJiYQCAQ4J9//vnWVSKEkE9CfZSLOX36NEaPHo1mzZqhoKAA06dPh6urK+7cuSP366xFIhFev34NTU1Nma+mJoSQT8EYQ0ZGBkxMTKCg8P1d78jKykLjxo0xePBguV45XBK1o4SQL03edpS6XpQhMTERhoaGOH36NNq2bSvXPC9fvoS5ufkXrhkhhAAJCQkwMzP71tUok0AgwL59++Dp6Sn3PNSOEkK+FlntKF1RLoN4+DA9Pb1S8+Tm5iI3N5f7X/y7IyEhAVpaWl+2goSQn1J6ejrMzc1lvqL+R0HtKCHka5O3HaVAuRQikQgTJkxAq1atYGNjU2q+4OBgBAUFSaRraWlRA/+FLDv+gPf/rx3rfqOaEPJtVZZuCRXVjpZsG0r60dsKWesny+eu/5fevt96/cjPSVY7+v11bvtOjB49Grdu3cLOnTvLzBcQEIC0tDRuSkhI+Eo1JISQyoHaUULI94quKEsxZswYHDp0CGfOnJHZ/09FRQUqKipfqWaEEFL5UDtKCPleUaBcDGMMY8eOxb59+3Dq1CnUrFnzW1eJEEIIIYR8IxQoFzN69Gjs2LED+/fvh6amJt6+fQsA0NbWhlAo/Ma1I4SQH0NmZiYePXrE/f/06VNcu3YNenp6qF69+jesGSGElA8FysWsXbsWAODs7MxLDwsLg5+f39evECGE/IAuX76Mdu3acf9PnDgRAODr64vw8PBvVCtCCCk/CpSLoSGlCSHk8zk7O1N7SgipFGjUC0IIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApqnzrCpCf07LjD3j//9qx7ne3rO+lToQQQgj5NuiKMiGEEEIIIVJQoEwIIYQQQogUFCgTQgghhBAiBQXKhBBCCCGESEGBMiGEEEIIIVJQoEwIIYQQQogUFCgTQgghhBAiBQXKhPy/Z8+eYaJrPcRH7+WlHz16FLa2tlBVVYVAIEBqaupnlSEQCLBkyZLPrC0hhBBCvjQKlIsJDw+HQCDgpipVqsDU1BR+fn549eqVRH5nZ2cur4KCArS0tGBnZwcAOHnypNQyatSowSuj+JSTk8PlO3jwIJycnGBoaAg1NTVYWlrC29sbR48erfD1FolEWLt2LWxtbSEUCqGvrw8XFxdcv369wsoQB4jiaaJrPd40bNiwCiurIiUlJcHb2xtCoRCrV69GREQE1NXVv2odTpw4ARcXF2hra0NTUxN2dnbYtWsXL09px9WIESN4+WJiYjB48GDUrVuXO66GDh2KN2/eSJQbHR2NIUOGwMbGBoqKiqhRo0apdXzz5g38/f1Rs2ZNCIVC1KpVCxMnTkRSUlKFbIOfwZs3bzBt2jS0a9cOmpqaEAgEOHXqVJnzLFmyBFZWVlBVVYWRkRHc3d3x8uVLiXxXr15F9+7doaenBzU1NdjY2OCPP/74QmtCSOURHx+PUaNGwc7ODkpKShAIBGXmf/fuHYYPHw5TU1OoqqqiRo0aGDJkyFeqLfkS6M18UsydOxc1a9ZETk4OLly4gPDwcJw7dw63bt2CqqoqL6+ZmRmCg4MBAFlZWbh9+zZWrlyJHj16wNvbG9u3b4eSkhJvHltbW/z2228S5SorKwMo+vKbPHkynJycEBAQADU1NTx69AgnTpzAzp070alTpwpd38GDByMyMhIDBw7EmDFjkJWVhf/++w/v37+vsDIMDAwQERHB/X/kZlFgdu/yWVw9eRCurq4VVlZFunTpEjIyMvD777+jQ4cOX738sLAwDBkyBB07dsSCBQugqKiI+/fvIyEhQSKvtOOqbl3+GwGnTp2K5ORk9O7dG3Xq1MGTJ0+watUqHDp0CNeuXYOxsTGXd8eOHdi1axeaNm0KExOTUuuYmZmJli1bIisrC6NGjYK5uTmuX7+OVatWITY2FleuXIGCAv0ml+X+/fsICQlBnTp10LBhQ/z777+l5s3PzwcALF26FMOGDUOjRo2QkpKCixcvIi0tDWZmZlze6OhodOvWDU2aNMGsWbOgoaGBx48fSw2oCSF8UVFR2LRpExo1agRLS0s8ePCg1LwJCQlo1aoVAGDEiBEwNTXF69evER8f/7WqS74ACpSl6Ny5M+zt7QEAQ4cORdWqVRESEoIDBw7A29ubl1dbWxv9+/fn/k9PT8fKlSsxdOhQbNq0CTVq1EBISAhvHlNTU948xRUUFOD3339Hx44dER0dLfF5RQavALB7925s3boVe/fuRY8ePSp02cWpq6vz1jnx/1/xfOn4PqiqaaBbt25frOzPId7eOjo6X73sZ8+eYfTo0Rg7dixWrFghM39Zx5VYaGgoWrduzQtcO3XqBCcnJ6xatQrz5s3j0hcsWICNGzdCSUkJXbt2xa1bt6Qu88CBA3j+/DkOHToEd3d3Ll1PTw9z587F9evX0aRJE5n1/9nZ2dkhKSkJenp62LNnD3r37l1q3tWrVwMADh06hHbt2pWaLz09HQMHDoS7uzv27NlDP1gIKaeRI0di6tSpEAqFGDNmTJmB8vDhw1GlShVcunQJ+vr6X7GW5EuiVlMObdq0AQA8fvxY7nkWLVoEa2trrFq1CmlpaXLP9+HDB6Snp3O/SksyNDSUazk3btyAk5MThEIhzMzMMG/ePISFhUEgEODZs2dcvtDQUDg4OKBHjx4QiUTIysqSu64AMGfOHAgEAjx69Ah+fn7Q0dGBtrY2Bg0ahI8fP5Y5b3rSezy6fhENW7tKXKkvbZ38/Pwwb2B7THFviECfVti5NABZ6SnlqjMApKamws/PD9ra2tDR0YGvr69E32NnZ2f4+voCAJo1awaBQAA/Pz8AwMOHD9GrVy8YGxtDVVUVZmZm6NOnT7n29YYNG1CrVi2oqKigWbNmuHTpEu/zdevWobCwEHPnzgVQdOWWMVbmMvPy8srch23btpUIltq2bQs9PT3cvXuXl25iYiJxN0Sa9PR0AICRkREvvVq1agAAoVAocxklnTp1CgKBALt370ZQUBBMTU2hqakJLy8vpKWlITc3FxMmTIChoSE0NDQwaNAg5Obm8pYRFhYGFxcXGBoaQkVFBdbW1li7di0vz8mTJ6GgoIDZs2fz0nfs2AGBQCCR/0vS1NSEnp6ezHwikQjr1q0DUBRcFxQUlHqu7dixA+/evcP8+fOhoKCArKwsiESiCq03+Xkc3bYSE13r4f3Lp9i+cBKme9phVu8WOBK+HIwxJCQkwMPDA1paWjA2NsbSpUt58+fl5WH27Nmws7ODtrY21NXV0aZNG8TGxpYo5w/85maFB//x76rsXjYLk7vY4NXje198XcWMjIzkasPu3buHI0eOYPLkydDX10dOTg5354f82ChQloM4sNTV1ZV7HkVFRfTt2xcfP37EuXPneJ/l5+fjw4cPvEn8RWdoaAihUIiDBw8iOTn5k+r76tUrtGvXDrdv30ZAQAB+/fVXREZGSlyVTE9PR3x8PJo1a4bp06dDW1sbGhoasLS0xO7du8tVpre3NzIyMhAcHAxvb2+Eh4cjKCiozHn+OxUFJhLBzkW+q8nHjx/HkydP4ODaEz1Gz4Ktcxf8dyoKG2f4ywwgi2OMwcPDAxEREejfvz/mzZuHly9fckGx2IwZM+Dv7w+gqDtOREQEhg8fjry8PLi5ueHChQsYO3YsVq9eDX9/fzx58kTuB/127NiBxYsXY/jw4Zg3bx6ePXuGnj178hrWEydOwMrKClFRUTAzM4Ompib09fUxa9YsqcHOyZMnoaamBg0NDdSoUUOuq9BAUQCemZmJqlWrypW/JHHwPX78eFy4cAEvX75EVFQU5s+fD09PT1hZWX3ScgEgODgYx44dw7Rp0zB48GDs3bsXI0aMwODBg/HgwQPMmTMHPXv2RHh4uMSdm7Vr18LCwgLTp0/H0qVLYW5ujlGjRnFXYwHAxcUFo0aNQnBwMK5evQqgqK/w2LFj0aFDB4k+3iV9/PhR4lyWNqWklP/HXGnu3LnD9SkfN24c1NXVoa6ujkaNGkkEHCdOnICWlhZevXqFevXqQUNDA1paWhg5ciTvmQhCyiNi/q9gjMF9yG+wsGqM4zvW4szerejYsSNMTU0REhKC2rVrY9KkSThz5gw3X3p6OjZt2gRnZ2eEhIRgzpw5SExMhJubG65du8bl6/jLSJjUqo9doTOQ8zETQFE3vQtHdsO13yiY1iq7TUlLS5PrvMzMzKywbXLixAkARYF1+/btIRQKIRQK0blzZ97FKfLjoa4XUohPspycHFy8eBFBQUFQUVFB165dy7UcGxsbAJJXoqOjo2FgYMBLCwwMxJw5c6CgoIDJkydj7ty5qF69Otq2bYvWrVujU6dOaNq0qVzlhoSEICUlBVevXoWtrS0AYNCgQahTpw4v3+PHj8EYw86dO1GlShUsWrQI2traWLFiBfr06QMtLS25+0M3adIEmzdv5v5PSkrC5s2bJYKX4q6cPAAtPQPUtm0hVxmjRo3Cb7/9hmXH/3frq4aVLSKCJ+LprSuwbGgv13IOHDiAM2fOYNGiRZg8eTKAottrJW9hd+zYEa9evcKGDRt43XGuXbuGp0+f4q+//oKXlxeXv+RVybK8ePECDx8+5H581atXDx4eHjh27Bh3nD18+BCKiooYNGgQpkyZgsaNG2Pv3r2YN28eCgoKuL7xANCoUSO0bt0a9erVQ1JSEsLDwzFhwgS8fv26zH0AAMuXL0deXh58fHzkrn9x1tbW2LBhAyZNmoSWLVty6b6+vti0adMnLVOsoKAAp0+f5q5sJyYmcv30o6KiABQdF48ePcKWLVt4++D06dO8K0FjxoxBp06dEBoaitGjR3PpixYtwrFjxzBw4EBcuXIFw4YNQ0FBATZv3izzwZ1FixbJ/EEIABYWFhX2Zfnw4UPu73PnzmH9+vUAirrKdOrUCZcuXUKjRo24vAUFBfDw8MCQIUMQHByMU6dOYeXKlUhNTcWff/5ZIXUiPxfzeo3gPaHoTlfLLj6YN8AFBzYsRHBwMKZOnQoA6Nu3L0xMTLBlyxa0bdsWQNHFpmfPnnHP4wDAsGHDYGVlhZUrV8KmT9G8ilWU8MvkEISO6Yn96xei+7Ap2BU6A+Z1beDSx19m/Tw8PHD69GmZ+Xx9fREeHl7e1ZdKfF76+/ujWbNm2LVrF168eIGgoCB06NABN27cgJqaWoWURb4uCpSlKPnQVo0aNbB9+3beAzLy0NDQAABkZGTw0ps3b87rCwoAlpaW3N9BQUGwsrLCmjVrcOzYMRw5cgQzZsxAkyZNEBkZifr165dZ7tGjR9GyZUsuSAaK+ov269cPK1eu5NLEv6aTkpJw4cIFNG/eHADQvXt31KxZE/PmzZM7UC555a1NmzbYt28f0tPToaWlJZH//cunePnwNpx6+sndb7J40JOfl4vc7CxY1G8MAHj56LbcgXJUVBSqVKmCkSNHcmmKiooYO3Yszp49K3N+bW1tAMCxY8fQpUuXT2r8fHx8eHcoxN17njx5wqVlZmZCJBJh4cKF3JdPr169kJycjBUrVmD69OnQ1NQEUBT8Fzdo0CB07twZoaGhGDt2bKnH7pkzZxAUFARvb2+4uLiUez3ETE1N4eDggC5dusDCwgJnz57FH3/8gapVq37WUHgDBw7kdf9o3rw5/vzzTwwePJiXr3nz5vjjjz9QUFCAKlWKmrXix0taWhry8/Ph5OSEY8eOIS0tjduPampqCA8PR9u2bdG2bVvEx8dj8+bNqF69ulz1a926tcx8n9L9pDTFr4IdOHAA1tbWAIqujteuXRuLFi3C9u3bubwfP37EiBEjuFEuevbsiby8PKxfvx5z586V+AFNiCwtOv/vAoGCoiLM6togNe4tb3QHHR0d1KtXj9emKSoqQlFREUBRF6LU1FSIRCLY29vj6tWrsOnzvzKq1ayLTgPG4fCWpXjz5D6y0lIwPHgLFBVlhy1Lly6V6y5OWQ8pl5f4vDQ2Nsbhw4e57zUzMzP07dsXO3bswNChQyusPPL1UKAsxerVq1G3bl2kpaVhy5YtOHPmDFRUVMq9HPGJIw5mxKpWrSpzBIW+ffuib9++SE9Px8WLFxEeHo4dO3agW7du3Ogbb9++5c2jra0NoVCI58+f867sidWuXZv3v/jLu2bNmlyQDBQF+N26dcP27dtRUFAAgUCAxMRE3rx6enq8qwIlgwpxEJiSkiI1UL568iAAoGmJbhd5eXkSXU4MDAygqKiI5ORkBAUFYcu2SGSm8ocdy87i/xgpy/Pnz1GtWjXuh4xYvXr15Jq/Zs2amDhxIkJDQxEZGYk2bdqge/fu6N+/Pxd8ZaWnorDgf90o0tKMuM+AsreXmFAoRFZWFvr27cvL27dvXxw9ehT//fcfd6WmJIFAgF9//RXHjh3DqVOnpD7kd+/ePfTo0QM2NjafdeX3/Pnz6Nq1Ky5cuMBddff09ISWlhaCgoIwePBgLpgrr5LbSbwNzc3NJdJFIhHS0tK4h2jOnz+PwMBA/PvvvxJ9eIsHygDQqlUrjBw5EqtXr4abm5tEIF4aS0tL3o/cr6F40F38B1D16tXRunVrxMXFSeQteQz98ssvWL9+Pf79918KlEm56RryA0yhuiaqKKtIdN/S1taWGCJy69atWLp0Ke7du8fralazZk2Jctr1HoL/Th3Gi/s30GXQRBhb1JbII414mNavSXyueXt78y7+9O7dGwMGDEBcXBwFyj8oCpSlePbsGRYtWoS3b9+iUaNGqFGjBn755Rfcv39fIrgqi3iUgJIBanloaWmhY8eO6NixI5SUlLB161ZcvHgRTk5O3MNSYmFhYdzDZvIQ/5ou+RAWUNRXOj8/H1lZWUhJSZFoxGJjY+Hs7Mz9L75KUFJpfYevnjwEQ7OaMK9rw0uPi4uT6ALx9OlT1KhRA97e3oiLi0ObXoNhYlkfKkI1MCbChulDwUTy91GuCEuXLoWfnx/279+P6OhojBs3DsHBwbhw4QLMzMwQPncsHt/435BAT0vc4pNne5mYmODhw4cS+0f8QKesKybiYFJaX/eEhAS4urpCW1sbUVFREj/mymP9+vUwMjLigmSx7t27Y86cOYiLi/vkQLm07SRr+z1+/Bjt27eHlZUVQkNDYW5uDmVlZURFRWHZsmUSfbxzc3O5MYsfP36Mjx8/ynWnQNy/W571KNnd6lOVdRXM0NAQ//33Hy/v7du3P/kY+hyrV6/G4sWL8fbtWzRu3BgrV66Eg4PDFyuPfD0CKXcBFRRkt2nbt2+Hn58fPD09MXnyZBgaGkJRURHBwcFSH5ZPepuAD6+eAwDePCt9tImSkpOTkZeXJzOfUCjk/WD+HKV9nyoqKkJfX/+Lnmvky6JAWYply5Zhw4YNaN68OZYvX44dO3YgKysLq1atwrRp0+RaRmFhIXbs2AE1NTW5bs3Kw97eHlu3buUe5Dl+/Djv8wYNGgAo6g/56NEjiflLppmYmMDY2Fjqy1Rev34NVVVVaGpqQkVFRaKsxo0bf/J6XLx4ER9eP0engeMkPmvcuLFEWcbGxkhJSUFMTAyCgoKg2fJ/9+cSXz0rd/kWFhaIiYlBZmYm74fP/fv3y7Wchg0bomHDhpg5cybi4uLQqlUrrFu3DvPmzUN3/6nIzkzn8o7tVv4Awc7ODg8fPsSrV694Vy1fv34NADIDL/Etz5L5kpKS4OrqitzcXMTExEj84Cqvd+/eobCwUCJdfLWooKDgs5b/KQ4ePIjc3FwcOHCAd1W65MNuYoGBgbh79y6WLFmCqVOnYtq0aXK9kGPJkiVfvY9yw4YNoaSkJPWJ+tevX/P2t52dHY4fP849zFc8HyD7GPpUu3btwsSJE7Fu3TquHXVzc8P9+/flHrmHVD579uyBpaUl9u7dy+v/HxgYKJFXJBLhz8XToKKugbY9fXHiz3Vo3MYNjVrLHnO/Z8+eX72Psvgqdsnv07y8PHz48OGLnWvky6NAWYoePXpg0KBBAIqG6Dp8+DB0dXWxfPlyTJgwQa6hzKZMmYK7d+9i2rRpUrselObjx4+4fv261K4TR44cAfC/LgKldd9wc3PD6tWrce3aNa6fcnJyMiIjIyXy+vj4YMWKFTh+/Dg6duwIoGiIuv3798PFxQUKCgpQVVWt0Jdt7NixA4BktwugqAuCtLLEVwdKXqE+s3drucvv0qULNmzYgLVr13IP8xUWFvL6b5clPT0dampqXF9YoCh4UVBQ4IYoK3ml3Nqa/+IPefj4+GDnzp3YvHkz5s+fD6DoyyMsLAx6enpcw5ycnAxtbW3eVdb8/HwsXLgQysrKvCv0WVlZ6NKlC169eoXY2NgKue1et25dREdH49SpU7y7DOIHxb7FGMribVH8eElLS0NYWJhE3osXL2LJkiWYMGECfvvtN3z48AEhISHo1asXnJycyiznW/RR1tTUhKurKw4fPowHDx5wV/Lv3r2LuLg4DB8+nMvr7e2NhQsXYvPmzbw+6Js2bUKVKlV4+6sihYaGYtiwYRLt6JYtW+S+2EAqn+LnpThQvnjxIv7991+Jblan/w7Dszv/YUjQWtRv7oxH1y9izx9zYNnQHhraZQ+j+C36KDs7O8PQ0BCRkZGYPn06FyeEh4ejsLCQ+34lPx4KlIsRX/kqfntQQUEBHTp0wJ07d3D58mWEh4fzHlxLTU3Fxo0bARQFueKxaDdt2oRevXph8uTJ3DizQFEDUVBQwEsrLikpCY6OjmjWrBk6dOgAU1NTpKWl4fDhw4iLi0PXrl1Rq1atUucHikZwiIiIQIcOHTB8+HCoqalh27ZtMDU1RXJyMjIzM7n5x4wZg127dqFXr14YPXo0tLS0sGXLFuTn52P69OlllgOACwwzMjJ4fZazs7O59OLLKCwsxM6dO2FetyE0tPWQk1V021pWOUBRP9JFixbBoUsCtPQN8OjaBaS8K7oyVpCfJ/eynJyc0KJFC0ybNg0PHjyAlZUVDhw4wDWs+bk5yMkq2kbi9Si+zQ4dOoTJkyfD09MTtWrV4tZJUVERnTp1Qnp6OlcXMfG84gc7c3JypNYzNzeXS2/Xrh2cnJwQHByM169fw8bGBocPH8a5c+ewfPly5ObmIjc3F7t27cLixYvh4eEBCwsLpKSkYM+ePbhz5w5mz54NNTU1bpm//PIL4uPj0b9/f1y9epUbEg0oeilM8ZFdbt26xf04e/DgAVJTUzFr1iwARSO6dO7cGQDg5+eHsLAwdOvWDf7+/jA3N8f58+exZ88etGvXDvXr1+fKj4yMxKhRo7BmzRr069ev1H0kHgv648ePvO0kbX+It5t4+yorK8PR0RHKyspwd3fHoEGDkJmZia1bt6Jq1ap48+YNd1zm5ORgwIABqFWrFqZOnYr09HT89ttv2L9/P3x9ffHvv/+W+cryqlWryj2snjzH+OLFiwGAa0c2b96MmJgYAOB+1AHAxIkTcfjwYXTr1g3jx48HAPzxxx/Q09PD9OnTuXxNmjTB4MGDsWXLFhQUFMDJyQmnTp3CX3/9hYCAgAoNFMTy8vJw5coVBAQEcGnidrS0tw2Kj2Ux8Xjk8myz4kqedyWVd3nfG1nrJ8vnrn9BftEFi9yPWahS5X/tfdHzGExi+YWFhRCJRFx6+/btsXfvXnTr1g2urq54/vw5tmzZAisrK2RlZXHr9z7hKY5sXYGmLt1Qq5ED8rI/oufo2Vg5sS92L5uFXyZLH8lHXE55LgDI2iYvXrzArl27ABQF9QC4dtDc3Bx9+vzvDufcuXMxYsQItGrVCn369EFCQgLWrVsHR0dHdOjQ4Yc//iob8f6QObwsI5zQ0FAGgG3evJmXPnnyZNasWTNWq1YtVqtWLVZQUMAYY8zJyYkBoIkmmmj6JlObNm2Yuro609TUZB4eHuzBgwcS7VpeXh6bM2cOs7CwYEpKSqx27dps2bJlX6wdffXqFQPA4uLiJNpRBwcHqfMEBgZ+821JE000/ZxTQkJCmW2agLFyvKmhknv9+jVMTU0RFxfH6/owZcoUnD59mvs1WVzJKyEikQjJycnQ19eXOQbr1zZt2jSEhYXh9evXpT4M9anS09Nhbm6OhISEcnU1+RnQtvkfX19fvHjxgusrTNtGOlnbhTGGjIwMmJiYfHevpa7odjQjI+OHP0Yqw3FeGdYBqBzrQetQMeRtR6nrRTFVq1aFoqIi3r17x0t/9+4djI2Npc6joqIiMXScjo7Ol6qi3LKzs3n9IpOSkrBr1y60bt26XG8YLC8tLa0f9sT90n72bcMYw/nz57F9+3aJ7fCzb5vSlLVdKupp/YpW0e2o+IJDZThGaB2+H5VhPWgdPp887SgFysUoKyvDzs4OMTEx8PT0BFB0ZSMmJgZjxoz5tpUrp5YtW8LZ2Rn169fHu3fvsHnzZqSnp3N9qyqjwsJCifGeS9LQ0CjXEH+k4ggEArx///5bV4N8YZWpHSWEEAqUS5g4cSJ8fX1hb28PBwcHLF++HFlZWdzT2z+KLl26YM+ePdiwYQMEAgGaNm2KzZs3l/qCisogISFB6qD1xYlfFU4I+XIqSztKCCEUKJfg4+ODxMREzJ49G2/fvoWtrS2OHj0q9aUc37MFCxZgwYIFX608FRUVBAYGftIbDCuKsbGxxBjMJX3tt6gB38e2+V7RtpHuR98uFdmO/ujbAqB1+J5UhvWgdfi66GE+QgghhBBCpPi+Hpf+xoKDg9GsWTNoamrC0NAQnp6e5X5bGyGE/MyoHSWEVCZ0RbmYTp06oU+fPmjWrBkKCgowffp03Lp1C3fu3CnzpQPFiUQivH79Gpqamt/d8HCEkMrhex4ejtpRQsiPQN52lALlMiQmJsLQ0BCnT5+W+yG4ly9fwtzc/AvXjBBCih5gNTMz+9bVKBO1o4SQ75msdpQe5iuD+DWqenqlv1e+5ED54t8dP/JA4ISQ75t4sH5NTc1vXRWZqB0lhHyP5G1HKVAuhUgkwoQJE9CqVSvY2NiUmi84OBhBQUES6d96EG3yc1h2/AF+7Vj3W1eDfCPfe7cEakcrt2XHH0hNpzaJ/EhktaPfV+e278jo0aNx69Yt7Ny5s8x8AQEBSEtL46aEhISvVENCCPm+UTtKCPnR0RVlKcaMGYNDhw7hzJkzMvv/SXv1KiGE/OyoHSWEVAYUKBfDGMPYsWOxb98+nDp1SuZb3gghhPBRO0oIqUwoUC5m9OjR2LFjB/bv3w9NTU28ffsWAKCtrQ2hUPiNa0cIId8/akcJIZUJ9VEuZu3atUhLS4OzszOqVavGTbt27frWVSOEkB8CtaOEkMqErigXQ0NKE0LI56F2lBBSmdAVZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApqnzrChBCgGXHH+DXjnW5vwHw/pf2NyGET3zulFTec6a05ZSlos7LilqHil4WIT8ruqJMCCGEEEKIFBQoE0IIIYQQIgUFyoQQQgghhEhBgTIhhBBCCCFSUKBMCCGEEEKIFBQoE0IIIYQQIgUFyoQQQgghhEhBgTL5Ivz8/FCjRg1eWmZmJoYOHQpjY2MIBAJMmDDhm9TtezJnzhwIBIIKXeapU6cgEAhw6tSpCl1uecres2fPVy+bEEIIqWhfLFCuUaMGBAIBN6mrq8PBwQHbtm2TyCv+chVPKioqMDIygrOzMxYsWIDExESJecLDw3nzFJ+mTZvG5UtMTMT48eNhZWUFoVAIQ0NDODg4YOrUqcjMzKzw9X7y5AkAoFatWhAKhahTpw5mzJhRoWWU3F7FpwsXLlRoWRVpwYIFCA8Px8iRIxEREYEBAwZ86yr90NasWYP46L3fuhqf7P79+/j111/h6OgIVVVVCAQCPHv2TGreku2JeBoxYkSZZQwbNgwCgQBdu3aV+nlGRgamTJmCmjVrQkVFBaampvDy8sLHjx+5PGfOnEH37t1hbm4OVVVVGBsbo1OnTjh//vwnr/vPSN79ferUKWhrawMAtLW1Jfb5/PnzefmPHz+O1q1bQ01NDTN6NkP43HFIfvvya6wS+QnEx8dj1KhRsLOzg5KSUpkXNtauXYvevXujevXqEAgE8PPz+3oVJV/MF30zn62tLX777TcAwJs3b7Bp0yb4+voiNzcXw4YNk8g/btw4NGvWDIWFhUhMTERcXBwCAwMRGhqK3bt3w8XFRWKeuXPnombNmrw0GxsbAEBycjLs7e2Rnp6OwYMHw8rKCklJSbhx4wbWrl2LkSNHQkNDo8LW99q1a3B2dgYAjBkzBqampnjx4gUSEhIqrIzixNuruNq1a3+RsirCyZMn0aJFCwQGBn7rqlQKa9asQY6iOrB4Gi+9bdu2yM7OhrKy8jeqmXz+/fdf/PHHH7C2tkb9+vVx7dq1MvMXb0/E6tYt/Q1jly9fRnh4OFRVVaV+npaWBicnJ7x8+RL+/v6oXbs2EhMTcfbsWeTm5kJNTQ0A8ODBAygoKGDEiBEwNjZGSkoKtm/fjrZt2+Lw4cPo1KlT+Vb8JyXv/q5fvz42bNgAf39/bNiwAUKhEAAQERGB6OhouLq6cnkPHToEDw8PNG3aFAsXLsTRq09w5p9tWDnxF/y25h9o6Oh9jVUjlVhUVBQ2bdqERo0awdLSEg8elP7WxpCQEGRkZMDBwQFv3rz5irUkX9IXDZRNTU3Rv39/7n8/Pz9YWlpi2bJlUgPlNm3awMvLi5d2/fp1uLq6olevXrhz5w6qVavG+7xz586wt7eXWv7mzZvx4sULnD9/Ho6OjrzP0tPTKzSQEIlEGDBgAOrUqYPLly/j119/hZaWVoUtXxpp2+t79v79e1hbW3/ranyyrKwsqKurf+tqyKSgoFBqcPg96d69O1JTU6GpqYklS5bIDJRLtidlYYxh3LhxGDhwIGJiYqTmCQgIwPPnz3H16lXej+2pU6fy8g0dOhRDhw7lpY0aNQqWlpZYvnw5Bcpyknd/GxkZwcfHB/7+/vDx8eHa0aCgINSpU4d3cWDq1KmwtLTE+fPnoaysjMLjD2DdwgWho3sgZtcGeAyfJrUMQuQ1cuRITJ06FUKhEGPGjCkzUD59+jR3NbkiL8KRb6tcXS/E/Snv3bsHb29vaGlpQV9fH+PHj0dOTo7M+Q0MDGBlZYXHjx/LXWbjxo2xfPlypKamYtWqVeWpLh4/fgxFRUW0aNFC4jMtLS25ggmRSIQ5c+bAxMQEampqaNeuHe7cuYMaNWrwbqtER0fj1q1bXLePjx8/orCwsFz1FQgEGDNmDP755x/Y2NhARUUFDRo0wNGjR0udJyMjAwUFBeUqBwCWLFkCR0dH6OvrQygUws7O7pP7lYrrq6qqChsbG+zbt4/3ubiryNOnT3H48GHuFqr4tuvKlSvRoEEDqKmpQVdXF/b29tixY4fc5T979gwCgQBLlizBsmXLYGFhAaFQCCcnJ9y6dUsi/7179+Dl5QU9PT2oqqrC3t4eBw4c4OURd+05ffo0Ro0aBUNDQ5iZmXGfHzlyBE5OTtDU1ISWlhaaNWsmUee//voLdnZ2EAqFqFq1Kvr3749Xr17JXJ/4Y39jzeSBMDQ0hIqKCkKGdsHatWt5eWrUqIHbt2/j8Y14bnuK72aU1kdZnvr4+flBQ0MDr169gqenJzQ0NGBgYIBJkyaV63gWiUSYP38+zMzMoKqqivbt2+PRo0e8PHp6etDU1JR7mQCQl5eHrKwsmfkiIiJw69Ytidv0YqmpqQgLC4O/vz9q1qyJvLw85Obmyl0PNTU1GBgYIDU1Ve55ihMfX+fOncO4ceNgYGAAHR0dDB8+HHl5eUhNTcXAgQOhq6sLXV1dTJkyBYwxieV07NixzHM4LCwMAoEAW7Zs4aUvWLAAAoEAUVFRn1T/T/Ep+1ssPj4ejx49Qr9+/bi05ORk3LlzBz169OBd9DCtZQUj81r479Thz64z4RPHAA8ePED//v0x3dMOs3q3wJHw5WCMIeX9G2wOHAktLS0YGxtj6dKlvPnz8vIwe/Zs2NnZQVtbG+rq6mjTpg1iY2N5+QIDA6GgoCDxI9ff3x/Kysq4fv36F19XMSMjI+6uhiwWFhYV/swJ+fY+qY+yt7c3cnJyEBwcjC5duuCPP/6Av7+/zPkKCgrw8uVL6Orqlqs8Ly8vCIVCREdHS3yWlpaGDx8+8CYxCwsLFBYWIiIiolzlFRcQEICgoCDY29tj8eLFqFOnDtzc3CS+rE+cOAEAXINdrVo1qKmpoU+fPkhOTpa7vHPnzmHUqFHo06cPFi1ahJycHPTq1QtJSUkSeQcNGsQF/O3atcPly5flLmfFihVo0qQJ5s6diwULFqBKlSro3bs3Dh8u35dLdHQ0evXqBYFAgODgYHh6emLQoEG8utSvXx8RERGoWrUqbG1tERERgYiICBgYGGDjxo0YN24crK2tsXz5cgQFBcHW1hYXL14sVz0AYNu2bfjjjz8wevRoBAQE4NatW3BxccG7d++4PLdv30aLFi1w9+5dTJs2DUuXLoW6ujo8PT0lAnyg6MrhnTt3MHv2bO5HUHh4ONzd3ZGcnIyAgAAsXLgQtra2vB804eHh8Pb2hqKiIoKDgzFs2DDs3bsXrVu3lhlcnT/0J3SNTDF9+nQsXboUOgbVMGrUKKxevZrLs3z5cpiZmcHQ3JLbnmX1hS9PfQoLC+Hm5gZ9fX0sWbIETk5OWLp0KTZs2FBmvYtbuHAh9u3bh0mTJiEgIAAXLlzgBTmf4uTJk1BTU4OGhgZq1KiBFStWSM2XkZGBqVOnYvr06TA2Npaa59y5c8jJyUHt2rXh5eUFNTU1CIVCtGrVqtQrnenp6fjw4QPu3buH6dOn49atW2jfvv1nrdPYsWPx8OFDBAUFoXv37tiwYQNmzZqFbt26obCwEAsWLEDr1q2xePFiqe1Yo0aNyjyHBw0ahK5du2LixIlcF7CbN28iKCgIQ4YMQZcuXcqsX2ZmpkT7Km1KS0v7rO0gS2RkJADwjiHxDxtpQYySqirSk94jPVny+Rby+Xx8fCASieA+5DdYWDXG8R1rcWbvVqyfNgja+kYICQlB7dq1MWnSJJw5c4abLz09HZs2bYKzszNCQkIwZ84cJCYmws3NjXfezZw5E7a2thgyZAgyMjIAAMeOHcPGjRsxe/ZsNG7cuMz6SYsLpE1f4jklUgmxcggMDGQAWPfu3Xnpo0aNYgDY9evXuTQLCwvm6urKEhMTWWJiIrt58yYbMGAAA8BGjx7Nmz82NpYBYH/99VepZTdu3Jjp6upy/4eFhTEAUiext2/fMgMDAwaAWVlZsREjRrAdO3aw1NRUudb37du3rEqVKszT05OXPmfOHAaA+fr6cmndu3dnAJienh4DwLZt28ZmzZrFqlSpwhwdHZlIJJJZHgCmrKzMHj16xKVdv36dAWArV67k0s6fP8969erFNm/ezPbv38+Cg4OZvr4+U1VVZVevXpVr3T5+/Mj7Py8vj9nY2DAXFxe55heztbVl1apV423T6OhoBoBZWFjw8lpYWDB3d3demoeHB2vQoEG5yizp6dOnDAATCoXs5cuXXPrFixcZAPbrr79yae3bt2cNGzZkOTk5XJpIJGKOjo6sTp06XJr4+GrdujUrKCjg0lNTU5mmpiZr3rw5y87O5tVDvI/z8vKYoaEhs7Gx4eU5dOgQA8Bmz57NpYnPqdDo+1zawoPXef+HRt9nbm5uzNLSkpfeoEEDVquRg8T2EJ9PsbGx5a6Pr68vA8Dmzp3LW2aTJk2YnZ2dRFmllV2/fn2Wm5vLpa9YsYIBYDdv3pQ63+LFixkA9vTpU6mfd+vWjYWEhLB//vmHbd68mbVp04YBYFOmTJHIO2nSJFazZk1uH0s77kJDQxkApq+vzxwcHFhkZCRbs2YNMzIyYrq6uuz169cSy3Vzc+PaGGVlZTZ8+HCJY0Be4uPLzc2N1za0bNmSCQQCNmLECC6toKCAmZmZMScnJy4tLS2NAWBpaWlcWmnn8Js3b5ienh7r2LEjy83NZU2aNGHVq1fnzVsa8fEgaypeN3nI2t/F16+goIAZGRkxBwf+sV5YWMh0dHRY+/btubTQ6Pvs9z0XmLKqWtG5v+pv3jkjr9Do++WeKkpFLr+i6ypur/z9/bnlLzlyh+lUNWYCgYC5D/mNW35KSgoTCoW878mCggJeuyDOZ2RkxAYPHsxLv3nzJlNWVmZDhw5lKSkpzNTUlNnb27P8/HyZ9XRycpLruC1eN3mMHj2aF2OURV1dvdzLJ1+XtHZUmk/qozx69Gje/2PHjsWaNWsQFRWFRo0acenR0dEwMDDg5R00aBAWL15c7jI1NDS4X5bFrV69utQHeoyMjHD9+nXMnTsX+/btw7p167Bu3TooKytj5syZmDlzZpm3SWJiYlBQUIBRo0bx0seOHYs5c+bw0sS/TJs2bYoTJ07Aw8MDWlpaUFNTQ0BAAGJiYtChQweZ69mhQwfUqlWL+79Ro0bQ0tLiRtMAAEdHR16f6+7du8PLywuNGjVCQEBAmV01xIpfhUlJSUFhYSHatGmDP//8U+a8Ym/evMG1a9cwbdo07il1oOh2sLW1tVy3yHV0dPDy5UtcunRJ4sHE8vL09ISpqSn3v4ODA5o3b46oqCiEhoYiOTkZJ0+exNy5c5GRkcE7ntzc3BAYGIhXr17xljFs2DAoKipy/x8/fhwZGRmYNm2aRNcd8bF0+fJlvH//HnPmzOHlcXd3h5WVFQ4fPoygoKBS10NZ5X/zpKWlITMtGU5OTjh27BiysyTPAVk+pT4lR5No06ZNue7MDBo0iHc7vE2bNgCKRoURP2xbHiW7xgwaNAidO3dGaGgoxo4dy3WLefDgAVasWIE///wTKioqpS5PfL4KBALExMRw/QmbNGmCli1bYvXq1Zg3bx5vnoULF+K3335DQkICtm7diry8vE/q9lTckCFDeG1Q8+bN8e+//2LIkCFcmqKiIuzt7XHlypVSl1PWOWxsbIzVq1ejb9++aNOmDa5du4bjx4/L9QzFlClT5OoXXt67hOURExODd+/eYfr06bx0BQUFDB8+HCEhIQgICMDgwYOR8OAWDm1ajMKCfABAfp7sLoGk/Ir32VdQVIRZXRukxr1F807/e2ZGR0cH9erV4313KSoqcu2pSCRCamoqRCIR7O3tcfXqVV4ZNjY2CAoKQkBAAG7cuIEPHz4gOjoaVarIDluWLl2KlJQUmflMTExk5iHkkwLlOnXq8P6vVasWFBQUJIb6ad68OebNm4fCwkLcunUL8+bNQ0pKyic9RJeZmSm1f5uDg0OpD/MBRV0g1q5dizVr1uDhw4c4duwYQkJCMHv2bFSrVg1Dhw5FZmYm7xaMoqIiDAwM8Pz5cwCSI0no6elJfDGIA08vLy+uGwYA/PLLLwgICEBcXBw6dOiAtLQ0ZGdnc58rKytDT+9/T2ZXr15dYh10dXVlnvS1a9eGh4cH9u7di8LCQigqKiI5ORl5eXm8OooD2kOHDmHevHm4du0ar29mefpXibdPyeMBAOrVqyfR8EkzdepUnDhxAg4ODqhduzZcXV3xyy+/oFWrVnLXQ0xaPerWrYvdu3cDAB49egTGGGbNmoVZs2ZJXcb79+95gXLJEVXE/evLCvbE26VevXoSn1lZWeHcuXNlrsfT21dwdNtKzPS8zhumDAByPiFQLm99VFVVJX7gljwGExMTeX2WNTQ0eA+vlDyOxeeLPF9e8hAIBPj1119x7NgxnDp1igvmxo8fD0dHR/Tq1avM+cXna7du3Xj1btGiBWrWrIm4uDiJeWxtbbm/+/fvj6ZNm8LPz++zxowuuZ3E56e5ublEurRt1759e9y8eVPmOdynTx9s374dhw8fhr+/v9xdRqytrb/5A7iRkZFQVFSEj4+PxGdz587Fhw8fsGjRIixcuBAAUM+uNZp36oW4QzuhIvz+H779EZU8boXqmqiirAINbf4oI9ra2hLdBrdu3YqlS5fi3r17yM/P59JLtrUAMHnyZOzcuRPx8fFYsGCB3MeinZ2dvKtCiEwVMupFacFV1apVuauobm5usLKyQteuXbFixQpMnDhR7uXn5+fjwYMHn3Qlqngd69ati7p168Ld3R116tRBZGQkhg4diiVLlvCuqIkfOnn5smgszuvXr0s9iYsT/zItGWAYGhoC+F+AMH78eGzdupX73MnJiffQVfGrl8UxKQ/ylGRubs497KSlpYWePXvi9OnT3Oe+vr4IDw/H2bNn0b17d7Rt2xZr1qxBtWrVoKSkhLCwsHI9RFcR6tevj/v37+PQoUM4evQo/v77b6xZswazZ88u86rrpxCJRACASZMmwc3NTWqekj+K5H2Io6I8fvwYa6f4wdDcEqGhoTA3N8fBm+8hfHcDy5YtA/v/dfiSSjsGi2vWrBkXgANFD98Uv8vyOcexvMTBpPgZgJMnT+Lo0aPYu3cv70d7QUEBsrOz8ezZM+jp6UFLS4s7X42MjCSWa2hoKDOgV1ZWRvfu3bFw4UJkZ2d/8nFS2naSll5824kDeVVVVbnO4aSkJO65gTt37kAkEkFBQfYjKiV/2Jem5A9+oOhu3+LFi/H27Vs0btwYK1euhIODg8xlFZednY19+/ahQ4cOUveVsrIyNm3ahPnz5+PBgweIevQRhmY1ERH8GwQKCqhqInnhgXw+acengoLsc3779u3w8/ODp6cnJk+eDENDQ+65CWkP+T958gQPHz4EUNS3Xl4lLxKVpvjFI0JK80mB8sOHD3mB46NHjyASiSTexFaSu7s7nJycsGDBAgwfPlzuobb27NmD7OzsUoOb8rK0tISuri43zuHAgQPRunVrAEUjBoSEhGDJkiVITEzE1KlT0b9/fzx58oQLepOSkiS+SO3s7LBx40aJsRNfv34N4H8BdMlbmRV5y/LJkydQVVXlrpCVvP0kDg7+/vtvqKqq4tixY7zb02FhYeUqz8LCAgC4hqy4+/fvy70cdXV1+Pj4wMfHB3l5eejZsyfmz5+PgICAcg1zJq0eDx484I5LS0tLAICSkpJc3WCkEXeLuXXrVqljVou3y/379yXG/r5//z73uTQHDx5EQX4ehsxdi+H9nIvmUXqAD6ck103eq/+fU5/SREZG8gIo8bb9msS3dMXn1osXLwAAPXv2lMj76tUr1KxZE8uWLcOECRO4K07SRiF5/fo1rKysZJafnZ0NxhgyMjK++g8qcVeUvXv38n6cl3YOjx49GhkZGQgODkZAQACWL18u18WKkj/sS1PyB/+uXbswceJErFu3Ds2bN8fy5cvh5uaG+/fvc+2oPKKiopCRkSHzQVAjIyMYGRnhcs4DiAoL8fj6RVhYNaYryt+ZPXv2wNLSEnv37uW1X9LG1heJRPDz84OWlhYmTJiABQsWwMvLS+r5XVLJi0SlEV88IqQsnxQor169mjfo+8qVKwEUjWksy9SpU9GlSxds3LhRrlcYX79+HRMmTICurq5E32hZLl68CBsbG4mAPD4+HklJSdztfUtLS+6LfsaMGRg+fDgGDRqEd+/eYcaMGSgsLMSWLVu4UQ+kDVPn4eGB8ePHc09ni23atAlAUb9doGJuZSYmJkpcub5+/ToOHDiAzp07c1eKSrv9pKioCIFAwLt1/uzZM/zzzz/lqke1atVga2uLrVu38vopHz9+HHfu3JErAEtKSoK+vj73v7KyMqytrXHkyBHk5+eXK1D+559/eH2M4+PjcfHiRe44MzQ0hLOzM9avX4+xY8dKjMktbbuW5OrqCk1NTQQHB6NTp068+jHGIBAIYG9vD0NDQ6xbtw6DBw/mfowcOXIEd+/exezZs0tdvvhKTfGrMNlZGVIDIHV1dSQnyh5t4HPqU5pP6RrzqZKTk6Gtrc27ipWfn4+FCxdCWVkZ7dq1AwC4uLhIHbnE398fFhYWmDFjBho2bAigqBtK48aNsX//fnz48AFVq1YFUPRcRUJCAsaOHcvN//79e4ngLjU1FX///TfMzc3LFfhVFPG2kOcc3rNnD3bt2oU//vgDY8eOxfXr1zFz5kx07dq1zBe2AJ/eRzk0NBTDhg3DoEGDAADr1q3D4cOHee2oPPbs2QM1NTX06NFD7nli92xGenIieoyW3r2KfDvF2zdxoHzx4kX8+++/Et05QkNDERcXhwMHDsDd3R2nTp3CyJEj0bZtW+58LQ31USYV6ZMC5adPn6J79+7o1KkT/v33X2zfvh2//PKLzCFbgKJg2sbGBqGhoRg9ejSUlJS4z86ePYucnBwUFhYiKSkJ58+fx4EDB6CtrY19+/aVOtRTaSIiIhAZGYkePXrAzs4OysrKuHv3LrZs2QJVVVWJh0Py8vJw5coVBAQEACi6SjF+/HgsXboUy5cvh5aWFq5fv44jR46gatWqEAgEyM3N5d7iNWnSJG7c1pUrV+LRo0fYunUrvLy8UK9ePaSnp8usc15enkQ+xhjy8/O59F69ekEoFMLBwQEGBga4f/8+wsPDoaamhpkzZ8osx9nZGaGhoejYsSO8vLzw4cMHbNy4EZaWlrh165Zc9RSbNWsWevfuDUdHR/Tv3x8pKSnYsGED6tevj6ysLN6yGGMoKCjgpbVv3x5GRkZo3rw5DA0Ncf/+fWzcuBFubm5gjMlVF/FDeZaWlnB0dMSQIUOQl5eHNWvWQE9PDyNHjuSWExISAjc3N9jY2MDX1xc1atRAYmIi4uPj8fr1a+61xOKrpZmZmRJ1WLBgAcaOHQs7Ozt4eXlBR0cHt27dQnZ2NtatWwegaLzRUaNGoXXr1vDy8sL79++xbt06VK9eHUOGDOGWKe5bmpNVVI6joyMUqyhh00x/6LwbgczMTPyxbhNMDarizZs3yM3+yM3bsGFDxG/ejFmzZqFmzZowMDCAk5MT9xBl8e0vb33EfQZLrrO4nrL2h7jsjx8/8vKK91F2djaXnpaWxg05J371+tKlS6GjowNtbW1uyMldu3Zh8eLF8PDwgIWFBVJSUrBnzx5u2D41NTWkp6dDR0dH6ts7hUIh9PX1uc/E5c+bNw+enp5wdHTEoEGDkJ6ejtWrV6N27dro168fl8/V1RWmpqaws7ODgYEBXr58icjISLx58wZhYWG89QwODsbChQtx6NAh7gFGaUo7vsTbOSMjg/csR8n90rp1a6xatQo9e/bEwIED8f79e67uN27c4OZ7//49Ro4ciXbt2mHMmDEAin7ox8bGws/PD+fOnSuzC8an/LAv2Y4CRQ/etW3bFlu3bkVBQQF3nq1atQo6OjrQ0NDA4MGDufzi4eaOHz+O7t27QyQSST32du3ahQMHDsDR0RHq6uoI230IN88fh30HT9Rr2go5WZm87SYv8XzlUd4yylv2pyy/IpcFSB6f4uUXPTzJJLZ3YWEhb9+1b98ee/fuRbdu3eDq6ornz59jy5YtsLKy4rVX9+/fx6xZs9CvXz84OTkhMzMTq1atQuvWrTFs2DCZdzmkPa9SGlnb4sWLF9i1axcAcMOWip9xMTc3R58+fbi8R44c4cbuz8/Px3///cflFcc+5Psh3vcyuwSWZygN8dAwd+7cYV5eXkxTU5Pp6uqyMWPGSAyTJG1IJrHw8HAGgIWFhTHG/jeklHhSUlJiBgYGrG3btmz+/Pns/fv3EssQD6906dKlUut748YNNnnyZNa0aVOmp6fHqlSpwqpVq8Z69+4tdRi1V69eMQAsLi6OSysoKGAtW7ZkSkpKTCgUMhcXF3b37l2mr6/PRowYwW0TmmiiiaavPdWsWZOpqKgwKysrFhYWxrVHYj179mSamprs2bNnvLZu//79DAALCQkptf38VNLaUcYY8/f3L3U9tLW1v/m2pIkmmn7OKSEhocw2TcCY/E/XzJkzB0FBQUhMTJR56+NH9Pr1a5iamiIuLg4tW7bk0qdMmYLTp09zvyZTU1Ohq6uLefPmYdKkSbwnzkUiEZKTk6Gvr/9TvaEnPT0d5ubmSEhI+OKv7i7p+fPnaNSoEX7//XeMGzfuq5Ytj2+5bb53lW3btGvXDubm5ti2bdtnLUfWdmH/3zfaxMRErofyviZ529HixHfmxIq3oxkZGT/8MVIZjvPKsA5A5VgPWoeKIW87WiGjXlQWVatWhaKiIu9NbtnZ2Xj37h2v28fy5csBFHVhUFFRkRivVUdH52tU97ukpaX11Q968bCBqqqq33Wj8S22zY+iMmyb9PR03Lp1C9u3b6+wdSlru3yvT+tLa0cBSLSjxZXVjoovOFSGY4TW4ftRGdaD1uHzydOOUqBcjLKyMuzs7BATEwNPT08AwJ9//omdO3fCxcUFa9aswblz5/Dnn3/C1dX1qz7Q9LXJMyxUefuMl1dhYSESE8t+BW3xMXAJ+Za0tLR4V0V/VtLaUZFIhJiYGK6fNCGE/CgoUC5h4sSJ8PX1hb29PRwcHHD48GGIRCLEx8cjJiaGe8Cv5Fu7Kht5hoUqR6+dT5KQkCBz/OrAwED4+fl90XoQQsqnZDu6fPlyZGVlcaNgEELIj6JcgfKcOXMkXt1c2fj4+CAxMRGzZ8/G27dvYWtri3PnzqF58+bfumpflbzDQompqKggMDCwzNcGl5exsTGOHz9eZh5LS0vUqFHjiwftn+NLbJvKgraNdD/6dpHWjh49elTqS0Nk+dG3BUDr8D2pDOtB6/B1lethPkIIIYQQQn4W39fj0t+BM2fOoFu3bjAxMYFAICj3SzgIIeRnR+0oIaSyoD7KJWRlZaFx48YYPHiwXK/KLEkkEuH169fQ1NT8qYaHI4R8Pd/z8HAAtaOEkO8fDQ/3iTp37izXq7hL8/r1a5ibm1dgjQghRLqEhASYmZl962pIoHaUEPKjkNWOUqD8mUoOlC/u8v0jDwROCPm+iQfrF48h/qOjdpQQ8rXJ245SoPyZgoODERQUJJH+rQfRJpXPsuMP8GvHuuXKs+z4A+7v0uYV55G1bPL9qSzdEiqqHS3P8V6RecrKJw95yiOEfBmy2tHvr3PbDyYgIABpaWnclJCQ8K2rRAghPxRqRwkh3yu6ovyZpL16lRBCiPyoHSWEfK/oijIhhBBCCCFS0BXlEjIzM/Ho0SPu/6dPn+LatWvQ09ND9erVv2HNCCHkx0DtKCGksqBAuYTLly+jXbt23P8TJ04EAPj6+iI8PPwb1YoQQn4c1I4SQioLCpRLcHZ2Br3VmxBCPh21o4SQyoL6KBNCCCGEECIFBcqEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFBcqEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFBcqEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFBcqEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFBcqEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFBcqEEEIIIYRI8VMEypcuXYKjoyPU1dUhEAhw7dq1Clmun58fNDQ0ZOZzdnaGs7NzhZRJvr3w8HAIBAI8e/aMl7548WJYWlpCUVERtra2FVLG5cuXP2s5hBBCKt7u3bvRokUL6OjoQF9fH05OTjh8+PC3rhb5Aip9oJyfn4/evXsjOTkZy5YtQ0REBCwsLL51tX4op06dgkAgKHWaP39+hZZXWjkLFy6s0HIqUnR0NKZMmYJWrVohLCwMCxYs+Gplx8fHY9SoUbCzs8Okzg0gEAjKzL9582bUr18fqqqqqFOnDs7+EyE1386dO9G0aVOoqqrCwMAAQ4YMwYcPHyTyybu/9u7dCx8fH1haWkJNTQ316tXDb7/9htTU1E9e959RfHw8Jk6cCADQ19cvc3/TviGk4q1cuRI+Pj6oWrUqFi5ciFmzZiEtLQ1du3bF3r17v3X1SAWr8q0r8KU9fvwYz58/x8aNGzF06NBvXZ0fUv369RERIRlMRUREIDo6Gq6urhVeZseOHTFw4EBeWpMmTSq8nIpy8uRJKCgoYPPmzVBWVv6qZUdFRWHTpk1o1KgR9KuZIfHls1Lzrl+/HiNGjECvXr0wceJEnD17FhFr5iEvNxu/dlzC5Vu7di1GjRqF9u3bIzQ0FC9fvsSKFStw+fJlXLx4EaqqqrzlyrO//P39YWJigv79+6N69eq4efMmVq1ahaioKFy9ehVCofDzN8ZPICoqCtu2bQMA1KhRA48ePSozP+0bQirWypUr0axZMxw8eJD7oTp48GCYmppi69at6Nmz5zeuIalIlT5Qfv/+PQBAR0enwpaZlZUFdXX1Clve987IyAj9+/eXSA8KCkKdOnXQrFmzCi+zbt26Usv8Xr1//x5CofCrB8kAMHLkSEydOhVCoRCtPfqXGihnZ2djxowZcHd3x549ewAAw4YNw+1XqTgeuRYpi2dAV1cXeXl5mD59Otq2bYvjx49zXwSOjo7o1q0bNm7ciLFjx/KWLc/+2rNnj0QXJDs7O/j6+iIyMpJ+yMpp5MiRGDlyJIyNjdGuXTuZgTLtG/IlzZkzB0FBQbh//z7mzp2LgwcPQllZGSNGjMDcuXPx8uVLjBkzBrGxsVBTU8PkyZPx22+/cfPn5eVh3rx5OHz4MB49eoSCggI0bdoUc+fORbt27bh8gYGB+P3333H8+HG0b9+eS/f390d4eDguXbqExo0bf5V1Tk9PR926dXl3c7S0tKChoUE/KiuhSt31ws/PD05OTgCA3r17QyAQ8L4MTp48iTZt2kBdXR06Ojrw8PDA3bt3ecuYM2cOBAIB7ty5g19++QW6urpo3bp1qWXeuHEDAODu7o7MzMxS8+Xm5iIwMBC1a9eGiooKzM3NMWXKFOTm5vLyHT9+HK1bt4aOjg40NDRQr149TJ8+nZdn5cqVaNCgAdTU1KCrqwt7e3vs2LFDrm30119/wdraGqqqqrCxscG+ffvg5+eHGjVqlDlffHw8Hj16hH79+slVjrOzM2xsbHDnzh20a9cOampqMDU1xaJFi0qdJzs7Gzk5OXItv7j9+/fD3d0dJiYmUFFRQa1atfD777+jsLCw3Mu6ffs2XFxcIBQKYWZmhnnz5kEkEvHyCAQChIWFISsri7u1HR4eDkC+/VeW3NxcTJw4EQYGBpjWzRY9evRAYmIiL4+RkZFcjXNsbCySkpIwatQoXnrr7v2Ql/OR619369YtpKamwsfHh/dF0LVrV2hoaGDnzp1Sly9rf0nrp9+jRw8AkDjv5CU+Px88eID+/ftDW1sbBgYGmDVrFhhjSEhIgIeHB7S0tGBsbIylS5fy5s/Ly8Ps2bNhZ2cHbW1tqKuro02bNoiNjeXlCwwMhIKCAmJiYnjp/v7+UFZWxvXr1z+p/p9C3v1d3LfYN+Tn4uPjA5FIhIULF6J58+aYN28eli9fjo4dO8LU1BQhISGoXbs2Jk2ahDNnznDzpaenY9OmTXB2dkZISAjmzJmDxMREuLm58Z4nmjlzJmxtbTFkyBBkZGQAAI4dO4aNGzdi9uzZMoPktLQ0fPjwQeZU1ve2mLOzM44ePYqVK1fi2bNnuHfvHkaPHo20tDSMHz/+0zYg+X6xSiwuLo5Nnz6dAWDjxo1jERERLDo6mjHG2PHjx1mVKlVY3bp12aJFi1hQUBCrWrUq09XVZU+fPuWWERgYyAAwa2tr5uHhwdasWcNWr17NGGPM19eXqaurc3nj4+OZjo4OA8Devn3LpTs5OTEnJyfu/8LCQubq6srU1NTYhAkT2Pr169mYMWNYlSpVmIeHB5fv1q1bTFlZmdnb27MVK1awdevWsUmTJrG2bdtyeTZs2MAAMC8vL7Z+/Xq2YsUKNmTIEDZu3DiZ2+fQoUNMIBCwRo0asdDQUDZr1iymq6vLbGxsmIWFRZnzjhs3jgFgDx8+lFmOeBuYmJgwc3NzNn78eLZmzRrm4uLCALCoqCheXgBMXV2dCQQCBoDVr1+fRUZGylUOY4x5enoyb29vtnjxYrZ27VrWu3dvBoBNmjRJ7mUwxtibN2+YgYEB09XVZXPmzGGLFy9mderUYY0aNWIAuOMkIiKCtWnThqmoqLCIiAgWERHBHj9+LNf+K01YWBgDwJo0acJcXFzYypUrmbPXYKaoqMi8vb1Lna9V936s+GkdGn2fm+bNm8cAsHfv3vHmWXT4JhMoKLCJEycyxorOGwBsy5YtEss3MDBgQqGQFRYWcmmfs78ePHjAALAFCxbIlb8k8flpa2vL+vbty9asWcPc3d0ZABYaGsrq1avHRo4cydasWcNatWrFALDTp09z8ycmJrJq1aqxiRMnsrVr17JFixaxevXqMSUlJfbff/9x+fLy8liTJk2YhYUFS09PZ4wxdvToUQaA/f777zLrmZqayhITE2VOGRkZcq13WloaA8CGDRvGymrGv+W++Rzi9UtLSyvXfMWP96+Zp6x8FVXv75X4HPT39+fSCgoKmJmZGRMIBGzhwoVcekpKChMKhczX15eXNzc3l7fMlJQUZmRkxAYPHsxLv3nzJlNWVmZDhw5lKSkpzNTUlNnb27P8/HyZ9XRycmIAZE7F61aad+/esfbt2/Pmq1q1KouLi5M5L/l+yNvOVOpAmTHGYmNjGQD2119/8dJtbW2ZoaEhS0pK4tKuX7/OFBQU2MCBA7k0cSPQt29fiWUXD5TPnTvHtLS0mJubm8SGLxkoR0REMAUFBXb27Fne8tatW8cAsPPnzzPGGFu2bBkDwBITE0tdPw8PD9agQQM5toSkhg0bMjMzM96X86lTpxiAMgPlgoICZmRkxBwcHOQuS9xIbdu2jUvLzc1lxsbGrFevXry8jo6ObPny5Wz//v1s7dq1zMbGhgFga9askausjx8/SqQNHz6cqampsZycHLnrPGHCBAaAXbx4kUt7//4909bW5gXKjEn+aGJMvv1XGnGg3KFDByYSiRhjRV+mv/76K1NUVGSpqalS5ysrUB49ejRTVFSUmCc0+j7T0NZjffr0YYwVBY8CgYANGTKEl+/evXvcl8KHDx+49M/ZX0OGDGGKiorswYMHsjeKFD/jlzRj8gfK33LffA4KlH8c4nMwPj6el+7p6Sm1/bO1tWVt2rSRuqzCwkKWlJTEEhMTmbu7O7O1tZXIExwczAAwBwcHpqKiwm7fvi1XPS9fvsyOHz8uc5JneRkZGWzUqFHM19eX/fXXX2zLli2sYcOGzNjYWO6LR+Tbk7edqfR9lKV58+YNrl27hilTpkBPT49Lb9SoETp27IioqCiJeUaMGFHq8mJjY9GtWze4urpiw4YNMDAwKLP8v/76C/Xr14eVlRVvFAEXFxdueY6Ojly/6v3792PQoEFQUJDsKaOjo4OXL1/i0qVL5eor/Pr1a9y8eRPTp0/nDXHn5OSEhg0bIj09vdR5Y2Ji8O7du3J1IQAADQ0NXl9JZWVlODg44MmTJ7x858+f5/0/ePBg2NnZYfr06fDz85N527n45xkZGcjNzUWbNm2wfv163Lt3T+5+bFFRUWjRogUcHBy4NAMDA/Tr1w9r1qyROb88+08Wf39/XveHNm3aYNmyZXj+/DkaNWpUrmVlZ2eX2oe6irIKsrOzAQBVq1aFt7c3tm7divr166NHjx549eoVxo4dCyUlJeTn53N5gU/fXzt27MDmzZsxZcoU1KlTp1zrUlLxPrSKioqwt7fHy5cvMWTIEC5dR0cH9erV4x1vioqKUFRUBACIRCKkpqZCJBLB3t4eV69e5ZVhY2ODoKAgBAQE4MaNG/jw4QOio6NRpYrsZnTp0qVISUmRmc/ExERmnvL4HvYN+TlUr16d97+2tjZUVVVRtWpVifSkpCRe2tatW7F06VLcu3cP+fn5XHrNmjUlypk8eTJ27tyJ+Ph4LFiwANbW1nLVz87OTt5Vkal3796oUqUKDh48yKV5eHigTp06mDFjBnbt2lVhZZFvr1L3US7N8+fPAQD16tWT+Kx+/fr48OEDqlevDlVVVWzcuBGA9BMWAHJycuDu7o4mTZpg9+7dcj3M9fDhQ9y+fRsGBga8qW7dugD+9wCij48PWrVqhaFDh8LIyAh9+vTB7t27eX1kp06dCg0NDTg4OKBOnToYPXo078sxLy8Pb9++5U2FhYXcNqhdu7ZE/aSlFRcZGQlFRUX4+Pjw0rOzsyXKKs7MzExiKCtdXV2ZAYSysjLGjBmD1NRUXLlyBQCQmZnJK6d4v93bt2+jR48e0NbWhpaWFgwMDLgAPS0trcyyinv+/LnUIEHacSONPPuv5PYqHoACkl8+urq6ACBX0FWSUChEXl6e1M8K8nJ5QdP69evRpUsXTJo0CbVq1ULbtm3RsGFDdOvWDQDKHD9c2v4q6ezZsxgyZAjc3NwqZHjB8nxJl9x2W7duRaNGjaCqqgp9fX0YGBjg8OHDUo+VyZMno3HjxoiPj0dgYGC5vqQ7dOggc5J3eZ/qa+6b1atXo0aNGlBVVUXz5s0RHx//ycsi3z/xD05ZaQDAGOP+3r59O/z8/FCrVi1s3rwZR48exfHjx+Hi4iLxPAgAPHnyBA8fPgQA3Lx5U+76JScnS7S30iZZ3xFPnjzB0aNH0b17d166np4eWrduLfHjlPz4fsorymW5f/8+AHBP/Q8YMACvX78utYO/iooKunTpgv379+Po0aNo27atzDJEIhEaNmyI0NBQqZ+bm5sDKApszpw5g9jYWBw+fBhHjx7Frl274OLigujoaCgqKqJ+/fq4f/8+Dh06hKNHj+Lvv//GmjVrMHv2bAQFBSEuLo735DAAPH36tDybhCc7Oxv79u1Dhw4dYGRkxPts165dGDRoEC+teIMoT6NZGvE2SU5OBgAsWbIEQUFB3OcWFhZ49uwZUlNT4eTkBC0tLcydOxe1atWCqqoqrl69iqlTp0pteL8UefZftWrVePOEhYXBz8+P+/9ztllJ1apVQ2FhId6/fw9DQ0MuvSA/D1kZqbyrmdra2ti/fz9evHiBZ8+ewcLCAhYWFnB0dISBgYHMUWRK7q/irl+/ju7du8PGxgZ79uyR64qsLJ/7Je3p6YnJkyfD0NAQioqKCA4OxuPHjyXm/Zwv6dJ+pBQnFAqhra0t93I/xdfYN7t27cLEiROxbt06NG/eHMuXL4ebmxvu37/PO/YI2bNnDywtLbF3717ehZTAwECJvCKRCH5+ftDS0sKECROwYMECeHl5yTUcW8+ePXH69GmZ+Xx9fbmHsaV59+4dAEh9ODw/Px8FBQUyyyA/lp8yUBa/cEQcFBcXFxcHVVVVrqtF165dcfXqVezYsQO///67RH6BQIDIyEh4eHigd+/e3LBbZalVqxauX7+O9u3by3w5hIKCAtq3b8+NZ7tgwQLMmDEDsbGx6NChAwBAXV0dPj4+8PHxQV5eHnr27In58+cjICAAjRs3xvHjx3nLNDY25q58Sxtaqqzhpg4cOICMjAypo124ublJlFVRxLfLxd1aBg4cyBt9RHw19NSpU0hKSsLevXt5P1o+5ceBhYUFFxQVJ+24KY2s/VdyezVo0KDc9ZSX+G2Bly9fRpcuXbj0hAe3wEQiqW8TrF69One1VnwVslevXjLLKrm/xB4/foxOnTrB0NAQUVFRcr3Z8kv60b6kK8LX2DehoaEYNmwY98N53bp1OHz4MLZs2YJp06Z9euVJpSP+QcsY487Bixcv4t9//5W4UxQaGoq4uDgcOHAA7u7uOHXqFEaOHIm2bdtK3D0qqaK6P9WuXRsKCgrYtWsXhg8fztX55cuXOHv2bJmjYpEf008ZKFerVg22trbYunUrAgICuKtj//33H9LS0nhDJYlPgkuXLpW6PGVlZezduxdubm7o06ePzPK9vb0RFRWFjRs3wt/fn/dZdnY2RCIR1NXVkZyczOtDDfwv2BEPI5eUlAR9fX1eXaytrXHkyBHk5+dDV1eXC6iLMzExgY2NDbZt24aAgADuS/H06dO4efNmqW8v3LFjB9TU1Liho4qrVq2axBXS8kpMTJT4As/IyMDy5ctRtWpVrp+ZpaUlLC0tJeYv3uiK5eXlydWnuKQuXbpg+fLliI+P5/opJyYmIjIyUq755dl/0vbNl+Li4gI9PT2sXbuWFyjHHfoTyipCuLu7lzl/QEAACgoK8Ouvv3Jp8u4voKibiaurKxQUFHDs2DGZffm/hh/tS7o8vtW+ycvLw5UrVxAQEMClKSgooEOHDvj3338/ebmkchK/za5Hjx5wd3fH06dPsW7dOlhbW/Pu5N69exezZs2Cn58f1wUsPDwctra2GDVqFHbv3l1mORXVR9nAwACDBw/Gpk2b0L59e/Ts2RMZGRlYs2YNsrOzecc9qRx+ykAZABYvXozOnTujZcuWGDJkCLKzs7FixQoAwJgxYyTyi/sNSyN+8G3Hjh3o0qULbt68yQuuxLdoxPk8PDzg6uqKESNGIDo6Gi1atEBhYSEePHiAffv2Ye/evWjatClmzpyJ8+fPw83NDebm5khMTMTmzZthamqKRo0aIT09He3bt4eRkRGaN28OQ0ND3L9/Hxs3boSbmxsYY2U+lDdz5kz07dsXLVu2RL9+/ZCamooNGzZwDVTJeZOTk3HkyBF0794dIpGozGWXVFhYKHWe/Px8Xj1DQ0Nx+PBhdOrUCWZmZnj37h22b9+OhIQEbNiwATk5OWWOB9uwYUPo6Ohg4MCB3K/9nTt3coFzVlaW3PUeOXIktm3bBjc3N4wcORJqamoIDw+Hubk50tLSkJGRwS1L/ABK8WXLs/9KI+6rXHw/5GRlIkspS2I9Xrx4wT088uJe0Xi+s2bNAgDcz1BGE2d3ro7Tp0/HpEmT4Onpifbt2+Pff//FlZgDcO03GlWqVOHth7t378Le3h6Kioo4fPgwTp48iZkzZ6JevXqftL9cXV3x5MkTjB8/XuJKuoGBAfcwq3jb79ixAzdu3CjzlfPiHxwZGRm85wOk7Q9A8jhs37499u7dyz2M+/z5c2zZsgVWVla8bXz//n3MmjUL/fr1g5OTEzIzM7Fq1Sq0bt0aw4YNw9atW0utI4ByPRAn6/h88eIFV95///0HAJg3bx6AorsgAwYMAFDUR/iff/5Bt27dUL16dbx58wZbtmzBixcvEBERwdtenTp1wpMnTzBlyhScO3cO586d4z4zMjJCx44d5a7/hw8fUFhYKNE1y8jICPfu3ZM6T25uLm8MeXE/0fK0MUDROSJW2rxfIk9Z+eQhT3nfq889B3v27Ilnz54hPDwcx44dQ7169bBhwwb8888/OHfuHNLT01FYWIj+/ftDX18fc+fO5eY1MjJCYGAgpk6divDw8K/2RryQkBDUq1ePu9AEFL3tcu3atbC1tf3h9uHPSryfZHZl/IIjb3wXShsejjHGTpw4wVq1asWEQiHT0tJiHTt2ZAB4YyGKh75p0qSJxPy+vr5MSUlJrmGfaKKJJpq+9FR8GMro6GjWsWNHZmxszJSUlJiOjg5zdXVlMTExEm2ZvMuUx6tXrxgAiTFlJ0+eXOqQkuJ2liaaaKLpa08JCQlltmmC/28kCYpuGaqpqWHPnj3w9PTk0n19fZGamor9+/dLzFPySohIJEJycjL09fVl9j/+XrVu3Rr6+vpS17c06enpMDc3R0JCArS0tL5g7X48tG1KV9q2qV27Nvr06cNdKf3ZyDpmGGPIyMiAiYnJJw07+CVVdDuakZHxw58/laENqAzrAFSO9aB1qBjytqM/bdcLaZSVlWFnZ4eYmBiugReJRIiJiZHaHQMoGvVCRUWFlyZrRIDvRX5+PgQCAe/J9lOnTuHmzZuYN2/eJx28WlpaP+yJ+6XRtild8W1z+/Zt5OTkYPbs2T/99irrmPnSo2N8qopuR8UXHCrD+UPr8P2oDOtB6/D55GlHKVAuYeLEifD19YW9vT0cHBywfPlyZGVlSQx7Vhm8evUKHTp0QP/+/WFiYoJ79+5h3bp1MDY2LvMFKz+67OxsmWNl6unpyTUmNql4DRo0oD5+P7ifqR0lhFRuFCiX4OPjg8TERMyePRtv376Fra0tjh49KvFgSmWgq6sLOzs7bNq0CYmJiVBXV4e7uzsWLlzIG0mjspE23nNJsbGxvNFPCCHy+5naUUJI5UaBshRjxowp9RZhZaKtrV1hr9pUUVFBYGCgxO3T75E84z3L+5prefxI2+Zro20jXWXYLhXVjlaGbUHr8P2oDOtB6/B10cN8xQQHB2Pv3r24d+8ehEIhHB0duWFgCCGEEELIz+X7elz6Gzt9+jRGjx6NCxcu4Pjx48jPz4erqyuysrK+ddUIIYQQQshXRleUy5CYmAhDQ0OcPn2a9zrksohEIrx+/Rqampo/7PBwhJDv2/c8PFxFoHaUEPKl0fBwFUA8MkLJ1xCX5fXr1zA3N/9SVSKEEE5CQgLMzMy+dTUqHLWjhJCvRVY7SoFyKUQiESZMmIBWrVrBxsam1HwlB8oXX6D/kQcCJ4R838SD9Wtqan7rqnwR4vWidpQQ8qXI245SoFyK0aNH49atWzh37lyZ+YKDgxEUFCSRXt5BtJcdf1DqZ792rCv3cgghP4/K2i3hS79kZNnxB9SuEkIAyG5HK1/ntgowZswYHDp0CLGxsTJvawYEBCAtLY2bEhISvlItCSGEEELIl0SBcjGMMYwZMwb79u3DyZMnUbNmTZnzqKiocFc9vvWrGAkhpCIFBwejWbNm0NTUhKGhITw9PXH//v0y5wkPD4dAIOBNqqqqX6nGhBBSsShQLmb06NHYvn07duzYAU1NTbx9+xZv375Fdnb2t64aIYR8dZ86ZKaWlhbevHnDTc+fP/9KNSaEkIpFfZSLWbt2LQBIvLo4LCwMfn5+X79ChBDyDR09epT3f3h4OAwNDXHlypUyh8wUCAQwNjb+0tUjhJAvjgLlYmhIaUIIKZ28Q2ZmZmbCwsICIpEITZs2xYIFC9CgQYOvUUVCCKlQ1PWCEEKITPIOmVmvXj1s2bIF+/fvx/bt2yESieDo6IiXL1+WOk9ubi7S09N5EyGEfA/oijIhhBCZ5B0ys2XLlmjZsiX3v6OjI+rXr4/169fj999/lzpPacNsEkLIt0ZXlAkhhJSpPENmlqSkpIQmTZrg0aNHpeahYTYJId8ruqJMCCFEKsYYxo4di3379uHUqVNyDZlZUmFhIW7evIkuXbqUmkdFRQUqKiqfU1VCCPkiKFAmhBAi1ejRo7Fjxw7s37+fGzITALS1tSEUCgEAAwcOhKmpKYKDgwEAc+fORYsWLVC7dm2kpqZi8eLFeP78OYYOHfrN1oMQQj4VBcqEEEKkkmfIzBcvXkBB4X+9+FJSUjBs2DC8ffsWurq6sLOzQ1xcHKytrb9WtQkhpMJQoEwIIUQqeYbMPHXqFO//ZcuWYdmyZV+oRoQQ8nXRw3yEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFBcqEEEIIIYRIQYEyIYQQQgghUlCgTAghhBBCiBQUKBNCCCGEECIFvXCEfLeWHX9Q5ue/dqz70y2bEEIIIV8PXVEmhBBCCCFECgqUCSGEEEIIkYICZUIIIYQQQqSgQJkQQgghhBApKFAmhBBCCCFECgqUCSGEEEIIkYICZUL+X/Lbl5joWg/x0Xt56UePHoWtrS1UVVUhEAiQmpr6WWUIBAIsWbLkM2tLCClJ1tCMX3s5hJAfHwXKxYSHh0MgEHBTlSpVYGpqCj8/P7x69Uoiv7OzM5dXQUEBWlpasLOzAwCcPHlSahk1atTglSGeJrrWQ35eLpfv9r8nseq3/pjduyXU1NRgaWkJb29vHD16tELXWVpdxFPHjh0rtCyRSIR169bB1tYWGhoaMDIyQufOnREXF1eh5VSkpKQkeHt7QygUYvXq1YiIiIC6uvpXKTsmJgaDBw9G3bp1uWNg6NChePPmjUTe/Px8BAUFwdLSEioqKrC0tMS8efNQUFDAy+fn51fmPi95nOfl5WHBggWwsrKCqqoqjIyM4O7ujpcvX3J5Ll26hDFjxqBBgwZQV1dH9erV4e3tjQcPKNgoj/Lsb/EPLUtLS6iqqqJOnTqYMGECEhMTyywjMjISAoEAGhoaX2QdCKlsNm7cCCcnJxgZGUFFRQU1a9bEoEGD8OzZM16+hIQEBAUFwcHBAbq6uqhatSqcnZ1x4sSJb1NxUmHohSNSzJ07FzVr1kROTg4uXLiA8PBwnDt3Drdu3YKqqiovr5mZGYKDgwEAWVlZuH37NlauXIkePXrA29sb27dvh5KSEm8eW1tb/Pbbb7y0IzffQLFKUb7Yvzbj4MZFqNXIAe37DEfnJhZ49OgRTpw4gZ07d6JTp04Vtq4RERESaZcvX8aKFSvg6upaYeUAwOTJkxEaGor+/ftj1KhRSE1Nxfr16+Hk5ITz58/DwcGhQsurCJcuXUJGRgZ+//13dOjQ4auWPXXqVCQnJ6N3796oU6cOnjx5glWrVuHQoUO4du0ajI2Nubz9+/fHX3/9hcGDB8Pe3h4XLlzArFmz8OLFC2zYsIHLN3z4cIn1YIxhxIgRqFGjBkxNTbn0/Px8uLu7Iy4uDsOGDUOjRo2QkpKCixcvIi0tDWZmZgCAkJAQnD9/Hr1790ajRo3w9u1brFq1Ck2bNsWFCxdgY2PzhbdU5VCe/X3t2jUAwKRJk2BgYIC7d+9i48aNOHz4MK5duyb1x1xmZiamTJny1X7oEVIZ/Pfff6hZsya6d+8OXV1dPH36FBs3bsShQ4dw/fp1mJiYAAD279+PkJAQeHp6wtfXFwUFBdi2bRs6duyILVu2YNCgQd94TcgnY4QTFhbGALBLly7x0qdOncoAsF27dvHSnZycWIMGDXhpaWlpDAAbOnQoA8CmTJnC+9zCwoK5u7tLlB0afZ+FRt9ni4/cZqpqGqxu01ZcWnHv3r37nFWUy5AhQ5hAIGAJCQkVtsz8/HwmFAqZl5cXL/3JkycMABs3bpzEPOL1L236HNKWN3NbDAPA+kwK5vJt3bpV6jFR3mWXLGPx4sUyl3P69GlWWFgokQaAzZgxg0uLj49nANisWbN4eX/77TcmEAjY9evXyyzn7NmzDACbP38+Lz0kJIQpKSmxixcvljn/+fPnWW5uLi/twYMHTEVFhfXr16/Mecn/yLu/GftfO5OWlsal7dmzhwFgf/75p9TlT506ldWrV4/169ePqaurV/wKVCBp6ycPedsFWfk+t30hldvly5cZABYc/L/vilu3brHExERevpycHGZlZcXMzMy+dhWJHORtZ6jrhRzatGkDAHj8+LHc8yxatAjW1tZYtWoV0tLS5J4vKy0FOR8zUbNBU6mfGxoayrWcGzduwMnJCUKhEGZmZpg3bx7CwsIgEAgkbhkVl5ubi7///htOTk7cFcOyzJkzBwKBAI8ePYKfnx90dHSgra2NQYMG4ePHj1y+/Px8ZGdnw8jISGJ9FBQUIBQKZZb1+sk9/Ll4GuYNbI8p7g1hbGyMwYMHIykpSea8JWVnpuPPxdMw3dMO03vYY8eiqcjOyuDlcXZ2hq+vLwCgWbNmEAgE8PPzAwA8fPgQvXr1grGxMVRVVWFmZoY+ffqUa19v2LABtWrVgoqKCpo1a4ZLly7xPm/bti0UFBQk0vT09HD37l0u7ezZswCAPn368PL26dMHjDHs2rWrzHrs2LEDAoEAv/zyC5cmEomwYsUK9OjRAw4ODigoKODtz+IcHR2hrKzMS6tTpw4aNGjAq2d5nDp1CgKBALt370ZQUBBMTU2hqakJLy8vpKWlITc3FxMmTIChoSE0NDQwaNAg5Obm8pYRFhYGFxcXGBoaQkVFBdbW1li7di0vz8mTJ6GgoIDZs2dL3SYl839J8u7v0tSoUQMApPahf/jwIZYtW4bQ0FBUqUI3EsmnEbf3Dx48QP/+/aGtrQ0DAwPMmjULjDEkJCTAw8MDWlpaMDY2xtKlS3nz5+XlYfbs2bCzs4O2tjbU1dXRpk0bxMbG8vIFBgZCQUEBMTExvHR/f38oKyvj+vXrX3xdyyLtXGvQoAGqVq3Ky6eiooIuXbrg5cuXyMjgf7+QHwe1mHIQB5a6urpyz6OoqIi+ffti1qxZOHfuHNzd3bnP8vPz8eHDB17+vJxsKKsKoaGjDyUVVdy+cBKtPfpDXUun3PV99eoV2rVrB4FAgICAAKirq2PTpk1QUVGROW9UVBRSU1PRr1+/cpXp7e2NmjVrIjg4GFevXsWmTZtgaGiIkJAQAIBQKETz5s0RHh6Oli1bok2bNkhNTcXvv/8OXV1d+Pv7yyzjwdU4JL1JgINrT2jqGcCEfcCGDRtw+/ZtXLhwAQKBQK66MsawOXAUnt6+Akf3PjCsXgu3zh/HjsVTeflmzJiBevXqYcOGDVx3nFq1aiEvLw9ubm7Izc3F2LFjYWxsjFevXuHQoUNyP+i3Y8cOZGRkYPjw4RAIBFi0aBF69uyJJ0+eSHTVKS4zMxOZmZm8BlkcIJb8saGmpgYAuHLlSqnLy8/Px+7du+Ho6Mg1/gBw584dvH79Go0aNYK/vz+2bt2KvLw8NGzYECtWrEC7du3KXD/GGN69e4cGDRqUmU+W4OBgCIVCTJs2DY8ePcLKlSuhpKQEBQUFpKSkYM6cOVz3qJo1a/IC3rVr16JBgwbo3r07qlSpgoMHD2LUqFEQiUQYPXo0AMDFxQWjRo1CcHAwPD090bRpU7x58wZjx45Fhw4dMGLEiDLr9/Hjx1J/QBSnqKhYrvZDTNr+Li4pKQkfP37Ew4cPMW3aNCgqKsLZ2Vki34QJE9CuXTt06dIFu3fvLnc9CCnOx8cH9evXx8KFC3H48GHMmzcPenp6WL9+PVxcXBASEoLIyEhMmjQJzZo1Q9u2bQEA6enp2LRpE/r27Ythw4YhIyMDmzdvhpubG+Lj42FrawsAmDlzJg4ePIghQ4bg5s2b0NTUxLFjx7Bx40b8/vvvaNy4cZn1S0tLQ35+vsz1UFVVlbu/flJSEgoLC/HixQvMnTsXANC+fXuZ8719+xZqampce0x+QF/h6vYPQ9z14sSJEywxMZElJCSwPXv2MAMDA6aioiLRFaGsrhdpaWls3759DABbsWIF97mFhQUDIDG59h/D3Z537T+aAWDKqmrMqllbNn/+fHblyhW512Ps2LFMIBCw//77j0tLSkpienp6DAB7+vRpqfP26tWLqaiosJSUFLnKCgwMZADY4MGDeek9evRg+vr6vLSHDx+ypk2b8tbb0tKS3bt3T+qyS3ZbWHjwukTXiz///JMBYGfOnJGrvowx9s8//zAArOvQydyylhy5wyxt7CW6XkjrjvPff/8xAOyvv/6Sq97Sul7o6+uz5ORkbp79+/czAOzgwYNl1v33339nAFhMTAyX9vfffzMALCIigpd33bp1DACzsbEpdXkHDx5kANiaNWt46Xv37uXqWadOHRYWFsbCwsJYnTp1mLKysszuHBEREQwA27x5c5n5ShMbG8vVPS8vj0vv27cvEwgErHPnzrz8LVu2ZBYWFry0jx8/SizXzc2NWVpa8tKysrJY7dq1WYMGDVhOTg5zd3dnWlpa7Pnz5zLrKT7+ZU0l6yYvafubsf+1M8UnMzMzie5hjDF26NAhVqVKFXb79m3GGGO+vr7U9YK6XnwS8fHu7+/PpRUUFDAzMzMmEAjYwoULufSUlBQmFAqZr68vL2/JblopKSnMyMhI4jvk5s2bTFlZmQ0dOpSlpKQwU1NTZm9vz/Lz82XW08nJSa7zsnjdZFFRUeHm09fXZ3/88YfMeR4+fMhUVVXZgAED5C6HfD3ytjN0RVmKkg871ahRA9u3b5erK0Jx4l+qJW+5NG/eHPPmzeOlnXr9v6uhnQaOg6G5Jc4f3IH7V85hxqUzmDFjBpo0aYLIyEjUr1+/zHKPHj2Kli1bcr/OAUBPTw/9+vXDypUrS50vPT0dhw8fRpcuXaCjoyPnWhYpeeWtTZs22LdvH9LT06GlpQUA0NTURIMGDdCyZUu0b98eb9++xcKFC+Hp6YmzZ8+WetVMTFnlfw9S5ufl4sOHD2jRogUA4OrVq1wXGVmioqKgoFgFrbr15dIUFBXR2rM/nty6LHN+bW1tAMCxY8fQpUuXT7pS4OPjw7vCKK77kydPSp3nzJkzCAoKgre3N1xcXLj0Ll26wMLCApMmTYKamhrs7Oxw8eJFzJgxA1WqVEF2dnapy9yxYweUlJTg7e3NS8/MzARQdOz+999/MDc3B1B0BbZ27dpYtGgRtm/fLnWZ9+7dw+jRo9GyZUuu68qnGjhwIO8Ke/PmzfHnn39i8ODBvHzNmzfHH3/8gYKCAq5rQfEr7OIrTE5OTjh27BjS0tK4/aimpobw8HC0bdsWbdu2RXx8PDZv3ozq1avLVb/WrVvLzCdP16KSStvfxf3zzz9QVFTEf//9h71793L7TSwvLw+//vorRowYAWtr63LXgRBphg4dyv2tqKgIe3t7vHz5EkOGDOHSdXR0UK/e/7V332FRHP8fwN+ANKki1YZiQ0QlghhQwVgAxYIV21cwSiygGEsQoiIWsCIaC2pULGCNYC+IYlSIxi4Re8OCIkiVfvv7g9+tLLcHBx7Vz+t57nlgb3Z3dm4YPjc7M9uW06bJyclBTk4OQNHwrtTUVAgEAlhYWODWrVucc5iamsLPzw/e3t64d+8ePn36hHPnzkk0dGjNmjX4/PlzmemEE/Ekcfr0aeTk5CA+Ph579+5FVlZWqem/fPmCESNGQFlZGcuXL5f4PKTmoUCZx8aNG9GmTRukpaVhx44d+PvvvyUatlCS8J+WmpoaZ7u2trZIMH6/xLqdnX8agM4/DUBOViYsVJIREhKCsLAwDBw4kF19IzExkbOPhoYGlJWV8erVK1hZWYnkp1WrVqXm96+//kJOTo7IsIvCwkKRZae0tLQ441JLBhXCIPDz589QV1dHQUEB+vTpg549e3KC9T59+qB9+/ZYtWoVVqxYgby8PKSkpAAA0lOKzqmqoQVZOTlkpafi3N4NuB19CpmpySg+UKI8Y4NfvXoFdS0dKCpzZ//rNmkh0f4tWrTArFmzEBgYiNDQUPTo0QODBg1ix+wBQFZ6KgoLvt76k1dUgrLK13pQWnnxefjwIYYMGQJTU1P8+eefnPeUlJRw8uRJjBw5EsOGDQNQNDZu5cqVWLZsmdhbi5mZmTh69Cjs7e3RsGFDznvCwK5bt25skCzMd/fu3cUu6ZeYmAhHR0doaGjg8OHD7D/FiipZTsLyLZ4n4XaBQIC0tDT2Wq5evQpfX1/ExsaKDI8oHigDRdc5depUbNy4Efb29iKBuDhGRkYwMjIq93WVpbTPu7iffvoJ6urqGDBgAHr37o1u3bpBV1cXAwYMAACsXbsWnz59gp+fn9TzSL5ffH+XSkpKIp0dGhoaInNIdu3ahTVr1uDhw4ec4REtWoi2v3PnzsX+/ftx/fp1+Pv7S/xlT7hMqzQJh5v169cPgwcPhqmpKVRVVeHh4SGStrCwEKNGjcKDBw9w+vTpcgXkpOahyXw8Xr58iUmTJmHs2LFISkpC8+bNMWbMGJHemrLExcUBKDtALY2Siir69u2L0NBQuLi44NmzZ7h27RoAwMDAgPMqa9JWWUJDQ6GhocH+kxVKSEgQOVfJQElcQMQwDICi3rG4uDgMGjSI837r1q3Rrl07XL16FQAQExPDnmPRqO5YNKo7UpOK1pHdvWwm/jl9CNYDRsF14QacO3eOXVdaIBB807WX15o1a3Dv3j34+PggOzsbM2bMQPv27dn1hUMWT2fzv2hUd0RsWsbZv6zyKi4hIQF2dnbQ0NDAqVOnRL54AUUTSeLi4hAXF4fLly/j3bt3cHNzw6dPn9CmTRvec0VERODLly+849GFDXvJyZdA0QRMvoA+LS0N/fr1Q2pqKs6cOSOVfw7iyqms8nv27Bl69+6NT58+ITAwECdPnkRkZCR+/fVXAKL1JTc3F9HR0ey+kow7Boq+bCQmJpb5Kmt94+Ik+bz5WFtbw8DAAKGhoQCKPo+lS5fCzc0N6enpePnyJV6+fInMzEwwDIOXL1/i48ePEh1748aNaN68OZSUlNC1a1dcv3691PSHDh1i197u0KEDTp06JdF5SO3A9/cnSZu2d+9euLq6omXLlti+fTvOnDmDyMhI9OrVi7cNf/78OZ48eQIAuH//vsT5S0lJkejvsjwdLMW1bNmSvcPLx83NDSdOnEBISIjYu0Gk9qAeZR5r167F1q1b0bVrVwQFBSEsLAxZWVnYsGED5s2bJ9ExCgsLERYWhvr160t0a1YSFhYW2LVrF/sAgsjISM77wolThoZF6y6XxLdN6P3797h48SJcXV1Fes/19fVFzlXWZIqSPnz4AKCoXErKz89nH4zRqVMn9lx/3SwKOtW0dPAlIw1PbsfCfvx02I8r+gbft28bthEtD0NDQ0Sej0JudhanV/njmxflOk6HDh3QoUMHzJ8/HzExMejWrRuCg4PR0HY8Bv3ihezMdDatekPJVispKTk5GXZ2dsjNzUVUVBQMDAzEppWRkeFMnjt16hQEAoHY9Z9DQ0Ohqqoq8uVFeG3y8vK8D9p59+4ddHR0ONtycnIwcOBAPH78GOfPn6/22/zHjx9Hbm4ujh07xun9Kjm7XsjX1xfx8fFYvXo1vLy8MG/ePKxfv77M86xevVqi3lpDQ8NSV5sRKs/nzScnJ4f95//582dkZmZi5cqVWLlypUjaFi1aYPDgwYiIiCj1mAcOHMCsWbMQHBzMton29vZ49OgR7yo8MTExGD16NAICAjBgwACEhYXByckJt27dojW1v3OHDx+GkZERjhw5wpl87evrK5JWIBDA1dUV6urqmDlzJvz9/TF8+HAMHTq0zPMMHToUly5dKjOdi4sLQkJCynUNQtnZ2SIr7QBFveA7d+5EUFAQRo8ezbMnqW0oUOYxZMgQdnHw4OBgnDx5Eg0aNEBQUBBmzpwp8tARPr/99hvi4+Mxb948doyuJPJysvHu+UM0N/lB5L3Tp08DANq2bQtAdCy1kL29PTZu3Ig7d+6w45RTUlLEfvsFgP3790MgEPD2LiopKX3zwzaEvZolH5hy69YtPHr0iF31okGDBuy57jNfh6MUCm/RlehwDQoKKnde+vfvj61bt+Lq8X3oNbJorJ2gsBBXIvjH3JaUnp6O+vXrc8bKdejQAbKysmzD2bTNtwcEWVlZ6N+/P96+fYuLFy+idevWEu+bnZ2NBQsWwMDAgLexTkpKwvnz5zF69GjeMdZqamro378/Tpw4gYcPH8LY2BgAEB8fj5iYGEyePJlNW1hYCGdnZ8TGxuLo0aO8w36qmrB3q3hvVlpaGnbu3CmS9tq1a1i9ejVmzpyJ2bNn49OnT1ixYgWGDRsGW1vbUs8jzTHKkn7eWVlZvD3ef/31Fz5//gwLCwsART3/4eHhIunWr1+P2NhY7Nu3T6JAPDAwEG5ubiJt4o4dO3g7DtatWwcHBwfMnTsXALBkyRJERkZiw4YNCA4OLvN8pO4q/ncpDJSvXbuG2NhYkeEcgYGBiImJwbFjx+Do6Ijo6GhMnToVNjY2Zc5nkdYY5YKCAmRkZIisWHP9+nXcv3+fs6QmAKxatQqrV6+Gj48PPD09yzw/qR0oUC5G2KtZ/AlxsrKy6NOnDx48eIAbN24gJCSEM3EtLS2NndT05csX/PfffwCAP//8E6NGjcKSJUvKlYe83GysnzkKhu3MYGzRA5o6+gi8r4SIiAhcvnwZTk5O+OEH0SC6uN9++w179+5F3759MX36dHZ5uGbNmiElJYV3GbXQ0FA0atSId2kpaTA3N0ffvn2xa9cupKenw87ODu/fv8cff/wBZWVlzJw5s9T9lVRUYdShCy4e/BOFBfnQ0NbD35vu4sWL8vUCA8DAgQPRon1nnNyxBp8/vIWeYSvcv3IO2V8kW+fywoUL8PDwwIgRI9CmTRsUFBRgz549kJOTw7BhwxArpeUyx44di+vXr+Pnn39GfHw8Zy1dVVVVODk5sb+PHDkSjRo1gomJCdLT07Fjxw48f/4cJ0+e5L11f+DAARQUFJS6DKC/vz+ioqLQq1cvzJgxA0BRkKWlpQUfHx823ezZs3Hs2DEMHDgQKSkpIpP8xo0bx/4cEhKCCRMmYOfOneya1JXBzs4OCgoKGDhwICZPnozMzExs27YNurq6nEdC5+TkwMXFBa1bt8ayZUXDY/z8/HD8+HFMmDAB9+/fL/VJdtIcoyzp5/3kyRN2WaotW7agfv36uHHjBvbu3YvmzZuz/6Dr16/PqSNCERERuH79Ou97JeXl5eHmzZvw9vZmtwnbxNjYWN59YmNjMWvWLM42e3v7MnuuSd03YMAAHDlyBEOGDIGjoyNevHiB4OBgmJiYcIY2xsfHY8GCBXB1dcXAgQMBFLUdZmZmmDZtWplLHEprjHJmZiaaNm0KZ2dntG/fHioqKrh//z527twJDQ0NLFiwgE0bHh6O3377jR1OWLId7Nu3L+9QNlLzUaBcjHB1Ci0tLc52PT09xMfHo2XLlli9ejXc3NzYb8Zv3rzB//73PwBF/8yEt6RDQ0MxYMAAkZ4fhmFQUFCA9PR0zvacrKJGQkZGFkOmzcejm1dw7cxhZKYm47h8PbRq1QpLlizBlClTRPYtSUNDA8ePH4eXlxf8/f2hra2NSZMmQUVFBXfu3EF+fj7nGE+ePMHNmzfh4eFR7nHYwh7UjIwMzuQ+4UoLGRkZ7Ln27NmDP/74A3/99RfOnDkDBQUFWFlZ4ffff4eBgYHYMhEa4bkYx7etxJVjoQDDwMGuDw4ePIi2bdsiNze3zHIpbqzXapzcsQY3oo5CBjJoZ2kL+/EzsGHWGOTn5rDHEl5HZmYmu83IyAg//fQTjh49ivfv30NZWRmmpqY4fPgwTExMcPGC+CEuudlF9SEnJ4c3v8Wv4/bt2wCAHTt2YMeOHZx0zZo144x9MzU1RWhoKLZs2QIlJSVYW1tj69at6NixI+95du/eDR0dHVhaWoottyZNmuDkyZPw9fXF0qVLISsrCxsbGyxZsgRqamrsfsJ1mo8fP47jx4+LHKf40A7h+uHq6uqlfl7CGeVfvnzhpOP7PADRemhgYIDdu3dj6dKlmDNnDnR1dTFx4kRoa2vD3d2drZc+Pj54+vQpIiMjkZeXh7y8PABFY3L79OkDT09PBAYGis2nNEn6eWtoaKBfv34IDQ2Fn58f8vPzYWhoCA8PD/z+++8iEzO/xadPn1BYWCjyD15PTw8PHz7k3ScxMZE3fcnJx8Xl5uZybmMLh4+U528aKGozJNmnrHSSHud7I669F07KK1lmhYWFEAgE7PahQ4fi5cuXCAkJwdmzZ9l16iMiInDlyhWkp6ejsLAQ48aNQ8OGDbF48WJ2Xz09Pfj6+sLLywshISESDcH4VgUFBRg/fjwuX76Mw4cPIzs7GwYGBhg2bBjmzp0LPT09Nn/CcftPnjxhY4LiTpw4IfHKTKRqCD87vrlBHJW7Sl3t8vbtWwYAExMTw9k+d+5cxtLSkncfSddRpRe96EUvab+k+Zh5abWJ8vLyTFhYGGfbxo0bGV1dXbHnoXaUXvSiV3W9ympHqUe5GG1tbcjJybETz4Q+fPgAfX193n28vb05txkFAgFSUlLQsGFDiZ8UVxmys7M54yJTUlLQuXNndOrUCUePHpX6+dLT09G0aVMkJCSUa0z294DKpgjDMGjVqhW2bt3KDh2gsuFXVrkwDIOMjIxKX3aqIm2ivr5+udIDpbejGRkZtb6O1IV6XheuAagb10HXIB2StqMUKBejoKAAc3NzREVFseP3BAIBoqKieNdKBIrWqy25SkR5H9ZRGWxsbNCzZ0+0a9cOHz58wPbt25GRkQE/P79KrZTq6urVVun51nsuSVVVVeJHlkpbdZZNTSHu86Gy4VdauRRfB7qyVKRNtLKyQlRUFGfeQWRkZKmTPEtrR4UdDnWhjtA11Bx14TroGr6dJO0oBcolzJo1Cy4uLrCwsIClpSWCgoKQlZXFzviuLfr374/Dhw9j69atkJGRQefOnbF9+3bY2NhUd9YqTUJCAu+i9cX5+vpi0aJFVZMhQuqAstrE8ePHo3HjxggICAAAeHp6wtbWFmvWrIGjoyP279+PGzduYOvWrdV5GYQQUiEUKJfg7OyMpKQkLFy4EImJiTAzM8OZM2dq3WxVf39/+Pv7V3c2qhTfes8lVcZT1Aipy8pqE1+/fg1Z2a/PrrK2tkZYWBjmz58PHx8ftG7dGhEREbSGMiGkVqJAmYeHh4fY24qEn6KiInx9fSv0qG9pkcZ6z5WhJpRNTUVlw6+mlUtpbaLwiYbFjRgxAiNGjJDKuWtaWVQEXUPNUReug66haskwTFnrYnw/AgICcOTIETx8+BDKysqwtrbGihUr2Ad8EEIIKR21o4SQuoQC5WIcHBwwatQodOnSBQUFBfDx8UFcXBwePHhQ6kMHihMIBHj37h3U1NSqddULQkjdVXy2dvFhDzUBtaOEkNpA0naUAuVSJCUlQVdXF5cuXZJ4EtybN2/QtGnTSs4ZIYQUTWBt0qRJdWejVNSOEkJqsrLaURqjXArh06FKPqmvNMLHBdfm9Q0JITWbcA1SvseT1zTUjhJCaiJJ21EKlMUQCASYOXMmunXrVups7ZKPXhU+Bru61wYkhNR9NX1YArWjhJCarqx2lAJlMdzd3REXF4crV66Umi4gIAB+fn5VlCtCCACsjXzM/vxr3zbVmBNSmtrWjhavVxVBdZGQuqdmzQKpITw8PHDixAlcvHixzPF/3t7eSEtLY18JCQlVlEtCCKm5qB0lhNQF1KNcDMMwmD59OsLDwxEdHV3mU94A/kevEkLI94raUUJIXUKBcjHu7u4ICwvD0aNHoaamhsTERABFzwJXVlau5twRQkjNR+0oIaQuoaEXxWzevBlpaWno2bMnDAwM2NeBAweqO2uEEFIrUDtKCKlLqEe5GFpSmhBCvg21o4SQuoR6lAkhhBBCCOFBgTIhhBBCCCE8KFAmhBBCCCGEBwXKhBBCCCGE8KBAmRBCCCGEEB4UKBNCCCGEEMKDAmVCCCGEEEJ4UKBMCCGEEEIIDwqUCSGEEEII4UGBMiGEEEIIITwoUCaEEEIIIYQHBcqEEEIIIYTwoECZEEIIIYQQHhQoE0IIIYQQwoMCZUIIIYQQQnjUq+4MEEKIpNZGPpb4vV/7thF5r/g2cfuXluZb0pPKV1r9qA2qO//fWpe/Nf+1/W/pe7/+b1VTy496lAkhhBBCCOFBgTIhhBBCCCE8KFAmhBBCCCGEBwXKhBBCCCGE8KBAmRBCCCGEEB4UKBNCCCGEEMKDAmVSKVxdXdG8eXPOtszMTEyaNAn6+vqQkZHBzJkzqyVvNcmiRYsgIyMj1WNGR0dDRkYG0dHRUj1uec59+PDhKj83IYQQIm2VFig3b94cMjIy7EtFRQWWlpbYvXu3SFrhP1fhS1FREXp6eujZsyf8/f2RlJQksk9ISAhnn+KvefPmsemSkpLg6ekJY2NjKCsrQ1dXF5aWlvDy8kJmZqbUrlcY8GhoaAAANDQ0OHm6evWq1M7l6uoq9tplZGTw9u1bqZ1Lmvz9/RESEoKpU6diz549+N///lfdWarVNm3ahJCQkOrOxjfZv38/OnfuDCUlJejo6GDixIn49OkTb9rt27dj+cR++M2xA/xd7XA5Yg9vuse3YrBx7v+gra0NTU1NWFpa4sb5CJF0Hz58wIQJE6CrqwtlZWWsmTYEd/4+LZLuyJEjcHZ2hpGREerXr4+2bdti9uzZyM5M/6Zr/54IBAKEhIRg0KBBaNq0KVRUVGBqaoqlS5ciJyen1H2vXLnCtm3i6saBAwdgZWWFeQPN4DPEAutnjsKT27GVcSnkO3P9+nVMmzYN5ubmkJeXl7hj43ncDcyya4tZdm2RmZZSybkklalSHzhiZmaG2bNnAwDev3+PP//8Ey4uLsjNzYWbm5tI+hkzZqBLly4oLCxEUlISYmJi4Ovri8DAQBw8eBC9evUS2Wfx4sVo0aIFZ5upqSkAICUlBRYWFkhPT8fPP/8MY2NjJCcn4969e9i8eTOmTp0KVVVVqVzr0KFD0apVK2RnZ+OXX37B1q1boaysDB8fH2RmZqJLly5SOQ8ATJ48GX369OFsYxgGU6ZMQfPmzdG4cWOpnUuaLly4gB9//BG+vr7VnZU6YdOmTdDW1oarqytnu42NDbKzs6GgoFA9GZPQ5s2bMW3aNPTu3RuBgYF48+YN1q1bhxs3buDatWtQUlJi027ZsgVTpkxBx+72sB02AS/ibiB801Lk5Wbj176r2XRxsVHYucgdhu3M2C+vBw8eRNhKL2SlpeLXvv4AgPT0dHTv3h0fPnyAp6cn9PX1EbhlF3YvnQn7djoYM2YMe8xffvkFjRo1wrhx49CsWTPcv38fGzZsgOahCMzaFF51BVaLffnyBRMmTMCPP/6IKVOmQFdXF7GxsfD19UVUVBQuXLjAG4AIBAJMnz4dKioqyMrK4j32okWLsHjxYgwfPhxNLPuhsLAAiS8fIy35Q2VfFvkOnDp1Cn/++Sc6duwIIyMjPH5c9kMxBAIBwjcuhYJSfeTlfKmCXJLKVKmBcuPGjTFu3Dj2d1dXVxgZGWHt2rW8gXKPHj0wfPhwzra7d+/Czs4Ow4YNw4MHD2BgYMB5v1+/frCwsOA9//bt2/H69WtcvXoV1tbWnPfS09OlGkh07NgRHTt2RHp6On755Rc4OzsjLS0Nb968waRJk6R6LisrK1hZWXG2XblyBV++fMHYsWOldh5p+/jxI0xMTKo7GxWWlZUFFRWV6s5GmWRlZTlBZk2Ul5cHHx8f2NjYIDIykg2SrK2tMXDgQGzbtg3Tp08HAGRnZ+P333+Ho6MjensGAgCs+o+EQCBAZOhmfF71Oxo0aAAAuHI0FGpaOpi2cjc8HIu+ME+ePBn6hi1xPfIIgKJAecuWLXj69CmioqLYL+A5rXpjnedIzJ49G8OHD2f/Zg8fPoyePXty8m9ubg4XFxfcunAcGNCxUsuqLlBQUBBph93c3NC8eXM2WC755R8Adu7ciYSEBEyaNAnr1q0Tef+ff/7B4sWLsWbNGvz666/V/mQ7UvdMnToVXl5eUFZWhoeHh0SB8j+nDiA16T269huOy+Gid9FJ7VKuoRfCHpqHDx9i5MiRUFdXR8OGDeHp6Vnm7TMA0NHRgbGxMZ49eybxOTt16oSgoCCkpqZiw4YN5ckunj17Bjk5Ofz4448i76mrq0sUTAgEAixatAiNGjVC/fr18dNPP+HBgwdo3ry5SE9eSfv27QPDMBIHrzIyMvDw8EBERARMTU2hqKiI9u3b48yZM2XuGxYWBhkZGU5PWGlWr14Na2trNGzYEMrKyjA3N6/wuFJhfpWUlGBqaorwcG4vm3BozYsXL3Dy5En2NurLly8BAH/88Qfat2+P+vXro0GDBrCwsEBYWJjE53/58iVkZGSwevVqrF27FoaGhlBWVoatrS3i4uJE0j98+BDDhw+HlpYWlJSUYGFhgWPHjnHSCIf2XLp0CdOmTYOuri6aNGnCvn/69GnY2tpCTU0N6urq6NKli0ieDx06BHNzcygrK0NbWxvjxo2TaFjMzp070atXL+jq6kJRUREmJibYvHkzJ03z5s3x33//4dKlS2x5CoM5cWOUJcmPq6srVFVV8fbtWzg5OUFVVRU6OjqYM2cOCgsLy8y7kEAgwLJly9CkSRMoKSmhd+/eePr0Kft+XFwcUlNT4ezszOlJHDBgAFRVVbF//35228WLF5GcnIxp06ZxztF90Fjk5XzByZMn2W05XzJRX1UD9Yp9Ma1Xrx5U1BtAXuHr3/vly5eho6PDuUslKysLM5t+SExMxKVLl9jtJYNkABgyZAgA4MNryduy4oRt6ePHjzFu3DhoaGhAR0cHCxYsAMMwSEhIwODBg6Gurg59fX2sWbOGs39eXh6AorsHGhoaUFFRQY8ePXDx4kVOOl9fX8jKyiIqKoqz/ZdffoGCggLu3r1bofyXl4KCgkhnBfC1HOPj43n3W7p0KRYvXgxNTU3e94OCgqCvrw9PT08wDIPcbP5eZyIdZdXbzx/fY7vvVHg7dYavczdEH97B2b8gPw+nd61D4LSh8HEyx7yBZvhj1hg8ufMPJ11NqbcAoKenB2VlZYnTZ6Wn4nRIEBzGz4Cyinol5oxUlQqNUR45ciRycnIQEBCA/v37Y/369fjll1/K3K+goABv3rxhe38kNXz4cCgrK+PcuXMi76WlpeHTp0+cl5ChoSEKCwuxZw//WEZJeHt7w8/PDxYWFli1ahVat24Ne3t7sbcBiwsNDUXTpk1hY2Mj8fmuXLmCadOmYdSoUVi5ciVycnIwbNgwJCcni90nPz8fBw8ehLW1tcgEOnHWrVuHH374AYsXL4a/vz/q1auHESNGcIIOSZw7dw7Dhg2DjIwMAgIC4OTkhAkTJuDGjRtsmnbt2mHPnj3Q1taGmZkZ9uzZgz179kBHRwfbtm3DjBkzYGJigqCgIPj5+cHMzAzXrl0rVz4AYPfu3Vi/fj3c3d3h7e2NuLg49OrVCx8+fL0F+99//+HHH39EfHw85s2bhzVr1kBFRQVOTk4iAT4ATJs2DQ8ePMDChQvZse8hISFwdHRESkoKvL29sXz5cpiZmXG+0ISEhGDkyJGQk5NDQEAA3NzccOTIEXTv3h2pqamlXsfmzZthaGgIHx8frFmzBk2bNsW0adOwceNGNk1QUBCaNGkCY2Njtjx///13sccsT34KCwthb2+Phg0bYvXq1bC1tcWaNWuwdevWUvNd3PLlyxEeHo45c+bA29sb//zzD+cLY25uLgDw/gNSVlbG7du3IRAIAAC3b98GAJE7R01at4eMrCz7PgC06mSJxFdPcDokCE+fPsWzZ8+wZMkSvHkch14jJ3HOz3duBcWiYPrmzZulXl9iYiIAQEW9fG1ZSc7OzhAIBFi+fDm6du2KpUuXIigoCH379kXjxo2xYsUKtGrVCnPmzMHff//N7peRkQGg6C7cihUrsGjRIiQlJcHe3h537txh082fPx9mZmaYOHEiu8/Zs2exbds2LFy4EJ06dSo1f3ztK9+rovM9hOWora3N+76enh4mT54sdv+oqCh06dIF69evh46ODrwHd4bvqO64fHRvhfJDJCOu3m6ZNwEaDfUwYOIcaDdqhmNbV+DZvX/Z/XK+ZOLa6UNo2ckSAybNgd3/PJCVmoKtPpPw9tnXL0s1vd6W5syudVBroAMrx1FSPzapHhUaetGiRQscPXoUAODu7g51dXVs2rQJc+bMQceOX29D5ufns4FrYmIiVq5cicTERLi7u5frfPLy8mjTpg1vTzTf7TqGYQAAP//8M9auXQtXV1csX74cPXv2hI2NDfr3789OuivNhw8fEBgYKBJE+fn5YdGiRaXuGx8fj3v37uG3334r16oG8fHxePDgAVq2bAkA+Omnn9CpUyfs27cPHh4evPucPXsWycnJ5Rp28fjxY06g4OHhgc6dOyMwMBCOjo4SH8fLywt6enq4cuUKW6a2traws7ODoaEhgKJ/duPGjcP8+fNFhuOcPHkS7du3x6FDhyQ+pzhPnz7FkydP2DHaDg4O6Nq1K1asWIHAwKJb9p6enmjWrBn+/fdfKCoqAigKhrt37w4vLy+2h0tIS0sLUVFRkJOTA1DUAM+YMQOWlpaIjo7m3JUQ1rv8/Hx4eXnB1NQUf//9N5ume/fuGDBgANauXQs/Pz+x13Hp0iWRz8bBwQGBgYHs346TkxPmz5/P9gyXprz5ycnJgbOzMxYsWAAAmDJlCjp37ozt27dj6tSppZ6r+DHu3LnDDl9o0KABPD09ERcXB1NTU7Ru3Zqd5DphwgR2v0ePHrGTdz9//oyGDRvi/fv3kJOTg66uLoBUNm09eQWoqGni3bt37La+Y6YhJfENzu8LRuuwol74+vXrw3Xhephaf20r2rZti/Pnz+PVq1dsPQWA53FFAXJZPf8rVqyArKwcOtnYS1Qe4lhaWmLLli0AinrLmjdvjtmzZyMgIABeXl4AgNGjR6NRo0bYsWMH+6Vb2MO6bNkyqKsX9Vq5ubnB2NgYf/zxB7Zv3w6gqO3cvXs3zM3NMWvWLKxatQoTJ06EhYUFZ9KzOIMHD+b0rovj4uJSoYmlK1euhLq6Ovr168fZLrwTtGzZMvZvr6TPnz/j06dPuHr1Ki5cuABfX1/cT62H62ePIHzjEsjJ1YP1AApWKoO4etv/51no7VzUadb5pwFYNLoHrp/9Cy07Fs3Rqa+qgfl7LqCe/Nc7Plb9R2L5xH5Fk3OnDAZQ8+utOO+eP0TsyQNwW7oVsmLqLal9KhQolwx0p0+fjk2bNuHUqVOcQPncuXPQ0dHhpJ0wYQJWrVpV7nOqqqqy3yyL27hxI9q0acO7j56eHu7evYvFixcjPDwcwcHBCA4OhoKCAubPn4/58+eXGsRGRUWhoKBA5Jbv9OnTywyUDx48CADlHjPcp08fNkgGisY+q6ur4/nz52L3CQsLg7y8PEaOHCnxeYoHYp8/f0ZhYSF69OiBffv2SXyM9+/f486dO5g3bx7ni0ffvn1hYmIiUa+7pqYm3rx5g3///febJzw6OTlxJjJaWlqia9euOHXqFAIDA5GSkoILFy5g8eLFyMjI4NQne3t7+Pr64u3bt5xjuLm5cf5RR0ZGIiMjA/PmzRMZuiOsSzdu3MDHjx+xaNEiThpHR0cYGxvj5MmTpQbKxT+btLQ05Ofnw9bWFmfPnkVaWppEX/KKq0h+pkyZwvm9R48e5bozM2HCBM64/B49egAAnj9/DlNTU2hra2PkyJHYtWsX2rVrhyFDhuDt27eYPn065OXlkZ+fj+zsbAAodWJiPQVFNl3R7wrQadwcHXvYY95UFxQWFmLr1q0IXTEXk5fvBPoWtRWTJk1CcHAwRo4cibVr10JPTw/n923B/auR7DnFCQsLw/bt2/HTyEnQadxc4jLhM2nS115uOTk5WFhY4M2bN5g4cSK7XVNTE23btuW0AcXrpEAgQGpqKgQCASwsLHDr1i3OOUxNTeHn5wdvb2/cu3cPnz59wrlz51CvXtnN/5o1a/D58+cy0zVq1KjMNCX5+/vj/Pnz2LRpk8jQCuGXhN69e4vdX9gbmJycjP3798PZ2RlrIx+jYw8HrJo8EOfDNlOgXEnE1duuDl/nGCmrqkO3SQskv09gt8nKybEBpEAgQHZmOhhGgKZtTPH26QPOOWpqvS1N+KZlMO5ig7YW3aV6XFK9KhQot27dmvN7y5YtISsry445FRLekiksLERcXByWLl2Kz58/V2hiW2ZmJtTU1ES2W1paip3MBwAGBgbYvHkzNm3ahCdPnuDs2bNYsWIFFi5cCAMDA0yaNAmZmZmcWzBycnLQ0dHBq1evAACtWrXiHFNLS6vM4SOHDx+Gqakp54sDUBT4FP8nrKCgAC0tLfb3Zs2aiRyrQYMGYv/oMzMzcfToUfZWeXEpKSnsWEagKAATBlknTpzA0qVLcefOHfY2OIBy9X4Ly6dkfQCKeuxK/sPm4+XlhfPnz8PS0hKtWrWCnZ0dxowZg27dukmcDyG+fLRp04b90vL06VMwDIMFCxawvaUlffz4kRMol1xRRXhXQ7iyCh9hubRt21bkPWNjY1y5cqXU67h69Sp8fX0RGxuLL1+4M6YrEiiXNz/CpdqKK1kHk5KSOGOWVVVVOSvIlKzHwr+X4sfYsmULsrOzMWfOHMyZMwcAMG7cOLRs2RJHjhxhj6esrMypx8UV5HGHUBzZsBiv4u9i1qZwjLI3BlA0VKxxizaI2LQM62YUfZns2LEjwsLCMGXKFLauqWnpwGmqDw6vXyR2NZzLly9j4sSJsLe3R58Jv/KmKY+S5aShoQElJSWRoQgaGhq8w6+sra3x+PFj5Ofns9tK1lkAmDt3Lvbv34/r16/D399f4km15ubmEqUrrwMHDmD+/PmYOHGiyF2KAwcOSDT0Svi5y8vLcyaBy8rKwsy2H87u/gOfP75DA13pBkNEfL1V1dDibFdSUUNWeipn27/nwhH91w58THiBwoKv9VZLvwlKqmn1tjQHDhzAywe3MXfr8So/N6lcUln1Qlxwpa2tzQ6NsLe3h7GxMQYMGIB169Zh1qxZEh8/Pz8fjx8/LjU4kSSPbdq0QZs2beDo6IjWrVsjNDQUkyZNwurVqzk9alpaWlBTU8ObN28AFK28wffPpzSvX79GQECAyHZPT0/s2rWL/d3W1pYz6UrcbUbhbf2SIiIixK52MXToUM7tJ+FtpsuXL2PQoEGwsbHBpk2bYGBgAHl5eezcubNck+ikoV27dnj06BFOnDiBM2fO4K+//sKmTZuwcOHCUntdK0I45nXOnDmwt+e/ZV7yS1F5JnFIw7Nnz9C7d28YGxsjMDAQTZs2hYKCAk6dOoW1a9ey11CZxNXB4rp06cIG4EDR5Jvid1kkqccaGho4evQoXr9+jZcvX8LQ0BCGhoawtraGjo4O28toYGCAwsJCfPz4kXOsgvw8ZGWksr1CBfl5uHbmL/QaOQmysl+nX8jLy8O4Sw9cORaKvLw89ov68OHDMWjQINy9exeFhYW4nKKKZ3evAwDvXaq7d+9i0KBBMDU1xeHDh7Et9p1ImvLiKydJyu7AgQMAioJiLy8v6OrqsuPP+YaoPX/+HE+ePAEA3L9/X+L8lfyyLU7xL+FCGzduxKpVq5CYmIhOnTrhjz/+gKWlJSIjIzF+/Hg4OjoiODhY5Fhz586Fk5MTDh06hFevXkFNTY0dR5+QkIC8vDw0atSInYyrqakpUmZqmkWdBl8y0ilQrgTlqbcoVm9vnD+KfavnwdS6D34aMRGqmg0hKyuHqP1b8KlYz7NQddTbipo7dy469bBHvXrySEksih2ys4rWWk9NSkRhQT40GupJ5VykalUoUH7y5AkncHz69CkEAkGZE8kcHR1ha2sLf39/TJ48WeKltg4fPozs7GyxwU15GRkZoUGDBnj//j0AYPz48ejevehWSXR0NFasWIHVq1cjKSkJXl5eGDduHJ4/f/7/YySLbvWVdVtH3AoUv/32G2dMaXknNpYUGhoKVVVVDBo0SOS9krefhAHFX3/9BSUlJZw9e5YdpwsUrbZQHsKxncKGrLhHjx5JfBwVFRU4OzvD2dkZeXl5GDp0KJYtWwZvb+9yLXPGl4/Hjx+z9dLIyAhAUeDEN7ZdEsJhMXFxcSJBtZCwXB49eiSy9vejR484Y2JLOn78OHJzc3Hs2DFOr03J1QwAyXv/vyU/4oSGhnLujAjLtiKaNWvGXmtqaipu3ryJYcOGse+bmZkBKBpCAvmvZZ7wOA6MQMC+/yU9FYLCAggEoqtzFBYUgBEIRFbuUFBQYIf8xEY+xuPbMQBE5z48e/YMDg4O0NXVxalTp6S2/npFCeeI7N27l/OPnm+NcoFAAFdXV6irq2PmzJnw9/fH8OHDMXTo0DLPU/LLtjglx3oeOHAAs2bNQnBwMLp27YqgoCDY29sjLCwMI0aMgIWFBQ4ePMh7Gz0hIQEJCUVBU8k7cp07d0anTp1w586dop5jMzP8+++/nC9AAJCWXPSlSlXz29pXIl33Lp9FQ4OmmOC7gdN+ndm9XiRtddTbbyGst7cunhB5L3DaEDQyMsac4KNSORepWhUKlDdu3Ag7Ozv29z/++AMARCZk8PHy8kL//v2xbds2iR5hfPfuXcycORMNGjQo9yTAa9euwdTUVCQgv379OpKTk9lbrkZGRuw/+t9//x2TJ0/GhAkT8OHDB/z+++8oLCzEjh072EkEpS1TJ7wFamVlxTuMwsTERGprCSclJeH8+fMYPXo06tevL/K+uNtPcnJykJGR4QQNL1++RERERLnOb2BgADMzM+zatYszTjkyMhIPHjyQKABLTk7mDBlRUFCAiYkJTp8+jfz8/HIFyhEREZwxxtevX8e1a9fYeqarq4uePXtiy5YtmD59usia3ElJSSJDDkqys7ODmpoaAgIC4ODgIDKZT0ZGBhYWFtDV1UVwcDB+/vln9svI6dOnER8fj4ULF4o9vrBXpnjvYVpaGu+XGBUVlTJX0ADwTfkRpyJDYyTh7e2NgoIC/Prr12ENvXr1gpaWFjZv3oxeM74ukxZzYh8UFJXZyaeqmg2hrKqO+1cj4TB+BpsuMzMTD/65CN2mRqXeIUh6+xIxJ/djwIABnB7lxMRE2NnZQVZWFmfPni2zjlQFYY958Xpy7do1xMbGirQ7gYGBiImJwbFjx+Do6Ijo6GhMnToVNjY2YlebEKroWM/AwEC4ubmxEzWDg4MRERGB4cOHo0WLFjhx4oTYzyI8PJy9SxYaGor69etj//79OHDgAHbv3s1ZptHZ2Rn//PMPdu3axa7Nn5+Xi1sXjkPPsBX14NUwMsXaN2Gg/Cr+Ll7F34Gmrmgdqup6+y3Cw8Nx7A73LtPt6JO4c+kUxvy2Ahra+lI7F6laFQqUX7x4gUGDBsHBwQGxsbHYu3cvxowZU+aSLUBRMG1qasrO4JeXl2ffu3z5MnJyclBYWIjk5GRcvXoVx44dg4aGBsLDw6GvX76KtmfPHoSGhmLIkCEwNzeHgoIC4uPjsWPHDigpKcHHx4eTPi8vDzdv3oS3tzeAosmAnp6eWLNmDYKCgqCuro67d+/i9OnT0NbWhoyMDHJzczljfIXr8Q4cOBDp6eV/xG1eXp7IfgzDID8/X2T7rl27UFBQACcnp3Kdq2fPnggMDETfvn0xfPhwfPr0Cdu2bYORkRHi4uLKdawFCxZgxIgRsLa2xrhx4/D582ds3boV7dq1Q1ZWFudYDMOgoKCAs613797Q09ND165doauri0ePHmHbtm2wt7cHwzAS5UU4Kc/IyAjW1taYOHEi8vLysGnTJmhpaWHq1KnscVasWAF7e3uYmprCxcUFzZs3R1JSEq5fv453796xjxoX9pZmZmaK5MHf3x/Tp0+Hubk5hg8fDk1NTcTFxSE7O5u9lbxo0SJ2NY3hw4fj48ePCA4ORrNmzTBx4kT2mMK6I/zd2toaCgoKcHR0xIQJE5CZmYldu3ZBW1sb79+/R0ZGBpu2Q4cO2L59OxYsWIAWLVpAR0cHtra27CTK4uUvaX6EX/RKXnPJfIojPPeXL184aYWfUXZ2Nrs9MDAQ8fHxsLCwgJycHE6ePIkLFy5g/vz5aNu2LWd/Hx8fzJkzBy+Ts9H6Byu8fHAbt6NPwm6sO+rVq4f09HTk5WSj+6BxiAzbhKDpw1F4z5VdHjL1UyJGzlzCOaalpSWcnJzQpEkTvHr1ChuDt0FZRR2rVq3ipLOzs8Pz58/h6emJyMhIdnvsfx+gqqmF9K5f26WpU6ciLCwM9+7dK/WLorA8MzIyOD2h4sq/sLAQAoGA3W5ra4vjx49jzJgxcHJywosXLxAcHAwTExPOfIv4+HgsWLAArq6uGDhwIICipQLNzMwwbdo0dvy+OBUZ61myHQWK6kVWVha+fPmC//3vfyLLUDZt2hQ//PADgKIvRmlpaQCK1olWV1dnxyx3794dDRs2ZMth9OjR2Lp1K9zd3XH//n28yFbCnehT+PzhHf7nsxY5WdJf/qs0FWnzi6vq/JZUVv7Lqrcl8y/4/3or3N7GzAr3r5zD9gVT0NaiOz5/eItrZ/+CThMj5OV8bTMePXqEBQsWYOzYsbC1tUVmZiY2bNiA7t27w83NjTN8kQ/ffJWKXvPr16/ZoU7Ceiic49K0aVOMGlU0YbRXr16Ix1POvq8eFq333KK9OVTUG5T5+X5r/antvrX+l7f8hOnFDW1lMeXg6+vLAGAePHjADB8+nFFTU2MaNGjAeHh4MNnZ2Zy0hoaGjKOjI+9xQkJCGADMzp07GYZhmIsXLzIA2Je8vDyjo6PD2NjYMMuWLWM+fvwocoydO3cyAJh///1XbH7v3bvHzJ07l+ncuTOjpaXF1KtXjzEwMGBGjBjB3Lp1SyT927dvGQBMTEwMu62goICxsrJi5OXlGWVlZaZXr15MfHw807BhQ2bKlClsmdCLXvSiV1W/mjRpwigqKjI//PADc+LECcbFxYUxNDRk264uXbowTZo0YVJTUzlt3bp16xgAzIEDB8S2nxXF146+ePGi1Ovo1KlTtZclvehFr+/zlZCQUGqbJsMwZYXSXy1atAh+fn5ISkoq89ZHbfTu3Ts0btwYMTExnEdE//bbb7h06RL7bTI1NRUNGjTA0qVLMWfOHE6PskAgQEpKCho2bFiuFSRqu/T0dDRt2hQJCQnsuq5V5dWrV+jYsSOWLFmCGTNmlL1DFavOsqnp6lrZtGrVCqNGjcLSpUu/6ThllQvDMMjIyECjRo04ExdrAknb0eJK3pkr3o5mZGTU+jpSF+p5XbgGoG5cB12DdEjajkpl1Yu6QltbG3JycpwnuWVnZ+PDhw+cYR9BQUEAioYwKCoqcibEARD7uNXvgbq6epVXeuGygUpKSjW60aiOsqkt6kLZ/Pfff8jJycHChQuldi2llYu0ZutLG187CkCkHS2utHZU2OFQF+oIXUPNUReug67h20nSjlKgXIyCggLMzc0RFRUFJycnAMC+ffuwf/9+9OrVC5s2bcKVK1ewb98+2NnZVdqEppqg5HrPfMo7Zry8CgsL2ae0iVPdqw8QItS+ffvvfowhwN+OCgQCREVFiX26KCGE1FQUKJcwa9YsuLi4wMLCApaWljh58iQEAgGuX7+OqKgodoLft95arelKrvfMpxyjdiokISGhzPWrfX194erqWqn5IISUT8l2NCgoCFlZWZzHlRNCSG1QrkB50aJFZT66ubZzdnZGUlISFi5ciMTERJiZmeHKlSvo2rVrdWetSpVc77ksioqK8PX1Fbl9+i309fU5qwzwMTIyQvPmzSs9aP8WlVE2dQWVDb/aXi587eiZM2egp1f+5dpqe1kAdA01SV24DrqGqlWuyXyEEEIIIYR8L2rWdGlCCCG1WkBAALp06QI1NTXo6urCycmpXE/qJISQmoR6lKVMIBDg3bt3UFNT+66WhyOEVJ2avDycg4MDRo0ahS5duqCgoAA+Pj6Ii4vDgwcPRJ6SKg61o4SQyiZpO0qBspS9efMGTZs2re5sEEK+AwkJCZxHOtdESUlJ0NXVxaVLl2BjYyPRPtSOEkKqSlntKK16IWXCNX1r80LghJCaTbhYv7C9qcmEj6PW0tISm6bkA0eE/TfUjhJCKouk7SgFylJWlxbHJ+R7sjbyMQDg175tqjknkqvpwxIEAgFmzpyJbt26wdTUVGy6gIAA+Pn5iWwvbzsq/AyLq02fZ2WgMiGkdGW1ozVrcBshhJA6w93dHXFxcdi/f3+p6by9vZGWlsa+EhISqiiHhBBSOupRJoQQInUeHh44ceIE/v777zLHUfM9wpoQQmqCOtujXJElikJCQiAjI8N5KSkpVVGOCSGk9mMYBh4eHggPD8eFCxfKfLomIYTUZHU2UL506RLc3d3xzz//IDIyEvn5+bCzs0NWVlap+6mrq+P9+/fs69WrV1WUY0IIqf3c3d2xd+9ehIWFQU1NDYmJiUhMTER2dnZ1Z40QQsqtzg69OHPmDOf3kJAQ6Orq4ubNm6UuUSQjIwN9ff3Kzh4hhNRJmzdvBgD07NmTs33nzp1wdXWt+gwRQsg3qLOBckmSLFEEAJmZmTA0NIRAIEDnzp3h7++P9u3bi01fclmj9PR06WSYEEJqIVqanxBSl9TZoRfFSbpEUdu2bbFjxw4cPXoUe/fuhUAggLW1Nd68eSN2n4CAAGhoaLAvWiSfEEIIIaRu+C4CZUmXKLKyssL48eNhZmYGW1tbHDlyBDo6OtiyZYvYfWhZI0IIIYSQuqnOD70ozxJFJcnLy+OHH37A06dPxaahZY0IIYQQQuqmOtujLI0ligoLC3H//n0YGBhUQg4JIYQQQkhNVmd7lN3d3REWFoajR4+ySxQBgIaGBpSVlQEA48ePR+PGjREQEAAAWLx4MX788Ue0atUKqampWLVqFV69eoVJkyZV23UQQgghhJDqUWcDZUmWKHr9+jVkZb92qn/+/Blubm5ITExEgwYNYG5ujpiYGJiYmFRVtgkhhBBCSA1RZwNlSZYoio6O5vy+du1arF27tpJyRAghhBBCapM6O0aZEEIIIYSQb0GBMiGEEEIIITwoUCaEEEIIIYQHBcqEEEIIIYTwoECZEEIIIYQQHhQoE0IIIYQQwoMCZUIIIYQQQnjU2XWUCSGEkIpaG/lYZNuvfdvUmON9i5qUF0JqOupRJoQQQgghhAcFyoQQQgghhPCgQJkQQgghhBAeFCgTQgghhBDCgwJlQgghhBBCeFCgTAghhBBCCA9aHo4QQqSs5PJbwqW3hNvF/U4IIaRmoR5lQgghhBBCeFCgTAghhBBCCA8KlAkhhBBCCOFBgTIhhBBCCCE8KFAmhBBCCCGEBwXKhBBCCCGE8KBAmRBCCCGEEB4UKBNCCCGEEMKDAmVCCCGEEEJ41PlAeePGjWjevDmUlJTQtWtXXL9+vdT0hw4dgrGxMZSUlNChQwecOnWqinJKCCF1R3nbXkIIqYnqdKB84MABzJo1C76+vrh16xY6deoEe3t7fPz4kTd9TEwMRo8ejYkTJ+L27dtwcnKCk5MT4uLiqjjnhBBSe5W37SWEkJqqTgfKgYGBcHNzw4QJE2BiYoLg4GDUr18fO3bs4E2/bt06ODg4YO7cuWjXrh2WLFmCzp07Y8OGDVWcc0IIqb3K2/YSQkhNVa+6M1BZ8vLycPPmTXh7e7PbZGVl0adPH8TGxvLuExsbi1mzZnG22dvbIyIiQux5cnNzkZuby/6elpYGAEhPT/+G3BNCqlpOViYA6fztCo8lJDxmyXNU9JzC9AzDfFM+K0NF2l5ptaMly70ix6iMY1XG8b7lvHzofxb53kjajtbZQPnTp08oLCyEnp4eZ7uenh4ePnzIu09iYiJv+sTERLHnCQgIgJ+fn8j2pk2bViDXhJDq5lMFxyzrd0llZGRAQ0OjgntXjoq0vZXZjkrz85R23aiMulZRNSkvhFSlstrROhsoVxVvb29OL7RAIEBKSgoaNmwIGRmZasxZ1UpPT0fTpk2RkJAAdXX16s5OjUJlIx6VDb+yyoVhGGRkZKBRo0bVkDvpK60dzcjIqPV1pC7U87pwDUDduA66BumQtB2ts4GytrY25OTk8OHDB872Dx8+QF9fn3cffX39cqUHAEVFRSgqKnK2aWpqVizTdYC6unqt/cOtbFQ24lHZ8CutXGpaT7JQRdre0tpRYYdDXagjdA01R124DrqGbydJO1pnJ/MpKCjA3NwcUVFR7DaBQICoqChYWVnx7mNlZcVJDwCRkZFi0xNCCOGqSNtLCCE1VZ3tUQaAWbNmwcXFBRYWFrC0tERQUBCysrIwYcIEAMD48ePRuHFjBAQEAAA8PT1ha2uLNWvWwNHREfv378eNGzewdevW6rwMQgipVcpqewkhpLao04Gys7MzkpKSsHDhQiQmJsLMzAxnzpxhJ5m8fv0asrJfO9Wtra0RFhaG+fPnw8fHB61bt0ZERARMTU2r6xJqDUVFRfj6+orcPiVUNqWhsuFX28ulrLa3PGp7WQB0DTVJXbgOuoaqJcPUxPWFCCGEEEIIqWZ1dowyIYQQQggh34ICZUIIIYQQQnhQoEwIIYQQQggPCpQJIYQQQgjhQYEyKdXff/+NgQMHolGjRpCRkUFERATnfYZhsHDhQhgYGEBZWRl9+vTBkydPOGlSUlIwduxYqKurQ1NTExMnTkRmZmYVXoX0lVUurq6ukJGR4bwcHBw4aepiuQBFjyPu0qUL1NTUoKurCycnJzx69IiTJicnB+7u7mjYsCFUVVUxbNgwkQdUvH79Go6Ojqhfvz50dXUxd+5cFBQUVOWlSJUk5dKzZ0+RejNlyhROmrpWLuIsWrRIpCyMjY2rO1ulkkZ7Wd2k0bZVN2m1QdVJWu1Fddu8eTM6duzIPljEysoKp0+fZt+v6Z8DQIEyKUNWVhY6deqEjRs38r6/cuVKrF+/HsHBwbh27RpUVFRgb2+PnJwcNs3YsWPx33//ITIyEidOnMDff/+NX375paouoVKUVS4A4ODggPfv37Ovffv2cd6vi+UCAJcuXYK7uzv++ecfREZGIj8/H3Z2dsjKymLT/Prrrzh+/DgOHTqES5cu4d27dxg6dCj7fmFhIRwdHZGXl4eYmBjs2rULISEhWLhwYXVcklRIUi4A4Obmxqk3K1euZN+ri+VSmvbt23PK4sqVK9WdpVJJo72sbtJo26qbNNqg6iaN9qImaNKkCZYvX46bN2/ixo0b6NWrFwYPHoz//vsPQM3/HAAADCESAsCEh4ezvwsEAkZfX59ZtWoVuy01NZVRVFRk9u3bxzAMwzx48IABwPz7779smtOnTzMyMjLM27dvqyzvlalkuTAMw7i4uDCDBw8Wu8/3UC5CHz9+ZAAwly5dYhimqI7Iy8szhw4dYtPEx8czAJjY2FiGYRjm1KlTjKysLJOYmMim2bx5M6Ours7k5uZW7QVUkpLlwjAMY2try3h6eord53soFyFfX1+mU6dO1Z2NCqtIe1nTVKRtq4kq0gbVNBVpL2qqBg0aMH/++Wet+RyoR5lU2IsXL5CYmIg+ffqw2zQ0NNC1a1fExsYCAGJjY6GpqQkLCws2TZ8+fSArK4tr165VeZ6rUnR0NHR1ddG2bVtMnToVycnJ7HvfU7mkpaUBALS0tAAAN2/eRH5+PqfeGBsbo1mzZpx606FDB84DKuzt7ZGens72RNR2JctFKDQ0FNra2jA1NYW3tze+fPnCvvc9lEtxT548QaNGjWBkZISxY8fi9evX1Z2lCpOkvawtSmvbaqKKtEE1TUXai5qmsLAQ+/fvR1ZWFqysrGrN51Cnn8xHKldiYiIAiDxtS09Pj30vMTERurq6nPfr1asHLS0tNk1d5ODggKFDh6JFixZ49uwZfHx80K9fP8TGxkJOTu67KReBQICZM2eiW7du7BMuExMToaCgAE1NTU7akvWGr14J36vt+MoFAMaMGQNDQ0M0atQI9+7dg5eXFx49eoQjR44AqPvlUlzXrl0REhKCtm3b4v379/Dz80OPHj0QFxcHNTW16s5euUnSXtYGZbVtNU1F26CapKLtRU1x//59WFlZIScnB6qqqggPD4eJiQnu3LlTKz4HCpQJqQSjRo1if+7QoQM6duyIli1bIjo6Gr17967GnFUtd3d3xMXF1fixpVVNXLkUH6PeoUMHGBgYoHfv3nj27BlatmxZ1dmsVv369WN/7tixI7p27QpDQ0McPHgQEydOrMacfd9qW9tWF9qg2t5etG3bFnfu3EFaWhoOHz4MFxcXXLp0qbqzJTEaekEqTF9fHwBEZqh++PCBfU9fXx8fP37kvF9QUICUlBQ2zffAyMgI2traePr0KYDvo1w8PDxw4sQJXLx4EU2aNGG36+vrIy8vD6mpqZz0JesNX70SvlebiSsXPl27dgUATr2pq+VSFk1NTbRp04Yti9pGkvayNirZttUk39IG1RTf0l7UFAoKCmjVqhXMzc0REBCATp06Yd26dbXmc6BAmVRYixYtoK+vj6ioKHZbeno6rl27BisrKwCAlZUVUlNTcfPmTTbNhQsXIBAI2D/q78GbN2+QnJwMAwMDAHW7XBiGgYeHB8LDw3HhwgW0aNGC8765uTnk5eU59ebRo0d4/fo1p97cv3+f82UiMjIS6urqMDExqZoLkbKyyoXPnTt3AIBTb+pauUgqMzMTz549Y8uitpGkvayNSrZtNYE02qDqJo32oqYSCATIzc2tFZ8DAFr1gpQuIyODuX37NnP79m0GABMYGMjcvn2befXqFcMwDLN8+XJGU1OTOXr0KHPv3j1m8ODBTIsWLZjs7Gz2GA4ODswPP/zAXLt2jbly5QrTunVrZvTo0dV1SVJRWrlkZGQwc+bMYWJjY5kXL14w58+fZzp37sy0bt2aycnJYY9RF8uFYRhm6tSpjIaGBhMdHc28f/+efX358oVNM2XKFKZZs2bMhQsXmBs3bjBWVlaMlZUV+35BQQFjamrK2NnZMXfu3GHOnDnD6OjoMN7e3tVxSVJRVrk8ffqUWbx4MXPjxg3mxYsXzNGjRxkjIyPGxsaGPUZdLBdxZs+ezURHRzMvXrxgrl69yvTp04fR1tZmPn78WN1ZE0sa7WV1k0bbVt2k0QZVN2m0FzXBvHnzmEuXLjEvXrxg7t27x8ybN4+RkZFhzp07xzBMzf8cGIZhKFAmpbp48SIDQOTl4uLCMEzRkkcLFixg9PT0GEVFRaZ3797Mo0ePOMdITk5mRo8ezaiqqjLq6urMhAkTmIyMjGq4GukprVy+fPnC2NnZMTo6Ooy8vDxjaGjIuLm5cZb0Ypi6WS4Mw/CWCwBm586dbJrs7Gxm2rRpTIMGDZj69eszQ4YMYd6/f885zsuXL5l+/foxysrKjLa2NjN79mwmPz+/iq9Gesoql9evXzM2NjaMlpYWo6ioyLRq1YqZO3cuk5aWxjlOXSsXcZydnRkDAwNGQUGBady4MePs7Mw8ffq0urNVKmm0l9VNGm1bdZNWG1SdpNVeVLeff/6ZMTQ0ZBQUFBgdHR2md+/ebJDMMDX/c2AYhpFhGIaRfj81IYQQQgghtRuNUSaEEEIIIYQHBcqEEEIIIYTwoECZEEIIIYQQHhQoE0IIIYQQwoMCZUIIIYQQQnhQoEwIIYQQQggPCpQJIYQQQgjhQYEyIYQQQgghPChQJoQQQgghhAcFyoQQQgghhPCgQJkQQgghhBAeFCgTQgghhBDC4/8AW+mHdnFmmVsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAF2CAYAAAB3dr7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADV6UlEQVR4nOzdd1jUyP8H8PeC0jtSFJBiRVFREBVBEEVUFBuCep6AKFZsd6LYUQ6siGevYMGznZ69IPZytlPs7SyHnSJV+s7vD36bL2EXdlEQxc/refIos5PMJJvMfpJMJgLGGAMhhBBCCCGER66qK0AIIYQQQsi3iAJlQgghhBBCJKBAmRBCCCGEEAkoUCaEEEIIIUQCCpQJIYQQQgiRgAJlQgghhBBCJKBAmRBCCCGEEAkoUCaEEEIIIUQCCpQJIYQQQgiR4IcIlK9duwZ7e3uoqqpCIBDg1q1bFbJcX19fqKmpSc3n7OwMZ2fnCimTVL3o6GgIBAK8ePGCl75o0SJYWFhAXl4e1tbWFVLG9evXv2g5hBBCCPl81T5Qzs/PR//+/ZGSkoKlS5di69atMDU1repqfZcyMjIQFBQEc3NzKCoqwsjICJ6envj06VOFl/X+/XuMGDECRkZGUFJSgpmZGfz9/Su8nIpy4sQJBAUFoX379oiKikJYWNhXK3v9+vVwcnKCgYEBFBUVYW5uDj8/P7FAPjs7G/7+/rCysoKmpibU1NTQokULLFu2DPn5+by8zs7OEAgEEqeaNWuK1eHAgQNo1aoVlJSUULduXcyePRsFBQW8PG/fvsXUqVPRsWNHqKurQyAQ4MyZMxW9Oaq9R48eYeLEibC3t4eSkpLEkzYRMzMzid/hyJEjxfKmpqYiICAAenp6UFVVRceOHfHPP/9U8toQ8m27evUqRo8eDRsbG9SsWRMCgaDUvO/fv4efnx/09fWhrKyMVq1aYffu3V+xtqQy1KjqClS2f//9Fy9fvsT69esxbNiwqq7OdystLQ1OTk549eoVAgICUL9+fSQmJuL8+fPIzc2FiopKhZWVkJCA9u3bAwBGjhwJIyMjvHnzBlevXq2wMiraqVOnICcnh40bN0JBQeGrln3z5k2Ym5vDw8MD2traeP78OdavX49Dhw4hPj4ederUAVAUKN+7dw/du3eHmZkZ5OTkcOnSJUycOBFXrlzB9u3buWVOnz5d7HjJysrCyJEj0aVLF1760aNH0bt3bzg7O2P58uW4c+cOQkND8eHDB6xevZrL9+jRIyxYsAANGjRAs2bNcPny5UrcKtXX5cuX8fvvv6NJkyawtLSUeofM2toav/zyCy+tYcOGvL+FQiHc3d0RHx+PyZMno1atWli1ahWcnZ1x48YNNGjQoKJXg5DvwpEjR7BhwwY0b94cFhYWePz4scR86enpcHBwwPv37zF+/HgYGhpi165d8PLyQkxMDAYNGvSVa04qDKvmzp49ywCw3bt3V9gyMzMzGWOM+fj4MFVVVan5nZycmJOTU4WVXxVGjRrFtLS02LNnzyq9rG7dujFzc3OWlJRU6WV9jqioKAaAPX/+nEvz8/OTaV8obxnXrl37rPmvX7/OALDw8HCpeceOHcsAsLdv35aZb+vWrQwAi4mJ4aU3adKEtWjRguXn53Np06dPZwKBgD148IBLS09PZ8nJyYwxxnbv3s0AsNOnT5djrQhjjCUnJ7P09HTGGGOLFi0S2xeLMzU1Ze7u7lKXuXPnTrF28sOHD0xLS4sNHDiwQupNyPfo3bt37NOnT4wxxsaMGcNKC5sWLlzIALC4uDgurbCwkLVu3ZoZGhqy3Nzcr1JfUvGqddcLX19fODk5AQD69+8PgUDA6yt86tQpODo6QlVVFVpaWujVqxcePHjAW8acOXMgEAhw//59DBo0CNra2nBwcCi1zFu3bkFPTw/Ozs7IzMwsNV9ubi5mz56N+vXrQ1FRESYmJggKCkJubi4vX2xsLBwcHKClpQU1NTU0atQI06ZN4+VZvnw5mjZtChUVFWhra8PW1pZ3dbAsu3fvRpMmTaCkpAQrKyvs27cPvr6+MDMz4/KkpqYiKioKAQEBMDc3R15enlg9pXF2doaVlRXu37+Pjh07QkVFBUZGRli4cCEv38OHD3H06FFMnjwZurq6yMnJEesWIM3+/fvh7u6OOnXqQFFREfXq1cO8efNQWFhYruUAwL179+Di4gJlZWUYGxsjNDQUQqGQl0cgECAqKgpZWVncre3o6GgAsn1/ZcnNzcWkSZO42+F9+vRBYmKi1PlE319qamqF5d2+fTtUVVXRq1cvLu3+/fu4f/8+AgICUKPG/25QjR49Gowx7Nmzh0tTV1eHjo6O1PqUh6gv94ULFzBu3Djo6elBS0sLI0aMQF5eHlJTUzFkyBBoa2tDW1sbQUFBYIzxlrF48WLY29tDV1cXysrKsLGx4dUbAKKioiAQCLBp0yZeelhYGAQCAY4cOVKh61UWHR0dqKurl2uevLw8ZGVllfr5nj17YGBggL59+3Jpenp68PLywv79+8t9vJPqSfR7+PjxYwwePBiamprQ09PDzJkzwRhDQkICevXqBQ0NDRgaGmLJkiW8+fPy8jBr1izY2NhAU1MTqqqqcHR0xOnTp3n5Zs+eDTk5OcTFxfHSAwICoKCggPj4+EpfVxEDAwMoKytLzXf+/Hno6enBxcWFS5OTk4OXlxfevXuHs2fPVmY1SSWq1l0vRH1cw8LCMG7cOLRu3RoGBgYAgJMnT6Jbt26wsLDAnDlzkJ2djeXLl6N9+/b4559/eIEiUBRoN2jQAGFhYWI/tCLXrl2Dm5sbbG1tsX///lIPLqFQCA8PD1y4cAEBAQGwtLTEnTt3sHTpUjx+/Bh//fUXgKIgrUePHmjevDnmzp0LRUVFPH36FBcvXuSWtX79eowbNw6enp4YP348cnJycPv2bVy5ckXqrZ7Dhw/D29sbzZo1Q3h4OD5+/Ah/f38YGRnx8l24cAE5OTmoX78+PD098ddff0EoFKJdu3ZYuXKlzA+uffz4EV27dkXfvn3h5eWFPXv2YMqUKWjWrBm6desGoOh7AYoap06dOuHUqVOQl5eHq6srVq9eLfa9SBIdHQ01NTVMmjQJampqOHXqFGbNmoX09HQsWrRIproCwLt379CxY0cUFBRg6tSpUFVVxbp168S+161bt2LdunW4evUqNmzYAACwt7eX6fuTJjAwENra2pg9ezZevHiByMhIjB07Fjt37hTLm5ycjMLCQvz333+YO3cuAKBTp05i+fLy8pCeno7s7Gxcv34dixcvhqmpKerXr19qPRITExEbGwtvb2+oqqpy6Tdv3gQA2Nra8vLXqVMHxsbG3OeVLTAwEIaGhggJCcHff/+NdevWQUtLC5cuXULdunURFhaGI0eOYNGiRbCyssKQIUO4eZctWwYPDw/89NNPyMvLw44dO9C/f38cOnQI7u7uAAA/Pz/s3bsXkyZNgqurK0xMTHDnzh2EhITA398f3bt3L7N+mZmZyMnJkboeNWvWhKam5pdtjBJOnToFFRUVFBYWwtTUFBMnTsT48eN5eW7evIlWrVpBTo5/7cTOzg7r1q3D48eP0axZswqtF/l+eXt7w9LSEvPnz8fhw4cRGhoKHR0drF27Fi4uLliwYAFiYmLw66+/onXr1ujQoQOAou4JGzZswMCBAzF8+HBkZGRg48aNcHNzw9WrV7nfkhkzZuDgwYPw9/fHnTt3oK6ujuPHj2P9+vWYN28eWrRoUWb90tLSZLrAoqSkJNMD+bLIzc2V+Jsv6pZ448YNuLq6VkhZ5Cur2gvale/06dMSu15YW1szfX197lYwY4zFx8czOTk5NmTIEC5t9uzZDIDE24/Fu15cuHCBaWhoMHd3d5aTk8PLV7LrxdatW5mcnBw7f/48L9+aNWsYAHbx4kXGGGNLly5lAFhiYmKp69erVy/WtGlTKVtBsmbNmjFjY2OWkZHBpZ05c4YBYKamplxaREQEA8B0dXWZnZ0di4mJYatWrWIGBgZMW1ubvXnzRmpZTk5ODADbsmULl5abm8sMDQ1Zv379uLRx48ZxZXXt2pXt3LmTLVq0iKmpqbF69eqxrKwsqWWJbpMVN2LECKaioiL23ZRlwoQJDAC7cuUKl/bhwwemqakpdrtbUjccWb6/0oi6XnTu3JkJhUIufeLEiUxeXp6lpqaKzaOoqMgAcNvv999/l7jsP/74g8sHgNna2rLbt2+XWZ/ly5czAOzIkSO8dNGt///++09sntatW7O2bdtKXF5Fdb0QbSc3NzfedmrXrh0TCARs5MiRXFpBQQEzNjYW6wZVcn/Jy8tjVlZWzMXFhZf+9u1bpqOjw1xdXVlubi5r2bIlq1u3LktLS5NaTx8fH942L20qbxctaV0vevbsyRYsWMD++usvtnHjRubo6MgAsKCgIF4+VVVVNnToULH5Dx8+zACwY8eOlatepHoS/R4GBARwaaLjSiAQsPnz53PpHz9+ZMrKyszHx4eXt2QXhI8fPzIDAwOx/e/OnTtMQUGBDRs2jH38+JEZGRkxW1tbXhev0oh+b6RNxesmi7K6XgQGBjI5OTn24sULXvqAAQMYADZ27NhylUW+HdX6inJp3r59i1u3biEoKIh3K7h58+ZwdXWVeBtV0lPiIqdPn0bPnj3RpUsX7NixQ+rDXLt374alpSUaN26MpKQkLl10y+b06dOwt7eHlpYWgKKuBH5+fmJXewBAS0sLr169wrVr19C6desyyy3uzZs3uHPnDqZNm8Y7o3ZyckKzZs2Qnp7OpYm6kAgEAsTFxXH5W7ZsyV1VDg0NlVqmmpoaBg8ezP2toKAAOzs7PHv2TKwsQ0NDHD58mFtnY2NjDBw4ENu3b5f6UGbxs/qMjAzk5ubC0dERa9euxcOHD6VejRA5cuQI2rZtCzs7Oy5NT08PP/30E1atWiV1flm+P2kCAgJ4T1k7Ojpi6dKlePnyJZo3b87Le/ToUeTk5ODBgwfYtm1bqbfaO3bsiNjYWKSmpiIuLg7x8fFl3pYHirpd6OnpiV0Ryc7OBgAoKiqKzaOkpMTbjyqTv78/bzu1adMGly9f5o2UIi8vD1tbW9y4cYM3b/H95ePHjygsLISjoyP++OMPXj5DQ0OsXLkSAwcOhKOjI27duoXY2FhoaGhIrV9QUBBv3y+Ntra21DzlceDAAd7ffn5+6NatGyIiIhAYGAhjY2MARd9jad+h6HNCRIq3waLj6tWrV7zjTUtLC40aNeK17/Ly8pCXlwdQdGc1NTUVQqEQtra2YiOsWFlZISQkBMHBwbh9+zaSkpJw4sQJXhev0ixZsgQfP36Umk/0oHNFGDZsGNasWQMvLy8sXboUBgYG2LVrF/bt2weAjqHv2Q8ZKL98+RIA0KhRI7HPLC0tcfz4cWRlZfFuMZubm0tcVk5ODtzd3WFjY4Ndu3bJdBA/efIEDx48gJ6ensTPP3z4AKDo9taGDRswbNgwTJ06FZ06dULfvn3h6enJBV1TpkzByZMnYWdnh/r166NLly4YNGgQN2pEXl4eUlJSeMvX09PjtoGk2+3169fnNVqiQKJnz568oLpt27YwNzfHpUuXABQ1BGlpabxlGRoacv83NjYWG1pHW1sbt2/fFivLy8uLF1j2798fP//8My5duoRhw4YhMzOT1wdcXl6e25737t3DjBkzcOrUKbFArWT9yvLy5Uu0adNGLF3SfiOJLN/fu3fvePNoamryAre6devyPhcFUpJ+BDp27AgA6NatG3r16gUrKyuoqalh7NixvHwGBgZcFyRPT0+EhYXB1dUVT5484X1fIs+ePcPly5cxduxYsf1bVFdJfVhzcnJk6ttXEUpuJ1H3BRMTE7H0ktvu0KFDCA0Nxa1bt3jrIWkYqAEDBmDbtm04fPgwAgICJHZtkaRJkyZo0qSJTHkrk0AgwMSJE3H8+HGcOXOGC96VlZVL/Q5FnxMiIul4U1JSQq1atcTSk5OTeWmbN2/GkiVL8PDhQ173CEm/sZMnT8aOHTtw9epVhIWFyXwM2djYyLoqFaZ58+bYvn07Ro4cyf3+GhoaIjIyEqNGjaqwLh7k66vWD/NVpNJ+KBQVFeHu7o4rV67g2LFjMi1LKBSiWbNmiI2NlTiNHj2aK/PcuXM4efIkfv75Z9y+fRve3t5wdXXlHkyztLTEo0ePsGPHDjg4OODPP/+Eg4MDZs+eDQC4dOkSateuzZsSEhLKte6is25RcFWcvr4+F3js3LlTrKziRFcSSmLF+nyXVpa8vDx0dXW5shYvXswrR3Q1PTU1FU5OToiPj8fcuXNx8OBBxMbGYsGCBQAg9iBeZZLl+yu5vUr2PZZlm0lSr149tGzZEjExMVLr6enpiczMTOzfv1/i56IHQ3/66Sexz0Tf8du3b8U+e/v2bYVesSlLadtJUnrxbXf+/Hl4eHhASUkJq1atwpEjRxAbG4tBgwZJ3MbJycncS2Du378v8/6UlpaGd+/eSZ1KntRWBtHJQ/GyateuXep3CFTslTfy/ZN0XMnSVm3btg2+vr6oV68eNm7ciGPHjiE2NhYuLi4Sj6Vnz57hyZMnAIA7d+7IXL+UlBSZjrfyXDiRhaenJzeU6eXLl/Hy5UtYWFgAEB+SkXw/fsgryqIXjjx69Ejss4cPH6JWrVq8q8llEQgEiImJQa9evdC/f38cPXpU6lv46tWrh/j4eHTq1KnMwcuBoqdmO3XqhE6dOiEiIgJhYWGYPn06Tp8+jc6dOwMAVFVV4e3tDW9vb+Tl5aFv37747bffEBwcjBYtWiA2Npa3TENDQ657yNOnT8XKLJkmOjt//fq1WN43b96gcePGAAA3NzexssqrtLLy8vKQlJTEXTUeMmQIb/QR0YnMmTNnkJycjL1793IPkADA8+fPy10XU1NTrpEuTtJ+Uxpp31/J7dW0adNy17M02dnZMo1WILolWNqPxvbt21GvXj20bdtW7DPRwzfXr1/ndVF58+YNN+b2t+zPP/+EkpISjh8/zut6EBUVJTH/mDFjkJGRgfDwcAQHByMyMhKTJk2SWs748eOxefNmqfmcnJwq/SUsolvhxe9oWVtb4/z58xAKhbw7OVeuXIGKigr9yJMKsWfPHlhYWGDv3r283z7RhZ3ihEIhfH19oaGhgQkTJiAsLAyenp68kVlK07dvX5lGmfDx8eFGKKooCgoKvG6QogfURb/X5PvzQwbKtWvXhrW1NTZv3ozg4GCuL+ndu3dx4sQJmfoSFqegoIC9e/fCzc0NPXv2RFxcHC9oKMnLywtHjhzB+vXrxQKJ7OxsCIVCqKqqIiUlRWw4LVFgIgqAkpOToaury6tLkyZNcPToUeTn50NbW1viAVqnTh1YWVlhy5YtCA4O5m4LnT17Fnfu3OG9vbBRo0Zo0aIF9u/fj6SkJO722okTJ5CQkIDAwEAAkHgVubycnZ2hr6+PmJgYTJs2jesjGR0djcLCQq6PrIWFBXemXpzoqkbxqxh5eXky9SkuqXv37oiMjMTVq1e57zMxMVGmq7QAZPr+vrTxLCgoQEZGhljf1qtXr+LOnTu8kU+SkpKgq6srdnImGqmj5MgVQNFoCA8ePMDMmTMllt+0aVM0btwY69atw4gRI7jtv3r1aggEAnh6en7R+lU2eXl5CAQC3tCBL1684EaeKW7Pnj3YuXMnfv/9dwQGBiI+Ph4zZsxAjx49pAaSVdFHOSUlBZqamrwrffn5+Zg/fz4UFBS4rjpA0ZWwPXv2YO/evdx3lpSUhN27d6Nnz54S+y8TUl7F22dRO3TlyhVcvnxZrDtHREQELl26hAMHDsDd3R1nzpzBqFGj0KFDB7EuHiVVRR9lSZ48eYI1a9bI1EaQb9cPGSgDwKJFi9CtWze0a9cO/v7+3PBwmpqamDNnTrmXp6ysjEOHDsHFxQXdunXD2bNnYWVlJTHvzz//jF27dmHkyJE4ffo02rdvj8LCQjx8+BC7du3C8ePHYWtri7lz5+LcuXNwd3eHqakpPnz4gFWrVsHY2Ji7mtqlSxcYGhqiffv2MDAwwIMHD7BixQq4u7tLHWs1LCwMvXr1Qvv27eHn54ePHz9ixYoVsLKyEhsDeunSpXB1dYWDgwNGjBiBtLQ0REREoGHDhhg1alS5t1dpFBUVsWjRIvj4+KBDhw74+eef8d9//2HZsmVwdHSUejXB3t4e2tra8PHxwbhx4yAQCLB161apXRUkCQoKwtatW9G1a1eMHz+eGx7O1NSU16+6NLJ8f18qMzMTJiYm8Pb2RtOmTaGqqoo7d+4gKioKmpqavAB327ZtWLNmDXr37g0LCwtkZGTg+PHjiI2NRc+ePXnjf4qITgokdbsQWbRoETw8PNClSxcMGDAAd+/exYoVKzBs2DBYWlry8ooe+rx37x6AoqH1Lly4AKBoSCiROXPmICQkBKdPn5Z6h+ZLuLu7IyIiAl27dsWgQYPw4cMHrFy5EvXr1+d9xx8+fMCoUaPQsWNHrs/3ihUrcPr0afj6+uLChQtlPqxZkX2U09LSsHz5cgDghhpcsWIFtLS0oKWlxdXvwIEDCA0NhaenJ8zNzZGSkoLt27fj7t27CAsL4/VH9/T0RNu2beHn54f79+9zb+YrLCxESEhIhdSbkB49emDv3r3o06cP3N3d8fz5c6xZswZNmjTh/eaITs59fX3Rs2dPAEUXS6ytrTF69Gjs2rWrzHIqso/yy5cvsXXrVgDgul2J2jFTU1P8/PPPXN4mTZqgf//+qFu3Lp4/f47Vq1dDR0cHa9asqbD6kCpQdQNufB2lDQ/HGGMnT55k7du3Z8rKykxDQ4P17NmT3b9/n5dHNByOpCG+JA0JlpSUxJo0acIMDQ3ZkydPGGOS38yXl5fHFixYwJo2bcoUFRWZtrY2s7GxYSEhIdxwU3FxcaxXr16sTp06TEFBgdWpU4cNHDiQPX78mFvO2rVrWYcOHZiuri5TVFRk9erVY5MnT5ZpyCrGGNuxYwdr3LgxU1RUZFZWVuzAgQOsX79+rHHjxmJ5Y2NjWdu2bZmSkhLT0dFhP//8s9S3uYk4OTlJHMbOx8eHNxSdyB9//MFatGjBFBUVmYGBARs7diz3NjJpLl68yNq2bcuUlZVZnTp1WFBQEDt+/PhnDUd2+/Zt5uTkxJSUlJiRkRGbN28e27hxo0zDw8ny/ZWmtDfzifZn0Xrk5uay8ePHs+bNmzMNDQ1Ws2ZNZmpqyvz9/cWGDLt27Rrr378/q1u3LlNUVGSqqqqsVatWLCIiQuKQS4WFhczIyIi1atVKan337dvHrK2tmaKiIjM2NmYzZsxgeXl5YvlQxlBNxf3yyy9ib/Yrz3Yq7biV9D1t3LiRNWjQgCkqKrLGjRuzqKgobn6Rvn37MnV1dbGhn/bv388AsAULFpRZz4r0/PnzUrdh8WPp+vXrrGfPnszIyIgpKCgwNTU15uDgwHbt2iVxuSkpKczf35/p6uoyFRUV5uTk9NlvhiTVU3mOK8bE232hUMjCwsKYqakpU1RUZC1btmSHDh3i/Q4UFBSw1q1bM2NjY7FhMJctW8YAsJ07d1b8ypVC1OZKmkr+rg8YMICZmJhw7f3IkSPZ+/fvv1pdSeUQMPYZl9pItWZtbQ09Pb0v7m9MyOeys7ODqakpdu/eXdVVIYQQ8gOjUS9+YPn5+SgoKOClnTlzBvHx8ZV6u5uQsqSnp3OjlhBCCCFVia4o/8BevHiBzp07Y/DgwahTpw4ePnyINWvWQFNTE3fv3uU9JFidSBrvuSQdHR2pL44hhBBCSPX2wz7MR4qesLexscGGDRuQmJgIVVVVuLu7Y/78+dU2SAaKxnv28/MrM09lP0RGCCGEkG8fXVEmP5y3b99yoy6UxsbGpsJfJ0wIIYSQ7wsFyoQQQgghhEhAD/MVEx4ejtatW0NdXR36+vro3bt3ud7CRgghBDh37hx69uyJOnXqQCAQSHyBCyGEfA+oj3IxZ8+exZgxY9C6dWsUFBRg2rRp6NKlC+7fvy/zK62FQiHevHkDdXV1qa+nJoSQz8EYQ0ZGBurUqVPmi06qSlZWFlq0aIGhQ4fK9MrhkqgdJYRUNlnbUep6UYbExETo6+vj7Nmz6NChg0zzvHr1CiYmJpVcM0IIARISEmBsbFzV1SiTQCDAvn370Lt3b5nnoXaUEPK1SGtH6YpyGURDiOno6JSaJzc3F7m5udzfovOOhIQEaGhoVG4FCSE/pPT0dJiYmEh9Tf33gtpRQsjXJms7SoFyKYRCISZMmID27dvDysqq1Hzh4eEICQkRS9fQ0KAGvpIsjX3M+3uia8MqqgkhVau6dEuoqHa0ZNtQ0vfeVkhbP2m+dP0re/tW9fqRH5O0dvTb69z2jRgzZgzu3r2LHTt2lJkvODgYaWlp3JSQkPCVakgIIdUDtaOEkG8VXVGWYOzYsTh06BDOnTsntf+foqIiFBUVv1LNCCGk+qF2lBDyraJAuRjGGAIDA7Fv3z6cOXMG5ubmVV0lQgghhBBSRShQLmbMmDHYvn079u/fD3V1dbx79w4AoKmpCWVl5SquHSGEfB8yMzPx9OlT7u/nz5/j1q1b0NHRQd26dauwZoQQUj4UKBezevVqAICzszMvPSoqCr6+vl+/QoQQ8h26fv06OnbsyP09adIkAICPjw+io6OrqFaEEFJ+FCgXQ0NKE0LIl3N2dqb2lBBSLdCoF4QQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCES1KjqCpAf09LYx7y/J7o2/OaW9a3UiRBCCCFVg64oE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMyP978eIFJnVphKsn9vLSjx07BmtraygpKUEgECA1NfWLyhAIBFi8ePEX1pYQQgghlY0C5WKio6MhEAi4qUaNGjAyMoKvry9ev34tlt/Z2ZnLKycnBw0NDdjY2AAATp06JbEMMzMzXhnFp5ycHC7fwYMH4eTkBH19faioqMDCwgJeXl44duxYha+3UCjE6tWrYW1tDWVlZejq6sLFxQXx8fEVVoYoQBRNk7o04k3Dhw+vsLIqUnJyMry8vKCsrIyVK1di69atUFVV/Splnzt3Dh4eHjAxMYGSkhIMDQ3RtWtXXLx4UWL+vLw8hIWFoXHjxlBSUoKBgQHc3d3x6tUrXr4bN26ga9eu0NDQgLq6Orp06YJbt25JXOalS5fg4OAAFRUVGBoaYty4ccjMzBTLl5ubiylTpqBOnTpQVlZGmzZtEBsb+8Xb4Efy6NEjTJw4Efb29txJ2YsXL8qcZ+bMmTA3N4eioiKMjIzg6emJT58+ieU7efIkXFxcoKmpCXV1ddjY2GDnzp2VtCaEVB9Xr17F6NGjYWNjg5o1a0IgEJSZ//379xgxYgSMjIygpKQEMzMz+Pv7f6XakspAb+aTYO7cuTA3N0dOTg7+/vtvREdH48KFC7h79y6UlJR4eY2NjREeHg4AyMrKwr1797B8+XL06dMHXl5e2LZtG2rWrMmbx9raGr/88otYuQoKCgCAxYsXY/LkyXByckJwcDBUVFTw9OlTnDx5Ejt27EDXrl0rdH2HDh2KmJgYDBkyBGPHjkVWVhZu3ryJDx8+VFgZenp62Lp1K/f30TtvAQAPr5/HP6cOokuXLhVWVkW6du0aMjIyMG/ePHTu3Pmrlv348WPIyclh5MiRMDQ0xMePH7Ft2zZ06NABhw8f5u0H+fn5cHd3x6VLlzB8+HA0b94cHz9+xJUrV5CWlgZjY2MAwD///AMHBweYmJhg9uzZEAqFWLVqFZycnHD16lU0atSIW+atW7fQqVMnWFpaIiIiAq9evcLixYvx5MkTHD16lFdXX19f7NmzBxMmTECDBg0QHR2N7t274/Tp03BwcPg6G+w7d/nyZfz+++9o0qQJLC0tSz15AYC0tDQAwLZt2zBixAjUr18fiYmJOH/+PHJzc6GiosLljYqKgr+/P1xdXREWFgZ5eXk8evQICQkJlb1KhHz3jhw5gg0bNqB58+awsLDA48ePS82bkJCA9u3bAwBGjhwJIyMjvHnzBlevXv1a1SWVgAJlCbp16wZbW1sAwLBhw1CrVi0sWLAABw4cgJeXFy+vpqYmBg8ezP2dnp6O5cuXY9iwYdiwYQPMzMywYMEC3jxGRka8eYorKCjAvHnz4OrqihMnToh9XpHBKwDs2rULmzdvxt69e9GnT58KXXZxqqqqvHVO/P9XPF+L3QclFTX07Nmz0sr+EqLtraWl9dXLHjZsGIYNG8ZLGz16NCwsLBAZGckLlJcuXYqzZ8/iwoULsLOzK3WZM2fOhLKyMi5fvgxdXV0AwODBg9GwYUNMmzYNf/75J5d32rRp0NbWxpkzZ6ChoQGg6I7I8OHDceLECe7k5urVq9ixYwcWLVqEX3/9FQAwZMgQWFlZISgoCJcuXaqYDVLNeXh4IDU1Ferq6li8eHGZgXJISAgA4PTp02jevDmXPmXKFF6+Fy9eYMyYMQgMDMSyZcsqpd6EVGejRo3ClClToKysjLFjx5YZKI8YMQI1atTAtWvXuPaVfP+o64UMHB0dAQD//vuvzPMsXLgQTZo0wYoVK7irP7JISkpCeno6d1Zakr6+vkzLuX37NpycnKCsrAxjY2OEhoYiKipK7HZuREQE7Ozs0KdPHwiFQmRlZclcVwCYM2cOBAIBnj59Cl9fX2hpaUFTUxN+fn4SbwEXl578AU/jr6CZQxexK/WlrZOvry9Ch3RCkHszzPZujx1LgpGV/rFcdQaA1NRU+Pr6QlNTE1paWvDx8RHre+zs7AwfHx8AQOvWrSEQCODr6wsAePLkCfr16wdDQ0MoKSnB2NgYAwYMKNd3vW7dOtSrVw+Kiopo3bo1rl27JnUeFRUV6Onp8eoqFAqxbNky9OnTB3Z2digoKCh1258/fx6dO3fmNeK1a9eGk5MTDh06xHWrSE9PR2xsLAYPHswFyUBRAKympoZdu3ZxaXv27IG8vDwCAgK4NCUlJfj7++Py5cufdeVS1A3qwoULGDduHPT09KClpYURI0YgLy8PqampGDJkCLS1taGtrY2goCAwxnjLWLx4Mezt7aGrqwtlZWXY2Nhgz549vDyiY2LTpk289LCwMAgEAhw5cqTcdf9cOjo6UFdXl5ovNTUVMTExAIpOXPLy8pCbmysx75o1a1BYWIi5c+cCADIzM8W2EyGyOrZlOSZ1aYQPr55j2/xfMa23DWb2b4uj0ZFgjCEhIQG9evWChoYGDA0NsWTJEt78eXl5mDVrFmxsbKCpqQlVVVU4Ojri9OnTJcr5Hb+4Ncbjm5d56buWzsTk7lZ4/e/DSl9XEQMDAygrK0vN9/DhQxw9ehSTJ0+Grq4ucnJykJ+f/xVqSCobBcoyEAWW2traMs8jLy+PgQMH4tOnT7hw4QLvs/z8fCQlJfEmUWCjr68PZWVlHDx4ECkpKZ9V39evX6Njx464d+8egoODMXHiRMTExIhdUUpPT8fVq1fRunVrTJs2DZqamlBTU4OFhQUvEJKFl5cXMjIyEB4eDi8vL0RHR3NXvUpz88wRMKEQNi6yXU2OjY3Fs2fPYNelL/qMmQlr5+64eeYI1k8PKNePP2MMvXr1wtatWzF48GCEhobi1atXXFAsMn36dC74mzt3LrZu3coFam5ubvj7778RGBiIlStXIiAgAM+ePZP5Qb/t27dj0aJFGDFiBEJDQ/HixQv07dtXYsOanp6OpKQkPHz4ENOmTcPdu3fRqVMn7vP79+/jzZs3aN68OQICAqCqqgpVVVU0b95c7AcoNzdXYqOvoqKCvLw83L17FwBw584dFBQUcHdWRBQUFGBtbY2bN29yaTdv3kTDhg15ATUA7sp2WVdGpQkMDMSTJ08QEhICDw8PrFu3DjNnzkTPnj1RWFiIsLAwODg4YNGiRbyuPQCwbNkytGzZEnPnzkVYWBhq1KiB/v374/Dhw1wePz8/9OjRA5MmTeIC+jt37iAkJAT+/v7o3r17mfXLzMwUO5YlTeU5gZLmwoUL3PMMP//8M1RUVKCsrIz27duLbeuTJ0+icePGOHLkCIyNjaGurg5dXV3MnDkTQqGwwupEfixbf5sIxhjc/X+BaeMWiN2+Guf2boarqyuMjIywYMEC1K9fH7/++ivOnTvHzZeeno4NGzbA2dkZCxYswJw5c5CYmAg3Nzfevus6aBTq1LPEzojpyPlUdPL+8Pp5/H10F7r8NBpG9RqXWb+0tDSZjktJz1t8rpMnTwIoCqw7deoEZWVlKCsro1u3blKfNSDfNup6IYHoIMvJycGVK1cQEhICRUVF9OjRo1zLsbKyAiB+JfrEiRPQ09Pjpc2ePRtz5syBnJwcJk+ejLlz56Ju3bro0KEDHBwc0LVrV7Rq1UqmchcsWICPHz/in3/+gbW1NYCigKBBgwa8fP/++y8YY9ixYwdq1KiBhQsXQlNTE8uWLcOAAQOgoaEhc3/oli1bYuPGjdzfycnJ2Lhxo1i3k+JunDoADR091LduK1MZo0ePxi+//IKlsf+79WXW2Bpbwyfh+d0bsGhmW8bc/3PgwAGcO3cOCxcuxOTJkwEU3V7r2LEjL5+rqytev36NdevW8brj3Lp1C8+fP8fu3bvh6enJ5Z81a5ZM5QPAf//9hydPnnAnX40aNUKvXr1w/Phxsf3My8sLx48fB1AUqI4YMQIzZ87kPn/y5AmAou4XOjo6WLt2LYCiq6Jdu3bFtWvXuNvzjRo1wt9//43CwkLIy8sDKLrKc+XKFQDgHlp9+7aoD3nt2rXF6l67dm2cP3+e+/vt27el5gOAN2/eyLxdSjIwMMCRI0cgEAgwevRoPH36lDvBWL16NQAgICAAZmZm2LRpE4YMGcLN+/jxY95JwdixY9GqVStERETA3d2dS1+/fj2aNm0Kf39/HDp0CD4+PjA0NERERITU+o0dOxabN2+Wms/JyQlnzpwpx5qXTvR9A0Xf15YtW5CWloaQkBC4uLjg3r173LZ/8uQJ5OXl4efnh6CgILRo0QJ79+5FaGgoCgoKuOcrCCkPk0bN4TWh6C5Fu+7eCP3ZBQfWzUd4eDjX/WfgwIGoU6cONm3ahA4dOgAoutj04sUL7nkcABg+fDgaN26M5cuXw2pA0bzyNWpi0OQFiBjbF/vXzofH8CDsjJgOk4ZWcBkQAGl69eqFs2fPSs3n4+OD6Ojo8q6+RKLjMiAgAK1bt8bOnTvx33//ISQkBJ07d8bt27d5zw6Q7wcFyhKUfGjLzMwM27Zt4x6IkpWamhoAICMjg5fepk0bhIaG8tIsLCy4/4eEhKBx48ZYtWoVjh8/jqNHj2L69Olo2bIlYmJiYGlpWWa5x44dQ7t27bggGSi6rfvTTz9h+fLlXJrobDo5ORl///032rRpA6Cor6S5uTlCQ0NlDpRHjhzJ+9vR0RH79u1Denq62JVGAPjw6jlePbkHp76+kJOT7cZG8aAnPy8XudlZMLVsAQB49fSezIHykSNHUKNGDYwaNYpLk5eXR2BgIC8ALI2mpiYA4Pjx4+jevftnNX7e3t68OxSi7j3Pnj0Tyzt//nz88ssvSEhIwObNm5GXl4eCggLuc9H3mJGRgZs3b8LExAQA4OLigvr162PhwoXYtm0bgKKTjVGjRsHf3x9BQUEQCoUIDQ3lAuPs7Gzev4qKimL1UVJS4j4X5S0tX/FlfQ5/f3/eU+Zt2rTB5cuXeU+Ry8vLw9bWFjdu3ODNW3x/+fjxIwoLC+Ho6Ig//viDl8/Q0BArV67EwIED4ejoiFu3biE2NlbifltSUFBQqc8bFFeeu1HSFL8KduDAAdSpUwdA0clqu3btsHLlSq59yczMhFAoxPz587kApl+/fkhJScGyZcswbdo0mbp7EFJc227/u0AgJy8P44ZWSL30jndcamlpoVGjRrw2TV5enjtBFwqFSE1NhVAohK2tLf755x9YDfhfGbXNG6Lrz+NweNMSvH32CFlpHzEifBPk5aWHLUuWLMHHj9K75ImOnYogOi4NDQ1x+PBh7nfN2NgYAwcOxPbt28WeOSHfBwqUJVi5ciUaNmyItLQ0bNq0CefOnZMYCEgjOnBK/hDVqlVL6ggKAwcOxMCBA5Geno4rV64gOjoa27dvR8+ePbnRN969e8ebR1NTE8rKynj58iXatWsntsz69evz/hYFEubm5lyQDBQF+D179sS2bdtQUFAAgUCAxMRE3rw6Ojq8qwJ169blfS4KDD5+/Cgx4Pjn1EEAQKsS3S7y8vLEupzo6elBXl4eKSkpCAkJwaYtMchMTeblyc7in4yU5eXLl6hduzZ3IiNSfMSHspibm2PSpEmIiIhATEwMHB0d4eHhgcGDB3NBdFZ6KgoL/teNIi3NgPsMKHt7lVT8hGfw4MFo1aoVN8oE8L/vsX379lyQLCrDwcGB9zDdyJEjkZCQgEWLFnFXQm1tbREUFITffvuN2yaiZUrq+5qTk8MLQpWVlUvNV3xZn6PkdhJtw+LrKUovue0OHTqE0NBQ3Lp1i1c/ScM7DRgwANu2bcPhw4cREBDA69pSliZNmqBJkyYy5a0oxbdn8X24bdu2MDc3533fysrKyMrKwsCBA3nLGDhwII4dO4abN29yV/sIkZW2Pj/AVFZVRw0FRdSqVYuXrqmpieRkflu9efNmLFmyBA8fPuR1NTM3Nxcrp2N/f9w8cxj/PbqN7n6TYGhaXyyPJKJhWr8m0XHp5eXFu/jTv39//Pzzz7h06RIFyt8p6qMswYsXLzBs2DD89NNPSExMhJmZGQYNGlTu/kyi/p4lA9Ty0NDQgKurK2JiYuDj44N///2Xu01eu3Zt3lTecVFFZ9MGBgZin+nr6yM/Px9ZWVlISEgQK6vkSAaiqwQlldZ3+J9Th6BvbA6Thla89EuXLomVJeo76uXlhfXr18O+xwD4zlqBEeGbEBC2oagc4dd9QGnJkiW4ffs2pk2bhuzsbIwbNw5NmzblxiyOnhuIOQMcuGn8+PG8+cu7vUQUFBTg4eGBvXv3cldqpX2PJQPI3377De/fv8f58+dx+/ZtXLt2jeuv2rBhQwD/6zYhutJc3Nu3b3lXYmrXrl1qvuL1+xylbSdJ6cW33fnz5+Hh4QElJSWsWrUKR44cQWxsLAYNGiRxGycnJ+P69esAivp8y9p/Ny0tDe/evZM6fe7zBpKUtT1Lft+l7Ruih4Jluer2uVauXAkzMzMoKSmhTZs2NERWNSKQcBdQTk56m7Zt2zb4+vqiXr162LhxI44dO4bY2Fi4uLhIPOaS3yUg6fVLAMDbF6WPNlFSSkqKTMdlRT47UNqxJi8vD11d3Uo91kjloivKEixduhTr1q1DmzZtEBkZie3btyMrKwsrVqzA1KlTZVpGYWEhtm/fDhUVlQobR9bW1habN2/mApCSL3Ro2rQpAMDU1BRPnz4Vm79kWp06dWBoaCjxZSpv3ryBkpIS1NXVoaioKFZWixYtPns9rly5gqQ3L9F1yDixz1q0aCFWlmgM4bi4OISEhEC93f/uzyW+flHu8k1NTREXF4fMzEzeFblHjx6VaznNmjVDs2bNMGPGDFy6dAnt27fHmjVrEBoaCo+AKcjOTOfyBvYsfci28srOzgZjDBkZGVBWVkazZs1Qs2bNUr/Hkv3hgaIr2MX3y5MnT8LY2BiNGxc9JGNlZYUaNWrg+vXrvCER8/LycOvWLV6atbU1Tp8+LdbNRnRCV/yK+Nfy559/QklJCcePH+fdDYqKipKYf8yYMdzDqMHBwYiMjMSkSZOkljN+/Piv3ke5rKtlb9684b5DUd4nT57g9evXvO5don7jkvaNirBz505MmjQJa9as4dpRNzc3PHr0SOaRe0j1s2fPHlhYWGDv3r28OzuzZ88WyysUCvHHoqlQVFVDh74+OPnHGrRwdENzB+lj7vft2/er91EWHZcl2+G8vDwkJSVV2rFGKh8FyhL06dMHfn5+AIqGVzp8+DC0tbURGRmJCRMmyDSUWVBQEB48eICpU6fK1NdR5NOnT4iPj5fYdUL0kgdRF4HSum+4ublh5cqVuHXrFhekpKSkcENKFeft7Y1ly5YhNjYWrq6uAIqGqNu/fz9cXFwgJycHJSWlCn3Zxvbt2wGId7sAigI4SWXl5eUBEL/iem6v9CClpO7du2PdunVYvXo19zBfYWEhr/92WdLT06GiooIaNf53+DRr1gxycnLcLf6SV8qbNGlY7np++PBBLKhITU3Fn3/+CRMTE+4zdXV1dO/eHYcOHcLDhw+5QOnBgwe4dOkSRowYUWY5O3fuxLVr17B48WLulqGmpiY6d+6Mbdu2YebMmVz3oa1btyIzMxP9+/fn5vf09MTixYuxbt06bhzl3NxcREVFoU2bNmLdJL4GeXl5CAQCFBYWcmkvXrzAX3/9JZZ3z5492LlzJ37//XcEBgYiPj4eM2bMQI8ePbgr7KWpij7KjRo1QrNmzXDnzh0kJydz7cuJEyeQkJCAwMBALq+3tzd27NiBjRs34rfffgNQFIBERUVBR0en0m5RR0REYPjw4WLt6KZNm2S+2ECqH9GdIMYYFyhfuXIFly9fFutmdfbPKLy4fxP+Iath2cYZT+OvYM/vc2DRzBZqmjplllMVfZSdnZ2hr6+PmJgYTJs2jYsToqOjUVhYyP2+ku8PBcrFiB6QKv7CBjk5OXTu3Bn379/H9evXER0dzXtwLTU1FevXrwdQFOQ+ePAAALBhwwb069cPkydPRnr6/64sMsZQUFDASysuOTkZ9vb2aN26NTp37gwjIyOkpaXh8OHDuHTpEnr06IF69eqVOj9QNILD1q1b0blzZ4wYMQIqKirYsmULjIyMkJKSgszMTG7+sWPHYufOnejXrx/GjBkDDQ0NbNq0Cfn5+Zg2bVqZ5QD/68OakZHB67Ms6haQkZHBW0ZhYSF27NgBk4bNoKapg5ys/43bK0379u2xcOFC2HVPgIauHp7e+hsf3xddGSvIz5N5WU5OTmjbti2mTp2Kx48fo3Hjxjhw4ADXsObn5iAnq2gbidaj+DY7dOgQJk+ejN69e6NevXrcOsnLy6Nr165IT0/n6iIimlf0YGdOTo7Eeubm5nLpXbp0gZGREWxsbKCnp4dXr14hJiYGb9++RVRUFG/+adOmIS4uDh07duQC47Vr10JbWxuBgYFc3osXL2LBggVwcXGBjo4Orl27hpiYGHTu3Bl+fn68ZQYHB6NLly5wcHCAr68v3rx5gxUrVsDFxQX29vZcXktLS/Tu3RvBwcFISEiAhYUF/vjjD7x48QK///47b5nh4eGYP38+Dh06xD3AKImk7S7aPqLtWHx/E/V1FOV1dnZGREQEXF1d4enpiaSkJKxfvx4WFha4e/culy8xMREjR46Eo6MjhgwZgvT0dISHh+PUqVP4+eefcfz48TIfNjU2Npb5IV9p+2VaWhrWrVsHAPj7778BFP3gi8YmLz5O9YwZM+Dt7Q03NzeMGjUKaWlpiIiIQMOGDXkPqfbq1QudOnVCeHg4kpKS0KJFC/z111+4cOEC1q5d+1nPXkiTl5eHGzduIDg4mEsTtaOXL1+WOE9ubi6vH7nolrgs7UJxJY+7ksq7vG+NtPWT5kvXvyC/6IJF7qcs1Kjxv+Ov6HkMJrb8wsJCCIVCLr1Tp07Yu3cvevbsiS5duuDly5fYtGkTGjdujKysLG79PiQ8x9HNy9DKpSfqNbdDXvYn9B0zC8snDcSupTMxaLLk0ZRE5ZQc4aks0rbJf//9x3VrFN0lE406ZGJiggED/neHc+7cuRg5ciTat2+PAQMGICEhAWvWrIG9vT06d+783e9/1Y3o+5A6vCwjnIiICAaAbdy4kZc+efJk1rp1a1avXj1Wr149VlBQwBhjzMnJiQGgiSaaaKqSqVWrVkxJSYnp6Oiwn3/+mb19+1asXcvIyGDjx49nhoaGTEFBgTVr1oxt27at0trR169fMwDs0qVLYu2onZ2dxHlmz55d5duSJppo+jGnhISEMts0uqJcjLe3NyZNmiRx+DXR2+eKO3PmjNiVEKFQiJSUFOjq6kp8ur4qTZ06FVFRUXjz5k2pD0l9rvT0dJiYmCAhIaFcXU1+BLRt/qdjx44wMTHBli1bANC2KY207cL+v496nTp1pA6vqKamhsjISERGRlZSbb9ccHAwr0948XY0IyPju99HqsN+Xh3WAage60HrUDGKt6NloUC5mFq1akFeXh7v37/npb9//x6GhoYS51FUVBS7famlpVVZVZRZdnY2bxip5ORk7Ny5Ew4ODhXaX7IkDQ2N7/bArWw/+rZJT0/H3bt3sW3bNrHt8KNvm9KUtV2KDzf4LanodlR0waE67CO0Dt+O6rAetA5fTpZ2lALlYhQUFGBjY4O4uDj07t0bQNGVjbi4OIwdO7ZqK1dO7dq1g7OzMywtLfH+/Xts3LgR6enpvDe6VTeFhYVi4z2XpKamJjZ+Mvk6NDQ0JI63TKqX6tSOEkIIBcolTJo0CT4+PrC1tYWdnR0iIyORlZXFPb39vejevTv27NmDdevWQSAQoFWrVti4cWO1frlAQkKCxEHrixO9KpwQUnmqSztKCCEUKJfg7e2NxMREzJo1C+/evYO1tTWOHTsm8WUO37KwsDCEhYV9tfIUFRUxe/bsSnmKXlaGhoZiYzCXVHws2a/lW9g23yraNpJ979ulItvR731bALQO35LqsB60Dl+XgDFp42IQQgghhBDy46FXWBcTHh6O1q1bQ11dHfr6+ujdu3e539ZGCCE/MmpHCSHVCV1RLqZr164YMGAAWrdujYKCAkybNg13797F/fv3oaqqKtMyhEIh3rx5A3V19W9ueDhCSPVQnuHhvjZqRwkh3wNZ21EKlMuQmJgIfX19nD17VuaH4F69elUlr+wlhPx4EhISZH4zYFWhdpQQ8i2T1o7Sw3xlEL1GVUen9PfKl3zhiOi843seCJwQ8m0TDdavrq5e1VWRitpRQsi3SNZ2lALlUgiFQkyYMAHt27eHlZVVqfnCw8MREhIill7Vg2iTH8PS2MeY6NqwqqtBqsi33i2B2tHqbWnsY4np1CaR74m0dvTb6tz2DRkzZgzu3r2LHTt2lJkvODgYaWlp3JSQkPCVakgIId82akcJId87uqIswdixY3Ho0CGcO3dOav8/Sa9eJYSQHx21o4SQ6oAC5WIYYwgMDMS+fftw5swZqW95I4QQwkftKCGkOqFAuZgxY8Zg+/bt2L9/P9TV1fHu3TsAgKamJpSVlau4doQQ8u2jdpQQUp1QH+ViVq9ejbS0NDg7O6N27drctHPnzqquGiGEfBeoHSWEVCd0RbkYGlKaEEK+DLWjhJDqhK4oE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhQo6orQAgBlsY+xkTXhtz/AfD+lvR/Qgif6NgpqbzHTGnLKUtFHZcVtQ4VvSxCflR0RZkQQgghhBAJKFAmhBBCCCFEAgqUCSGEEEIIkYACZUIIIYQQQiSgQJkQQgghhBAJKFAmhBBCCCFEAgqUCSGEEEIIkYACZVIpfH19YWZmxkvLzMzEsGHDYGhoCIFAgAkTJlRJ3b4lc+bMgUAgqNBlnjlzBgKBAGfOnKnQ5Zan7D179nz1sgkhhJCKVmmBspmZGQQCATepqqrCzs4OW7ZsEcsr+nEVTYqKijAwMICzszPCwsKQmJgoNk90dDRvnuLT1KlTuXyJiYkYP348GjduDGVlZejr68POzg5TpkxBZmZmha/3s2fPAAD16tWDsrIyGjRogOnTp1doGSW3V/Hp77//rtCyKlJYWBiio6MxatQobN26FT///HNVV+m7tmrVKlw9sbeqq/HZSrYRxacGDRpw+bKzs+Hv7w8rKytoampCTU0NLVq0wLJly5Cfn89bZlntwrt373h5d+7cicGDB6NBgwYQCARwdnaWWE9fX99SlykQCPD69esK3zbV0aNHjzBx4kTY29tDSUkJAoEAL168EMt35swZaGpqAgA0NTXFtvdvv/3Gyx8bGwsHBweoqKhget/WiJ47DinvXn2NVSI/gKtXr2L06NGwsbFBzZo1y7ywsXr1avTv3x9169aFQCCAr6/v16soqTSV+mY+a2tr/PLLLwCAt2/fYsOGDfDx8UFubi6GDx8uln/cuHFo3bo1CgsLkZiYiEuXLmH27NmIiIjArl274OLiIjbP3LlzYW5uzkuzsrICAKSkpMDW1hbp6ekYOnQoGjdujOTkZNy+fRurV6/GqFGjoKamVmHre+vWLe7HduzYsTAyMsJ///2HhISECiujONH2Kq5+/fqVUlZFOHXqFNq2bYvZs2dXdVWqhVWrViFHXhVYNJWX3qFDB2RnZ0NBQaGKaiabyMhIsZPVly9fYsaMGejSpQuXlp2djXv37qF79+4wMzODnJwcLl26hIkTJ+LKlSvYvn272LIltQtaWlq8v1evXo0bN26gdevWSE5OLrWeI0aMQOfOnXlpjDGMHDkSZmZmMDIyknWVf2iXL1/G77//jiZNmsDS0hK3bt2SmM/S0hLr1q1DQEAA1q1bB2VlZQDA1q1bceLECd6+cejQIfTq1QutWrXC/PnzceyfZzj31xYsnzQIv6z6C2paOl9j1Ug1duTIEWzYsAHNmzeHhYUFHj8u/a2NCxYsQEZGBuzs7PD27duvWEtSmSo1UDYyMsLgwYO5v319fWFhYYGlS5dKDJQdHR3h6enJS4uPj0eXLl3Qr18/3L9/H7Vr1+Z93q1bN9ja2kosf+PGjfjvv/9w8eJF2Nvb8z5LT0+v0EBCKBTi559/RoMGDXD9+nVMnDgRGhoaFbZ8SSRtr2/Zhw8f0KRJk6quxmfLysqCqqpqVVdDKjk5OSgpKVV1NaTq3bu3WFpoaCgA4KeffuLSdHR0xO6UjBw5EpqamlixYgUiIiJgaGjI+7ysdkFk69atMDIygpycHHdyLUm7du3Qrl07XtqFCxfw6dMnXj1J2Tw8PJCamgp1dXUsXry41EDZwMAA3t7eCAgIgLe3N9eOhoSEoEGDBryLA1OmTIGFhQUuXrwIBQUFFMY+RpO2LogY0wdxO9eh14ipEssgRFajRo3ClClToKysjLFjx5YZKJ89e5a7mlyRF+FI1SpX1wtRf8qHDx/Cy8sLGhoa0NXVxfjx45GTkyN1fj09PTRu3Bj//vuvzGW2aNECkZGRSE1NxYoVK8pTXfz777+Ql5dH27ZtxT7T0NCQKZgQCoWYM2cO6tSpAxUVFXTs2BH379+HmZkZ77bKiRMncPfuXa7bx6dPn1BYWFiu+goEAowdOxZ//fUXrKysoKioiKZNm+LYsWOlzpORkYGCgoJylQMAixcvhr29PXR1daGsrAwbG5vP7lcqqq+SkhKsrKywb98+3ueiriLPnz/H4cOHuVuootuuy5cvR9OmTaGiogJtbW3Y2tpKvEpYmhcvXkAgEGDx4sVYunQpTE1NoaysDCcnJ9y9e1cs/8OHD+Hp6QkdHR0oKSnB1tYWBw4c4OUR3cI/e/YsRo8eDX19fRgbG3OfHz16FE5OTlBXV4eGhgZat24tVufdu3fDxsYGysrKqFWrFgYPHizTbfqrx//EqslDoK+vD0VFRSwY1h2rV6/m5TEzM8O9e/fw7+2r3PYU3c0orY+yLPXx9fWFmpoaXr9+jd69e0NNTQ16enr49ddfy7U/C4VC/PbbbzA2NoaSkhI6deqEp0+fSp1v+/btMDc3FzuxlUTUBz41NVXi5xkZGWXW2cTEBHJyn9f7bPv27RAIBBg0aNBnzS/avy5cuIBx48ZBT08PWlpaGDFiBPLy8pCamoohQ4ZAW1sb2traCAoKAmNMbDmurq5lHsNRUVEQCATYtGkTLz0sLAwCgQBHjhz5rPp/Dh0dHairq3/WvFevXsXTp095JyYpKSm4f/8++vTpw7voYVSvMQxM6uHmmcNfXGfCJ4oBHj9+jMGDB2NabxvM7N8WR6MjwRjDxw9vsXH2KGhoaMDQ0BBLlizhzZ+Xl4dZs2bBxsYGmpqaUFVVhaOjI06fPs3LN3v2bMjJySEuLo6XHhAQAAUFBcTHx1f6uooYGBhwdzWkMTU1rfBnTkjV+6xfCS8vL+Tk5CA8PBzdu3fH77//joCAAKnzFRQU4NWrV9DW1i5XeZ6enlBWVsaJEyfEPktLS0NSUhJvEjE1NUVhYSG2bt1arvKKCw4ORkhICGxtbbFo0SI0aNAAbm5uyMrK4uU7efIkAHANdu3ataGiooIBAwYgJSVF5vIuXLiA0aNHY8CAAVi4cCFycnLQr18/ibeG/fz8uIC/Y8eOuH79uszlLFu2DC1btsTcuXMRFhaGGjVqoH///jh8uHw/LidOnEC/fv0gEAgQHh6O3r17w8/Pj1cXS0tLbN26FbVq1YK1tTW2bt2KrVu3Qk9PD+vXr8e4cePQpEkTREZGIiQkBNbW1rhy5Uq56gEAW7Zswe+//44xY8YgODgYd+/ehYuLC96/f8/luXfvHtq2bYsHDx5g6tSpWLJkCVRVVdG7d2+xAB8ARo8ejfv372PWrFncSVB0dDTc3d2RkpKC4OBgzJ8/H9bW1rwTmujoaHh5eUFeXh7h4eEYPnw49u7dCwcHh1IDO5GLh/6AtoERpk2bhiVLlkBLrzZGjx6NlStXcnkiIyNhbGwMfRMLbnuW1Re+PPUpLCyEm5sbdHV1sXjxYjg5OWHJkiVYt25dmfUubv78+di3bx9+/fVXBAcH4++//5Z69fXmzZt48OBBqcFnXl4ekpKSkJCQgH379mHx4sUwNTWV2N2oY8eO0NDQgIqKCjw8PPDkyROZ6y5Nfn4+du3aBXt7e7EHVssrMDAQT548QUhICDw8PLBu3TrMnDkTPXv2RGFhIcLCwuDg4IBFixZJbMeaN29e5jHs5+eHHj16YNKkSVwXsDt37iAkJAT+/v7o3r17mfXLzMwUa18lTWlpaV+0HaSJiYkBwL/TkJubCwASg5iaSkpIT/6A9BTx51vIl/P29oZQKIS7/y8wbdwCsdtX49zezVg71Q+augZYsGAB6tevj19//RXnzp3j5ktPT8eGDRvg7OyMBQsWYM6cOUhMTISbmxvvDsOMGTNgbW0Nf39/ZGRkAACOHz+O9evXY9asWWjRokWZ9ZMUF0iaKuM5JVINsXKYPXs2A8A8PDx46aNHj2YAWHx8PJdmamrKunTpwhITE1liYiK7c+cO+/nnnxkANmbMGN78p0+fZgDY7t27Sy27RYsWTFtbm/s7KiqKAZA4ibx7947p6ekxAKxx48Zs5MiRbPv27Sw1NVWm9X337h2rUaMG6927Ny99zpw5DADz8fHh0jw8PBgApqOjwwCwLVu2sJkzZ7IaNWowe3t7JhQKpZYHgCkoKLCnT59yafHx8QwAW758OZd28eJF1q9fP7Zx40a2f/9+Fh4eznR1dZmSkhL7559/ZFq3T58+8f7Oy8tjVlZWzMXFRab5RaytrVnt2rV52/TEiRMMADM1NeXlNTU1Ze7u7ry0Xr16saZNm5arzJKeP3/OADBlZWX26tUrLv3KlSsMAJs4cSKX1qlTJ9asWTOWk5PDpQmFQmZvb88aNGjApYn2LwcHB1ZQUMClp6amMnV1ddamTRuWnZ3Nq4foO87Ly2P6+vrMysqKl+fQoUMMAJs1axaXJjqmIk484tLmH4zn/R1x4hFzc3NjFhYWvPSmTZuyes3txLaH6Hg6ffp0uevj4+PDALC5c+fyltmyZUtmY2MjVlZpZVtaWrLc3FwufdmyZQwAu3PnTqnz/vLLLwwAu3//vsTP//jjD95xbmtry27fvs3Ls3PnTubr68s2b97M9u3bx2bMmMFUVFRYrVq12H///Vdq2U2bNmVOTk5S148xxg4ePMgAsFWrVsmUXxLR/uXm5sZrG9q1a8cEAgEbOXIkl1ZQUMCMjY159UtLS2MAWFpaGpdW2jH89u1bpqOjw1xdXVlubi5r2bIlq1u3Lm/e0oj2B2mTrNtOZNGiRQwAe/78ucTPi69fQUEBMzAwYHZ2/H29sLCQaWlpsU6dOnFpEScesXl7/mYKSipFx/6KP3nHjKwiTjwq91RRKnL5FV1XUXsVEBDALX/x0ftMq5YhEwgEzN3/F275Hz9+ZMrKyrzfyYKCAl67IMpnYGDAhg4dyku/c+cOU1BQYMOGDWMfP35kRkZGzNbWluXn50utp5OTk0z7bfG6yWLMmDG8GKMsqqqq5V4++boktaOSfFYf5TFjxvD+DgwMxKpVq3DkyBE0b96cSz9x4gT09PR4ef38/LBo0aJyl6mmpsadWRa3cuVKNGzYUOI8BgYGiI+Px9y5c7Fv3z6sWbMGa9asgYKCAmbMmIEZM2aUeZskLi4OBQUFGD16NC89MDAQc+bM4aWJzkxbtWqFkydPolevXtwVreDgYMTFxYk9ECRJ586dUa9ePe7v5s2bQ0NDgxtNAwDs7e15t6Y9PDzg6emJ5s2bIzg4uMyuGiLFr8J8/PgRhYWFcHR0xB9//CF1XpG3b9/i1q1bmDp1KveUOlB0O7hJkyZiV90l0dLSwqtXr3Dt2jWxBxPLq3fv3rwHq+zs7NCmTRscOXIEERERSElJwalTpzB37lxkZGTw9ic3NzfMnj0br1+/5i1j+PDhkJeX5/6OjY1FRkYGpk6dKtZ1R7QvXb9+HR8+fMCcOXN4edzd3dG4cWMcPnwYISEhpa6HguL/5klLS0NmWgqcnJxw/PhxZGeJHwPSfE59Ro4cyfvb0dGxXHdm/Pz8eLfDHR0dARSNCiOpP7BQKMSOHTvQsmVLWFpaSlxmx44dERsbi9TUVMTFxSE+Pl5sH/Py8oKXlxf3d+/eveHm5oYOHTrgt99+w5o1a2Reh9Js374dNWvW5JXzufz9/XltUJs2bXD58mX4+/tzafLy8rC1tcWNGzdKXU5Zx7ChoSFWrlyJgQMHwtHREbdu3UJsbKxMz1AEBQXxnjMpTXnvEpZHXFwc3r9/j2nTpvHS5eTkMGLECCxYsADBwcEYOnQoEh7fxaENi1BYUDQaSn6e9C6BpPyGDRvG/V9OXh7GDa2Qeukd2nT93zMzWlpaaNSoEe+3S15enmtPhUIhUlNTIRQKYWtri3/++YdXhpWVFUJCQhAcHIzbt28jKSkJJ06cQI0a0sOWJUuW4OPHj1Lz1alTR2oeQj4rUC4+dBNQNBSanJyc2FA/bdq0QWhoKAoLC3H37l2Ehobi48ePn/UQXWZmpsT+bXZ2dmU+tFO7dm2sXr0aq1atwpMnT3D8+HEsWLAAs2bNQu3atTFs2DBkZmbybsHIy8tDT08PL1++BCA+koSOjo7YD4Mo8PT09OS6YQDAoEGDEBwcjEuXLqFz585IS0tDdnY297mCggJ0dP73ZHbdunXF1kFbW1vqQV+/fn306tULe/fuRWFhIeTl5ZGSkoK8vDxeHUUB7aFDhxAaGopbt25xtzABlKt/lWj7lNwfAKBRo0ZiDZ8kU6ZMwcmTJ2FnZ4f69eujS5cuGDRoENq3by9zPUQk1aNhw4bYtWsXAODp06dgjGHmzJmYOXOmxGV8+PCBFyiXHDlB1L++rIe/RNulUaNGYp81btwYFy5cKHM9nt+7gWNblmNG73h8+vSJ91nOZwTK5a2PkpKS2AluyX0wMTGR1/9XTU2N9/BKyf1YdLyUth+fPXsWr1+/xsSJE0tdDwMDAxgYGAAoOs7CwsLg6uqKJ0+eiD3MV5yDgwPatGnDOy4/V2ZmJvbv3891TflSJbeT6Pg0MTERS5e07Tp16oQ7d+5IPYYHDBiAbdu24fDhwwgICECnTp1kql+TJk2q/AHcmJgYyMvLw9vbW+yzuXPnIikpCQsXLsT8+fMBAI1sHNCmaz9cOrQDisrf/sO336OS+62yqjpqKChCTZM/yoimpqZYt8HNmzdjyZIlePjwIW94x5JtLQBMnjwZO3bswNWrVxEWFibzvmhjYyPrqhAiVYWMo1xacFWrVi107twZbm5u+OWXX7Bt2zb89ddfWLZsWbmWn5+fj8ePH3/R0GcCgQANGzZEYGAgzp07Bzk5Oa7f2+LFi1G7dm1uaty4MczMzLhgSpYHB0RnpiUDDH19fQD/CxDGjx/PK6tv3768/MWvXhbHJDzIU5KJiQny8vK4q2x9+/bllTV+/HgAwPnz5+Hh4QElJSXuTkBsbCwGDRokUzkVydLSEo8ePcKOHTvg4OCAP//8Ew4ODpUyhJxQKAQA/Prrr4iNjZU4ldzHZH2Io6L8+++/WB3ki6y0j4iIiMDhw4cxcn4UF0Cy/1+HylTaPlhc69atefvW4sWLZVpGaftXTEwM5OTkMHDgQJnr6enpyQWu0piYmJTrWYHS/PXXXxU62kVp20lSevFtd+nSJQCQ+RhOTk7mnhu4f/8+dyxIk5aWhnfv3kmdJG3blStXwszMDEpKSmjTpg2uXr0qU5nFZWdnY9++fejcuTN3klScgoICNmzYgDdv3uDcuXOYuukYRoRvRHZWJgRycqhVR/zCA/lykvZPOTnpx/y2bdvg6+uLevXqYePGjTh27BhiY2Ph4uIicZ989uwZ93zBnTt3ZK5fSkqKTPttZfetJ9XDZ11RfvLkCe/s7+nTpxAKhVIfbHF3d4eTkxPCwsIwYsQImYfa2rNnD7Kzs+Hm5vY51RVjYWEBbW1tbpzDIUOGwMHBAUDRiAELFizA4sWLkZiYiClTpmDw4MF49uwZF/QmJyeLXd2xsbHB+vXrxcZOfPPmDYD/BdAlb2VW5C3LZ8+eQUlJibuyV/L2kyiY//PPP6GkpITjx49DUVGR+zwqKqpc5ZmamgKAxAelHj16JPNyVFVV4e3tDW9vb+Tl5aFv37747bffEBwcXK5hziTV4/Hjx9x+aWFhAQCoWbOmTN1gJBF1i7l7926pJ26i7fLo0SOxsb8fPXrEfS7JwYMHUZCfB/+5qzHiJ+eieWo+RtIZ8XWT9er/l9SnNDExMbw7I6Jt+zlyc3Px559/wtnZuVy3QkXly/Jj9+zZM7GT2M8RExMDNTU1eHh4fPGyvoRolJa9e/fy1qu0Y3jMmDHIyMhAeHg4goODERkZiUmTJkktZ/z48di8ebPUfE5OTrxRVnbu3IlJkyZhzZo1aNOmDSIjI+Hm5oZHjx5x7agsjhw5goyMDKknJqK7DddzHkNYWIh/46/AtHELuqL8jdmzZw8sLCywd+9eXvsl6cKIUCiEr68vNDQ0MGHCBISFhcHT01Ps4pIkffv2xdmzZ6Xm8/HxQXR0dLnWgfx4PitQXrlyJW/Q9+XLlwMoGrtUmilTpqB79+5Yv369TK8wjo+Px4QJE6CtrS3WN1qaK1euwMrKSiwgv3r1KpKTk7nb+xYWFtwP/fTp0zFixAj4+fnh/fv3mD59OgoLC7Fp0yZu1ANJw9T16tUL48eP565Si2zYsAFAUb9doGJuZSYmJor96MfHx+PAgQPo1q0bN+RVabef5OXlIRAIeLfOX7x4gb/++qtc9ahduzasra2xefNmXj/l2NhY3L9/X6YALDk5mXcLW0FBAU2aNMHRo0eRn59frkD5r7/+4vUxvnr1Kq5cucLtZ/r6+nB2dsbatWsRGBgoNia3pO1aUpcuXaCuro7w8HB07dqVVz/GGAQCAWxtbaGvr481a9Zg6NCh3MnI0aNH8eDBA8yaNavU5Yuu1BS/CpOdlSExAFJVVUVKovQg8UvqU5rP6RpTmiNHjiA1NbXUYCgpKQm6urpiJwaiY6t41ytJ3+GRI0dw48YNjBs37ovqmZiYiJMnT2LgwIFQUVH5omV9KdF+IssxvGfPHuzcuRO///47AgMDER8fjxkzZqBHjx6lPt8h8rl9lCMiIjB8+HD4+fkBANasWYPDhw/z2lFZ7NmzByoqKujTp4/M85zesxHpKYnoM0Zy9ypSdYq3b6Lj+cqVK7h8+bJYd46IiAhcunQJBw4cgLu7O86cOYNRo0ahQ4cOqFWrVpnlUB9lUpE+K1B+/vw5PDw80LVrV1y+fBnbtm3DoEGDpA7ZAhQF01ZWVoiIiMCYMWNQs2ZN7rPz588jJycHhYWFSE5OxsWLF3HgwAFoampi3759ZfZDlGTr1q2IiYlBnz59YGNjAwUFBTx48ACbNm2CkpKS2MMheXl5uHHjBoKDgwEUXaUYP348lixZgsjISGhoaCA+Ph5Hjx5FrVq1IBAIkJubi9zcXKioqODXX3/lXq+6fPlyPH36FJs3b4anpycaNWqE9PR0qXXOy8sTy8cYQ35+Ppfer18/KCsrw87ODnp6enj06BGio6OhoqKCGTNmSC3H2dkZERERcHV1haenJ5KSkrB+/XpYWFjg7t27MtVTZObMmejfvz/s7e0xePBgfPz4EevWrYOlpSWysrJ4y2KMoaCggJfWqVMnGBgYoE2bNtDX18ejR4+wfv16uLm5gTEmU11ED+VZWFjA3t4e/v7+yMvLw6pVq6Cjo4NRo0Zxy1mwYAHc3NxgZWUFHx8fmJmZITExEVevXsWbN29w8eJFAP+7WpmZmSlWh7CwMAQGBsLGxgaenp7Q0tLC3bt3kZ2dzT0sNmfOHIwePRoODg7w9PTEhw8fsGbNGtStWxf+/v7cMkV9S3Oyisqxt7eHfI2a2DAjAFrvRyIzMxO/r9kAI71aePv2LXKzP3HzNmvWDFc3bsTMmTNhbm4OPT09ODk5cV1vim9/Wesj6jNYcp1F9ZT2fYjK/vTpEy+v6DvKzs4WW0Z0dDQUFRXh6uoqcfkbNmzApk2b4O7uDjMzM2RmZiIuLg6nT5/mXiwimq9t27Zo3rw5WrZsyR2v27Ztg7GxMQIDA3nLv3jxIteF4cOHD8jIyOC6W9nb24udDGzevBkFBQXo3bt3qdshPDwc8+fPx6FDh7gHGCUpbf8SbeeMjAzesxwlvxcHBwesWLECffv2xZAhQ/DhwwesXLkS9evXx+3bt7n5Pnz4gFGjRqFjx44YO3YsgKIT/dOnT8PX1xcXLlwocyzpzzmxL9mOAkUP3nXo0IHbhqLjbMWKFdDS0oKamhqGDh3K5RfdJYiNjYWHhweEQqHEbb5z504cOHAA9vb2UFVVRdSuQ7hzMRa2nXujUav2yMnK5G03WYnmK4/yllHesj9n+RW5LEB8/xQtv+jhSSa2vQsLC3nfXadOnbB371707NkTXbp0wcuXL7Fp0yY0btyY1149evQIM2fOxE8//QQnJydkZmZixYoVcHBwwPDhw6Xe5ZD0vEpppG2L//77Dzt37gQAbthSUTthYmKCAQMGcHmPHj3Kjd2fn5+PmzdvcnlFsQ/5doi+e6ldTsszlIZoaJj79+8zT09Ppq6uzrS1tdnYsWPFhsqSNBSYSHR0NAPAoqKiGGP/G1JKNNWsWZPp6emxDh06sN9++419+PBBbBmi4ZWuXbtWan1v377NJk+ezFq1asV0dHRYjRo1WO3atVn//v0lDqP2+vVrBoBdunSJSysoKGDt2rVjNWvWZMrKyszFxYU9ePCA6erqspEjR3LbhCaaaKLpa0/m5uZMUVGRNW7cmEVFRXHtkUjfvn2Zuro6e/HiBa+t279/PwPAFixYUGr7+bkktaOMMRYQEFDqemhqalb5tqSJJpp+zCkhIaHMNk3AmOxPb82ZMwchISFITEyUeuvje/TmzRsYGRnh0qVLvFfWBgUF4ezZs9zZZGpqKrS1tREaGopff/2V98S5UChESkqKxFvF1Vl6ejpMTEyQkJBQ6a/uLunly5do3rw55s2b98W31ytDVW6bb1112zYdO3aEiYkJtmzZ8kXLkbZdGGPIyMhAnTp1PvvtgpVF1na0ONGdOZHi7WhGRsZ3v49Uh/28OqwDUD3Wg9ahYsjajn5W14vqqlatWpCXl+e9yS07Oxvv37/ndfuIjIwEUNSFQVFRkfdAHFA0fuSPSkND46vv9KJhA5WUlL7pRqMqts33ojpsm/T0dNy9exfbtm2rsHUpa7sUH7v8WyKpHQUg1o4WV1Y7KrrgUB32EVqHb0d1WA9ahy8nSztKgXIxCgoKsLGxQVxcHHr37g0A+OOPP7Bjxw64uLhg1apVuHDhAv744w906dKlQh9o+taUHO9ZkvL2GS+vwsJCJCaW/Qra4mP3ElKVNDQ0eFdFf1SS2lGhUIi4uDiunzQhhHwvKFAuYdKkSfDx8YGtrS3s7Oxw+PBhCIVCXL16FXFxcdwDfqGhoVVd1Uoly7BQ5ei181kSEhIkDkJf3OzZs+Hr61up9SCElE/JdjQyMhJZWVncKBiEEPK9KFegPGfOHLFXN1c33t7eSExMxKxZs/Du3TtYW1vjwoULaNOmTVVX7auSdVgoEUVFRcyePVvs9umXMDQ0RGxsbJl5LCwsYGZm9tVflFIelbFtqgvaNpJ979tFUjt67NgxiS8NkeZ73xYArcO3pDqsB63D11Wuh/kIIYQQQgj5UXxbj0t/A86dO4eePXuiTp06EAgE5X4JByGE/OioHSWEVBfUR7mErKwstGjRAkOHDpXpVZklCYVCvHnzBurq6j/U8HCEkK/nWx4eDqB2lBDy7aPh4T5Tt27dZHoVd2nevHkDExOTCqwRIYRIlpCQAGNj46quhhhqRwkh3wtp7SgFyl+o5ED5oi7f3/NA4ISQb5tosH7RGOLfO2pHCSFfm6ztKAXKXyg8PBwhISFi6VU9iDapfpbGPsZE14blyrM09jH3/9LmFeWRtmzy7aku3RIqqh0tz/5ekXnKyicLWcojhFQOae3ot9e57TsTHByMtLQ0bkpISKjqKhFCyHeF2lFCyLeKrih/IUmvXiWEECI7akcJId8quqJMCCGEEEKIBHRFuYTMzEw8ffqU+/v58+e4desWdHR0ULdu3SqsGSGEfB+oHSWEVBcUKJdw/fp1dOzYkft70qRJAAAfHx9ER0dXUa0IIeT7Qe0oIaS6oEC5BGdnZ9BbvQkh5PNRO0oIqS6ojzIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBBQoE0IIIYQQIgEFyoQQQgghhEhAgTIhhBBCCCESUKBMCCGEEEKIBD90oHzt2jXY29tDVVUVAoEAt27dqrBl16lTR2oeZ2dnODs7V1iZpGpFR0dDIBDgxYsXvPRFixbBwsIC8vLysLa2rpAyrl+//kXLIYQQ8vl27dqFtm3bQktLC7q6unBycsLhw4erulqkEvywgXJ+fj769++PlJQULF26FFu3boWpqWlVV+u7cubMGQgEglKn3377rULLK62c+fPnV2g5FenEiRMICgpC+/btERUVhbCwsK9a/vn92zDfvxsmu1vByMgIkyZNQlZWlli+2O2r4eHhAQMDAwgEAsyZM0fi8szMzEr9Hho0aMDLm5aWhqCgIDRo0ADKysowNTWFv78//vvvv8pY1WopMzMTs2fPRteuXaGjowOBQIDo6GiJeX19fSV+L40bN+ble/jwIYKCgmBtbQ11dXXUrl0b7u7udPJFiIyWL18Ob29v1KpVC/Pnz8fMmTORlpaGHj16YO/evVVdPVLBalR1BarKv//+i5cvX2L9+vUYNmxYVVfnu2RpaYmtW7eKpW/duhUnTpxAly5dKrxMV1dXDBkyhJfWsmXLCi+nopw6dQpycnLYuHEjFBQUvmrZU6ZMwb6VC9HC0Q0d+gxBbZaM5cuX4969ezh+/Dgv79HoSBgaGqJly5ZinxUXGRmJzMxMXtrLly8xY8YM3vctFArh6uqK+/fvY/To0WjYsCGePn2KVatW4fjx43jw4AHU1dUrdoWroaSkJMydOxd169ZFixYtcObMmTLzKyoqYsOGDbw0TU1N3t8bNmzAxo0b0a9fP4wePRppaWlYu3Yt2rZti2PHjqFz584VvRqEVCvLly9H69atcfDgQQgEAgDA0KFDYWRkhM2bN6Nv375VXENSkX7YQPnDhw8AAC0trQpbpqQrddWZgYEBBg8eLJYeEhKCBg0aoHXr1hVeZsOGDSWW+a368OEDlJWVv3qQ/PbtW0RERMC2cy8MCloIAJjo2hANGzZEYGAgDh48iJ49e3L5Z2yJw7yfXZCUlAQ9Pb1Sl9u7d2+xtNDQUADATz/9xKX9/fffuHbtGlasWIExY8Zw6Y0aNcLQoUNx8uRJ9OnT50tXs9qrXbs23r59C0NDQ1y/fl3qMVWjRg2px8fAgQMxZ84cqKmpcWlDhw6FpaUl5syZQ4EyKZc5c+YgJCQEjx49wty5c3Hw4EEoKChg5MiRmDt3Ll69eoWxY8fi9OnTUFFRweTJk/HLL79w8+fl5SE0NBSHDx/G06dPUVBQgFatWmHu3Lno2LEjl2/27NmYN28eYmNj0alTJy49ICAA0dHRuHbtGlq0aPFV1jk9PR0NGzbkgmQA0NDQgJqaGpSVlb9KHcjX80N2vfD19YWTkxMAoH///hAIBLy+wqdOnYKjoyNUVVWhpaWFXr164cGDB7xlzJkzBwKBAPfv38egQYOgra0NBweHUsu8desW9PT04OzsLHZFrrjc3FzMnj0b9evXh6KiIkxMTBAUFITc3FxevtjYWDg4OEBLSwtqampo1KgRpk2bxsuzfPlyNG3aFCoqKtDW1oatrS22b98u0zbavXs3mjRpAiUlJVhZWWHfvn3w9fWFmZlZmfNdvXoVT58+5QVNZXF2doaVlRXu37+Pjh07QkVFBUZGRli4cGGp82RnZyMnJ0em5Re3f/9+uLu7o06dOlBUVES9evUwb948FBYWlntZ9+7dg4uLC5SVlWFsbIzQ0FAIhUJeHoFAgKioKGRlZXG3wUW3zWX5/sqSm5uLSZMmQU9PD6qqqujTpw8SExO5zy9fvoyCggJYO7vz5hswYAAAYMeOHbx0HUPj8qw+z/bt22Fubg57e3suLT09HUDRyVRxtWvXBoDP+jF58eIFBAIBFi9ejJUrV8LCwgIqKiro0qULEhISwBjDvHnzYGxsDGVlZfTq1QspKSm8ZciyDzx48ADKyspidy4uXLgAeXl5TJkypdx1/1yKioowNDQs1zyFhYXc9pfExsaGFyQDgK6uLhwdHcXaOUJk5e3tDaFQiPnz56NNmzYIDQ1FZGQkXF1dYWRkhAULFqB+/fr49ddfce7cOW6+9PR0bNiwAc7OzliwYAHmzJmDxMREuLm58Z4bmjFjBqytreHv74+MjAwAwPHjx7F+/XrMmjVLapCclpaGpKQkqVNZv88izs7OOHbsGJYvX44XL17g4cOHGDNmDNLS0jB+/PjP24Dkm/VDXlEeMWIEjIyMEBYWhnHjxqF169bcD/rJkyfRrVs3WFhYYM6cOcjOzsby5cvRvn17/PPPP2KBYv/+/dGgQQOEhYWBMSaxvGvXrsHNzQ22trbYv39/qUGCUCiEh4cHLly4gICAAFhaWuLOnTtYunQpHj9+jL/++gtAUZDWo0cPNG/eHHPnzoWioiKePn2Kixcvcstav349xo0bB09PT4wfPx45OTm4ffs2rly5gkGDBpW5fQ4fPgxvb280a9YM4eHh+PjxI/z9/WFkZCR128bExACAzIEyAHz8+BFdu3ZF37594eXlhT179mDKlClo1qwZunXrxssbHR2NVatWgTEGS0tLzJgxQ+r6FJ9XTU0NkyZNgpqaGk6dOoVZs2YhPT0dixYtkrm+7969Q8eOHVFQUICpU6dCVVUV69atE/tet27dinXr1uHq1avc7XB7e3uZvj9pAgMDoa2tjdmzZ+PFixeIjIzE2LFj0XbYPADgTqxqKijy5lNRUQEA3LhxQ+ayynLz5k08ePAA06dP56Xb2tpCVVUVM2fOhI6ODho1aoSnT58iKCgIrVu3/qKrljExMcjLy0NgYCBSUlKwcOFCeHl5wcXFBWfOnMGUKVPw9OlTLF++HL/++is2bdrEzSvLPmBpaYl58+Zh8uTJ8PT0hIeHB7KysuDr64vGjRtj7ty5ZdYvNzeX+yGXplatWp+9HST59OkTNDQ08OnTJ2hra2PgwIFYsGCBWGAsybt37yq8PuTHYWdnh7Vr1wIousprZmaGX375BeHh4dzJ5cCBA1GnTh1s2rQJHTp0AABoa2vjxYsXvLtuw4cPR+PGjbF8+XJs3LgRAFCzZk1s2bIFNjY2mDRpEhYtWgR/f3/Y2tpi6tSpUuvXq1cvnD17Vmo+Hx+fUp8DEPn999+RlJSEcePGYdy4cQCKjuW4uDi0a9dOahnkO8N+UKdPn2YA2O7du3np1tbWTF9fnyUnJ3Np8fHxTE5Ojg0ZMoRLmz17NgPABg4cyJs/LS2NAWCqqqqMMcYuXLjANDQ0mLu7O8vJyeHldXJyYk5OTtzfW7duZXJycuz8+fO8fGvWrGEA2MWLFxljjC1dupQBYImJiaWuX69evVjTpk1l2BLimjVrxoyNjVlGRgaXdubMGQaAmZqaljpfQUEBMzAwYHZ2djKX5eTkxACwLVu2cGm5ubnM0NCQ9evXj5fX3t6eRUZGsv3797PVq1czKysrBoCtWrVKprI+ffokljZixAimoqIi9t2UZcKECQwAu3LlCpf24cMHpqmpyQCw58+fc+k+Pj7cviAiy/cnScSJRywqKooBYJ07d2ZCoZD7bOLEiUxeXp79tu86Y4yxGzduMACsm894FnHiEYs48YgxxtixY8cYAKampsZbrujzxMREBoDNnj1bpjr98ssvDAC7f/++2GeHDh1itWvXZgC4yc3Njbdflcfz588ZAKanp8dSU1O59ODgYAaAtWjRguXn53PpAwcOZAoKCrzvVtZ9oLCwkDk4ODADAwOWlJTExowZw2rUqMGuXbsmtZ6i70iWqTyuXbvGALCoqCiunUlLS+M+nzp1KpsyZQrbuXMn++OPP5iPjw8DwNq3b8/bLpKcO3eOCQQCNnPmzHLVqbJIWj9ZiPZl0f78tfKUla+i6v2tEv0WXr16lZfeu3dvie2ctbU1c3R0lLiswsJClpyczBITE5m7uzuztrYWyxMeHs4AMDs7O6aoqMju3bsnUz2vX7/OYmNjpU6yLC8jI4ONHj2a+fj4sN27d7NNmzaxZs2aMUNDQ/bkyROZ6kOqnqztzA95Rbk0b9++xa1btxAUFAQdHR0uvXnz5nB1dcWRI0fE5hk5cmSpyzt9+jR69uyJLl26YMeOHVL7qe7evRuWlpZo3LgxkpKSuHQXFxduefb29ly/6v3798PPzw9ycuI9aLS0tPDq1Stcu3atXH2F37x5gzt37mDatGm8q1BOTk5o1qxZmbd04+Li8P79+3J1IQAANTU1Xr9KBQUF2NnZ4dmzZ7x8Ja+4Dh06FDY2Npg2bRp8fX2l3s4v/nlGRgZyc3Ph6OiItWvX4uHDhzL3bzty5Ajatm0LOzs7Lk1PTw8//fQTVq1aJXV+Wb4/aQICAnj94xwdHbF06VJ8fP8agA1atWqFNm3a4NSu9dCsZYD6Ldrg6NF/MWrUKNSsWRPZ2dnlLrMkoVCIHTt2oGXLlrC0tBT7XE9PDy1btsTYsWPRtGlT3Lp1CwsXLoSfnx9279792eX279+f94BamzZtAACDBw9GjRo1eOl//PEHXr9+DQsLCwCy7wNycnKIjo5GixYt0K1bN1y/fh0zZsyAra2t1Pq5ubkhNjb2s9fvc4WHh/P+HjBgABo2bIjp06djz549XLebkj58+IBBgwbB3NwcQUFBX6OqpBqqW7cu729NTU0oKSmJ3aXQ1NREcnIyL23z5s1YsmQJHj58iPz8fC7d3NxcrJzJkydjx44duHr1KsLCwtCkSROZ6mdjYyPrqkjVv39/1KhRAwcPHuTSevXqhQYNGmD69OnYuXNnhZVFqh4FysW8fPkSAPD69WuYmZnh3bt3aNGiBZYvXw5LS0scP34cWVlZUFVV5eaRdCADQE5ODtzd3WFjY4Ndu3bxfsBL8+TJEzx48KDUh6lEDyB6e3tjw4YNGDZsGKZOnYpOnTqhb9++8PT05IKuKVOm4OTJk7Czs0P9+vXRpUsXDBo0CO3btwdQ9ABFyf6benp63DaoX7++WPn169fHP//8U2r9Y2JiIC8vD29vb156dnY20tLSeGnF+10aGxvzgj6g6Hbc7du3Sy0LKAqox44di5EjR+LGjRtwcHBAZmYmr4+ZvLw8tz3v3buHGTNm4NSpU2IBf8n6leXly5dccFZco0aNZJpflu/v3bt3vHlKjlxQ8kdJW1sbAPAp83/r9eeff8LRzQM7lhSduMjLy2PSpEk4e/YsHj16JFNdy3L27Fm8fv0aEydOFPvs2bNn6NixI7Zs2YJ+/foBKPohMTMzg6+vL44ePSrWrUZWkn6QAcDExERi+sePH7m08uwD9erVw5w5czB58mRYWVlh5syZMtWvdu3aXF/sqjZx4kTMnDkTJ0+elBgoZ2VloUePHsjIyMCFCxdk6qIhq5UrV2LRokW8drT4ySWpXuTl5WVKA8Drprht2zb4+vqid+/emDx5MvT19SEvL4/w8HD8+++/YvM+e/YMT548AQDcuXNH5vqlpKQgLy9Paj5lZWWx9rZk+ceOHcO6det46To6OnBwcChXFzryfaBAWYIdO3Zg/fr1aNOmDSIjI+Hm5gYvLy+JeUu7iqmoqIju3btj//79OHbsGHr06CG1XKFQiGbNmiEiIkLi56JAQFlZGefOncPp06dx+PBhHDt2DDt37oSLiwtOnDgBeXl5WFpa4tGjRzh06BCOHTuGP//8E6tWrcKsWbMQEhKCS5cu8Z4oBoDnz59LrWNpsrOzsW/fPnTu3FnsAa6dO3fCz8+Pl1a8oZSlMS2NaJuIgv7FixcjJCSE+9zU1BQvXrxAamoqnJycoKGhgblz56JevXpQUlLCP//8gylTpog9iFeZZPn+SgZaUVFRgNH/HpYrbZuh2DYzMjJC4NI/kPj6BTJSkjB9kAsMDQ1Rp04dNGzY8IvXIyYmBnJychg4cKDYZ9HR0cjJyRHb7z08PAAU3R343EC5tHWXth99zj5w4sQJAEV3WpKTk2V6sE7SiWFpyvugXnkpKytDV1dX7KQYKDpZ7tu3L27fvo3jx4/DysqqwsrduXMnJk2ahDVr1vDa0UePHkFfX7/CyiHfvz179sDCwgJ79+7lXTCZPXu2WF6hUAhfX19oaGhgwoQJCAsLg6enp0zDsfXt27dC+ii/f/8eACQ+BJ6fn4+CggKpZZDvCwXKxYheONK8eXMusFuzZg0OHz6MM2fOoFatWryryWURCASIiYlBr1690L9/fxw9elTqW/jq1auH+Ph4dOrUSewKa0lycnLo1KkTOnXqhIiICISFhWH69Ok4ffo096CUqqoqvL294e3tzf0o/vbbbwgODkaLFi3Ebg8bGhpy3UOePn0qVqakNJEDBw4gIyND4kN8lXkrWtQ9Q3TVeMiQIbzRR0QnMmfOnEFycjL27t3LPUQCfN7JgampKXdFo7jyXKWV9v2V3F5NmzbFjruyPSBWkp6RGfSMzGBoaIj79+/j7du38PX1/axlieTm5uLPP/+Es7OzxLdQvn//HowxsR8T0W3VqvgxKe8+sGbNGsTGxuK3335DeHg4RowYgf3790stR9KJYWlkORn8EhkZGRKH/BMKhRgyZAji4uKwa9cubhSgihIREYHhw4eLtaObNm2S6cEr8uMQneAyxrjfvStXruDy5ctid48iIiJw6dIlHDhwAO7u7jhz5gxGjRqFDh06SH0QdcmSJby7S6WR9lbd+vXrQ05ODjt37sSIESO4Or969Qrnz58vc/Qr8n2iQLkYXV1dAEU/nKmpqdDS0oKcnBxsbGxw8OBBseGipFFQUMDevXvh5uaGnj17Ii4ursxbj15eXjhy5AjWr1+PgIAA3mfZ2dkQCoVQVVVFSkoKrw81AO7VyKLRDpKTk7n1EdWlSZMmOHr0KPLz86GtrS1x5IE6derAysoKW7ZsQXBwMHcr9uzZs7hz506pby/cvn07VFRUJI6NWxG3ohMTE8V+7DMyMhAZGYlatWpx/c8sLCy4/qjFFW+MRfLy8mTqU1xS9+7dERkZiatXr3LfZ2JiIjfihzSyfH8SR4X4zEBZRCgUIigoCCoqKmX2rZfFkSNHkJqaWuroJg0bNgRjDLt27eIF5X/88QeAqnlJTHn2gefPn2Py5Mno168fpk2bBl1dXYwcORJbtmyR2g5URR/lnJwc5Ofni73EZd68eWCMoWvXrrz0wMBA7Ny5E2vXrq3wlyPk5eXhxo0bCA4O5tLk5OTQuXNnXL58uULLIt8/0dvs+vTpA3d3dzx//hxr1qxBkyZNeN3oHjx4gJkzZ8LX15cbAz46OhrW1tYYPXo0du3aVWY5FdVHWU9PD0OHDsWGDRu4bnMZGRlYtWoVsrOzefs9qR4oUC5G9ABdRkYG2rVrB39/f2RnZyMuLg7y8vISX+ubm5vL6+souuXKGOPSt2/fjp49e6Jr1644cuQI9/CB6GqbKF+vXr3QpUsXjBw5EidOnEDbtm1RWFiIx48fY9++fdi7dy9atWqFGTNm4OLFi3Bzc4OJiQkSExOxceNGGBkZoXnz5khPT0enTp1gYGCANm3aQF9fH48ePcL69evh5ubGq5skM2bMwMCBA9GuXTv89NNPSE1Nxbp167iGq+S8KSkpOHr0KDw8PCAUCstcdkmFhYUS58nPz+fVMyIiAocPH0bXrl1hbGyM9+/fY9u2bUhISMC6deuQk5NT5tjKzZo1g5aWFoYMGcJdBdixYwcXNGVlZclc71GjRmHLli1wc3PDqFGjoKKigujoaJiYmCAtLQ0ZGRncskRXUIsvW5bvT5KcrEzuIbyS34PoZTd5Odlc+pQpU3Dj2QfUNm8IYUEBtk87gxs3bmDNmjXQ0tLi8uVkZeLmmcNIOZeHT58+ASgaS1y0f3p7e4td2YmOjoaioiJcXV0l1rdfv35YtGgRRowYgStXrqBx48aIj4/Hli1bYGlpiU6dOnHznT9/Hj169MDUqVPL/JERDbmWk5Mjcd0/ffrESy+5rWTdBxhj8PHxgZKSEhYuXIj09HQMHDgQO3fuxLhx49CmTZsyT/xUVVVl7osryz63bt06pKWl4e3btwCAvXv34t69ewCKupNoaGjg3bt3aNmyJQYOHMi9svr48eM4cuQIunbtil69enHLi4yMxKpVq9CuXTuoqKhg27ZtvPL69Okj850zSZKSklBYWCjWBcvAwAAPHz6UOE9ubi5vrHhRO1qetgQo2pdFyjqOKjpPWflkIUt53yrR95aRkcF7YF1S2weIt/l9+/bFixcvEB0djePHj6NRo0ZYt24d/vrrL1y4cAHp6ekoLCzE4MGDoauri7lz5/LGaZ89ezamTJmC6Ojor/ZGvAULFqBRo0bcBSWg6OR/9erVsLa2/u6+wx+V6HuSemevUsbc+A5IGh7u9evXDAD7/fffWfv27ZmysjLT0NBg9erVY82aNePNLxoSZ/LkyTIPBUUTTTTRVJHTpUuXGGOMffz4kQ0ePJjVr1+fqaioMEVFRda0aVMWFhbG8vLyeG2XaNi40qbiwxt+DlE7KqqbyOTJk0sdOlLUntJEE000fe0pISGhzDZNwFgld5L7juTl5UFFRQV79uzhvarXx8cHqampEvsnlrwSIhQKkZKSAl1dXan9jL83Dg4O0NXVlbgd0tPTYWJigoSEBGhoaFRB7b5dtG1KJ9o2tWvXRnx8PBQVFaXP9AOQts8wxpCRkYE6dep81vCClami29GMjIzv/vipDm1AdVgHoHqsB61DxZC1HaWuF8UoKCjAxsYGcXFxXAMvFAoRFxeHsWPHSpxHUVFR7MddNE7u9yo/Px8CgYA3pN2ZM2dw584dhIaGlrlTa2hofLcHbmWjbVO6KVOmlDos4o+srH2mrCGsqlJFt6OiCw7V4fihdfh2VIf1oHX4crK0oxQolzBp0iT4+PjA1tYWdnZ2iIyMRFZWlsxPsVcHr1+/RufOnTF48GDUqVMHDx8+xJo1a2BoaPjFD4F9y2QZ1ktHR0fqi2NI+f1Ix9ePgNpRQkh1QYFyCd7e3khMTMSsWbPw7t07WFtb49ixY2IPplRn2trasLGxwYYNG5CYmAhVVVW4u7tj/vz5vJE0qhtZhvU6ffq01GH+CPnRUTtKCKkuKFCWYOzYsaXeIvwRaGpqlvsVnIqKipg9e/Z33cdUlmG9ZH3NdXHVYdtUFto2klWH7VJR7Wh12Ba0Dt+O6rAetA5fFz3MV0x4eDj27t2Lhw8fQllZGfb29twwMIQQQggh5MfybT0uXcXOnj2LMWPG4O+//0ZsbCzy8/PRpUsXbpxWQgghhBDy46ArymVITEyEvr4+zp49y3vlbVmEQiHevHkDdXX1ajc8HCHk2/AtDw9XEagdJYRUNhoergKIRkAo+brhsrx58wYmJiaVVSVCCOEkJCTA2Ni4qqtR4agdJYR8LdLaUQqUSyEUCjFhwgS0b98eVlZWpeYrOVC+6AL99zwQOCHk2yYarF9dXb2qq1IpROtF7SghpLLI2o5SoFyKMWPG4O7du7hw4UKZ+cLDwxESEiKWXt5BtJfGPi71s4muDWVeDiHkx1FduyVU9ktGlsY+pnaVEAJAejta/Tq3VYCxY8fi0KFDOH36tNTbmsHBwUhLS+OmhISEr1RLQgghhBBSmShQLoYxhrFjx2Lfvn04deoUzM3Npc6jqKjIXfWo6lcxEkJIRQoPD0fr1q2hrq4OfX199O7dG48ePSpznujoaAgEAt6kpKT0lWpMCCEViwLlYsaMGYNt27Zh+/btUFdXx7t37/Du3TtkZ2dXddUIIeSr+9whMzU0NPD27Vtuevny5VeqMSGEVCzqo1zM6tWrAUDsFcVRUVHw9fX9+hUihJAqdOzYMd7f0dHR0NfXx40bN8ocMlMgEMDQ0LCyq0cIIZWOAuViaEhpQggpnaxDZmZmZsLU1BRCoRCtWrVCWFgYmjZt+jWqSAghFYq6XhBCCJFK1iEzGzVqhE2bNmH//v3Ytm0bhEIh7O3t8erVq1Lnyc3NRXp6Om8ihJBvAV1RJoQQIpWsQ2a2a9cO7dq14/62t7eHpaUl1q5di3nz5kmcp7RhNgkhpKrRFWVCCCFlKs+QmSXVrFkTLVu2xNOnT0vNQ8NsEkK+VXRFmRBCiESMMQQGBmLfvn04c+aMTENmllRYWIg7d+6ge/fupeZRVFSEoqLil1SVEEIqBQXKhBBCJBozZgy2b9+O/fv3c0NmAoCmpiaUlZUBAEOGDIGRkRHCw8MBAHPnzkXbtm1Rv359pKamYtGiRXj58iWGDRtWZetBCCGfiwJlQgghEskyZOZ///0HObn/9eL7+PEjhg8fjnfv3kFbWxs2Nja4dOkSmjRp8rWqTQghFYYCZUIIIRLJMmTmmTNneH8vXboUS5curaQaEULI10UP8xFCCCGEECIBBcqEEEIIIYRIQIEyIYQQQgghElCgTAghhBBCiAQUKBNCCCGEECIBBcqEEEIIIYRIQIEyIYQQQgghElCgTAghhBBCiAT0whHyzVoa+7jMzye6Nvzhlk0IIYSQr4euKBNCCCGEECIBBcqEEEIIIYRIQIEyIYQQQgghElCgTAghhBBCiAQUKBNCCCGEECIBBcqEEEIIIYRIQIEyIf8v5d0rTOrSCFdP7OWlHzt2DNbW1lBSUoJAIEBqauoXlSEQCLB48eIvrC0hpCRpQzN+7eUQQr5/FCgXEx0dDYFAwE01atSAkZERfH198fr1a7H8zs7OXF45OTloaGjAxsYGAHDq1CmJZZiZmfHKEE2TujRCfl4ul+/e5VNY8ctgzOrfDioqKrCwsICXlxeOHTtWoessqS6iydXVtULLEgqFWLNmDaytraGmpgYDAwN069YNly5dqtByKlJycjK8vLygrKyMlStXYuvWrVBVVf1q5cfGxsLBwQEqKirQ1taGp6cnXrx4IZZv4sSJaNWqFXR0dKCiogJLS0vMmTMHmZmZvHy+vr5lfufF9/Pi+3fxqWvXrrxl3rt3D/3794eFhQVUVFRQq1YtdOjQAQcPHqyUbVJdxcXFYejQoWjYsCF3zA8bNgxv374Vyys60bKwsICSkhIaNGiACRMmIDExscwyYmJiIBAIoKamVinrQEh1s379ejg5OcHAwACKioowNzeHn5+fWDuckJCAkJAQ2NnZQVtbG7Vq1YKzszNOnjxZNRUnFYZeOCLB3LlzYW5ujpycHPz999+Ijo7GhQsXcPfuXSgpKfHyGhsbIzw8HACQlZWFe/fuYfny5ejTpw+8vLywbds21KxZkzePtbU1fvnlF17a0TtvIV+jKN/p3RtxcP1C1Gtuh04DRqBbS1M8ffoUJ0+exI4dO8QClS+xdetWsbTr169j2bJl6NKlS4WVAwCTJ09GREQEBg8ejNGjRyM1NRVr166Fk5MTLl68CDs7uwotryJcu3YNGRkZmDdvHjp37vxVyz506BB69eqFVq1aYf78+UhPT8eyZcvg4OCAmzdvQk9Pj1dPR0dH+Pn5QUlJCTdv3sT8+fNx8uRJnDt3DnJyRefEI0aMEFsPxhhGjhwJMzMzGBkZ8T4rvn+L1KlTh/f3y5cvkZGRAR8fH9SpUwefPn3Cn3/+CQ8PD6xduxYBAQEVuVmqrSlTpiAlJQX9+/dHgwYN8OzZM6xYsQKHDh3CrVu3YGhoyOW9desWAODXX3+Fnp4eHjx4gPXr1+Pw4cO4deuWxJO5zMxMBAUFfdUTPUK+dzdv3oS5uTk8PDygra2N58+fY/369Th06BDi4+O59nD//v1YsGABevfuDR8fHxQUFGDLli1wdXXFpk2b4OfnV8VrQj4XBcoSdOvWDba2tgCAYcOGoVatWliwYAEOHDgALy8vXl5NTU0MHjyY+zs9PR3Lly/HsGHDsGHDBpiZmWHBggW8eYyMjHjzAEDi/9/qKywsQGzMKjRs1R4j528CAIwo9ia3Dx8+VNyKAmL1AIAzZ85AIBBg4MCBFVZOQUEBVq9eDU9PT15wLroSGRMT800GyqLtraWl9dXLnjJlCiwsLHDx4kUoKCgAAHr27MkFzkuWLOHyXrhwQWz+evXq4ddff8XVq1fRtm1bAEC7du3Qrl07Xr4LFy7g06dP+Omnn8SWUXL/lqR79+7o3r07L23s2LGwsbFBREQEBcoyioiIgIODA3dSAwBdu3aFk5MTVqxYgdDQUC5927Zt0NTUxOjRo6GhoQGg6Lv19PTEwYMHMWDAALHlh4aGQl1dHR07dsRff/1V6etDSHWwatUqsbTevXvD1tYWW7ZswdSpUwEAHTt2xH///YdatWpx+UaOHAlra2vMmjWLAuXvGHW9kIGjoyMA4N9//5V5noULF6JJkyZYsWIF0tLSZJ4vK+0jcj5lwrxpK4mf6+vry7Sc27dvw8nJCcrKyjA2NkZoaCiioqIgEAgk3roXyc3NxZ9//gknJycYGxtLLWfOnDkQCAR4+vQpfH19oaWlBU1NTfj5+eHTp09cvvz8fGRnZ8PAwEBsfeTk5KCsrCy1rDfPHuKPRVMROqQTgtybwdDQEEOHDkVycrLUeUvKzkzHH4umYlpvG0zrY4vtC6cgOyuDl8fZ2Rk+Pj4AgNatW0MgEMDX1xcA8OTJE/Tr1w+GhoZQUlKCsbExBgwYUK7vet26dahXrx4UFRXRunVrXLt2jfssJSUF9+/fR58+fbggGQBatGgBS0tL7NixQ+ryzczMAEBqn+rt27dDIBBg0KBBEj8vKCgQ68Ihjby8PExMTD67P7foZG3Xrl0ICQmBkZER1NXV4enpibS0NOTm5mLChAnQ19eHmpoa/Pz8kJuby1tGVFQUXFxcoK+vD0VFRTRp0gSrV6/m5Tl16hTk5OQwa9YsXrpom5TMX5k6dOjAC5JFaTo6Onjw4IHU+cv6vp88eYKlS5ciIiICNWrQ9RHyeUTt/ePHjzF48GBoampCT08PM2fOBGMMCQkJ6NWrFzQ0NGBoaMg7mQeAvLw8zJo1CzY2NtDU1ISqqiocHR1x+vRpXr7Zs2dDTk4OcXFxvPSAgAAoKCggPj6+0te1LJKOtaZNm/KCZABQVFRE9+7d8erVK2Rk8H9fyPeDWkwZiAJLbW1tmeeRl5fHwIEDMXPmTFy4cAHu7u7cZ/n5+UhKSuLlz8vJhoKSMtS0dFFTUQn3/j4Fh16DoaqhVe76vn79Gh07doRAIEBwcDBUVVWxYcMGKCoqSp33yJEjSE1NlXh1sSxeXl4wNzdHeHg4/vnnH2zYsAH6+vrc1XRlZWW0adMG0dHRaNeuHRwdHZGamop58+ZBW1tbpquOj/+5hOS3CbDr0hfqOnqow5Kwbt063Lt3D3///TcEAoFMdWWMYePs0Xh+7wbs3QdAv2493L0Yi+2LpvDyTZ8+HY0aNcK6deu47jj16tVDXl4e3NzckJubi8DAQBgaGuL169c4dOiQzIHh9u3bkZGRgREjRkAgEGDhwoXo27cvnj17hpo1a3JBn6QTCBUVFdy7dw/v3r3j3Y4vKChAamoq8vLycPfuXcyYMQPq6uplXqnPz8/Hrl27YG9vzzX+xT1+/BiqqqrIy8uDgYEBhg8fjlmzZol1JwKKuh5lZ2cjLS0NBw4cwNGjR+Ht7S3T9ihNeHg4lJWVMXXqVDx9+hTLly9HzZo1IScnh48fP2LOnDlc9yhzc3NewLt69Wo0bdoUHh4eqFGjBg4ePIjRo0dDKBRizJgxAAAXFxeMHj0a4eHh6N27N1q1aoW3b98iMDAQnTt3xsiRI8us36dPn3gnhKWRl5cvV/shkpmZiczMTLEfYJHk5GR8+vQJT548wdSpUyEvLw9nZ2exfBMmTEDHjh3RvXt37Nq1q9z1IKQ4b29vWFpaYv78+Th8+DBCQ0Oho6ODtWvXwsXFBQsWLEBMTAx+/fVXtG7dGh06dABQdMd1w4YNGDhwIIYPH46MjAxs3LgRbm5uuHr1KqytrQEAM2bMwMGDB+Hv7487d+5AXV0dx48fx/r16zFv3jy0aNGizPqlpaUhPz9f6nooKSnJ3F8/OTkZhYWF+O+//zB37lwAQKdOnaTO9+7dO6ioqEBFRUWmcsg3iBFOVFQUA8BOnjzJEhMTWUJCAtuzZw/T09NjioqKLCEhgZffycmJNW3alJeWlpbGALC0tDS2b98+BoAtW7aM+9zU1JQB+L/27jyspu3/A/i70jxpLqRkSkKIZCjXUMgQMrvKPGW4Lje5SC4yZrgXfbnIUGZlHhIZM3OJZCZDlOY0n/X7o9/Z2p1z6pRmn9fz7Oepvdfee+11dqvPWXuttUUWh5HuzPdcFPM9F8UcRk5lAJiCkgozb2PHli5dyu7evSv1dUybNo3JyMiw+/fvc+u+fv3KtLW1GQD2+vVrifsOHDiQKSoqsoSEBKnO5eXlxQCwMWPG8Nb379+f6ejo8NY9f/6ctWrVinfdZmZm7OnTp2KPLSwP4bL8+H+83xljbO/evQwAu3z5slT5ZYyx4OBgBoD1HjeHO9bq00+YmaU1A8CGzvbh0grvidu3b3Pr7t+/zwCwgwcPSpXv/Mv8XaEMANPR0WHx8fHcPkePHmUA2PHjxxljjOXm5rKaNWuyrl278o4dFxfHVFVVGQB2584d3rbw8HBe2TZu3JhdvHix0LI4fvw4A8A2bdoksm3MmDFs0aJF7PDhw2zXrl2sb9++DAAbPHiw2GNNnDiRO7esrCxzcXHhXWNxXLx4kQFglpaWLCsri1s/bNgwJiMjw3r27MlLb2try0xMTHjrvn37JnJcR0dHZmZmxluXlpbGGjRowJo2bcoyMjKYk5MT09DQYG/fvi0yn8L7v6ilYN6k9ddffzEALDQ0lLdeWM/kX+rUqcP2798vcowTJ06wGjVqsMePHzPGGHN1dWWqqqolyk95yV+PFoewXvjRdNIe52cjvN8nTJjArcvJyWF16tRhMjIybPny5dz6hIQEpqyszFxdXXlpMzMzecdMSEhgBgYGIv9DHj16xBQUFNi4ceNYQkICq127NrO2tmbZ2dlF5tPe3l6qv8v8eSuKoqIit5+Ojg7bsGFDkfs8f/6cKSkpsV9//VXq85DyI209Qy3KYhQc7GRqaoo9e/ZI1RUhP+E31YKPXGxsbHj9DQEg7OP31tAeo6ZD39gM144HIuruVfx5+zL+/PNPtGzZEgEBAWjSpEmh5z1z5gxsbW25b+cAoK2tjREjRuDvv/+WuF9ycjJOnjyJXr16FbtPbsGWt06dOiEoKAjJyclcH0p1dXU0bdoUtra26Nq1K2JiYrB8+XI4OzvjypUrElvNhBQUvw+kzM7KRFxcHNf39t69e1wXmaKcOnUKsnI10KHP9z7YsnJy6Og8Eq8i7hS5v6amJgDg7Nmz6NWrV4laCoYMGcJrYRTm/dWrV3n5kZXFxIkTsWLFCnh6emLMmDFITk7GH3/8gaysLABAeno675gWFhYICQlBWloarl+/jvPnzxfZZSIwMBDy8vIife8BYNu2bbzff/31V0yYMAFbt27Fb7/9xpW90MyZM+Hi4oKPHz/iwIEDyM3N5fJaUqNGjeK1XtvY2GDv3r0YM2YML52NjQ02bNiAnJwcrmtB/tZ4YQuTvb09zp49i6SkJO5zVFFRgb+/P+zs7GBnZ4dbt25h27ZtqFu3rlT569ixY5HppOlaVNDly5fh7e2NwYMHo0uXLmLTBAcHQ05ODvfv38eRI0dEPu+srCz89ttvmDRpEiwsLIqdB0LEGTduHPeznJwcrK2t8f79e4wdO5ZbX7NmTTRu3Jir04Rp5eTkAOTNgpSYmAiBQABra2vcu3ePdw5LS0t4e3vD09MTDx8+RFxcHM6dOydV16E1a9YgISGhyHQFByYX5vTp08jIyEBkZCT27NmDtLS0QtN/+/YNgwYNgrKyMpYvXy71eUjlQ4GyGBs3bkSjRo2QlJSE7du34/Lly1J1WyhI+E9LXV2dt15XV1ckGH9UYN7OVr/0RqtfeiMjLRXWql/h7++PwMBA9OnTh5t9IyYmhrePpqYmlJWV8fbtW5EBWwDQoEGDQvN7+PBhZGRkiHS7yM3NFZl2Sltbm9d3tmBQIQwCExISoKGhgZycHHTr1g2dO3fmBevdunVD06ZNsWrVKqxYsQJZWVmIj48HACTH551TTVMbsnJySEtOxLk9/+B+2CmkJn5F/o4Sxekb/PbtW2ho60FRmT/6X79OPan2r1evHmbNmgVfX18EBASgU6dO6Nu3L9dnDwDSkhORm/P90Z+8ohKUVb/fB4WVl9DixYsRFxeHlStXchWtg4MDxo4dCz8/P5FHhhoaGtx91a9fPwQGBqJfv364d++e2EeVqampOHr0KBwdHaGjoyPVtf/+++/YunUrzp8/LxIom5ubw9zcHEBeAOng4IA+ffrg5s2bUneLKahgOQnL19jYWGS9QCBAUlISdy3Xrl2Dl5cXwsPDRbpH5A+UAaBDhw6YPHkyNm7cCEdHR5FAXBIzMzOYmZkV+7qK8vTpU/Tv3x+Wlpb4999/Jab75ZdfoKGhgd69e6Nr167o0KED9PX10bt3bwDA2rVrERcXB29v71LPI/l5ifu7VFJSEmns0NTUFBlDsnPnTqxZswZPnz7ldY+oV0+0/p0zZw727duHW7duYdmyZVJ/2RNO01qafvnlFwB5g/379esHS0tLqKmpwd3dXSRtbm4uhg4diidPnuD06dPFCshJ5UOD+cR48+YNxo0bhxEjRiA2NhampqYYPnx4sQc0RUREACg6QC2MkqoaunfvjoCAALi6uuLly5e4efMmAMDIyIi37N+/v8TnAfLmWNXU1OT+yQpFR0eLnKvg3MfCVoKCGGMA8lrHIiIi0LdvX972hg0bokmTJrh27RoA4Pr169w5Fg3tiEVDOyIxNm8e2V1LZ+LG6YNo33so3Bb+g3PnznHzSgsEgh+69uJas2YNHj58iHnz5iE9PR3Tp09H06ZN8f79ewCA/+JpXP4XDe2I4E1LefsXVV4AoKCggH///RcfP37E5cuXERUVxbWGysrKFnlfDRgwAAAkDvwLDg6WONuFJMIAVfhlpjAuLi64ffs2nj0r+csbJJVTUeX38uVLdO3aFXFxcfD19cXJkycREhKC3377DYDo/ZKZmYmwsDBuX2n6HQN5XzZiYmKKXIqa3zi/6OhoODg4QFNTE6dOnRL5oi1J+/btYWRkhICAAAB5XwaWLFmC8ePHIzk5GW/evMGbN2+QmpoKxhjevHkj9Sw6GzduhKmpKZSUlGBjY4Nbt24Vmv7gwYMwNzeHkpISmjVrhlOnTkl1HlI1iPv7k6ZO27NnD9zc3FC/fn1s27YNZ86cQUhICLp06SK2Dn/16hWeP38OAHj06JHU+YuPj5fq77I4DSz51a9fn3vCK8748eNx4sQJ+Pv7S3waRKoOalEWY+3atdiyZQtsbGywbt06BAYGIi0tDf/88w83FUxRcnNzERgYCBUVFakezUrD2toaO3fu5F5AEBISwtvetGlTAICJSd68ywWJWyf06dMnXLx4EW5ubiKt54aGhiLnKmowRUGfP38GkFcuBWVnZyMnJ4c7rvBch+/mBZ3q2nr4lpKE5/fD4ThqGhxH5n2D7969EVeJFoeJiQlCzociMz2N16r85f3rYh2nWbNmaNasGebPn4/r16+jQ4cO8PPzg479KPSd4IH01GQurYaOdLOViGNgYMDNFpKbm4uwsDDY2NgUOQglMzOTa2UVJyAgAGpqaiJfXgojfIyafw5nSYRdQ0r6z+hHHD9+HJmZmTh27Biv9avg6HohLy8vREZGYvXq1fDw8MDcuXOxYcOGIs+zevVqqVprTUxMCp1tRujr169wcHBAZmYmQkNDYWRkVOQ++WVkZHDlnZCQgNTUVKxcuRIrV64USVuvXj3069evyKni9u/fj1mzZsHPz4+rEx0dHREVFSV2Fp7r169j2LBh8PHxQe/evREYGAhnZ2fcu3cPlpaWxboeUr0cOnQIZmZmOHLkCO8pk5eXl0hagUAANzc3aGhoYObMmVi2bBlcXFy4BoDCDBgwAJcuXSoynaurK/z9/Yt1DULp6ekiM+0Aea3gO3bswLp160p1ilVScShQFqN///7cnId+fn44efIktLS0sG7dOsycOVPkpSPi/PHHH4iMjMTcuXO5PrrSyMpIx8dXT2Fq0VJk2+nTpwEAjRs3BiDal1rI0dERGzduxIMHD7h+yvHx8RK//QJ5rY4CgUBs66KSktIPv2yjUaNG3HnyvzDl3r17iIqK4ma90NLS4s71iH1vicwVPqL73jgBAFi3bl2x89KrVy9s2bIF147vRZfBeX3tBLm5uBq8R6r9k5OToaKiwusr16xZM8jKynIVp3GjsgkIVq9ejU+fPvG6ryQmJkJVVVVkJgrhI3vhnOD5xcbG4vz58xg2bJjYPtbJyclQVFTkfWlijHF96x0dHbn1X758EQmYsrOzsWvXLigrK1dI31hh61b+1qykpCTs2LFDJO3NmzexevVqzJw5E7///jvi4uKwYsUKDBw4EPb29oWepzT7KKelpaFXr1748OEDLl68iIYNG0pMJ67F+/Dhw0hISOA+b319fQQFBYmk27BhA8LDw7F3716pAnFfX1+MHz9epE7cvn272IaD9evXo0ePHpgzZw4A4K+//kJISAj++ecf+Pn5FXk+Un3l/7sUBso3b95EeHi4SHcOX19fXL9+HceOHYOTkxPCwsIwefJk2NnZFTmepbT6KOfk5CAlJUVkxppbt27h0aNHIlNqrlq1CqtXr8a8efMwY8aMIs9PqgYKlPMRtmrmn05LVlYW3bp1w5MnT3Dnzh34+/vzBq4lJSVhz568AOvbt294/PgxgLwgZejQofjrr7+KlYeszHRsmDkUJk2sYG7dCTX1DOH7SAnBwcG4cuUKnJ2d0bKlaBCd3x9//IE9e/age/fumDZtGjc9XN26dREfHy+2v2hAQABq1aoldmqp0tC6dWt0794dO3fuRHJyMhwcHLiAT1lZGTNnzix0fyVVNZg1a4OLB/5Fbk42NHUNcHnTf3j9unitwEDeSzvqNW2Fk9vXIOHzBxiYNMCjq+eQ/k26eS4vXLgAd3d3DBo0CI0aNUJOTg52794NOTk5DBw4EOGlNF3mnj17cPjwYdjZ2UFNTQ3nz5/HgQMHMG7cOAwcOJBLFxYWhunTp8PFxQUNGzZEVlYWrly5giNHjsDa2lrsC0P279+PnJwcid0u7t27h2HDhmHYsGFo0KAB0tPTERQUhGvXrmHChAlo1er7PN8TJ05EcnIy7OzsULt2bcTExCAgIABPnz7FmjVreC3f/v7+GD16NHbs2MHNSV0WHBwcoKCggD59+mDixIlITU3F1q1boa+vz3sldEZGBlxdXdGwYUMsXZrXPcbb2xvHjx/H6NGj8ejRo0LfZFeafZRHjBiBW7duYcyYMYiMjOTNnaympgZnZ2cAeXMiC6el+t///gcVFRXcuXMHe/bsgampKfcPWkVFhdsnv+DgYNy6dUvstoKysrJw9+5deHp6cuuEdWJ4eLjYfcLDwzFr1izeOkdHR3rJCUHv3r1x5MgR9O/fH05OTnj9+jX8/PxgYWHB69oYGRmJBQsWwM3NDX369AGQV3dYWVlhypQpRU5xWFp9lFNTU2FsbIwhQ4agadOmUFVVxaNHj7Bjxw5oampiwYIFXNqgoCD88ccfXHdCYVwg1L17d5H3CJCqgQLlfISzU2hra/PWGxgYIDIyEvXr18fq1asxfvx47pvx+/fv8euvvwLI+2cmfCQdEBCA3r17i7T8MMaQk5OD5ORk3vqMtLxKQkZGFv2nzEfU3au4eeYQUhO/4rh8DTRo0AB//fUXJk2aJLJvQZqamjh+/Dg8PDywbNky6OrqYty4cVBVVcWDBw+QnZ3NO8bz589x9+5duLu7F7sftrAFNSUlhTe4T/jYPSUlhTvX7t278ffff+Pw4cM4c+YMFBQUYGtriz///BNGRkYSy0Ro0IzFOL51Ja4eCwAYQw+Hbjhw4AAaN26MzMzMIsslvxEeq3Fy+xrcCT0KGcigSVt7OI6ajn9mDUd2ZgZ3LOF1pKamcuvMzMzwyy+/4OjRo/j06ROUlZVhaWmJQ4cOwcLCAhcvSO7ikpmedz9kZGSIzW/+66hduzZiY2OxePFiZGRkoGHDhli7di1Gjx7N29fU1BQdO3ZEUFAQPn/+DMYY6tWrBw8PD0yfPh0ZGRnIyMjgnWfXrl3Q09ND27ZtxeZDW1sb7dq1w+HDh/HlyxfIysqiUaNGYs/fp08f7N69G5s2bUJ8fDzU1NRgZWUFLy8v9OrVi5dWOH+4hoZGoZ+XcET5t2/feOnEfR7CcgO+34dGRkbYtWsXlixZgtmzZ0NfXx9jx46Frq4upk6dyt2X8+bNw4sXLxASEoKsrCxulo6NGzeiW7dumDFjBnx9fSXmszTdv38fALB9+3Zs376dt61u3bpcX0dNTU307NkTAQEB8Pb2RnZ2NkxMTODu7o4///xT6oGZ0oiLi0Nubq7IP3gDAwM8ffpU7D4xMTFi0xccfJxfZmYm7zG2sPtIcf6mgbw6Q5p9ikon7XF+NpLqe+GgvIJllpubC4FAwK0fMGAA3rx5A39/f5w9e5abpz44OBhXr15FcnIycnNzMXLkSOjo6GDx4sXcvgYGBvDy8oKHhwf8/f2l6oLxo3JycjBq1ChcuXIFhw4dQnp6OoyMjDBw4EDMmTMHBgYGXP6E/fafP3/OxQT5nThxQuqZmUj5EH52+Z88ilWWc9RVNR8+fGAA2PXr13nr58yZw9q2bSt2H2nnUaWFFlpoKe2l4NzulaFOlJeXZ4GBgbx1GzduZPr6+hLPQ/UoLbTQUlFLUfUotSjno6urCzk5OW7gmdDnz595b0DLz9PTk/eYUSAQID4+Hjo6OiWeEqs0pKen8/pFxsfHo1WrVmjRogWOHj1a6udLTk6GsbExoqOji9Un+2dAZZOHMYYGDRpgy5YtXNcBKhvxiioXxhhSUlLKfNqpktSJhoaGxUoPFF6PpqSkVPl7pDrc59XhGoDqcR10DaVD2nqUAuV8FBQU0Lp1a4SGhnL99wQCAUJDQ8XOlQhAZMATgGK/rKMs2NnZoXPnzmjSpAk+f/6Mbdu2ISUlBd7e3mV6U2poaFTYTS9uvueC1NTUpH5laWmryLKpLCR9PlQ24hVWLvnngS4rJakTbW1tERoayht3EBISInZud6HC6lFhg0N1uEfoGiqP6nAddA0/Tpp6lALlAmbNmgVXV1dYW1ujbdu2WLduHdLS0rgR31VFr169cOjQIWzZsgUyMjJo1aoVtm3bBjs7u4rOWpmJjo4WO2l9fl5eXli0aFH5ZIiQaqCoOnHUqFGoXbs2fHx8AAAzZsyAvb091qxZAycnJ+zbtw937tzBli1bKvIyCCGkRChQLmDIkCGIjY3FwoULERMTAysrK5w5c6bKjVZdtmwZli1bVtHZKFfi5nsuqCzeokZIdVZUnfju3TvIyn5/d1X79u0RGBiI+fPnY968eWjYsCGCg4NpDmVCSJVEgbIY7u7uEh8rEvEUFRXh5eVVold9l5bSmO+5LFSGsqmsqGzEq2zlUlidKHyjYX6DBg3CoEGDSuXcla0sSoKuofKoDtdB11C+ZBgral6Mn4ePjw+OHDmCp0+fQllZGe3bt8eKFSu4F3wQQggpHNWjhJDqhALlfHr06IGhQ4eiTZs2yMnJwbx58xAREYEnT54U+tKB/AQCAT5+/Ah1dfUKnfWCEFJ95R+tnb/bQ2VA9SghpCqQth6lQLkQsbGx0NfXx6VLl6QeBPf+/XsYGxuXcc4IISRvAGudOnUqOhuFonqUEFKZFVWPUh/lQgjfDlXwTX2FUVdXB4AqPb8hIaRyE85BKqxvKjOqRwkhlZG09SgFyhIIBALMnDkTHTp0KHS0dsFXrwpfg13RcwMSQqq/yt4tgepRQkhlV1Q9SoGyBFOnTkVERASuXr1aaDofHx94e3uXU64IIQCwNuQZ9/Nv3RtVYE5IYapaPZr/vioJuhcJqX4q1yiQSsLd3R0nTpzAxYsXi+z/5+npiaSkJG6Jjo4up1wSQkjlRfUoIaQ6oBblfBhjmDZtGoKCghAWFlbkW94A8a9eJYSQnxXVo4SQ6oQC5XymTp2KwMBAHD16FOrq6oiJiQGQ9y5wZWXlCs4dIYRUflSPEkKqE+p6kc/mzZuRlJSEzp07w8jIiFv2799f0VkjhJAqgepRQkh1Qi3K+dCU0oQQ8mOoHiWEVCfUokwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiFGjojNACCHSWhvyTOptv3VvJLIt/zpJ+xeW5kfSk7JX2P1RFVR0/n/0Xv7R/Ff1v6Wf/fp/VGUtP2pRJoQQQgghRAwKlAkhhBBCCBGDAmVCCCGEEELEoECZEEIIIYQQMShQJoQQQgghRAwKlAkhhBBCCBGDAmVSJtzc3GBqaspbl5qainHjxsHQ0BAyMjKYOXNmheStMlm0aBFkZGRK9ZhhYWGQkZFBWFhYqR63OOc+dOhQuZ+bEEIIKW1lFiibmppCRkaGW1RVVdG2bVvs2rVLJK3wn6twUVRUhIGBATp37oxly5YhNjZWZB9/f3/ePvmXuXPnculiY2MxY8YMmJubQ1lZGfr6+mjbti08PDyQmppaatcrDHg0NTUBAJqamrw8Xbt2rdTO5ebmJvHaZWRk8OHDh1I7V2latmwZ/P39MXnyZOzevRu//vprRWepStu0aRP8/f0rOhslJvybKbgoKSnx0uX/W5/l0FhkCQgI4KW/f/Ek1kzpDyUlJejp6WHs2LFITYrnpUlPT8fYsWNhaWkJTU1NqKmpYdWkvrgctBPZ2dkSz59/meXQGMnxonUTESUQCODv74++ffvC2NgYqqqqsLS0xJIlS5CRkVHovlevXuXKPC4uTmya/fv3w9bWFnP7WGFef2tsmDkUz++Hl8WlkJ/MrVu3MGXKFLRu3Rry8vJSN2y8irjD1VEF6x9StZTpC0esrKzw+++/AwA+ffqEf//9F66ursjMzMT48eNF0k+fPh1t2rRBbm4uYmNjcf36dXh5ecHX1xcHDhxAly5dRPZZvHgx6tWrx1tnaWkJAIiPj4e1tTWSk5MxZswYmJub4+vXr3j48CE2b96MyZMnQ01NrVSudcCAAWjQoAHS09MxYcIEbNmyBcrKypg3bx5SU1PRpk2bUjkPAEycOBHdunXjrWOMYdKkSTA1NUXt2rVL7Vyl6cKFC2jXrh28vLwqOivVwqZNm6Crqws3Nzfeejs7O6Snp0NBQaFiMlZMmzdv5v0dysnJ8bbb2dlh9+7dAIDTjz5x6y8f2YmPr56ia9eu3LprxwNx+G9vNGxpC19fX7x//x7r16+HZtg1zNxwkEuXnp6Ox48fo1evXjA1NYWsrCy2HT6Do34+cE18jcDAQJF8FqxrTj/6BGU1jR8vgJ/At2/fMHr0aLRr1w6TJk2Cvr4+wsPD4eXlhdDQUFy4cEFsACIQCDBt2jSoqqoiLS1N7LEXLVqExYsXw8XFBXXa9kRubg5i3jxD0tfPZX1Z5Cdw6tQp/Pvvv2jevDnMzMzw7FnRL8UQCAQI2rgECkoqyMr4Vg65JGWpTAPl2rVrY+TIkdzvbm5uMDMzw9q1a8UGyp06dYKLiwtv3X///QcHBwcMHDgQT548gZGREW97z549YW1tLfb827Ztw7t373Dt2jW0b9+ety05OblUA4nmzZujefPmSE5OxoQJEzBkyBAkJSXh/fv3GDduXKmey9bWFra2trx1V69exbdv3zBixIhSO09p+/LlCywsLCo6GyWWlpYGVVXVis5GkWRlZUVaZSszFxcX6OrqStxuZmYGMzMzAEDs/7+5KSszA4f/8UYDq3YwNDQEAORkZ+HUjrUwa9YGk5bvwBSHxgCA9u3bo0+fPrhx6gDg1AwAoK2tjRs3bvDOk16/C5RU1bF37x74+vpyxxUqWNfEVvG3wJUnBQUFkXp4/PjxMDU15YLlgl/+AWDHjh2Ijo7GuHHjsH79epHtN27cwOLFi7FmzRr89ttvFf5mO1L9TJ48GR4eHlBWVoa7u7tUgfKNU/uRGPsJNj1dcCVI9Ck6qVqK1fVC+Kj06dOnGDx4MDQ0NKCjo4MZM2YU+fgMAPT09GBubo6XL19Kfc4WLVpg3bp1SExMxD///FOc7OLly5eQk5NDu3btRLZpaGhIFUwIBAIsWrQItWrVgoqKCn755Rc8efIEpqamIi15Be3duxeMMamDVxkZGbi7uyM4OBiWlpZQVFRE06ZNcebMmSL3DQwMhIyMDIYPHy7VuVavXo327dtDR0cHysrKaN26dYn7lQrzq6SkBEtLSwQFBfG2C7vWvH79GidPnuQeo7558wYA8Pfff6Np06ZQUVGBlpYWrK2txbboSfLmzRvIyMhg9erVWLt2LUxMTKCsrAx7e3tERESIpH/69ClcXFygra0NJSUlWFtb49ixY7w0wsftly5dwpQpU6Cvr486depw20+fPg17e3uoq6tDQ0MDbdq0EcnzwYMH0bp1aygrK0NXVxcjR46UqlvMjh070KVLF+jr60NRUREWFhbYvHkzL42pqSkeP36MS5cuceXZuXNnAJL7KEuTHzc3N6ipqeHDhw9wdnaGmpoa9PT0MHv2bOTm5haZdyGBQIClS5eiTp06UFJSQteuXfHixQuxaRljSE5OBmNM6uM/uXEBmd/S0LpLH25dzJvnSE9NRkv7nrzWyd69e0NRWQX3w04WeVxtg7ynMYmJiWK3p6SkFKscJBHWpc+ePcPIkSOhqakJPT09LFiwAIwxREdHo1+/ftDQ0IChoSHWrFnD2z8rKwtAXmu7pqYmVFVV0alTJ1y8eJGXzsvLC7KysggNDeWtnzBhAhQUFPDff//98LVIQ0FBQaSxAgD69+8PAIiMjBS735IlS7B48WLUrFlT7PZ169bB0NAQM2bMAGMMmeniW51J6Sjqvk348gnbvCbD07kVvIZ0QNih7bz9c7KzcHrnevhOGYB5zq0xt48V/p41HM8f8L+0Vpb7FgAMDAygrKwsdfq05ESc9l+HHqOmQ1mVnjhVByXqozx48GBkZGTAx8cHvXr1woYNGzBhwoQi98vJycH79++hpaVVrPO5uLhAWVkZ586dE9mWlJSEuLg43iJkYmKC3Nxc7rFtSXh6esLb2xvW1tZYtWoVGjZsCEdHR4mPAfMLCAiAsbEx7OzspD7f1atXMWXKFAwdOhQrV65ERkYGBg4ciK9fv0rcJzs7GwcOHED79u1FBtBJsn79erRs2RKLFy/GsmXLUKNGDQwaNAgnTxYdTOR37tw5DBw4EDIyMvDx8YGzszNGjx6NO3fucGmaNGmC3bt3Q1dXF1ZWVti9ezd2794NPT09bN26FdOnT4eFhQXWrVsHb29vWFlZ4ebNm8XKBwDs2rULGzZswNSpU+Hp6YmIiAh06dIFnz9/fwT7+PFjtGvXDpGRkZg7dy7WrFkDVVVVODs7iwT4ADBlyhQ8efIECxcu5Pq++/v7w8nJCfHx8fD09MTy5cthZWXF+0Lj7++PwYMHQ05ODj4+Phg/fjyOHDmCjh07SgzChDZv3gwTExPMmzcPa9asgbGxMaZMmYKNGzdyadatW4c6derA3NycK88///xT4jGLk5/c3Fw4OjpCR0cHq1evhr29PdasWYMtW7YUmu/8li9fjqCgIMyePRuenp64ceOGxC+MZmZm0NTUhLq6OkaOHMn7vCS5e+E45BWV0Kxjd25dTnZe8CivKPoFWF5BCR9eRkIgEPDWZ2VlIS4uDtHR0Xh4NQQXD22HiYkJGjRoIHKMX375BRoaGlBRUUHfvn0R++FNkfksypAhQyAQCLB8+XLY2NhgyZIlWLduHbp3747atWtjxYoVaNCgAWbPno3Lly9z+6WkpADIewq3YsUKLFq0CLGxsXB0dMSDBw+4dPPnz4eVlRXGjh3L7XP27Fls3boVCxcuRIsWLQrNn7j6VdxS0vEeMTExACDxiYKBgQEmTpwocf/Q0FC0adMGGzZsgJ6eHjz7tYLX0I64cnRPifJDpCPpvv3f3NHQ1DFA77GzoVurLo5tWYGXD29z+2V8S8XN0wdRv0Vb9B43Gw6/uiMtMR5b5o3Dh5ffvyxV9vu2MGd2roe6lh5snYaW+rFJxShR14t69erh6NGjAICpU6dCQ0MDmzZtwuzZs9G8eXMuXXZ2Nhe4xsTEYOXKlYiJicHUqVOLdT55eXk0atRIbEu0uMd1wpapMWPGYO3atXBzc8Py5cvRuXNn2NnZoVevXtygu8J8/vwZvr6+IkGUt7c3Fi1aVOi+kZGRePjwIf74449izWoQGRmJJ0+eoH79+gDy/jm3aNECe/fuhbu7u9h9zp49i69fvxar28WzZ89435Ld3d3RqlUr+Pr6wsnJSerjeHh4wMDAAFevXuXK1N7eHg4ODjAxMQGQ989u5MiRmD9/vkh3nJMnT6Jp06Y4ePCg2OMXx4sXL/D8+XOuj3aPHj1gY2ODFStWwNfXFwAwY8YM1K1bF7dv34aioiKAvGC4Y8eO8PDw4Fq4hLS1tREaGsr1m01KSsL06dPRtm1bhIWF8Z5KCO+77OxseHh4wNLSEpcvX+bSdOzYEb1798batWvh7e0t8TouXbok8tn06NEDvr6+3N+Os7Mz5s+fz7UMF6a4+cnIyMCQIUOwYMECAMCkSZPQqlUrbNu2DZMnTy70XPmP8eDBA67LkZaWFmbMmIGIiAhuDIGWlhbc3d1ha2sLRUVFXLlyBRs3bsStW7dw584daGiIb41JS07E0ztX0Kx9NyipfO/brFvbJO/JxeN7aOs4kFsfFRXFDaZJSEiAjo4Ot+3IkSMYNmwY97txI0scPxSIGjW+V40qKipwc3PjAuW7d+/C19cXFy5fxayNQQAaSVUm4rRt2xb/+9//AOS1lpmamuL333+Hj48PPDw8AADDhg1DrVq1sH37du5Lt7CFdenSpVw5jR8/Hubm5vj777+xbds2AHl1565du9C6dWvMmjULq1atwtixY2Ftbc0b9CxJv379cOnSpSLTubq6lmhg6cqVK6GhoYGePXvy1gufBC1dulSkz7pQQkIC4uLicO3aNVy4cAFeXl54lFgDt84eQdDGvyAnVwPte1OwUhYk3be9xsxC1yF5jWatfumNRcM64dbZw6jfPG+MjoqaJubvvoAa8t+7Itr2GozlY3viSvBuYFI/AJX/vpXk46unCD+5H+OXbIGshPuWVD0lCpQLBrrTpk3Dpk2bcOrUKV6gfO7cOejp6fHSjh49GqtWrSr2OdXU1Lhvlvlt3LgRjRqJ/0dlYGCA//77D4sXL0ZQUBD8/Pzg5+cHBQUFzJ8/H/Pnzy80iA0NDUVOTg6mTJnCWz9t2rQiA+UDBw4AQLH7DHfr1o0LkoG8vs8aGhp49eqVxH0CAwMhLy+PwYMHS32e/IFYQkICcnNz0alTJ+zdu1fqY3z69AkPHjzA3LlzeV88unfvDgsLC6la3WvWrIn379/j9u3bPzzg0dnZmTeQsW3btrCxscGpU6fg6+uL+Ph4XLhwAYsXL0ZKSgrvfnJ0dISXlxc+fPjAO8b48eN5/6hDQkKQkpKCuXPninTdEd5Ld+7cwZcvX7Bo0SJeGicnJ5ibm+PkyZOFBsr5P5ukpCRkZ2fD3t4eZ8+eRVJSklRf8vIrSX4mTZrE+71Tp07FejIzevRoXr/8Tp06AQBevXrFBcozZszg7TNw4EC0bdsWI0aMwKZNmyT+Q3x45Sxys7PRKl+3CwBQ09RGC7ueuB0SDIO69dGv/gR8+PAB06ZNg1wNeeTmZCM9PZ23zy+//IKQkBAkJiZi7c7D+PgqSuS+HTx4MO9vy9nZGY6OjrCzs8P5vZuxeIS91OVS0Lhx47if5eTkYG1tjffv32Ps2LHc+po1a6Jx48a8OiD/PSkQCJCYmAiBQABra2vcu3ePdw5LS0t4e3vD09MTDx8+RFxcHM6dO8f7MiDJmjVrkJCQUGS6WrVqFZmmoGXLluH8+fPYtGmTSNcK4ZeE/AM1CxK2Bn79+hX79u3DkCFDsDbkGZp36oFVE/vgfOBmCpTLiKT71qbH9zFGymoa0K9TD18/RXPrZOXkuABSIBAgPTUZjAlg3MgSH1484Z2jst63hQnatBTmbezQ2LpjqR6XVKwSBcoNGzbk/V6/fn3IyspyfU6FhI9kcnNzERERgSVLliAhIaFEA9tSU1Ohrq4usr5t27YSB/MBgJGRETZv3oxNmzbh+fPnOHv2LFasWIGFCxfCyMgI48aNQ2pqKu8RjJycHPT09PD27VsAEHkMq62tXWT3kUOHDsHS0pL3xQHIC3zy/7NWUFCAtrY293vdunVFjqWlpSXxjz41NRVHjx7lHpXnFx8fz/VlBPICMGGQdeLECSxZsgQPHjxAZmYml6Y4rd/C8il4PwBA48aNRf5hi+Ph4YHz58+jbdu2aNCgARwcHDB8+HB06NBB6nwIictHo0aNuC8tL168AGMMCxYs4FpLC/ry5QsvUC44o4rwqYYw2BNHWC6NGzcW2WZubo6rV68Weh3Xrl2Dl5cXwsPD8e0bf8R0SQLl4uZHOK1afgXvwdjYWF5fXTU1Nd7MFQXvY+HfS1H/vIYPH47ff/8d58+flxgo371wHCrqNdGkjWiXpkEzFyM7KwPHtqzAsS0rAAAjR46EQN0Aj66eE5nlxsDAAAYGBgCAaM3mOL/XD927d8fz589FBvPl17FjR9Q1b4FnPzgFWcFy0tTUhJKSkkhXBE1NTbHdr9q3b49nz57xprQreM8CwJw5c7Bv3z7cunULy5Ytk3pQbevWraVKV1z79+/H/PnzMXbsWJGnFPv375eq65XwC6W8vDxvELisrCys7Hvi7K6/kfDlI7T0SzcYIpLvWzVNbd56JVV1pCUn8tbdPheEsMPb8SX6NXJzvt+32oZ1UFBlu28Ls3//frx5ch9zthwv93OTslUqs15ICq50dXW5rhGOjo4wNzdH7969sX79esyaNUvq42dnZ+PZs2eFBifS5LFRo0Zo1KgRnJyc0LBhQwQEBGDcuHFYvXo1r0VNW1sb6urqeP/+PYC8mTfE/fMpzLt37+Dj4yOyfsaMGdi5cyf3u729PW/QlaTHjJIGOgUHB0uc7WLAgAG8x0/Cx0xXrlxB3759YWdnh02bNsHIyAjy8vLYsWNHsQbRlYYmTZogKioKJ06cwJkzZ3D48GFs2rQJCxcuLLTVtSSE/VNnz54NR0dHsWkKfikqziCO0vDy5Ut07doV5ubm8PX1hbGxMRQUFHDq1CmsXbtWpI9tWZB0D+bXpk0bLgAH8gbf5H/KUtz7OD9jY2PEx4ufdzThy0e8jriDdr0GQ66GvMh2ZVV1jPXejIQvH9HNWBYmJiYwMTFBvaatoKapLXFQmFDzTo44tWMtjh49WmjfWACoqWeIL+9fF3k9hRFXTtKU3f79+wHkBcUeHh7Q19fn+p+L66L26tUrPH/+HADw6NEjqfNX8Mu2JPm/hAtt3LgRq1atQkxMDFq0aIG///4bbdu2RUhICEaNGgUnJyf4+fmJHGvOnDlwdnbGwYMH8fbtW6irq3P96KOjo5GVlYVatWpxg3Fr1qwpUmbqNfMaDb6lJFOgXAaKc98i33175/xR7F09F5btu+GXQWOhVlMHsrJyCN33P8Tla3kWqoj7tqTmzJmDFp0cUaOGPOJj8mKH9LRkAEBibAxyc7KhqWNQKuci5atEgfLz5895geOLFy8gEAiKHEjm5OQEe3t7LFu2DBMnTpR6qq1Dhw4hPT1dYnBTXGZmZtDS0sKnT3lzso4aNQodO+Y9KgkLC8OKFSuwevVqxMbGwsPDAyNHjsSrV6+gr68PIO9RX1EtY5JmoPjjjz94fUqLO7CxoICAAKipqaFv374i2wo+fhI+Zjp8+DCUlJRw9uxZrp8ukDfbQnEI+yALK7L8oqKipD6OqqoqhgwZgiFDhiArKwsDBgzA0qVL4enpWaxpzsTl49mzZ9x9KZxiTF5eXmzfdmkIu8VERESIHfAFfC+XqKgokbm/o6KiuO3iHD9+HJmZmTh27Biv1abgbAaA9K3/P5IfSQICAnhPRoRl+6MYY3jz5g1atmwpdvu9iyfAGEPrLqL3e35a+rVgZ5fXJSsxMRHRzyPQvGPR9Uf2/z9dSUpKKjLt10/RUNP8sb/fkhKOEdmzZw/vH724OcoFAgHc3NygoaGBmTNnYtmyZXBxccGAAQOKPE/BL9uSFOzruX//fsyaNQt+fn6wsbHBunXr4OjoiMDAQAwaNAjW1tY4cOCA2Mfo0dHRiI7OC5oKPpFr1aoVWrRogQcPHuS1HFtZ4fbt28jKyuI9qUz6+gUAoFazYj4fIt7DK2ehY2SM0V7/8OqvM7s2iKStiPv2Rwjv23sXT4hs853SH7XMzDHb72ipnIuUrxIFyhs3boSDgwP3+99//w0AIgMyxPHw8ECvXr2wdetWqV5h/N9//2HmzJnQ0tIq9iDAmzdvwtLSUiQgv3XrFr5+/co93s8/T+uff/6JiRMnYvTo0fj8+TP+/PNP5ObmYvv27dyj4MKmqRM+ArW1tRXbjcLCwqLU5hKOjY3F+fPnMWzYMKioqIhsl/T4SU5ODjIyMrxH52/evEFwcHCxzm9kZAQrKyvs3LmT1085JCQET548kSoA+/r1K6/LiIKCAiwsLHD69GlkZ2cXK1AODg7m9TG+desWbt68yd1n+vr66Ny5M/73v/9h2rRpInNyx8bGinQ5KMjBwQHq6urw8fFBjx49RAbzycjIwNraGvr6+vDz88OYMWO4LyOnT59GZGQkFi5cKPH4wlaZ/K2HSUlJYr/EqKqqFjmDBoAfyo8kJekaU5C48t68eTNiY2PRo0cPsfvcu3gCWvq1UM9S+kernp6eEOTmwn6AK7cuLi4OOjo6Il82bp7JG1TKmy9ZTD5PnTqF988fo5NzxbxdUlY2b8Ki/PfJzZs3ER4eLlLv+Pr64vr16zh27BicnJwQFhaGyZMnw87OrtD5q4GS9/X09fXF+PHjMXr0aACAn58fgoOD4eLignr16uHEiRMSn9YEBQVxT8kCAgKgoqKCffv2Yf/+/di1axdvmsYhQ4bgxo0b2LlzJzc3f3ZWJu5dOA4DkwbUglfJyOSr34R/e28j/8PbyAeoqS96D5X3ffsjgoKCcOzBR966+2En8eDSKQz/YwU0dSV35SKVW4kC5devX6Nv377o0aMHwsPDsWfPHgwfPrzIKVuAvGDa0tKSG8EvL//98emVK1eQkZGB3NxcfP36FdeuXcOxY8egqamJoKCgQvsMirN7924EBASgf//+aN26NRQUFBAZGYnt27dDSUkJ8+bN46XPysrC3bt34enpCSCv/+KMGTOwZs0arFu3DhoaGvjvv/9w+vRp6OrqQkZGBpmZmbw+vsL5ePv06YPk5ORi5VeYh4L7McaQnZ0tsn7nzp3IycmBs7Nzsc7VuXNn+Pr6onv37nBxcUFcXBy2bt0KMzMzREREFOtYCxYswKBBg9C+fXuMHDkSCQkJ2LJlC5o0aYK0tDTesRhjyMnJ4a3r2rUrDAwMYGNjA319fURFRWHr1q1wdHTk5tctinBQnpmZGdq3b4+xY8ciKysLmzZtgra2NiZPnswdZ8WKFXB0dISlpSVcXV1hamqK2NhY3Lp1Cx8/fuReNS5sLU1NTRXJw7JlyzBt2jS0bt0aLi4uqFmzJiIiIpCens49Sl60aBE3m4aLiwu+fPkCPz8/1K1bF2PHjuWOKbx3hL+3b98eCgoKcHJywujRo5GamoqdO3dCV1cXnz59QkpKCpe2WbNm2LZtGxYsWIB69epBT08P9vb23GC0/OUvbX6EX/QKXnPBfEoiPPe3b994aYWfUXp6OrfexMQEAwYMgIWFBRQVFXHjxg0cPnwYzZo1w7Bhw0TO9eTJE3x6FQX7AW7I/PZ9wJ0wXUZaKi4d3oHP716iTiNLsEeGOHnyJC5cuIDuw6dAv44Zl/bff//F9u3b4eTkBFNTU6SmpsL/4HG8+O8m92IRYdp27dqhefPmaNmyJVcH7NmzB5q6BujY71dePidPnozAwEA8fPiw0C+KwvJMSUnhtYRKKv/c3FwIBAJuvb29PY4fP47hw4fD2dkZr1+/hp+fHywsLHjjLSIjI7FgwQK4ubmhT5+8wY/+/v6wsrLClClTuP77kpSkr2fBehTIuy/S0tLw7ds3/PrrryLTUBobG3NPEbp06cK16NvZ2UFDQ4Prs9yxY0fo6Ohw5TBs2DBs2bIFU6dOxaNHj/A6XQkPwk4h4fNH/DpvLTLSSn/6r8KUpM7Pr7zzW1BR+S/qvi2Yf8H/37fC9Y2sbPHo6jlsWzAJja07IuHzB9w8exh6dcyQlfG9zoiKisKCBQswYsQI2NvbIzU1Ff/88w86duyI8ePH87oviiNuvEpJr/ndu3dcVyfhfSgc42JsbIyhQ/MGjHbp0gWR4M8V//Zp3nzP9Zq2hqqGVpGf74/eP1Xdj97/xS0/YfoiuwSyYvDy8mIA2JMnT5iLiwtTV1dnWlpazN3dnaWnp/PSmpiYMCcnJ7HH8ff3ZwDYjh07GGOMXbx4kQHgFnl5eaanp8fs7OzY0qVL2ZcvX0SOsWPHDgaA3b59W2J+Hz58yObMmcNatWrFtLW1WY0aNZiRkREbNGgQu3fvnkj6Dx8+MADs+vXr3LqcnBxma2vL5OXlmbKyMuvSpQuLjIxkOjo6bNKkSVyZ0EILLbSU91KnTh2mqKjIWrZsyU6cOMFcXV2ZiYkJV3e1adOG1alThyUmJvLquvXr1zMAbP/+/RLrz5ISV4++fv260Oto0aJFhZclLbTQ8nMu0dHRhdZpMoxJ/zqsRYsWwdvbG7GxsUU++qiKPn78iNq1a+P69eu8V0T/8ccfuHTpEvdtMjExEVpaWliyZAlmz57Na1EWCASIj48X+1i3OktOToaxsTGio6Mlzn9bVt6+fYvmzZvjr7/+wvTp08v13NKoyLKp7Kpb2TRo0ABDhw7FkiVLfug4RZULYwwpKSmoVasW1w2jspC2Hs2v4JO5/PVoSkpKlb9HqsN9Xh2uAage10HXUDqkrUdLZdaL6kJXVxdycnK8N4Olp6fj8+fPvG4f69atA5DXhUFRUZE3IA5AkSPrqzMNDY1yv+mF0wYqKSlV6kqjIsqmqqgOZfP48WNkZGRg4cKFpXYthZVLaY3WL23i6lEAIvVofoXVo8IGh+pwj9A1VB7V4TroGn6cNPUoBcr5KCgooHXr1ggNDYWzszMAYO/evdi3bx+6dOmCTZs24erVq9i7dy8cHBxKZUBTZVVwvmdxittnvLhyc3MRGxtbaJqC8+ISUlGaNm360/cxBMTXowKBAKGhoRLfLkoIIZUVBcoFzJo1C66urrC2tkbbtm1x8uRJCAQC3Lp1C6GhodwAvx99tFrZFZzvWZxi9Nopkejo6CLnr/by8oKbm1uZ5oMQUjwF69F169YhLS2NmwWDEEKqimIFyosWLSry1c1V3ZAhQxAbG4uFCxciJiYGVlZWuHr1KmxsbCo6a+Wq4HzPRVFUVISXl5fI49MfYWhoiJCQkELTmJmZwdTUtMyD9h9RFmVTXVDZiFfVy0VcPXrmzBnuLYjFUdXLAqBrqEyqw3XQNZSvYg3mI4QQQggh5GdRuYZLE0IIqdJ8fHzQpk0bqKurQ19fH87OzsV6UychhFQm1KJcygQCAT5+/Ah1dfWfano4Qkj5qczTw/Xo0QNDhw5FmzZtkJOTg3nz5iEiIgJPnjwReUuqJFSPEkLKmrT1KAXKpez9+/cwNjau6GwQQn4C0dHRvFc6V0axsbHQ19fHpUuXYGdnJ9U+VI8SQspLUfUozXpRyoRz+lblicAJIZWbcLJ+YX1TmQlfR62trS0xTcEXjgjbb6geJYSUFWnrUQqUS1l1mhyfkJ/J2pBnAIDfujeq4JxIr7J3SxAIBJg5cyY6dOgAS0tLiel8fHzg7e0tsr649ajwM8yvKn2eZYHKhJDCFVWPVq7ObYQQQqqNqVOnIiIiAvv27Ss0naenJ5KSkrglOjq6nHJICCGFoxZlQgghpc7d3R0nTpzA5cuXi+xHLe4V1oQQUhlU2xblkkxR5O/vDxkZGd6ipKRUTjkmhJCqjzEGd3d3BAUF4cKFC0W+XZMQQiqzahsoX7p0CVOnTsWNGzcQEhKC7OxsODg4IC0trdD9NDQ08OnTJ255+/ZtOeWYEEKqvqlTp2LPnj0IDAyEuro6YmJiEBMTg/T09IrOGiGEFFu17Xpx5swZ3u/+/v7Q19fH3bt3C52iSEZGBoaGhmWdPUIIqZY2b94MAOjcuTNv/Y4dO+Dm5lb+GSKEkB9QbQPlgqSZoggAUlNTYWJiAoFAgFatWmHZsmVo2rSpxPQFpzVKTk4unQwTQkgVRFPzE0Kqk2rb9SI/aacoaty4MbZv346jR49iz549EAgEaN++Pd6/fy9xHx8fH2hqanILTZJPCCGEEFI9/BSBsrRTFNna2mLUqFGwsrKCvb09jhw5Aj09Pfzvf/+TuA9Na0QIIYQQUj1V+64XxZmiqCB5eXm0bNkSL168kJiGpjUihBBCCKmeqm2LcmlMUZSbm4tHjx7ByMioDHJICCGEEEIqs2rbojx16lQEBgbi6NGj3BRFAKCpqQllZWUAwKhRo1C7dm34+PgAABYvXox27dqhQYMGSExMxKpVq/D27VuMGzeuwq6DEEIIIYRUjGobKEszRdG7d+8gK/u9UT0hIQHjx49HTEwMtLS00Lp1a1y/fh0WFhbllW1CCCGEEFJJVNtAWZopisLCwni/r127FmvXri2jHBFCCCGEkKqk2vZRJoQQQggh5EdQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiRrWdR5kQQggpqbUhz0TW/da9UaU53o+oTHkhpLKjFmVCCCGEEELEoECZEEIIIYQQMShQJoQQQgghRAwKlAkhhBBCCBGDAmVCCCGEEELEoECZEEIIIYQQMWh6OEIIKWUFp98STr0lXC/pd0IIIZULtSgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiRrUPlDdu3AhTU1MoKSnBxsYGt27dKjT9wYMHYW5uDiUlJTRr1gynTp0qp5wSQkj1Udy6lxBCKqNqHSjv378fs2bNgpeXF+7du4cWLVrA0dERX758EZv++vXrGDZsGMaOHYv79+/D2dkZzs7OiIiIKOecE0JI1VXcupcQQiqrah0o+/r6Yvz48Rg9ejQsLCzg5+cHFRUVbN++XWz69evXo0ePHpgzZw6aNGmCv/76C61atcI///xTzjknhJCqq7h1LyGEVFY1KjoDZSUrKwt3796Fp6cnt05WVhbdunVDeHi42H3Cw8Mxa9Ys3jpHR0cEBwdLPE9mZiYyMzO535OSkgAAycnJP5B7Qkh5y0hLBVA6f7vCYwkJj1nwHCU9pzA9Y+yH8lkWSlL3llY9WrDcS3KMsjhWWRzvR84rDv3PIj8baevRahsox8XFITc3FwYGBrz1BgYGePr0qdh9YmJixKaPiYmReB4fHx94e3uLrDc2Ni5BrgkhFW1eORyzqN+llZKSAk1NzRLuXTZKUveWZT1amp9nad8bZXGvlVRlygsh5amoerTaBsrlxdPTk9cKLRAIEB8fDx0dHcjIyFRgzspXcnIyjI2NER0dDQ0NjYrOTqVCZSMZlY14RZULYwwpKSmoVatWBeSu9BVWj6akpFT5e6Q63OfV4RqA6nEddA2lQ9p6tNoGyrq6upCTk8Pnz5956z9//gxDQ0Ox+xgaGhYrPQAoKipCUVGRt65mzZoly3Q1oKGhUWX/cMsalY1kVDbiFVYula0lWagkdW9h9aiwwaE63CN0DZVHdbgOuoYfJ009Wm0H8ykoKKB169YIDQ3l1gkEAoSGhsLW1lbsPra2trz0ABASEiIxPSGEEL6S1L2EEFJZVdsWZQCYNWsWXF1dYW1tjbZt22LdunVIS0vD6NGjAQCjRo1C7dq14ePjAwCYMWMG7O3tsWbNGjg5OWHfvn24c+cOtmzZUpGXQQghVUpRdS8hhFQV1TpQHjJkCGJjY7Fw4ULExMTAysoKZ86c4QaZvHv3DrKy3xvV27dvj8DAQMyfPx/z5s1Dw4YNERwcDEtLy4q6hCpDUVERXl5eIo9PCZVNYahsxKvq5VJU3VscVb0sALqGyqQ6XAddQ/mSYZVxfiFCCCGEEEIqWLXto0wIIYQQQsiPoECZEEIIIYQQMShQJoQQQgghRAwKlAkhhBBCCBGDAmVSqMuXL6NPnz6oVasWZGRkEBwczNvOGMPChQthZGQEZWVldOvWDc+fP+eliY+Px4gRI6ChoYGaNWti7NixSE1NLcerKH1FlYubmxtkZGR4S48ePXhpqmO5AHmvI27Tpg3U1dWhr68PZ2dnREVF8dJkZGRg6tSp0NHRgZqaGgYOHCjygop3797ByckJKioq0NfXx5w5c5CTk1Oel1KqpCmXzp07i9w3kyZN4qWpbuUiyaJFi0TKwtzcvKKzVajSqC8rWmnUbRWttOqgilRa9UVF27x5M5o3b869WMTW1hanT5/mtlf2zwGgQJkUIS0tDS1atMDGjRvFbl+5ciU2bNgAPz8/3Lx5E6qqqnB0dERGRgaXZsSIEXj8+DFCQkJw4sQJXL58GRMmTCivSygTRZULAPTo0QOfPn3ilr179/K2V8dyAYBLly5h6tSpuHHjBkJCQpCdnQ0HBwekpaVxaX777TccP34cBw8exKVLl/Dx40cMGDCA256bmwsnJydkZWXh+vXr2LlzJ/z9/bFw4cKKuKRSIU25AMD48eN5983KlSu5bdWxXArTtGlTXllcvXq1orNUqNKoLytaadRtFa006qCKVhr1RWVQp04dLF++HHfv3sWdO3fQpUsX9OvXD48fPwZQ+T8HAAAjREoAWFBQEPe7QCBghoaGbNWqVdy6xMREpqioyPbu3csYY+zJkycMALt9+zaX5vTp00xGRoZ9+PCh3PJelgqWC2OMubq6sn79+knc52coF6EvX74wAOzSpUuMsbx7RF5enh08eJBLExkZyQCw8PBwxhhjp06dYrKysiwmJoZLs3nzZqahocEyMzPL9wLKSMFyYYwxe3t7NmPGDIn7/AzlIuTl5cVatGhR0dkosZLUl5VNSeq2yqgkdVBlU5L6orLS0tJi//77b5X5HKhFmZTY69evERMTg27dunHrNDU1YWNjg/DwcABAeHg4atasCWtray5Nt27dICsri5s3b5Z7nstTWFgY9PX10bhxY0yePBlfv37ltv1M5ZKUlAQA0NbWBgDcvXsX2dnZvPvG3NwcdevW5d03zZo1472gwtHREcnJyVxLRFVXsFyEAgICoKurC0tLS3h6euLbt2/ctp+hXPJ7/vw5atWqBTMzM4wYMQLv3r2r6CyVmDT1ZVVRWN1WGZWkDqpsSlJfVDa5ubnYt28f0tLSYGtrW2U+h2r9Zj5StmJiYgBA5G1bBgYG3LaYmBjo6+vztteoUQPa2tpcmuqoR48eGDBgAOrVq4eXL19i3rx56NmzJ8LDwyEnJ/fTlItAIMDMmTPRoUMH7g2XMTExUFBQQM2aNXlpC9434u4r4baqTly5AMDw4cNhYmKCWrVq4eHDh/Dw8EBUVBSOHDkCoPqXS342Njbw9/dH48aN8enTJ3h7e6NTp06IiIiAurp6RWev2KSpL6uCouq2yqakdVBlUtL6orJ49OgRbG1tkZGRATU1NQQFBcHCwgIPHjyoEp8DBcqElIGhQ4dyPzdr1gzNmzdH/fr1ERYWhq5du1ZgzsrX1KlTERERUen7lpY3SeWSv496s2bNYGRkhK5du+Lly5eoX79+eWezQvXs2ZP7uXnz5rCxsYGJiQkOHDiAsWPHVmDOfm5VrW6rDnVQVa8vGjdujAcPHiApKQmHDh2Cq6srLl26VNHZkhp1vSAlZmhoCAAiI1Q/f/7MbTM0NMSXL19423NychAfH8+l+RmYmZlBV1cXL168APBzlIu7uztOnDiBixcvok6dOtx6Q0NDZGVlITExkZe+4H0j7r4SbqvKJJWLODY2NgDAu2+qa7kUpWbNmmjUqBFXFlWNNPVlVVSwbqtMfqQOqix+pL6oLBQUFNCgQQO0bt0aPj4+aNGiBdavX19lPgcKlEmJ1atXD4aGhggNDeXWJScn4+bNm7C1tQUA2NraIjExEXfv3uXSXLhwAQKBgPuj/hm8f/8eX79+hZGREYDqXS6MMbi7uyMoKAgXLlxAvXr1eNtbt24NeXl53n0TFRWFd+/e8e6bR48e8b5MhISEQENDAxYWFuVzIaWsqHIR58GDBwDAu2+qW7lIKzU1FS9fvuTKoqqRpr6sigrWbZVBadRBFa006ovKSiAQIDMzs0p8DgBo1gtSuJSUFHb//n12//59BoD5+vqy+/fvs7dv3zLGGFu+fDmrWbMmO3r0KHv48CHr168fq1evHktPT+eO0aNHD9ayZUt28+ZNdvXqVdawYUM2bNiwirqkUlFYuaSkpLDZs2ez8PBw9vr1a3b+/HnWqlUr1rBhQ5aRkcEdozqWC2OMTZ48mWlqarKwsDD26dMnbvn27RuXZtKkSaxu3brswoUL7M6dO8zW1pbZ2tpy23NycpilpSVzcHBgDx48YGfOnGF6enrM09OzIi6pVBRVLi9evGCLFy9md+7cYa9fv2ZHjx5lZmZmzM7OjjtGdSwXSX7//XcWFhbGXr9+za5du8a6devGdHV12ZcvXyo6axKVRn1Z0UqjbqtopVEHVbTSqC8qg7lz57JLly6x169fs4cPH7K5c+cyGRkZdu7cOcZY5f8cGGOMAmVSqIsXLzIAIourqytjLG/KowULFjADAwOmqKjIunbtyqKionjH+Pr1Kxs2bBhTU1NjGhoabPTo0SwlJaUCrqb0FFYu3759Yw4ODkxPT4/Jy8szExMTNn78eN6UXoxVz3JhjIktFwBsx44dXJr09HQ2ZcoUpqWlxVRUVFj//v3Zp0+feMd58+YN69mzJ1NWVma6urrs999/Z9nZ2eV8NaWnqHJ59+4ds7OzY9ra2kxRUZE1aNCAzZkzhyUlJfGOU93KRZIhQ4YwIyMjpqCgwGrXrs2GDBnCXrx4UdHZKlRp1JcVrTTqtopWWnVQRSqt+qKijRkzhpmYmDAFBQWmp6fHunbtygXJjFX+z4ExxmQYY6z026kJIYQQQgip2qiPMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiEGBMiGEEEIIIWJQoEwIIYQQQogYFCgTQgghhBAiBgXKhBBCCCGEiPF/9hJNMaSgiG8AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -226,12 +226,12 @@ "\tpath: ../examples/model.hallway-jvq.final.zanj\n", "\toriginal model name: 'model.zanj_model_config.name = 'hallway_v3'', changing to 'hallway-jvq.final'\n", "\tmodel tensors on devices: {device(type='cpu')}\n", - "rollouts for ../examples/model.hallway-jvq.final.zanj on forkless-g6-n6-a_dfs-h71625\n" + "rollouts for ../examples/model.hallway-jvq.final.zanj on forkless-g6-n6-a_dfs-h33701\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjr0lEQVR4nOzdd3hTZfsH8O/J7t670AJltUBZMssus43iBBUFHK+Ke+B8EVBR0R8OVBAXKjjB8VIQWbKRIaPsXTallO6VNMn5/RGbNk3aJqVJ2vT7ua5ecJ48Oec+WefkznM/RxBFUQQREREREREREVEDk7g6ACIiIiIiIiIick9MPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERER1eLMmTMQBAFff/213ffdsGEDBEHAhg0bGjwuZ/j6668hCALOnDlj931nzJgBQRDq7Dd48GB06tSpHtHVTBAEzJgxw7R8PfvhCrY+do5w4sQJjBgxAn5+fhAEAb///rtTHr/reZ85Q2xsLCZNmuTqMIiIiJokmasDICIiIqLGYeLEicjIyMCsWbPg7++Pnj17Yu3ata4Oi4iIiJowJp6IiIiIGpH//ve/ePHFF52+3dLSUvz999945ZVX8Nhjj5na77nnHowfPx5KpdLpMTUWx44dg0TCQgEiIqL6YOKJiIiIqBGRyWSQyZx/inb16lUAgL+/v1m7VCqFVCp1ejyNSXNOuhEREV0v/nRDRESNWsV8N8ePH8eECRPg5+eHkJAQTJs2DaIo4vz587jpppvg6+uL8PBwzJkzx2IdWVlZuP/++xEWFgaVSoXExER88803Fv3y8vIwadIk+Pn5wd/fHxMnTkReXp7VuI4ePYrbbrsNgYGBUKlU6NmzJ5YtW1bn/pSUlODo0aPIzs6us2/F/Ef79+/HoEGD4Onpibi4OCxduhQAsHHjRvTu3RseHh5o37691ZKovXv3YvTo0fD19YW3tzeGDRuG7du3W/Q7dOgQhg4dCg8PD0RHR+ONN96AwWCwGtfKlSsxYMAAeHl5wcfHBykpKTh06FCd+1Obw4cPY8iQIfD09ERUVBTeeecds9u1Wi1effVV9OjRA35+fvDy8sKAAQOwfv16u7f1zDPPICgoCKIomtoef/xxCIKAuXPnmtquXLkCQRAwf/58m2MQRRGxsbG46aabLLZbVlYGPz8/PPTQQ7XGV32Op06dOmHIkCEW/QwGA6KionDbbbeZ2qy9hvft21fn/EkzZsxATEwMAGDq1KkQBAGxsbEArM+RFRsbi9TUVGzZsgW9evWCSqVC69at8e2335qtNycnB8899xw6d+4Mb29v+Pr6YvTo0UhPT6/1MaiJIAg1/lXEt3//fkyaNAmtW7eGSqVCeHg47rvvPly7ds1inwVBwMmTJzFp0iT4+/vDz88PkydPRklJiVlfzvFERERUf0w8ERFRkzBu3DgYDAa8/fbb6N27N9544w188MEHGD58OKKiojB79mzExcXhueeew6ZNm0z3Ky0txeDBg7Fo0SLcfffdePfdd+Hn54dJkybhww8/NPUTRRE33XQTFi1ahAkTJuCNN97AhQsXMHHiRItYDh06hD59+uDIkSN48cUXMWfOHHh5eWHs2LH47bffat2PnTt3omPHjvj4449t2u/c3Fykpqaid+/eeOedd6BUKjF+/Hj89NNPGD9+PMaMGYO3334bxcXFuO2221BYWGgW54ABA5Ceno7nn38e06ZNQ0ZGBgYPHowdO3aY+mVmZmLIkCHYt28fXnzxRTz11FP49ttvzR6fCosWLUJKSgq8vb0xe/ZsTJs2DYcPH0ZSUlK9J5/Ozc3FqFGjkJiYiDlz5qBDhw544YUXsHLlSlOfgoICfPHFFxg8eDBmz56NGTNm4OrVqxg5ciT27dtn1/YGDBiAnJwcs2TZ5s2bIZFIsHnzZrM2ABg4cKDNMQiCgAkTJmDlypXIyckx225aWhoKCgowYcIEu+IdN24cNm3ahMzMTLP2LVu24NKlSxg/fjwA+17D1d1yyy14//33AQB33nknFi1ahA8++KDW+5w8eRK33XYbhg8fjjlz5iAgIACTJk0ye1xPnz6N33//HampqXjvvfcwdepUHDhwAIMGDcKlS5fsehwA4+uv+l9MTAw8PDzg7e0NAFizZg1Onz6NyZMn46OPPsL48ePx448/YsyYMWbJxgp33HEHCgsL8dZbb+GOO+7A119/jZkzZ9odGxEREdVAJCIiasSmT58uAhD/85//mNp0Op0YHR0tCoIgvv3226b23Nxc0cPDQ5w4caKp7YMPPhABiIsXLza1abVasW/fvqK3t7dYUFAgiqIo/v777yIA8Z133jHbzoABA0QA4sKFC03tw4YNEzt37iyWlZWZ2gwGg9ivXz+xbdu2prb169eLAMT169dbtE2fPr3OfR80aJAIQPz+++9NbUePHhUBiBKJRNy+fbupfdWqVRZxjh07VlQoFOKpU6dMbZcuXRJ9fHzEgQMHmtqeeuopEYC4Y8cOU1tWVpbo5+cnAhAzMjJEURTFwsJC0d/fX3zwwQfN4szMzBT9/PzM2iueN1v38dtvvzW1aTQaMTw8XLz11ltNbTqdTtRoNGb3zc3NFcPCwsT77rvPrL3647tw4UKz/cjKyhIBiPPmzRNFURTz8vJEiUQi3n777WJYWJjpfk888YQYGBgoGgwGu2I4duyYCECcP3++Wd8bb7xRjI2NNa2vJtUfu4r1ffTRR2b9pkyZInp7e4slJSWiKNr3GrYmIyNDBCC+++67Zu3VHz9RFMWYmBgRgLhp0yZTW1ZWlqhUKsVnn33W1FZWVibq9XqL7SiVSvG1116z2HZdMVb3zjvvWLx+Kh6Pqn744QeLeCse5+qvn5tvvlkMCgoya4uJiTH7XCEiIiLbccQTERE1CQ888IDp/1KpFD179oQoirj//vtN7f7+/mjfvj1Onz5tavvjjz8QHh6OO++809Qml8vxxBNPoKioCBs3bjT1k8lkeOSRR8y28/jjj5vFkZOTg7/++ss0SiI7OxvZ2dm4du0aRo4ciRMnTuDixYs17sfgwYMhiiJmzJhh0357e3ubRrQAQPv27eHv74+OHTuid+/epvaK/1fsu16vx+rVqzF27Fi0bt3a1C8iIgJ33XUXtmzZgoKCAtO+9+nTB7169TL1CwkJwd13320Wy5o1a5CXl4c777zTtN/Z2dmQSqXo3bt3vcreKvax6igghUKBXr16mT2PUqkUCoUCgLHELCcnBzqdDj179sSePXvs2l5ISAg6dOhgGhm3detWSKVSTJ06FVeuXMGJEycAGEc8JSUlmcrebI2hXbt26N27N7777jtTW05ODlauXIm7777brIzOFu3atUPXrl3x008/mdr0ej2WLl0KtVoNDw8PALa/hhtKfHw8BgwYYFoOCQmxeP8plUrTpNx6vR7Xrl2Dt7c32rdvb/fzVt369evx0ksv4fHHH8c999xjaq94PABjeWN2djb69OkDAFa3+fDDD5stDxgwANeuXTO9P4iIiOj6MPFERERNQsuWLc2W/fz8oFKpEBwcbNGem5trWj579izatm1rcUWqjh07mm6v+DciIsJUrlOhffv2ZssnT56EKIqYNm0aQkJCzP6mT58OwDinVEOJjo62SFT4+fmhRYsWFm0ATPt+9epVlJSUWMQPGPfdYDDg/PnzACofo+qq37ciITN06FCLfV+9enW999vaPgYEBJg9jwDwzTffoEuXLlCpVAgKCkJISAhWrFiB/Px8u7c5YMAAUynd5s2b0bNnT/Ts2ROBgYHYvHkzCgoKkJ6ebpZYsSeGe++9F1u3bjW9vpYsWYLy8nJTgkSr1SIzM9PsT6/X1xjvuHHjsHXrVlNSc8OGDcjKysK4ceNMfWx9DTeU6u9JwPJ5MxgMeP/999G2bVsolUoEBwcjJCQE+/fvr9fzVuHChQsYN24c+vfvj/fee8/stpycHDz55JMICwuDh4cHQkJC0KpVKwCwus3q+xEQEAAAFq8/IiIiqh9e1Y6IiJoEa1fVqulKW6KVeVwaSsWE28899xxGjhxptU9cXFyDba+mfXTlvi9atAjh4eEWt9f3Smy27MvixYsxadIkjB07FlOnTkVoaCikUineeustnDp1yu5tJiUl4fPPP8fp06exefNmDBgwAIIgICkpCZs3b0ZkZCQMBoNZ4smeGMaPH4+nn34a3333HV5++WUsXrwYPXv2NCWBtm3bZjFheEZGhmlC7+rGjRuHl156CUuWLMFTTz2Fn3/+GX5+fhg1apTd+95QbHne3nzzTUybNg333XcfXn/9dQQGBkIikeCpp56qcfL6umi1Wtx2221QKpX4+eefLV53d9xxB7Zt24apU6eia9eu8Pb2hsFgwKhRo6xu0xXvJSIiouaEiSciInJrMTEx2L9/PwwGg9mop6NHj5pur/h33bp1KCoqMhsxcuzYMbP1VZStyeVyJCcnOzr8egsJCYGnp6dF/IBx3yUSiWnUVExMjGk0U1XV79umTRsAQGhoqNP3fenSpWjdujV+/fVXs9FRFaPM7FWRUFqzZg127dqFF198EYBxIvH58+cjMjISXl5e6NGjR71iCAwMREpKCr777jvcfffd2Lp1q9lk3YmJiVizZo3Zfawl8yq0atUKvXr1wk8//YTHHnsMv/76K8aOHQulUmnqY+tr2JmWLl2KIUOG4MsvvzRrz8vLsxitaKsnnngC+/btw6ZNmxAWFmZ2W25uLtatW4eZM2fi1VdfNbVbe30TERGRc7DUjoiI3NqYMWOQmZlpNj+OTqfDRx99BG9vbwwaNMjUT6fTYf78+aZ+er0eH330kdn6QkNDMXjwYCxYsACXL1+22N7Vq1drjaekpARHjx5Fdnb29exWnaRSKUaMGIH//e9/Zlebu3LlCr7//nskJSXB19cXgHHft2/fjp07d5r6Xb161WyOIgAYOXIkfH198eabb6K8vNxim3Xt+7lz50wJv/rsD2A+CmXHjh34+++/67W+Vq1aISoqCu+//z7Ky8vRv39/AMaE1KlTp7B06VL06dPHbDSNvTHcc889OHz4MKZOnQqpVGo2V1dAQACSk5PN/lQqVa0xjxs3Dtu3b8dXX32F7OxsszI7wPbXMGAsOTt69Oh1lbvZQiqVWowcWrJkSa3zoFWwFuPChQuxYMECfPLJJ2ZzklXdHmA5WqmuK/QRERGR43DEExERubX//Oc/WLBgASZNmoTdu3cjNjYWS5cuNY1A8fHxAQCo1Wr0798fL774Is6cOYP4+Hj8+uuvVr+Yf/LJJ0hKSkLnzp3x4IMPonXr1rhy5Qr+/vtvXLhwAenp6TXGs3PnTgwZMgTTp0+3eYLx+nrjjTewZs0aJCUlYcqUKZDJZFiwYAE0Gg3eeecdU7/nn38eixYtwqhRo/Dkk0/Cy8sLn332mWm0WAVfX1/Mnz8f99xzD7p3747x48cjJCQE586dw4oVK9C/f398/PHHNcZz7733YuPGjfUqYUpNTcWvv/6Km2++GSkpKcjIyMCnn36K+Ph4FBUV2b0+wJhk+vHHH9G5c2fTvD7du3eHl5cXjh8/jrvuuuu6YkhJSUFQUBCWLFmC0aNHIzQ0tF5xVrjjjjvw3HPP4bnnnkNgYKDFqDN7XsO//fYbJk+ejIULF2LSpEnXFVdtUlNT8dprr2Hy5Mno168fDhw4gO+++85swvuaVI8xOzsbU6ZMQXx8PJRKJRYvXmzW/+abb4avry8GDhyId955B+Xl5YiKisLq1auRkZHhqF0kIiKiOjDxREREbs3DwwMbNmzAiy++iG+++QYFBQVo3769xRduiUSCZcuW4amnnsLixYshCAJuvPFGzJkzB926dTNbZ3x8PP755x/MnDkTX3/9Na5du4bQ0FB069bNrLzH1RISErB582a89NJLeOutt2AwGNC7d28sXrzY7Ip4ERERWL9+PR5//HG8/fbbCAoKwsMPP4zIyEizqwYCwF133YXIyEi8/fbbePfdd6HRaBAVFYUBAwZg8uTJDtuXSZMmITMzEwsWLMCqVasQHx+PxYsXY8mSJdiwYUO91lmReEpKSjK1yWQy9O3bF2vXrrWYWNzeGBQKBcaNG4d58+aZXXWtvqKjo9GvXz9s3boVDzzwAORyudnt9ryGneXll19GcXExvv/+e/z000/o3r07VqxYYSpttEdRURHKyspw+PBhq49nRkYGvLy88P333+Pxxx/HJ598AlEUMWLECKxcuRKRkZENsUtERERkJ0HkzIlEREREDvH000/jyy+/RGZmJjw9PW26z7Rp0/DWW29Bp9M1SAxnzpxBq1atHD66yZ21aNECI0eOxBdffOHqUIiIiJoczvFERERE5ABlZWVYvHgxbr31VpuTTgBw+fLlek+8TQ2vvLwc165d43NCRERUTyy1IyIiImpAWVlZWLt2LZYuXYpr167hySeftOl+p0+fxm+//YYlS5YgNTXVwVGSLVatWoUff/wRpaWlGDZsmKvDISIiapKYeCIiIiJqQIcPH8bdd9+N0NBQzJ07F127drXpfps2bcLMmTMxePBgvPfee44Nkmzy9ttv4+TJk5g1axaGDx/u6nCIiIiaJM7xREREREREREREDsE5noiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiBqlGTNmQBAEV4fRqCxatAgdOnSAXC6Hv79/g603NjbWpsmsBUHAjBkzGmy75FqTJk1CbGysWVtRUREeeOABhIeHQxAEPPXUU9e9DW9v7+taBxERETVtTDwREZHbmTdvHr7++mtXhwEAuHTpEmbMmIF9+/Zd13qOHj2KSZMmoU2bNvj888/x2WefNUyAzdCpU6dw1113ITQ0FB4eHmjbti1eeeUVh2xrz549uPHGGxEYGAhPT0906tQJc+fOdci2GsKbb76Jr7/+Go888ggWLVqEe+65xynb3bBhAwRBqPFv1qxZpr6XL1/Giy++iCFDhsDHxweCIGDDhg01rlur1eLNN99Ehw4doFKpEBYWhpSUFFy4cMHUZ9euXXjssceQkJAALy8vtGzZEnfccQeOHz9usb5JkyZZjbFDhw4N+pgQERG5C17VjoiI3M68efMQHByMSZMmuToUXLp0CTNnzkRsbKzNVzezZsOGDTAYDPjwww8RFxfXcAE2M/v27cPgwYMRFRWFZ599FkFBQTh37hzOnz/f4NtavXo11Go1unXrhmnTpsHb2xunTp0yS3g0Nn/99Rf69OmD6dOnO3W7HTt2xKJFiyzaFy1ahNWrV2PEiBGmtmPHjmH27Nlo27YtOnfujL///rvG9ZaXlyMlJQXbtm3Dgw8+iC5duiA3Nxc7duxAfn4+oqOjAQCzZ8/G1q1bcfvtt6NLly7IzMzExx9/jO7du2P79u3o1KmT2XqVSiW++OILszY/P7/reQiIiIjcFhNPRERETUBWVhYANGiJXUlJCTw9PRtsfY2dwWDAPffcgw4dOmD9+vXw8PBw2LYKCgpw7733IiUlBUuXLoVE0jQGmWdlZSE+Pt7p2w0LC8OECRMs2mfOnIm2bdvihhtuMLX16NED165dQ2BgIJYuXYrbb7+9xvW+//772LhxI7Zs2YJevXrV2O+ZZ57B999/D4VCYWobN24cOnfujLfffhuLFy826y+TyazGS0RERJaaxlkQERG5tS1btuCGG26ASqVCmzZtsGDBAqv9Fi5ciKFDhyI0NBRKpRLx8fGYP3++WZ/Y2FgcOnQIGzduNJXADB48GACQk5OD5557Dp07d4a3tzd8fX0xevRopKenW2zro48+QkJCAjw9PREQEICePXvi+++/N+tz8eJF3HfffQgLC4NSqURCQgK++uor0+0bNmwwfWGePHmyKZ6KMsCSkhIcPXoU2dnZtT4+sbGxphEoISEhFnMtzZs3DwkJCVAqlYiMjMSjjz6KvLw8s3UMHjwYnTp1wu7duzFw4EB4enri5ZdfrnGb33zzDWQyGaZOnVprbHU9BhXqejwLCwvx1FNPITY2FkqlEqGhoRg+fDj27NlT6/YBY0JpxowZiIyMhKenJ4YMGYLDhw8jNjbWbNTb6tWrcfDgQUyfPh0eHh4oKSmBXq+vc/1VCYKAxx57DL///js6depk2uc///zTrN/333+PK1euYNasWZBIJCguLobBYLBrW//3f/+Hfv36ISgoCB4eHujRoweWLl1q1zoqVMSrUqnQqVMn/Pbbb2a3V5S6ZWRkYMWKFabX6pkzZwDY9n6ozcWLFzF27Fh4e3sjJCQEzz33XJ2P/c6dO3Hy5EncfffdZu0+Pj4IDAysc5sVIwRvvvlm9OrVCzqdDiUlJVb79uvXzyzpBABt27ZFQkICjhw5YvU+er0eBQUFdcZBRETU3DHxRERELnXgwAGMGDECWVlZmDFjBiZPnozp06dbfDEGgPnz5yMmJgYvv/wy5syZgxYtWmDKlCn45JNPTH0++OADREdHo0OHDli0aBEWLVpkmr/n9OnT+P3335Gamor33nsPU6dOxYEDBzBo0CBcunTJtI7PP/8cTzzxBOLj4/HBBx9g5syZ6Nq1K3bs2GHqc+XKFfTp0wdr167FY489ZiqBu//++/HBBx8AMJYPvfbaawCA//znP6Z4Bg4cCMD4xbpjx474+OOPa32MPvjgA9x8882mx2DRokW45ZZbABgnYX/00UcRGRmJOXPm4NZbb8WCBQswYsQIlJeXm63n2rVrGD16NLp27YoPPvgAQ4YMsbq9zz77DJMnT8aLL76Id999t8a4bHkMbH08H374YcyfPx+33nor5s2bh+eeew4eHh41fumv6qWXXsLMmTPRs2dPvPvuu2jbti1GjhyJ4uJis35r164FYCyT6tmzJ7y8vODp6Ynx48cjJyenzu1U2LJlC6ZMmYLx48fjnXfeQVlZGW699VZcu3bNbFu+vr64ePEi2rdvb0p0PvLIIygrK7NpOx9++CG6deuG1157DW+++SZkMhluv/12rFixwuZYAWPC7dZbb4UgCHjrrbcwduxYTJ48Gf/884+pT0WpW3BwMLp27Wp6rYaEhNj0/NVGr9dj5MiRCAoKwv/93/9h0KBBmDNnTp3zlH333XcAYJF4stXhw4dx6dIldOnSBf/5z3/g5eUFLy8vdOnSBevXr6/z/qIo4sqVKwgODra4raSkBL6+vvDz80NgYCAeffRRFBUV1StOIiIitycSERG50NixY0WVSiWePXvW1Hb48GFRKpWK1Q9TJSUlFvcfOXKk2Lp1a7O2hIQEcdCgQRZ9y8rKRL1eb9aWkZEhKpVK8bXXXjO13XTTTWJCQkKtcd9///1iRESEmJ2dbdY+fvx40c/PzxTrrl27RADiwoULLdaxfv16EYA4ffr0WrcliqI4ffp0EYB49epVU1tWVpaoUCjEESNGmO3Xxx9/LAIQv/rqK1PboEGDRADip59+arHumJgYMSUlRRRFUfzwww9FQRDE119/3aJf9VhtfQxseTz9/PzERx99tNY+1mRmZooymUwcO3asWfuMGTNEAOLEiRNNbTfeeKMIQAwKChLvvvtucenSpeK0adNEmUwm9uvXTzQYDHVuD4CoUCjEkydPmtrS09NFAOJHH31kauvSpYvo6ekpenp6io8//rj4yy+/iI8//rgIQBw/frxN+1b99a7VasVOnTqJQ4cOten+Fbp27SpGRESIeXl5prbVq1eLAMSYmBizvlVfCxVsef5qMnHiRBGA2ftLFEWxW7duYo8ePWq8n06nE8PCwsRevXrVuv4lS5aIAMT169db3Pbrr7+anu+2bduKCxcuFBcuXCi2bdtWVCgUYnp6eq3rXrRokQhA/PLLL83aX3zxRfGFF14Qf/rpJ/GHH34w7WP//v3F8vLyWtdJRETUHHHEExERuYxer8eqVaswduxYtGzZ0tTesWNHjBw50qJ/1Tl58vPzkZ2djUGDBuH06dPIz8+vc3tKpdI0145er8e1a9fg7e2N9u3bm5V0+fv748KFC9i1a5fV9YiiiF9++QVqtRqiKCI7O9v0N3LkSOTn59tUIjZ48GCIomhWNmePtWvXQqvV4qmnnjKbQ+jBBx+Er6+vxcgYpVKJyZMn17i+d955B08++SRmz56N//73v7Vu257HoK7Hs6LPjh07zEae2WLdunXQ6XSYMmWKWfvjjz9u0bdiRMoNN9yAxYsX49Zbb8Vrr72G119/Hdu2bcO6dets2mZycjLatGljWu7SpQt8fX1x+vRps22VlJTg3nvvxdy5c3HLLbdg7ty5eOihh/Djjz/ixIkTdW6n6us9NzcX+fn5GDBggE2vrQqXL1/Gvn37MHHiRLPJr4cPH27zXE62PH91efjhh82WBwwYYPZ4Vbdu3TpcuXKl3qOdgMrnu7CwEOvWrcOkSZMwadIkrF27FqIo4p133qnxvkePHsWjjz6Kvn37YuLEiWa3vfXWW3j77bdxxx13YPz48fj6668xa9YsbN26td6lkERERO6MiSciInKZq1evorS0FG3btrW4rX379hZtW7duRXJyMry8vODv74+QkBDTPEW2JJ4MBgPef/99tG3bFkqlEsHBwQgJCcH+/fvN7v/CCy/A29sbvXr1Qtu2bfHoo49i69atZnHn5eXhs88+Q0hIiNlfRWKnYjJwRzp79iwAy8dKoVCgdevWptsrREVFWcxjU2Hjxo144YUX8MILL9Q5rxNg32NQ1+MJGJNeBw8eRIsWLdCrVy/MmDHDIpGTmZlp+rt69arZY1D9Sn+BgYEICAgwa6tI5Nx5551m7XfddRcAYNu2bQCMr6Wq26pehlc1SVohICAAubm5Nm+r4kpsOTk5Ztuq+jpcvnw5+vTpA5VKhcDAQISEhGD+/Pk2vdYrVDw+tr7HrKnr+dNqtWb7kJmZaTZ/k0qlQkhIiNk6qz9e1X333XeQSqUYN26cTTFaU/Ec9O/fHy1atDC1t2zZEklJSabnu7rMzEykpKTAz88PS5cuhVQqrXNbTz/9NCQSiamck4iIiCox8URERE3CqVOnMGzYMGRnZ+O9997DihUrsGbNGjz99NMAYNPEzW+++SaeeeYZDBw4EIsXL8aqVauwZs0aJCQkmN2/Y8eOOHbsGH788UckJSXhl19+QVJSkmmC74q+EyZMwJo1a6z+9e/f3wGPwvWp7SpuCQkJaN++PRYtWoSMjIw612XPY1DX4wkAd9xxB06fPo2PPvoIkZGRePfdd5GQkICVK1cCME60HRERYfqrepUzW0VGRgIwXkGtqtDQUAAwJUKefPJJs21VzKdVoaZEhCiKdm/rlltuMdvWk08+CQDYvHkzbrzxRqhUKsybNw9//PEH1qxZg7vuustsO85Q1/O3bds2s32IiIjA+fPnTfe3JXFTVWlpKX777TckJydbPH72qOk5AIzPg7XEV35+PkaPHo28vDz8+eefpnXUxcPDA0FBQXbNFUZERNRcyFwdABERNV8hISHw8PCwWnZ07Ngxs+W0tDRoNBosW7bMbMSJtUmCBUGwur2lS5diyJAh+PLLL83a8/LyLCYQ9vLywrhx4zBu3DhotVrccsstmDVrFl566SWEhITAx8cHer0eycnJte5jTbE0hJiYGADGx6p169amdq1Wi4yMjDpjqyo4OBhLly5FUlIShg0bhi1bttT6pduexwCo/fFUqVQAgIiICEyZMgVTpkxBVlYWunfvjlmzZmH06NG49957kZSUZFpfRRKt4jE4efIkWrVqZbr92rVrFomFHj164PPPP8fFixfN2ivK+ypG5Tz//POYMGGC6fbqI6ds0aNHD6xZs8Y0uXhN25ozZ45ZnBWP+S+//AKVSoVVq1ZBqVSabl+4cKFdcVQ8Pra8x2pT2/OXmJiINWvWmPUPDw+3K86qli1bhsLCwusqswOAzp07Qy6XWzzfgPF5qD4Kq6ysDGq1GsePH8fatWttLkUEjOV82dnZFuskIiIijngiIiIXkkqlGDlyJH7//XecO3fO1H7kyBGsWrXKoi9gPqokPz/f6hdxLy8v5OXlWd1e9dEiS5YssfhiWvXqZICxdC0+Ph6iKKK8vBxSqRS33norfvnlFxw8eNBiOxVlYBWxALAaT0lJCY4ePYrs7GyL22yRnJwMhUKBuXPnmu3Xl19+ifz8fKSkpNi1vujoaKxduxalpaUYPny4xeNQlT2PQV2Pp16vtygfCw0NRWRkJDQaDQCgdevWSE5ONv1VjKYaNmwYZDIZ5s+fb3Z/a1cKvOmmm6BUKrFw4UKzEW5ffPEFAOO8RwAQHx9vtq0ePXrU+DjU5I477gAAiyTnF198AZlMhsGDBwMwJqiqbqsi2SGVSiEIglnJ2pkzZ/D777/bFUdERAS6du2Kb775xuwxXrNmDQ4fPmzTOup6/gICAsz2ITk52ZRMrI/vv/8enp6epis51pePjw/GjBmDbdu24ejRo6b2I0eOYNu2babnGzDO+TZu3Dj8/fffWLJkCfr27Wt1nWVlZSgsLLRof/311yGKIkaNGnVdMRMREbkjjngiIiKXmjlzJv78808MGDAAU6ZMgU6nw0cffYSEhATs37/f1G/EiBFQKBRQq9V46KGHUFRUhM8//xyhoaG4fPmy2Tp79OiB+fPn44033kBcXBxCQ0MxdOhQpKam4rXXXsPkyZPRr18/HDhwAN99953ZaKGKbYWHh6N///4ICwvDkSNH8PHHHyMlJQU+Pj4AgLfffhvr169H79698eCDDyI+Ph45OTnYs2cP1q5dayq5adOmDfz9/fHpp5/Cx8cHXl5e6N27N1q1aoWdO3diyJAhmD59er0mGA8JCcFLL72EmTNnYtSoUbjxxhtx7NgxzJs3DzfccIPZqB1bxcXFYfXq1Rg8eDBGjhyJv/76C76+vlb72voY1PV45uXlITo6GrfddhsSExPh7e2NtWvXYteuXZgzZ06t8YaFheHJJ5/EnDlzcOONN2LUqFFIT0/HypUrERwcbDbiLDw8HK+88gpeffVVjBo1CmPHjkV6ejo+//xz3HnnnfUq36tJt27dcN999+Grr76CTqfDoEGDsGHDBixZsgQvvfRSnSVcKSkpeO+99zBq1CjcddddyMrKwieffIK4uDiz94Ut3nrrLaSkpCApKQn33XcfcnJyTO+xigm4a2PL+6Gh5OTkYOXKlbj11lvh7e1dY7833ngDAHDo0CEAwKJFi7BlyxYAMJsY/80338S6deswdOhQPPHEEwCAuXPnIjAw0DQ/HAA8++yzWLZsGdRqNXJycrB48WKz7VW8lzIzM9GtWzfceeed6NChAwBg1apV+OOPPzBq1CjcdNNN1/sQEBERuR8XXEmPiIjIzMaNG8UePXqICoVCbN26tfjpp5+K06dPF6sfppYtWyZ26dJFVKlUYmxsrDh79mzxq6++EgGIGRkZpn6ZmZliSkqK6OPjIwIQBw0aJIqiKJaVlYnPPvusGBERIXp4eIj9+/cX//77b3HQoEGmPqIoigsWLBAHDhwoBgUFiUqlUmzTpo04depUMT8/3yyeK1euiI8++qjYokULUS6Xi+Hh4eKwYcPEzz77zKzf//73PzE+Pl6UyWQiAHHhwoWiKIri+vXrRQDi9OnT63yMKh6Pq1evWtz28ccfix06dBDlcrkYFhYmPvLII2Jubq5Zn0GDBokJCQlW1x0TEyOmpKSYte3YsUP08fERBw4cKJaUlIiiKFqN1ZbHoK7HU6PRiFOnThUTExNFHx8f0cvLS0xMTBTnzZtX5+MiiqKo0+nEadOmieHh4aKHh4c4dOhQ8ciRI2JQUJD48MMPm/U1GAziRx99JLZr106Uy+ViixYtxP/+97+iVqu1aVsAxEcffdSiPSYmRpw4caJZm1arFWfMmCHGxMSIcrlcjIuLE99//32btiOKovjll1+Kbdu2FZVKpdihQwdx4cKFVt8Xtvjll1/Ejh07ikqlUoyPjxd//fVXceLEiWJMTIzFflR/Ldj6frBm4sSJopeXl0V7Tfvx6aefigDEZcuW1bpeADX+Vbd7924xOTlZ9PLyEn18fMSbbrpJPH78uFmfQYMG2bTO3NxcccKECWJcXJzo6ekpKpVKMSEhQXzzzTdtfg0RERE1N4IoOnmGSiIiIiIHy8vLQ0BAAN544w288sorrg6HiIiIqNniHE9ERETUpJWWllq0ffDBBwBgmkuJiIiIiFyDczwRERFRk/bTTz/h66+/xpgxY+Dt7Y0tW7bghx9+wIgRI0yTkLuj/Px8q0m3qq7n6nJEREREDYGJJyIiImrSunTpAplMhnfeeQcFBQWmCccrJqB2V08++SS++eabWvtwRgUiIiJyNc7xRERERNQEHT58GJcuXaq1T3JyspOiISIiIrKOiSciIiIiIiIiInIITi5OREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERERERERERGRQzDxREREREREREREDsHEExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERERERERERGRQzDxREREREREREREDsHEExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERERERERERGRQzDxREREREREREREDiGzpZOXlxfKysoglUoRGhrq6JiIiNxeVlYW9Ho9VCoViouLXR2Oy/E4Q0TUsHicscRjDRFRw7L1WCOIoijWtTKpVAqDwdCgARIRESCRSKDX610dhsvxOENE5Bg8zlTisYaIyDHqOtbYVGonlUobLCAiIqrEz1cjPg5ERI7Bz9dKfCyIiByjrs9XmxJPHIpKROQY/Hw14uNAROQY/HytxMeCiMgx6vp85eTiRERERERERETkEDZNLm6NDVNDNSllZWVmyyqVykWROI6776O7758gCGbL7vYeBJrfc0i1c7fXON/DTZ+7P4fuvn+A++8jjzP2c7fXgLt/DgPuv4/u/jnl7s8f4P77WJ9jDUc8ERERERERERGRQzDxREREREREREREDsHEExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERERERERERGRQzDxREREREREREREDsHEExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8UREREQOcSy7BGfySl0dBhGR6xgMwPnjwIGtxn8NBqdu/uhR4OxZp27SqfILgB27DDAYRFeHQvV06FQ5LmbpXR2Gw1wrMGDPMS1EsXm/RmWuDoCIiIjck6dcgriPdqBdkCfU7YKQ2i4IvaN8IZUIrg6NiMixMs8C37wAZK0CfKokmwolQOhIYOJsIDzG4WEolUBcHNCxI6BWG/969QIkbjL8wNcHePxZA86dF5EySoB6jATDhwrw8uJxpqkQRaBlahYS28qgHqiCeoAS3TvIIXGTcwV/LwHDn81GfrGI1L4eUPf3wLAeSngo3eRNaCNBtCH1Fh0djYsXL5q1uVvGrqyszGxZpVK5KBLHcfd9dPf9EwTzD193ew8Cze85BICoqChcuHDBBdE0Ls3hONNc38NTVhzH/H8umdpCPOUY0zYQ6nbBGNEmAD7KpvMbmLs/h+6+f4D77yOPM7Vz2rHmp9lA+ixADkAEUPULtEEEBADlABJfAca90KCbtvY5/OCDwBdfVLaFhgIpKUBqKjBiBODt3aAhOFz1ffxrgwIpt1aOmFEqgaGDBKSONiaiWkQ3rQSGu39OWXuNjnspFz+vqWyPCJYgdYAS6gEqDOulhKeqaT2H1ffx96163DnzmmnZQykguYcK6v4eSOmrQmRw0zkXAup3rGHi6V/u/oUXcP99dPf9c/eDEND8nkOAXwgqNIfjTHN9D5/PL0ObuTtQbqUMQiEVMDjWH6ltg6BuH4RYfw9nhVov7v4cuvv+Ae6/jzzO1M4px5qfZgOHZhn/X9uIjYrPxISGTT5Z+xzOyADatQN0Osv+CgUwZIhxJFRqKhDj+EFY1636PiqVSvQepMeu3dafy8TOgHqMBOoxAnp2Fxr9SBp3/5yy9ho9eLIcXe7MhrVdVSmBYTcooR6gROoAFaJCpU6KtP6q76NcrkTnSZdx5KyVNyGAHu0VUPfzgLqfB7q1k1v9LG9MmHi6Du7+hRdw/3109/1z94MQ0PyeQ4BfCCo0h+NMc34PVx/1VJNOoV5QtwuCul0QejXCkjx3fw7dff8A999HHmdq5/BjTeZZYG5n42Qmtnx+GURAB+CJAw1WdlfT53D1UU816dLFmIBqzCV51vbxjz8NZqOeahIWikZfkufun1M1vUarj3qqSfcOMqgHqJDaiEvyrO3jj+uKzUY91SQqRIrUvh5I7dd4S/KYeLoO7v6FF3D/fXT3/XP3gxDQ/J5DgF8IKjSH44yr3sM5peXYfDbfKdvSlmvNlhVyBQDgfEEZHl950q51NcaSPHf/HHb3/QPcfx95nKmdw481s8cDJX8AdoxWEEURl/NTsGvIDw0SglZb7XNYYfwczsgAnn7avnVVlOSp1cDw4bWX5P3xpwHl1gdzNDhr+yiKwMNP6HEly/b1VJTkqccISB3deEryXPE5lZmtx46D5Q7fDlDzucLhDB1e/qTQrnXZU5K3bEuJ1RFVjqAtN38sFXI59AbgvtnXkF9kexBVS/JS+3ogIrhxjPZi4uk6uPsXXsD999Hd98/dT5aB5vccAvxCUKE5HGdc9R7efjobj739C1Q6bY19TgZG4YpPoFmbVK9HnwuH7dpWkcID6RFxFu3tr55DcIl9ya994XEoVhpL7ypK8m6NlEOtuYwIH6V5Z5UKSEwE5HK7tmEvd/8cdvf9A9x/H3mcqZ1DjzUGAzA1CPDW25d4Mogoz5NC+dE1NOYLjlctyVOrgZYtzW8PjC5Hbq5rYmsojaUkzxWfU8s3l0H9dNN+AlVKILmXEqlJ1kvyZEPOQd/EL57Xs4PCOEG5i0vymHi6Du7+hRdw/3109/1z95NloPk9hwC/EFRoDscZl7yHy8tR1L0nvA/ur7XbA+rn8GWPFLM2n7JiFLydatfmdkW2R6//fGrR/v3S13Hnwb/sWlf3/yzA3sh2Zm2DMvZhwzc1/GTfrRuwY4dDk0/u/jns7vsHuP8+8jhTO4cea84fB768od53j3tnN06VWibuG6suXSrnherVCwhu2fQTT1WFhxlL8lJHO78kj4mnhlFRkqceqEK39jIohp1v8omnqlxZklefY43rx60TERGRY6Sn15l0cht79+KLxSvwwOSxro6EiJqjvKvXdfdwxZUmlXjavx84cgTYuRN44AFXR9PwMq8AX35rwI9p5QgNAVpEC5BKAQ8VsOIH9/phFADOXnKjjMy/9hzV4dDpIuw8VI6Hb/V0dTgN7uJVPRakFeK7TfkIDZCiRagUEgkQ7CvFz6+Euzo8C0w8ERERuauyuifpbEr8lLXPbXD+ap5zAiEiqs4/5LrunqkNa6BAHCs4GBgzxjjaacQIwNfX2P7wM66Nq6EoFMDgAcZ5n+LaAqPH65BxHsg4bxx15O3l4gAd5IcVGleH0GDCgiRI6a+EeqAKyb0U8PZsvCWs9aFUAMO6G+d9Cg0UcOusKyi6YsDpK8Z5pSKDGsc8UNUx8UREROSmRFFE1cHQs8Y9j+NRlr+onwuJRmc/87NpqV6Jic98Ztf2ihUe6BRS+atixVDs729+CJ/cMNaudR0PagEA6BjsabzSXfsg9PXpCtzTDQCw6PAl/L16E+b98old6yUicoioOKBQAnjpbbui3b9EgwhdvhSebVqjcwNUc4miwWxZEIxfuvV64LB90/aZJCRUzu3UuzcgtfK9Nr6DgIIC55SuVi89qzjWnD4DFBfbv76QYPMr3fn4GNd34LChjnu6B41WxJ5DekSHSRHg6/iSwpqev3KdiKNn6jfyKrHdv2V1A5ToGW/9SnedW8udVmpX0/vwxAUdyrT2v0/CAyVI7Wec22lYDxW8PIzr23Kw9PqDdRImnoiIiNzUsaxSdKiy/MpjaiApyY419LVrezXN07b0cAxuX2LbNx6ZRMCgGD/MaheM1HZBaBPoYd7h3/gvKE5j/4HzdsVHROQwEgkQOtJ4VTs7CAIgjxqF/QcaZlRGWZn5hSQqPod/+AG46y7b1iGXA4MHV87h1KpV3ffZstZ5XyutHWuuXhURG2/7ZfU6JwCpo40TiffqKUAqbRxXtHOFjbvKUVoioFecEr/M9XX49mo6V1jwSzEefqvApnUoFcDQnkqoByqRmqRCi/C6R/ns/TLC/mDrydo+nruiQ9ydl2xeR7e2ctPV7Hq0V7hssvuGwsQTERGRm9qWUWiWeHIFgyhi5saztfYJ8pBhTNsgqNsFYUSbQPipeHpCRE3QxNnA3D8AmWjbqCeDCOgA3Pu2Q8PS64HXXqu9T00ldE3F/31oQElJzbdXLaFLHS1BbEzT/hLfkNLWG5OVq7eWQ6MVoVQ4/7HRlouY9VVRrX3CgiSmK9Y1xRK6txYXoLyW3GjVErrUvh6IDnWvcyH32hsiIiIyWVrgiyMDHgUA3NU9GN1iY50ew69HruJglmXtQ3yIJ1Lb/ltCF+0HaRP/JY+ICOExQOIrwKFZxqRSbZ9rhn/LbbpOM97PgX7+GTh61LLdlhK6puDqVREfL7Asi6uphI4qiaJoSjwVlYjYuKscI/ornB7HwmUlOH/F8jm0pYSuKTh3RYcvV1gm1moqoXNHTDwRERG5oUv5Wqws8sHKnhMAABe7BeH76GinxlB1tFNFCZ26phI6IiJ3MO4F4CcA6bMAuQiIME9AGURAgHGkU9dpwB1THRpO1dFO9SmhawqqjnbqnACox0iQOpoldLY4eEKPs5cqEz5p67VOTzxVHe1UnxK6pqDqaKeKEjp1Pw90b9f0S+hsxcQTERGRG1p+ONdseeXRPJTrDZBLnfdr2sYzeegW7o1XB8Y4pIQu0ycQC/qMNi3nBQQ16PqJiOpl3AvAoPHAty8Cl1cCflUmEy6UABGjgUnvAKEtHB7KX38BvXoBr7/eNEvo6pJfAJw8LeKjORKW0NXD8g3mc4Klrddi7iuiacJvZ/hjqwbDe7vvVeiycg24kqPH/GcD3LKEzlbNc6+JiIjcXNoh88RTXqkeWzMKMTjOz2kxDGkVgCGtAhy2/lMhkXj4jidNy+Miwx22LSIiu4THAM//AGzaBIwaDCgAaAH8uQEYONBpYQwfbvxzV36+wC/f8yttfVWU2VU4e8mAgyf06NzOeY/p2MEqjB2sctr2nC00QIJfZ4W4OgyXc690IhEREaFEq8fa4/kW7WmH8pwfDBFRcyaRAKUikC8a/5Xw6xc1DlnXDNiebjnbdfVkFFFD4CcfERGRm/nrRAHKdKJFe/XyOyIiImqe/tikhWh5qmBRfkfUEDgukYiIyM1UlNn1v5iODUseNbUPvv0THM9qj3ahnNibiIioOatpZNP2dB2yrhkQGsQxKtRw+GoiIiJyI6Iomo1skol60x8ApHHUExERUbOm0YpYvbXc6m2iaBwNRdSQOOKJiIjIjey5UIxLBdZPJgHjaKhnB0c6MSLH6X7+BL5f/LZp+etX3gWQ6LqAiIiqa98e+P5782UiF9u4qxxFJVbq7P6Vtl6LSTe774Tf5HxMPBEREbmR6lezq25LRiFyS3QI8Gz6pwAe5Rq0v3rRtKzQaFwYDRGRFSEhwJ13ujoKIjN1TSC+ems5NFoRSoXgpIjI3bHUjoiIyI0sP5xX6+16A/Dn0dr7EBERkXsSRbHOxFNRiYiNu2oePU1kLyaeiIiI3MSlfC12Xyius19do6KIiIjIPR08ocfZS4Y6+9WVnCKyBxNPREREbmK5jROHrzyah3J93SedRERE5F5sTSilrddCFGueB4rIHkw8ERERuQlbRzLlleqxNaPQwdEQERG0WuDy5co/LUeRkGst32Dba/DsJQMOntA7OBpqLph4IiIicgMlWj3WHs+3uX/aoTzHBUNEREY7dwKRkZV/O3e6OiJqxrKuGbA9XWdzf5bbUUNh4omIiMgN/HWiAGU624fE21qWR0RERO7hj01a2FM9Z+voKKK6MPFERETkBuydMPz41TIczyp1UDRERETU2Ng7gml7ug5Z1zgnJF0/Jp6IiIiaOFEU6zWCKY2jnoiIiJoFjVbE6q3ldt1HFI2jpIiuFxNPRERETdyeC8W4VFB5MnljQgBiA5Uokypw0i/K9Ne/QzCi/BSmfvaOkiIiIqKmacPOchSVGOvsBAEYP0aBkEDBot+dKUqzds7zRA2BiSciIqImriKBdGNCAHY/0xn/u789Qr1l2B3eEW3vW2r66zZ2EE690hWf3BqLKD8FtmQUIrfE9klGiYiIqGlavkFrSjgdXOaPH+b4wsfLMvF03y1KZKwJxLtTPRESKGD11nJotHZMDEVkhczVARAREdH1EQQBu5/pjO7RXnX2VcokmNI/HPf3DsWXO7Kw/1IJBsX5OiFKIiIichVvTwEHl/kjPq7uFICXp4Dn7vPEI+M98OlPpTh0Qo/uCUwdUP3V+9VTVlbWkHG4nIeHh6tDoAZWWurek+YKguUvFO7G3Z9Dqp27HWeqa8j9e2FQsMU6DQbLXye12nKzPvf18G/QWKofSx35HtbpdNjauhOE9/40td0WF+LU1427fw67+/4BzWMfqXaO/swQNBooqyxrNBqIDtxmc/xO46hjjUZjfZSPs89PGmp706dIAehQVlY50lm0cok7rVaLsjLjhOJSCfDonRKL+10PvkYbjkZrWQYpimKjPIdmqR0RERERERERETkEE09EREREREREROQQLNQkIiJyU63zLuCZPT+Ylr37PwckBrgwIiIiIiJqbuqdeFKpVA0ZR6Njrd61qas+j4G77WP1/XO312j12mB32z/AsobdHfeRbOfuz7+j908iERBRfA2Ppv9qalubP9mpj2tDbcsgipBU+4yXySxPYaQSqcU2rd23vtz9c9jdzxMA999HzlllP4e/j5XKaotKwImfHe72Ggccc85vMIiQSMzXq1QaAFjOlVN9exWPcUO9/5x5rBGEEgDmrxGFQgGVSuGwbVbnjq9RR3ynsfoaVVg+doIgOPw1Wh8stSMiIqJG7ZvDl/DK1hO4Vmo+iWZkXjae3vCL6S8g+4rptlKdHnP3nsX0v086O1wiokp+fsCgQZV/fn6ujoisOHtexO33aXDgsMHm+4iiiJVr9bhlkhZumDuhRubAGS0mzL6CY+ctJxSviSiK+H1bMca/dcXlP0yw1I6IiIgatUFRAbhv9UHM3XsWT3SLwTPdYwAArXIy8d6yz039pvfvh1KdHp8fuIC3d2XgcrEGv6m7uihqIiIAnTsDGza4OgqqQ6sYCQ4dM6DLoDLcppbi1efkNfYVRRF/rjNgxrvl2LnHgAcmSC1GohA1tC6tFNhwoBQ/PFSEOwd5Y9pdNU+dIIoi/vd3CWZ+l4N9p7R45hbXJ7yZeCIiIqJGrbW/J+IDvXA4pxhv7jyNuXvPoo2/J7yr9TuSW4Q2X23G5WINAEAhFZDcMsj5ARMRUZOTOkKKI8d1WJqmx9I0Pfr3siwO0miBPqM02LnHYHY/IkcTBAGpvbyw4I8CfLe+CD9sLELv9kqLfvnFBnR/7AL2naocGZXa28uZoVrFUjsiIiJq9FJbh5j+X1SuR/rVQos+l4o0pqQTAAxtEQRvBX9jIyKiuqmrJZC27rQsuysvh1nSSakEkgcy8UTOkdrb0/R/gwH4+4jGok9xmWiWdPLzkiApwfVzUjLxRERERI2eunVoPe4TUncnIiIiAH1vkCDQzgu/DhsggZcXy+zIOYZ19YCH0r7X2+ienpDLXP8aZeKJiIiIGr2+Ef4IUtU854Y1qa2YeCIiItvIZALGJNs3ekk9kqOdyHk8lBIkd/Ww6z7qPp51d3ICJp6IiIio0ZNKBIyxI5GUGOKDlr72nZwRETW4w4eBG2+s/Dt82NURUS2ql9vVhfM7kbOp+9g+X5NUAozqycQTERERkc3sKZ3jaCciahRycoC0tMq/nBxXR0S1GDlUCpmNUwN27SQgOpJfp8m5UnvZnkjqn6BCoE/jSI7ynUJERERNwsiYYMhsvGQ153ciIiJ7+fkKGNjXtq/ILLMjV4gIkqFnW8ur2VmjbgRXs6vAxBMRERE1Cb5KGQZF1T3za5inAjeE+zkhIiIicje2ltsx8USuUvXqdrVR29jPGZh4IiIioibDlqvbpbQKgURw/RVciIio6bEloRQeCvRI5Fdpcg1bRjK1jZKjfQuFE6KxjY0VrERERNTUHAxqjeRbPjQtPxLX0YXRNAx16xA8tfFonX2IiIjqo00rCTq2E3DkuFhjn9QRUkhsLP0mamjd4hSICpbiYra+xj6NabQTwBFPREREbitf5YN1Mb1Mf+U+Tb/8rLW/J+IDa/6lTyEVkNwyyIkRERGRu6nranW8mh25kiAISO1V+6in1EY0vxPAEU9ERETUxKhbh+JwTgZOBUfgodseN7WfCo7A0BZB8Fbw9IaIiOpPPUKKdz/WWb1NqQSSBzLxRK6l7u2JBX8UWL3Nz0uCpASVkyOqHc/MiIiIqElRtw7B7H8ykOkbhM/6pVjcRkREdD363iBBYACQk2t527ABEnh5scyOXGtoVw94KAWUaixLQkf39IRc1rheoyy1IyIioialT4Q/glRyq7eltmLiiYiIro9MJmBMsvVRTbyaHTUGHkoJkrt6WL1N3adxze8EMPFERETktjzLS9H56knTn7S02NUhNQipRMAYKwmmxBAftPS1fhJGRERkD3UN8zhxfidqLNR9LOdxkkqAUT0bX+KJpXZERERuqlvWcWz5+WHT8tohaUC/GBdG1HDUrUOw6MglszZnj3YqNxggFQRIhMY1nJ2IiK7fyKFSyGSArspUT107CYiOdO7YDa1WhELB40xToC0XoZA777lK7WWZYOqfoEKgT+NLjnLEExERETU5I2OCoYQBnpoy0586JtCpMegNInov24wHN+/DsrOZKNFZn4iWiIiaHj9fAQP7mn9ddkWZ3ZMzy3DTA8X44gctLl8xOH37VDNRFHHgbBneXJqNvi+ewW87Cp26/YggGXq2VZq1qRvZ1ewqcMQTERERNTm+ShkeLr6ID6Y9aGoz9N8ERA9wWgwqmRT3xkXjie0H8cXxc1BJJRgWGQJ1yzCktAhDtBfL/oiave7dgaNHK5dbtHBdLGQ39Qgp/tpcmexxReLp6fsV6DisCMvWGH/c6NlFCnWyDOphcnRNkEDgqFun0pQbsOFgCdL+KcLyf4pw9qrxeekQpcBtfX2cHo+6jyf+OaGpXO7d+MrsACaeiIiIqInqH+lvtuyKkrcH28fgrf0ncLlEgzK9ASvOX8GK81cAAN2C/KBuGQZ1i3B0D/ZjSR5Rc+TpCbRv7+ooqJ7UI6V4elo5ACA8FOiR6PyCoXatpbh7rByLfjXG8c9+Pf7Zr8f09zSICheQOkwO9TAZhvaXwUPF44wjZOXpsGJ3EdL+KcLq9GIUl1leSe7VO4IhlTr/8Vf39sL0RcbLL7aNkqN9C4XTY7AFE09ERETUJPWL8Hd1CFDJpHipS1s8sf2gxW17r+Vj77V8vLb3OCI8lUiJDoO6ZTiSo4LhKeMpGBFRY9emlQQd2wk4clxE6ggpJBLXJHb++7gS3/1eDkO1SruLmSIWfKfFgu+08FABwwfIkDpMjtShMkSEcVad+jKW0Gmw/B9jsmnHiTKIlrkmkw5RCtzRz/mjnQCgaxsFooKluJitb7SjnQAmnoiIiKiJivJRuToEAOajnmpyuUSDL46fMyvJS20RhtSWLMkjImrMUkdIceS4zqVXs6s+6sma0jJg2RodS/LqqaYSOlu4arQTAAiCgNReXljwRwFSG+n8TgATT0REROQmBizfgq3Hclyy7Vp+CLVQtSTvkW0sySMiaszUI6SY80UZbn6k5qSPYxl/1KhtxI01LMmrmy0ldLa46/1LuPuDS3V3dBQR8PSUISmhcfwgZw0TT0REROQWOl84Y0oAFStV2NeytUWfdpkXEFJYYNd601vEokhlPnzdt6QYnS+etWs9V3z9cTIs0vKGPXuwbrsG6wAEK+XoGxqI/mGB6BnsB5VMBqhUQGIiIJfbtT0iagRycoC//65c7tsXCHTuFTjp+vS9QYLWMRKcPK93dSj1VlNJnr7p7lK9VJTQVYxqqquEzr51N8x66qtPBxXkssabUGTiiYiIyA3d0TUI0uJA4OfKtmi/xjnhZEOZ990C0//3tGyNHq++b9FnWtrPmLBjo13rveGV/8M/rdqatXW+eBZbZr9k13q+SErGg5Met2hf9OX7SLh0vtb7ZsXH45elS/FIx452bZOIXOzwYSA1tXJ582YgKcl18ZDdZDIBPbs27cRTVWYleTIgpoUUA3vJ4O9nTFq0iHCfuaE2HyvG3jOlAIBD5zX4bUchruYaAIP77GOFcYO8XR1CrZh4IiIickPPDo4EZBFmbR3CGu+kk/WiarxDyhta6OHD+HbZMiaeiIhcwNPNpuKLbyuBOtlYetenu9Rl8xM52v9252POymyztlE3+CDCS4UVu4uQle8eyUQACPBp3Mk0Jp6IiIioaUpMBLp1A/budXUk10Vq45xOqnJXzS9CRERNmVwODOotgzrZWGLXumXjTlI4UuswBT6ZFAGDQcSuk2VI+6cIabuKsP9szRcIoevHxBMREZGbyiooR6irg3AkuRzYsQOXtu2AWFZqdlOIpxdOJiZa3qVrC1zMzrZor81PnTpD9PGBRlN5Uiop6IKLQ3oAAPSiiCf+PohsjbbW9Vzx9Tf9v72ft2lC8bjEX4CyMrO+Z4uLMXvJEsz78ku7YiUioob31gsqvPyY0inb0lQ7liiVxjL5//6fBj8us/0HiKAAAWOGyKBOlmPkQBl8fdxzVFN9SSQCerfzQO92HnjjrhCczSrH8t3GJNT6gyXQ6myftGn+Q2EYnlh5Rbmq5wsAoFQ6/rUT5te4UzuNOzoiIiKqt7+uKiGNTYZcKuDGrn6QBAW5OqSGJ5cjcpAd86X06FbvTZWVVbmUto8nVG1iAQDfnbyA/10ss36nf0kFAQPDgzClZRhSW4ShrV+VuRgiLJ+X0oIC7N+5s96xEhFRwwkNliA02DnbKiszTxCpVFJcvmLA76vqTjo1lxI6R4gJlePR0QF4dHQAikoNWJNejLR/imwqyft2QwEeGuEP4d8RzGVlBrPbVSr3nmPTFkw8ERERuanF+WFYMewdAMBfz8VhSAcfF0fkfvQGEa/tO2b1tgCFHKNbhELdIhyjokPhr+RV6YiIyH6zP9WgzEolGEvoHMPbQ4Kb+/jg5j4+NpXk/X2sFGvSSzCiq5eVtRHAxBMREZFbKtEYsO5IoWk5LT2fiScH+PH0RRzPLzYtVy2h6xcWAJmk/l8CtrZvD9kPP5iWpTKethERNTeXrxiw4LvK8juW0DmXrSV5M37KxvBET9OoJzLHMxgiIiI3tPZIIcrKK+cnSEsvwJw7RJ4QNSC9QcRb6ScwJCIYqS3CoG5ZrYTuegkC9NLK8j5bJyEnIiL3MftTDVq3ZAldY1FbSR5HPdWMiSciIiI3lJaeb7Z8MkuDY5kadIhQuSgi96Mx6LElNYkldERE5DDPP6zEB9M9XB0GWVG9JK+uuaCaMxaBEhERuRmDQcTy/fkW7dWTUXR9PGUyJp2IiMihIsP4lb0pkEgEhAdwXE9N+MgQERG5mT3nSpGZr0OXa8fx6dZZpvbPvd8ARt3owsiIiIiIqLlh4omIiMjNVIxs8ikvRt+rB0ztL57ORk6RDoHePPw3BRE5Obht+3bT8rJ+/VwYDREREVH98MyTiIjIzdRUUqc3ACsPFuDuPoFOjojqo3VWFuZ+/bVp+UCbNq4LhojqJzISePpp82UiomaGiSciIiI3ciFHi73nSmu8PS09n4knIiJnad0aeO89V0dBRORSnKmMiIjIjaw4UFDr7X8eLES5TnRSNERERETU3DHxRERE5EbqunJdfqkeW04WOSkaIiIiImrumHgiIiJyEyUaA9YdKayzX13JKSIiIiKihsLEExERkZtYe6QQZeV1l9GlpRdAFFluR0RERESOx8QTERGRm7B1JNPJLA2OZWocHA0REWHnTiA6uvJv505XR0RE5HS8qh0REZEbMBhErNhvewnd8v356BChcmBEREQErRa4eNF8mYiomeGIJyIiIjew51wpLufrbO6fll771e+IiIiIiBoCE09ERERuwN4Jw7eeLEJOke2JKiIiIiKi+mDiiYiIyA3Ym3jSG4CVBznqiYiIiIgci3M8ERERNXEXc7XYe67UtOzrIYEAATtCOyFwwnpTu3+oH1AlP7V8fz7u7hPozFCJiIiIqJlh4omIiKiJW77fOHLJ10OCJ4eF4qnkEIz+8BR2ZuiRq/Qz9Zs3LhbRAXLMXJaJtUcKsfJAIcp1IuQywVWhUy1Oh4bi0fvuMy1nhIW5MBoiIiKi+mHiiYiIqInbdLwI01LD8VRyCAK9az+0J7X1xppn47DlRBFmLsvElpNFGNLBx0mRkj0uBwZi3qhRpmWFhDMkEBERUdPDxBMREVET99m9LeCllNp1n4oEVInG4KCoiIiIiIiuI/FUVlbWkHE0OoLg/mUH7r6P7r5/RO7O3Y8zDbl/UgBlZeVmbQaDZUJJq9VabFcCwFEPtbt/DpeWltbdqZ40Go3Vdme+L9z9+QOaxz5S7Rz9nhI0GiirLGs0Goh8Hzeo5rCP7syR70GdXm/RptfrHP6+9/DwcOj6myKOeCIiInJToaXXMPr8VtOyKudWAH4134GIiIiIqIEx8UREROSm2uafw9ebZ5iW/xzfDUCcy+Ih+wgGA+RVfq0V5HIXRkNERERUP5ylkoiIiKgR6nf8ODR3323663vsmKtDIiJ7SSQQPT1Nf+BFAoioGar3iCeVStWQcbhc9Xka3G3/AMv6WXfbR3ffv+r166IouigSx3H3feQcBPZxt/dwdY7eP4mVLzcymdyh23X3Y2n193BD7d/5khKsz8rCXS1bQvbv86bUaq32rbrNYp0OX2ZkYEqbNqb7NSR3+wwGeJwhSw7/nBoyBCguNi0qa+naENz9cxjgOX9T56hj6W//5KNNqAJdWlbOrySTWl54RSqVmW3z8MUyHL5Yhtt6+TdIHID7vw/rc6xhyp2IiIjIhaI8PPD8/v2IX7UKi86ehc7KxPBVFet0ePfYMcSuWIEVly87JOlERETUlMgkAhJfOYHb557FgfN1X/zj8MUy3PnJWXR66TjcLLfXKHGOJyIiIiIXkggCUiIi8NWZM7h35068fvgw7m7Z0qKfKIp499gxvHP0KLL/HRGljox0drhERESNzrAEb6jkApbuysfSXfm47QY/lOstM0pnsrW485Oz+GlHPkQRkEmBkV18XBBx88KfyIiIiIhcrGoC6URREWYcPmzRRwfg+f37TUknAEiNiHBGeERERI2ap1KCYQnepuWlu/Lxvz0FFv3+SC/Ej9vzTaOcBnXwhq+HZUkeNSwmnoiIiIhcbHhYGJR2lsx18vVFrJeXgyIiIiJqWtTdfJ1yH7IfS+2IiIiIXMxLJsPQ0FCszMy0+T4ssyNqAs6dA779tnL53nsBK6W0RHT9Urv6Arho133U3Vhm5wxMPBERERE1AurISCaeiNzNuXPAtGmVy4MHM/FE5CBRgXJ0j/XAnjN1Ty4OAPFRSrQOdfS1JglgqR0RERFRo5Bix3xNIUolegUGOjAaIiKipie1q+0jmFhm5zxMPBERERE1Ai09PZHo52dT3zHh4ZAKgoMjIiIialrsSSYZS/PIGZh4IiIiImokbC2fY5kdERGRpe6xHojwr3tGoSBvKfq29XRCRARwjiciIiK3ddY7Ai/1fMy03Dci2oXRkC3UkZF448iRWvsoJBKMCAtzUkRERERNh0QiILWrLz7fkFNrvzGJPpBKOHLYWZh4IiIiclMXvMPxduJ9puUfwph4aux6BgQgTKnEFY0GJQoF9leZhLhEoQAADA4JgY9c7qoQiYiIGrXUbj51Jp44v5NzMfFERERE1EhIBAEpERH46swZ7G3dGon/938WfVhmR0REVLPkBB+o5ALKykWrt8ulAkZ2sX0Scrp+nOOJiIiIqBGpK7GUasfV74iIiJobT6UEwxK8a7x9UAcv+HpInRgRMfFERERE1IgMDwuDUmL9FK2Try9ivbycHBEREVHTUlspXSrL7JyOiSciIiKiRsRLJsPQ0FCrt7HMjoiIqG6pXWtOLqm7sczO2Zh4IiIiclP9ruxD2cLepr/g9O2uDolsVFM5HRNPREREdYsKlKNbjMqiPT5KidahShdE1LxxcnEiIiI3JYgilIbyygbrc2xSI5QaGYkPVqzAy7/9Zmr7dNw49AoMdGFURERETYe6my/2ni2zaCPnY+KJiIiI6kVvELH9eCnSdhdi8hB/xDAn0mBaenqin16PSRs3mtou3X03pILgwqiIyG7t2gGLFpkvE5FTqLv54rXfsyzanCmrUIcPlp3HmM5+GNjWGwpZ8yw6Y+KJiIiIbFZQoseq9GKk7S7EH3uLcK1Qj/7tPfDWXaHQaDSuDs+t9A8ONlvuFxTkokiIqN5CQ4EJE1wdBVGz1D3WAxH+MlzO0wEAgryl6BPn6dQYQn1kuJhXjuEfnICvSoKRCX5Qd/HDmE5+CPJuPumY5rOnREREVC+nr2iRtrsQabuLsOlwMcr15rfPuD0EAkfiNLjqiSeW2REREdlOIhGQ2tUXn2/IAQCMSfSBVOL885VpKRFYsicXBWUGLNmdiyW7cyERgL6tvaDu4g91Fz90jFC59bkUE09ERERkRm8Q8ffxUiz/N9l0+ELNI5n6t/fAsM5eToyu+ejgY37VHU8ZT9uIiIjskdrNx5R4ctX8Tp2iPHB79wD8vDvX1GYQga2nirH1VDFe/O0iWgcroO7ij9Qu7lmSxzMYIiIiQn6JHqurldDZgqOdHEfCx5WIiOi6JCf4QCUXoDcAI7v41H0HB6kY9STWcKGX09lafPhXFj78K8usJG90Jz8Eu0FJXtPfAyIiIqqXqiV0Gw8XQ2dbrslEJgXmrc7F/NXGX/D0BvMVSCXShgq1Vl88HIkAb+dsi4jILuXlQF5e5bK/PyCXuyoaombHUynBsARv7LpQiMnfnHHKNvX6audDUuM5irdSgsIyQ533d8eSPCaeiIiImomAQ3uw5eggpP1TiOV7KkvoWhedQ++yq3at65BvHPIUfvhtZ6GpzVNXgm55R+xazzWFP476trFo75x3DL66IpvWoe/RFkjqwS9zRNT47NgBDBhQufzJJ0CXLjX39/W1fvuRI8C1a3VuTqhykQexa1dApTLvkJsLHDpU53rMREQAbSw/p7FrF2DPRSUEAejf37L9/Hng7FnbV6PRQIyLA8LCzG8oLzc+3vbw8QESEy3bqz/eKpWxH48zTZK6my9WnsjBr3vzXB2K3ayV5KX+m4RqSiV5TDwREVGzo9eLuHTFONZZFEXTL0fREUKT/BXJmlAfGeQ+5of5HnP/C+HyzRZ9nzyxGE+c/M6u9Y8csACrw5PM2mKLL2HL+nvtWs+vUcm4td+HFu3z9ryOpGt7bVvJegDduhm/cLjJl4JygwE5mlJU/Vp1pdoyETVBjz5a++39+wNbtli2v/IK8Ntvda5eWeX/mt27gepXw9y5Exg1qu44q3r8cWDuXMv222+3K2EEhcJ6omrxYuDll21ejRJA+WefQX/PPeY3FBaaJ/ls0acP8Pfflu2vvgosXWre5mbHmeYkpasPhCUAaihza0pOZ2sx968szP0rC94qAQPbeiO5oy9SO/tBJZdAKhEQ6adwdZgWmHgiIqJm58pVES17W46mKTvpA6XSyh2aoLQn2gD9coEfK9s0MiVUcgFl5W5w5lXd3r1AejrQs6erI2kQp0oK8cC+Taj69XN8+hasHzbcZTERUT1UH3FETZebHWeak+jAxpeIuV4yCdA+XIk/TuXgj1M5eGa5sT3ST46LM3q4Njgrmsa4LCIiIrJfYqLxF9p/KaPCce2r9vjf8y3w4DB/RAS42e9PZWWujoCIyFy1z2Fq4nicIRcK9JJiQu9A/PRgK2S/1xUfjGvh6pBs5mZnnERERGQilxvLAtLTjSfLSiU8lRLc2NMHN/b0gcEgYk9GGbaseAL37bgRxy/bPlfHId84yKTA6+NCIZf+W55YpMLiQb+b+sikdZ9mlPoE4v9aWBaQnUr6ABdKC63co5JEV44tWzNxWNoKa77sBiEgwOb4iYicovrncF18a7jc+6xZwDPP1Hl3TdU5nmJiLDv06gVs3lx3HFVFRFhvX7LE/jmerJkwwa4SOU3FHE/V+fjYv28+NVzl7LXXgCefBPbvr7s8kpqEd26JdlqlXXl5udmyXC6HKIp4449M5JfadyWXjhEqqDv7QZ3oj76tvSCVNM0pIZh4IiIicmdyeY1lARKJgJ5tPNDziV4AeuFiTjmW7y5C2u5CrDtQXHdJnh4I85Nh8hB/AEBZmReASNPNqusqMRlYZ49SjQGTdp5BqUbEwWI/dA7lvBtE1AjV8jlss44dbeom1pXcCggAkpJq72OrG25omPW0aGH8s1GN+yiXN9y+2fh4U9PxzHDnzZJYVu01qlKpsPpwgU1JJ5kEGNTOB+oufkjt4o82Ie4xBwQTT0RERAQAiAqU46HhAXhoeABKNAasPVCM5buNV8C7nKuzep83fr2KCQP8IJc5/xe4v/aVolRjTI6l7ShB51bucXJWYX+rluj73qum5ROxTWdIPRERERmJoogZaZdqvD3IS4oxnf2Q2tkPIxP84OchdWJ0zsHEExEREVmwVpKXtrsQy3cXYU9G5S95p6+UY/HmfNOoJ2dK21FS+f/txXh5vHuV2hV6eWB7fFvTskLg1JxERERNzZojhfj7dLFZm7uU0NmKiSciIiKqlakkr40HZt4RalGSVzHqyZlEUcTynZUncTuOaZCVp0OoP09tiIiIqHGoGO3kriV0tuLZGREREdmlekneugPFOH+tHJFOzD3tPamF9mIW7r5WOZHsX6vHYvwdbZwXBBEREVEtsov1eDo5DCPifd2yhM5WTDwREVGzc/6i9Umzc/NEhIe591DnhuaplEDd03hVoOqTaTpS2o5itCvJwOIDz5naXlkdx8QTERERNRoh3jLc3sPb1WG4HBNPRETU7KxZb6ix/Z7xnEenKVi+owTVB6nvOq6BRitCqXCP5KFPcSkSzl4wLXNycSIiJ+vWDUhPr1xuwx83iOqDiSciImp2Vv9lPfG0YrUB94x3cjBkt0vXdPjnhAb9q7WXaERs2F+KkT09XRJXQ+uScQ5bnnvDtDxkzqu19CYiogbn5QV06eLqKIiaPP6sS0REzUpBgYi/d1ovtVu11gCdzvpt1His2FlS421pO4prvI2IiIiInI+JJyIialbWrDdAp7N+W14+sHU7E0+NXdr2mpNLy3eUQBT5HBIRERE1Fkw8ERFRs5L2p/UyO9PtK2u/nVyrVGPA2n2lNd5+NkuHg2e0ToyIiIiIiGrDxBMRETUber2IFatqTywtr+N2cq2/9pWiVFP7iKa0HTWX4hEREdksLw9Yu7byLy/P1RERNUlMPBERUbOx4x8R2ddq73PshIgTp5h8aqxsSSrVVopHRERks4MHgeHDK/8OHnR1RERNEhNPRETUbCyvo8yuAsvtGidRFLF8Z91JpR3HNMjKq2EiLyIiIiJyKiaeiIio2ahrfid7+5Fz7T2pxcVsfZ39RBH4o5Yr3xERERGR8zDxREREzcKZsyIOHrbtamebt4nIzeWV0RqbtB22l9BxniciIiKixoGJJyIiahbsGcWk1wN/ruOop8bGnmTS6j0l0GiZPCQiIiJyNZmrAyAiInKGtJV1l2hVtfxPA+68TeqgaMhel67psPuExqztnCoS/4172my5QlGpiA37SzGyp6fTYiQiIiIiS0w8ERGR2yssFLFhi32jX1auMUCnEyGTCQ6KiuyxwsqcTec9IjGrzaM13mf5zmImnoiIiIhcjIknIiJye6v/MqC83L775OYBW7eLGJTExFNjkLbd9vmdKu9TgrmPiBCEpvkcZvn74uvkJNPyVX9fF0ZDREREVD+c44mIiNxe1fmdbh8rwfdfWP/dZV2aHCkjKw+NaSs5z1NjUKoxYO2+UgBAoI8EsyYF4sU7/C363dLfC188FYLYMOPzezZLh4NntM4MtUGdiI7A5OceMv2diI5wdUhEREREdmPiiYiI3JpeL2LlGgNuHyvBgb/l+PkbOdq3sz4CpmdXAct/lmPnX8YE1PJVTDw1Buv2lcJDIWDWpEBkfB2Dl8cHwNfT8hRGLhNw/yhfHP+ypSkBxavbEREREbkWS+2IiMit5ecD65bJ0Sne9t9abughwfKfJdi124DSUhEeHk2zVMtdRAfLkPF1DHy9bHsOKxJQ9yb74J/jmrrvQEREREQOU+/EU1OdL4Gaj9LSUleH4FDN4T3YHPaRalZWVtYg6/H0BOJaA1VXp9Fan2i8TKOBoqzyddc5oSKWBgnFTHN4fTfU53CHKADQmj0POp0OfXP3YM3uiaa2N1v+gLKykWb37da64V5L1TlqvQCg0VpPmDlym9U1h9doc9hHqh1fA02fI8/5BY0GyirLGo0GohM/hwHnfu67QnN4DzrqNarRWk4nIIqN8zXDEU9ERETUJElggJe+8mROItp35UIiIqJaRURA99BDZstEZD8mnoiIiIgaoW4nzuDrOZ+Zlh987iFgoAsDIiJqZsTWraH74ANXh0HU5DHxRERERNQIeWo06HLmfJXlpnuFPiIiImq+6p14Et1sOHv12lJ32z/AstZTpVK5KBLHqP4cutv+VeeOr1F3fx82hxr2htRQ7+G8fBFFJSKiIyonplYq9ADKLbepVEKlqux36owBkWFCg0wuXr2+3x0/o5x5nJHJLOdLkEgkTn1cG2pb2doy6EQR4UoPU5tSZ32Op+rbPFqUjzhPH8gkDX+hYnf7DAZ4nCFL7vYacPfzfaB57GNV7r5/7vYeBBzzvfRSvhYqmQSBXpUpHKXC8gcpQbDc3qHLJYgP93DpMaLhz1KIiIgaES9PoGdKMR77bykuXDbYdJ9TZwy479lSjLqnBG5+vkeNgIdEhoStaXj26G5kamybgPRoUT7u3r8Fd+7f4pCkExERETUeEgFo/cZeTPvjPHKKdTbdZ9/FYtz81TE88dsZl/8wwVI7IiJya3K5gCF9pfjkm3J8/kM5HrxTjtGD5Vb7nj5nwNyFGnz7Szn0euCxSXKXH6jJ/XnJZOjjF4z3zh7B/PPH8UiLdlCHRlnte7QoH6+fPoAfLp+BCODl1p2cGywRERE5XbivAu1DVXhjzUV8uCkTTw4Mxw0tvaz23XexGDNXXcDvB3IBAO/dFOPMUK1i4omIiNyeOlmOH5fpoNUCn3xTjvmLLMvsAKBHSgkMBvP7ETmDOjQaf2RfQqlBj/fOHsEHZ4+ib7U+5aIB8VvTULUoQR1iPUFFREQN4J9/gPHjK5d//BHo2dN18VCzpk4IwM5zxSjU6PHGmouQWPlt9HJBObr93wGL+7kax2YTEZHbGz1EBqm0ctlQQ8Vd1XZvL2BQH6n1jkQNLLVaAskA63NeVG0NVajQyy/YgVERETVzZWXAqVOVf9XmlyJypuoJJIOVU4XqU2Z1CFUhLsT180Yw8URERG4vwF9A0g32JZFGDpJBqWSZHTlHtMoL3Xzs+0UyJSQKEpaCEhERNQtdIj3Rwl9h130aw2gngIknIiJqJlKH2Vddrk5mNTo5V2pItF39WWZHRETUfAiCYHciKZWJJyIiIudRD7c9kSQIxvI8ImeqaUJxaxSCBMODIhwYDRERETU2qQn+NvcN8JSiX6yP44KxAxNPRETULLRvI0XbVrYd9vp0lyI0mIfIxk4ryHFBGWb600mb9mTwPXyDEK6wbR6GIYFh8JY17f0lIiIi+wyJ84OXwrZz1DEdAyCTNo6SfJ5VExFRs2Fr+RzL7JqGXf6JaDF4q+nvVIvurg7pukgEweZyO3WofWV5RERE1PSp5BIMb+9nU1+1HaOjHI2JJyIiajZSmXiiRi7VxnK76lfBIyIioubBlnmeZBIBIzv4Oz4YG/HMmoiImo2kG6Tw8wXyC2ruE9tCQEJ7/i5DrpEcGAGlRAKNwYBt8W2hXPaV6bZymfHKjF28/RHj4e2qEImIiMiFUuL96+wzoLUP/D0aT7qHZ9ZERNRsyOUCRg+u/SCcOkwGgZeoJxfxkskwLDAcACBKJNAq5KY/UWI8bUtlmR0REVGzFeajQK+WXrX2sffqd47GxBMRETUr6uTaJ2Su63YiR6tr/iY1y+yIiIiatboSS40t8dR4xl4RERE5wajBMkilgF5veZu3FzCoj9T5QVG9tCo5h8fOLTItn+n8MIAw1wXUQFJDovBIDbeFKlTo5Rfs1HiIiIiocVEnBGDaygtWb+sQqkJciG1XyXUWJp6IiKhZCQwQcEMXKbbvtcw8DU+SQalkmV1TEanJwjNnF5qWpxeMdV0wDSha5YWuPgHYV5hrcVtKSBQkLAUlInIeKX+QosanS6QnWvgrcD5Pa3FbaiMb7QQw8URERM3Q8AEyq4mnMcN4WKTGQR0SjStnTuPmrf+Y2n7r3xPqriyzIyJymqQkQKdzdRREFgRBgDohAPO2XrG4rbGV2QFMPBERUTOUPECG1+dqzBtFYNQg/qpJjYM6NAp/Xc7CJ/O+NbUdbhOL4UERLoyKiIiIGgtriacATyn6xfq4KKKacXLxZmz9sUJczi93dRhERE4XFyMB9NXKlfQCQoIa/rBYVASsWGF9Tqm/tmuRedXQ4Ns0MRiA88eBA1uN/xocuC0rDp0ux/6TWoii6NTtuoMevkEIkivM2rr7BsBbxsnviYiImgxfH2y4moVyB5yDDY7zhZfC/Nx1TMcAyKSNrySfI56ascv55Rj63nH0jPGEuosf1F380bWFBy8jTkTNg04CSPXmyw3k3Dlg+XIgLQ1Yvx6YMAEYNsyy3/lMA4bdfw29OsugHqyAerASXdpLr/9zOPMs8M0LQNYqwKfKiU6hBAgdCUycDYTHXN82bBDoK0HrWy8jNFAKdX8VUvt7YEgPJZQKHmfqIhEE9PUPMWvrHxDqomiIiIioXgqL8NSBvThbUoxRYRFQh0didFgEAhSKuu9bB5VcguHt/fD7gco5IVPj/a97vY7AxFMzNq5nAF5bfgn/nC3BP2dLMD3tMqID5EjtbExCDWnvAw8FB8URkZvSSQBlwySeDAZg1y5joiktDdi/v/I2mQx4+WXr97s7VYnXPy3GzgM67Dygw7SPStAiXILUQQqohygwpJcCKnsnO/9pNpA+C5AD8AKAKvf30gMlfwBz/wASXwHGvWDnntonIliKh2/2xgc/FeGTX4rxyS/F8PIQMKKXEuokD6T0UyE0kOWNNekfYJ546ufPq9kRERE1KaKI6R0ScMuOrfjxwjn8eOEcpIKApKBgpIZHQh0eifY+vvVevTohwJR4kkkEjOro30CBNywmnpoxqUTAq6mRuPvLDFPbhdxyfLopG59uyoanQoLkjj5Qd/FHSmc/RPhxeD8RuRG9AIgw5mUMAAz2JXiKioC1a42JphUrgCuWczsCACZOBFq3BsrKLG+TyQRMe9gLk14pNLWdzzRg/k9lmP9TGbw8gOH9FFAPVmDMACXCQ+pIjv00Gzg0y3h0FwSznBMAQPJvg0w09vsJDk8+PT/BB5/+VoSyfy+6Ulwq4reNZfhtYxkEAegVr4A6SQV1kgqd28g56raKnj5BZsvhSk8XRUJE1ExduAD88EPl8p13AtHRrouHmqSbIqKQ6OeP9Pw8AIBeFLEx+yo2Zl/F1IPpaOvlDXVEJNThUegfFAy5xPYfQ1Pi/SEIgCgCA1r7wN+jcaZ4GmdU5DQVo56OXdFY3FaiNWBZej6WpecDAG6I9YS6iz9SO/uxJI+I3IBgHOUkNwDlUlhmaSxVL6HTWH50mqlttFOFilFPp85b1v4XlwK/r9Pi93VaAEW1l+RlnjWOdJKhMsFUE4kAGERj/0HjHVp2V3XUU3WiCOw4pMWOQ1r8d0EBWoYbS/LUSR4Y3J0leR4ynqYREbnUmTPA889XLvfty8QT2U0iCKZRT9acKC7CeyeP472Tx+Evl9tVkhfmo0Cvlt7YcbaoUV7NrgLPaFxs3/kSHLhY6pRtlZebTyQulxtHMPWI8bKaeKpu15kS7DpTgleXXTIryRvawQcqOUvyiKgJKpcASp2xLE1qwHfLDZDLK5MdBhHIOA3s3Qfs3QucP1flvqp//2oR0RJ4Z4Hx/zq9+eWYZdLKIVBBXnKcQt2fw1VL8gJ9JegWp0DXNgp0jFFg+D8voEUwbP9RQCJAlIs4985z2DT8a9vuUwfL44yxlDEi2LZyunOZepbkERERUYNbfO4MnHapk0EDzBYXnTsDgyjCTy5HfnntF/fKKy+3KMlThxtHQ7XzsX61utR4fyaeqBbl5dj20wZ8v/lynV0L5F44ENTWor1DbgaCNPl2bXZvUHuUyD3M2vw1BUjIPW37SjKB1WeD8emmaHgqJBje0Qep/46GCj++z3wYgEoFJCYCcpbqEVEjUzHiydt4EnD/q3X0j7Jv9ef1wILl9QutLjkFBqzbU4Z1e8oAvQGaEavsX4kIROrWYMGzKwHB/AeEYx5tkC03L/WSG7ToVbTPrk3ky3xw0LOjRXvHkuMI1OXVfMcCICsN+DIN+EoA4lvJ0Sb1BowaFojObXg8IaImpLwcSE+3XnMNGEfRSKsl1y9fBk6dsm87rVoBQUGW7Vu22LceDw+gRw/L9pMngcxM+9bVuTPg52feVlQE7Ntn33qCg4EOHSyahfR04+Nrjz59jEOSq8rMNO5fdVUnbaQmbdKendA76yq7Tz5qtnjv7h31Wk3VkrznainJUycEYPHubMSF1PGLqAsx8eQq5eVA796YsncvptjQfUtYIgbc9KVF+6xd83DLmfV2bTrhtp9wOLCNWVuvrENYtfJxu9YzN2Ecnuw/FSVaA/6Xno///VuSd/HnsYjMu2TeuVs3YMcOJp+IqJERLCcZb4LayjOgCDTAlnLBqgSJAHmgiC1n7gBKzU/G7oz7CD8GjzVrC9LlYsvhW+3axgafPhiSsMSi/e3zb+HG3LW2r+gQ0P78BrzwdRvEhEsRESmCY6CIqNH795wfe/fW3KeoCPDyMm9btgx4+GH7tjVnDjDFyjeLAQMs22rTrh1w7Jhl+7vvAp99Zt+61q8HBg82bzt+3P6Yxo83n2vpX/IpU4A9e+xbV34+4FttMufly4EHH7RvPUROVr0kb/S/JXkjQ8PxWFK4q8OrFeujXCU9vfYDUBOm1VnJJO/diy2r/nJ+MEREVgQHAbvWy7FrvRy3pjb99EWo9Nr1reD6r+jrVGcz9Ug/YkBo53j89vhCU/uDY0NdGFXDOlNWiPtPbTZre+i0naMWiMj13Picv1lSNd4RJVSzrLK6pzNoavLKy/HTxbOYsH8rwlf/judztsDrf0sR8r//uTo0qzjiyVVqGmrbhN0Q64nUzn6I+EMOWM4hi6KCYucHRURkhUIhoGd34+ig1n81/Qmss/RWSivsoW2YOBwtMliC4aO8kNrfOPm4ShkNrDgHfASgWzdEJ1spDWmiykQ9jpWZl9IfL7WvtJ6IGgE3POdvtrp1M04fQk3OHxczITqrzM7B/KqMdLqYp8Hzl3bCAAPKYSw5LdPaWXrqJEw8NRJzxk7DqfD2Nd5erPJG/wgvi/ZfbnkWa0vut2kbhn/fbGGRbeCn8ITk36seXS3SYacmAUk3fmFXzLm+wbgx0TjBeEpnP0T4/VtGF7YUU9buAg4cwLwfPrVrnUREzhYbJUX/bpaHQ70eyMsDcnKB3Bz7p5AAjNXFtvw4Wi6KKDPYX+4nAeAvV0CUdUZ5rgQyPz2Euq5oV4VoEKHPl+CJ5N8s5ngq9GuD/h7mQ6Fk+jBMiV5W4/oMBvMr80kkEhQpfNDHX4HtB82zWy+2eAnvRDxSa3yCAMTHytGviwL9uyjwl7o7hOrlKH37Art2cS5BImoaPvkE6NLFvM3ageLGG4GEBPvW3aqV9fbNm62318TDw3r71KnAPffYt67OnS3b2rWzP6bgYKvN5fPmQWnvAdrT07ItNbX2mDhnbZOWdiET/lIlOvpZn5y7oW3daj5CuX//JADA3vxclOjtP9+raW6neYV2zNHsYkw8uUrv3nj7ndOYs7gYr9znhWenRNfzg8xykr2alFX7xUX170Huri9O44crvtga3rXOdUT5y6Hu4ofULv4Y2t4HHgor1Zo33ID9l7RAbqHNsRERucqUOz0w5c4aTrL/ZTAYcxtpacZpINLTbVt3eAvgxAFAqaz5MxgAbnsqH7+sse1EpEW4BKmDFFAPUWBILwVUyn8TTbNHAiV/2BbYvwQBkEWNxrwPb7LjXjVfRrqmffxuVQm2H8wxu+2IZzur66h6Nbsx/VQIq+tqdoGBxj83dDoyBE88Pd60nBEV4sJoiKhBdOkCJCXV3S8iwvhnL2sjrGzZni3i4ox/18vbu8FiEhMTG6b8LTzc+EduR6PXY/XlLOhEAavHDIJn9YnlHUAYnGy2vEUUcaqoCO3X2naeVvVqdqnhkWjv41v3nRo5Jp5cRS7HT3u9kS1X4ed0OZ5yUfb8yOVS/PhPbq19Kkro1F380bWFh+2X6iYichMSiXFu2N69gTfeAM6dMyag0tKAv/4CtDWUqp0/DyxcWPv8sPuP6fDLmtpr3Xp1lkE9WAH1YCW6tJda/xyeOBuY+wcgEwFbRj0ZREAH4N636+57HfR6Ea99VVBrn5bhUqj7q6qU0PE4AwCXQ/zx0R2VJ68KgVNzEhER2WPDlWwU6XQAgLWXr+LGFvVI6DaAWccO13pVvaoldKPCwhGoUDoxOsdj4slFzmfqse+48Q2w/UA5snL0CK3rV10HeH3FZVR//XvIBQyP97UsoSMiIgBAy5bGCwdNmWK8GNHatZWjobKyzPu++SYweXLN63ptvuX8d54ewIh+CqgHKzBmgBLhITYkHMJjgMRXgEOzjEml2pJPhn8/+LtOM97PgX5cW4rj53RmbYIA9E5QILW/CuokFTq3kfNHDSIiImpwaRcyK/9/8bJLEk+niorw7fkzFu01ldC5IyaeXGT5lsphsKIIrNymwcRUK/XGDlR1tFNFCZ26iz+G1FRCR0REFry9gbFjjX8VJXkVo6HS0ytHPU2aZHnfqqOdWoRLoB6sQOrgaiV09hj3AvATgPRZgFwERJgnoAwiIMA40qnrNOCOqfZvww5VRzvZXUJHROQOvLyMk1JXXSYipxBFEcsvViaell/IhEEUIXHyj10Vo53csYTOVkw8uUjaJo3FsrMTT38cLMCM1AiW0BERNZCqJXmvv15Zkrdvn3Gycmm1XMvKzVq8/rhn7SV09hr3AjBoPPDti8CVPwGfKhN+F0uBsFHApHeA0BbXv606bE7XYPgNSsx92h+DurGEjoiaoW7dgD17XB0FUbN0MK8AZ4tLTMuZZRrsvpaHG4IDnBeEny90ogHf9ezjliV0tmLiyQWKSw048PdF3H1to6lt66bB0Gj9oVQ476T82eFhDl2/CAGaqpO3MbFFRM1MRUkeYH2+1xcecNAPDuExwPM/GIdgXToN5F4BAsKAyNbG7JiTDO6uwuDuDTDpa3MlipDqqyQOZTyOEhER2SqtyminCssvZjo38ZRfgG979nHe9hopJp5cYO0OLWIKT2HxmcdNbUnK37BxT1uM6OM+GdBtcfFQffKbafnbHl1dFwwRUXMkkQDRccY/anL67z+JLQ/PNi0P+fRFgOeuRERENkm7cNlq28zEji6IpnnjRD4ukLbZys/eANI2WW8nIiIiIiIiIttklWmwI9vy6u17c/NxobjUBRE1b0w8OZnBIGL5Fo3V25Zv0UCs5RKLRERERERERFS7Py5moqZv1sutlOCRYzHx5GT/HC7HlWsGq7eduaTHoVM6q7cREREREVETc+wYMGFC5d+xY66OiKhZSLtQc3LJWgkeORbneHKytM3WRztVvb1TnNxJ0RARERERkcNcvQp8913l8sMPA+3buy4eomZAo9dj9eWsGm9fl3kVxTodvGRMhzgLH2knW17D/E4V0jaX4aXJ3k6KxrGic65iwo4NpmXP9qFAu2jXBURERERERERubcOVbBTpaq4k0hgMWHf5Km5sEeHEqJo3Jp6c6HymHvuO115Kt/1AObJy9AgNlDopKseJycnCW79/a1r+8/abAPRyXUBERERERETk1morszP1uXiZiScn4hxPTrR8S91XrRNFYOW22svxiIiIiIiIiMicKIo2TR6+/EImDLywl9Mw8eREaZtsSyjZ2o+IiIiIiIiIjA7mFeBscUmd/TLLNNh9Lc/xAREAJp6cprjUgL/+sS2htGq7Bhots69EREREREREtkqzYbRTZV9e3c5ZmHhykjU7tNBobetbVCJi4x4bOxMRERERERER0i7YnkyyZS4oahhMPDlJXVezqy5tk339iYiIiIiIiJqrrDINdmTn2tx/X24+LhSXOjAiqsCr2jmBwSBi+RbzMrtziij8N/J5s+Wqlm/RYO5UEYIgOCVGIiIialxKVAocahVZZVnpwmiIiIgatz8uZsLeCWuWX8zEw+1aOSQeqsTEkxP8c7gcV64ZzNrOK6IxK+KpGu9z5pIeh07p0ClO7uDoiIiIqDHa2z4Gnb5/zbSsEDhQnYiIqCb1KZ1Lu3CZiScn4BmME6Rtrhzt5O8j4Jm7vaz2e+4eL/h6VY5wqno/IiIiIiIiIrKk0eux+nKWaXlAaBCGR4Ra9BscFoyh4SGm5XWZV1Gs0zklxuaMiScnSNtcBn8fAa897I0zaaF4cZL1xNP0B72RsSwU0x7whq+XgDQ754UiIiIiIiIiam42XMlGkU6HAaFB+Cs5CRuHD0AXf1+LfvF+Plj37+1Dw0OgMRiwtkrCihyDpXYOlltgwK1DVXhivBf8vI15vqu5+hr7B/pJ8NrDPnj6Li/M/bEYRSUGeHsyP0hERERE1OQkJgI7d1Yud+jguliI3Ng1jRZ/JSdhcFiwTfMkDwwLxrqwJGy6ko0zxSVOiLB5q3fiqazMvUfjNNT+eSiAqRPkALSoWGVZmcFq37IyDWQSwXS/F+41v991x+LhYbZcWuq4GfwNBoPFcDq9XufU1427v0abw8TzzWEfqWZ8/qmxc+RxRqOxXm7vzGNbc3gPNod9pNo5/D0llwOdO1ffqMM2V/18n5o+d/9O01D7d0uEsXyu6vFTp7Mc8KHX68222cvPG738vB36ODtq3doaSgQb42uGI55cpG/RLqw5Md60PLztjwCGuy4gBzgRGolJE580LY9oGeu6YIiIiJqYuPNX8MKilabl9+9JARJdGBARERFRPTDx5CISGOBlKDVbdjdZvgH4pl+yaXlgcEgtvYmIiKiqsJwCPJC2xbT8XUqSC6MhIiIiqh9OHkRERERERERERA5R7xFPKpWqIeNodBy5fyqV9cnFVSolVCrn5QIbah91BgNkEvO4JRLL/ZDL5RbbtHbf+qo+Z5W7v0ZFUXR1CA2u+lwb7raPnEvEPu7+/Lvb/gGWcwq42+dw9eewwY6jogEywfxYqBStz89QfZsGUYQIEVLh+o+lzeE42txeo1Q3h78G8vOBAwcqlzt3Bvz8HLvNKnisaXrcff+qc+T+yWRSizapVOr0x7QhtldWrodKbr4/Cpn1dE717ZWV66GQCla/ozsLRzzRdXt48wHMPZiBUiuTt9XkeF4R7l2/F6svXHVgZERERI3flfJSDD+yElsKMm2+j0EUsfRaBkYe/RMCmGwgarQOHAAGDKj8q5qEIiKy0YoLVxC+bBkWnzxv833KyvX4z7a9aLXyD5cmnQAmnqgB9Ajxw5PbDqHNj3+ZJaBkeh0CigtNf0J5uSnh1HHJBiw5fRmDI4NdHD0REZFrRSm8kKPTYMDhFUg+XHsCqiLhlLj/N9x+4i+0VHhDwlEuREREbu3mmHBkCyW459TGOhNQFQkn35VL8XnhIbRUeDsxUus4uThdt9SWYZiCg7hcosGT2w7h7X0noTOI6J1xDFvefdHU797X5mJieCsY/h3xOywqGJ5Whj8SERE1N2r/lthTfA3rCi5h3eFLSPQMRPXTRD2AxP2/4WBpbuX9Alo4NU4iIiJyPolEgnhpEA7gCq4oC3DPqY1QlSmBalV8BqkBviuXolxZDiiNbRNbxjg/4Go44omuWwtvDyQG+ZqWL5docLVMa9HvdGGJKekEAOqWYc4Ij4iIqNFLrZZASi/JsehjgGiWdFIKUiT7RTk8NiIiInK9cVHmCaQylcayk1Q0Jp3+JegkuK8tE0/kJuqTREppGeqASIiIiJqe7l7BiJB72nWfIb4R8JbKHRQRERERNSaPtm8F6O0rr481BFhMSu4KTDxRg1DH2JdE6hbki2hvDwdFQ0RE1LRIBMFi1FNdWGZHRETUfPir5IjQ+dbdsYqbwqIdFI19mHiiBtEzxB/hHkqb+6tjWGZHRERUlTqgpV39U+3sT0RERE3bqCA7SuwNwNPxbRwXjB2YeKIGIREEu0rnmHgiIiIyN8w3EirBtuHwiZ6BaKl0/VVqiIiIyHme7RgHiHX3A4AArTdaettXxu8oTDy5iFZQ4II8wvSnFRSuDum6pdqYTIrwVKJ7sJ+DoyEiImpaPKUyDPOLtKmvvaOjiIiIqOlLCPSFt8a2KWsG+YY7OBrbyVwdQHO1y6sbWnTZ7eowGtTwqGAopRJo9IZa+6W2DINEsG9SNCIiouZAHdASK/LOAwAOtIlC0qcvmG470CbKrB8RERE1P329wrBGf6bOfo+3axxldgATT9SAvOQyDI0MwsrzV2vtl8qr2REREVmVGtACyDD+v8DbE1sT21r0CZN7oKdXsJMjIyIiosbgP21aY83xM7X2UWgUGBoV4pyAbMBSO2pQdc3dpJJKkBzdeN4AREREjUmUwgvdvYJq7ZPi34Ijh4mIiJqpW2LCIdXWPoaoq6JxfefmiCdqUKktwzAFB2u8fVhUMDxltk2cSkRE1Byp/VtiT/G1mm8PaOHEaIjouoSFAfffb75MRHQdJBIJ4qVBOIArNfaZ2DLGiRHVjYknalAtvD2QGOSL9GsFVm9Xt+TBloiIqDapAS0w8+Jeq7cpBSmG+9lxKWUicq22bYEvvnB1FETkZsZFxeBApvXEk6CT4L62TDwRgFaas3gsa6Fp+ePQyQDcIymjbhmG9GsFKFR64u9W7U3thUpPpMZwficiIqLadPcKRoTcE4V5Oehw9rKp/WhMBAZExcFLKndhdERERORqj3dshf9e3AVIRYvbYg0BUMkbV5URE08uElmeiWeyPjMt/xow2oXRNCx1TCje2HsC+1u0Qr8X/8/U3j3YD1Fetl36kYiIqLmSCAJSA1rg8D/p2PLwbFN70qcvQJ0w1IWRERERUWPgq5AjUueHS9I8i9tuCot2fkB14OTi1OB6hvgj3ENp0c6r2REREdlGHdDSansK53ciIiIiACODIi0bDcDT8W2cH0wdmHiiBicRBKRYSTLVdcW7hlakL4coWg49JCIiauyG+UZCWe00LU7pi5ZKb6fGUWTQOnV7zubu+0fkTopE936/Folat/7uohcNKDXoXB2GW3m2YxxQ7SUToPVGS29P1wRUCyaeyCFSqyWZIjyV6B7s59QYjpXloc3BH/HEua1YU3ABWoPeqdsnIiKqL0+pDD28g83a+vs4fy7Il7O2Y9CZ3/B/2XtxTJPr9O072t/ay2if+TWey9uEjZoL0IkGV4dE7mbPHiAhofJvzx5XR9RkGEQRO/QX8V/tBiSWfo6l+iOuDqnBndXn4+PSPRiZvwT3Ff4JQRBcHVKDKjBosLTkBCZeW4X2l79BGZh4akgJgb7w1phPZTPIN9xF0dSOczyRQwyPCoZSKoFGbzyBS20ZBomTP0h7eIWgk0cAPrp6CB9dPQQfiRwjfaOR6h+DMb4tECK3Y76pGSMBQQpM/8P2+8wcA4h6YMYq+4MnIqJmr3qiqb+P80vWpwZ1Q5sTi7Gp5BKmZm1DW4Uf1N6xSPWJRZJnBORC45q81F7JypYIlqgwp2g35hTthr+gxGhVLNQerTFKFYsAicrVIVJTV1ICHD5svtxUOeF8uEjUYo3+NNL0J7BCfwpZKAYAtBECMEHauT5RNyp60YCdustYrj2NNO1JHNBnm27b7X+vCyNrOGd0+UgrzUBa6WlsKLuAchi/D77q25ufqQ7Q1ysMa/RnTMuPt2t8ZXYAE0/kIF5yGSbqCpD82ccAgP7hAUDIO0DHjk6NY3pED6TlnwMAFBrKsTQvA0vzMiDA+CZV+8cg1a8lElQBtf/CIEgBcavx4GnLwXbmGGN/oX/D7AgRETU7/aolmjp4+Ds9hhZyHzwQEI/5uQcBACe0+XgvJx3v5aTDX6LEKO+WUPvEYpR3SwRKm94XCkEQMMO3L0Zk/woAyBM1+KH0GH4oPQYpBAxQRiFV1RpqVWu0kwe4OFoiF3PQ+fA5Qz7S9CewXH8CfxnOQgvLKoX/yvtDJjTNYp1CgxZrys8gTXsKK7SncVW0TD7eqIhDd1nTvMK5XjRghzYTaaWnkVaagUPl1yz6+AoKPOXbzQXRub+H2rTGmuNnAAAKjQJDo0JcG1ANmHgihxnlKcXNe7ZWNrz0gtNj6OEVArVfS1PyqYIIYFvxFWwrvoKXLu5EK4UPUv1aQu0fg0HeEVBIqv2CO/2PyoNnXQfbqgdZe34RIiIiqqL6yFxnjxyu8FJwd3yRe9j0q3WFPIMGPxacwI8FJyCFgP6eEVB7x0LtE4v2yqaTpElWtkQ/RQS2aS+bteshYoPmAjZoLuC5/E1oJwuAWtUaqapWSFJGNdkvwUT11kDnwwZRxC7DJaTpTyBNfwL7xaxaN9sURzud1ecjTXsKadpT2FB+3moyrarpnv2cFFnDKDBosLrsHNJKT+OP0jPINpTW2v8pn24c7eQgN8eEQ3pQBr1Ch66Kxpl0Aph4IgfqFxZotlyi18GgL3fY9sqqrVunNyaPng3rYpF4qi5DW2hWkjfCNxrq6iV5thxsmXQiIiIHKTGUw+DAybDLDNWOowZjYiVAqsQE/3ZYmHe0xvvqIWJTySWzkrzUf5NQdZXk6UQDykTnzPtRJlrfx+d8euKWa2m13ve4LpcleUT1PB+uqYTOFk/LehnnBvp3EuWyapOM60THJ4GVkNb6OVZRQpemPYXl2lNmJXR1GSmPRTtpgGnydFfsnxQCPAR5rX0ydPlYbqWEri5eghwPeHeqvJiDp8Lsdkde5EELHSD5N06DAMC95tACAIlEgnhpEA7gCia2jHF1ODVi4okcJsxTabY84uQf2Op93EXR2K7QUI5f8jLwi7WSvFdXQHgtxfrBlkknIiJyoBFn07A1+HDdHRuBE9p8vJ+TjvdtKMlbpzmHUdm/uSjS+qlekpekiILagyV51EzUlnyqcj58btoPSCv/p9YSOls8Vr4Kj5XXMkdU7YNtGsQXihTcL+tq1mZLCZ0tVpWfgc+1D2vuYHuOrt5S5K2x3O9WszZbSuhsUSyWo+WlLysbjsw2u93nwrx6rdcmIf/+AcCmlo7bjouNi4rBwQtXcV9bJp6I0OXEBYu2ve1boMTDPEHlV1iCTqcu2bXuy8F+OB1tObSwx+EzUGnt+xV1a9c40/8rSvLOnj6K5ZevIULmgf6dUjF5Yxb8ArcCT/cDnv4RWPgwk05EROR0XY+ch1eJfb8W/921FQxS81/Qw6/mo80523+hB4CM6CBcCvO3aO+/+5RF23kcxjwACwB0VgWjv0c4+ntGoKXCB76SXMDK94E2GVcRfrXQrpgOdIhAga95iaJXsQZdD120az3ZgV44Fmc530rioYvwLtZYtOtwCr9hE34D0FLqg36KSPRXRKCzIgSyvv0AGU+5yc1YST4ZZo6GRNyGU4jHLc/fjP1lH7s6ygZnbwldU2NvCR01Do93bIUfLpyFSt54L/jBo6ALeKoETBzjCRyrbJs4xhNymfsN/atq3uwfLNq6/DANB9pGm7X1PHwWax/9wK51f3L7IDz2wl0W7T++/AXiLly1eT06qQTyHfMt2u9ctRPvzv3VvHGgAhhyCOJnnSDIBCadiIjI6b6c9h26H7H8Yac2XrvmoKTaqOQb1x/Agpk/2rWeZ6bejPcnDbNo33Lv+3atp2NcDLD+SYv2qQvW46Hvttu1rsE/T8HGvnFmbe1OX8WWW+37AvzDjd1w1yf3WLR//vzPuGH/ebvWdf/FHxAb2AKCAHSThCFFHlf3nYiagirJJ/G/vpDIBKwzRCH5xVSgjnmbmpprhlLcVvA//KJt/NUb9WGAiDfzd+KNgp0odVLps7M9Ht8KvhIlege7z6jUv69ew7Sj+wEAPl5A8ub18JUq8Gu/xneBKyaeXMDLQ4IHb/EEqpyXPXiLJ6Bws8STys3nO9ikBQYojUknnQi8waQTERE1oCrH0V+TE3EipvFOGno95G4+SfcSw1EUas8AAB6UJzLxRO5l8qfAvz/CijoRXvd/gedkpUjTn8AxsX6lWY1RkMQDS31vwnF9DtI0xhFPW3QXoK+YeKqJk0DAy3698LB3F6wsO4O00tP4s/QM8kXHzb/kbB5+erzRJt7VYTSovXm5WIczxoV/BztJSqUAGl/iyb2P9I1ZfDyyvlqOVCxH3uLlQLx7vQkAAImJKE5sWlegsKa7ZzCG+0Zb3jBQAVQknWSC8RcfIiKihpKYCHQzXn66RKVAVrCviwMiIqrm/fGm82FBJqDP3OfwrmIYjno8jOOqRzBHnozBkhhI3WRS53bSQDzreQM2+I9HVuCj+M47BXcqO/5/e/ceHlV953H8c+aekBsBAyThFpEKketaXW4WW1oKktrWXu1FXWu7z7LW1mer2+12vWzbXbutbbXdi+tqXXZXXa9bkIItigVURLFEo4gQiZIAiSEhkGSSyczsH0NmMplcZsicczKT9+t58pBz5pyZ78llzsmH3/d3VGR4h985AxQ7ffrSuPP10MS1air/hp4puULfzl+kWa4iu0sbsSfaau0uYUxjxJNdiov1aOdlekrSE93SNcXD7pF53G55Xtqjlr17JH/ifAiStG3hAmncuLh1xrRWtcxdl9JLfWHyZH2ivCxunc/rleuRudpzslHfPpL8UH2f4dSqgjJVFU7XZYXTVOYZJ33jImn1Z2MbPXaTVFgjnayMn+NpuFvLAgCQLLdb2r1b7Xtf1tq8XDXOnp2wieuBxWppT21C28PzLpac8fNAOK5do+PLvhq3zuOO3XnoX1pe0+bT8XeIfad8woDPv/w/v61Jzhwty52spblTtMg3UV7H4JecHp9HjVMuSFjv+P4qtVx3fNjj6evReZUKFxbGr8w/rZbtayRJ3YH4u9p53JG7OL0aaNTftb0QXf9+cfy1Sa/rfvw55bV3Kcdw6SLPZC31lGqpZ4rGOxNHef9r16v6r54adeQOfacoIGPdtjZyPfysP9IJcGYait7r4fMcxbrRcbFudF+slnCntp65q91vg4fUIn/SL/Nz90d1pasyuuzv93eFz2d+6JMnT8K6YkeOrvTN1ZW+uQqEg9oVqI/O//R2qCXp517tnqEN+ZdFl/1d/Y7Pa/7xeZQ4N5DbcOpS31Rd6puqnxZdord6WrSxs1abOt/Rzq4GhZIc7TXOcOuPk7+kQkfka1hSUhL3eGOjuW2ZoVBIpfs36KDrffWEQnI5GHtjByMcDg/7E1NeXq76+vhJGZPYLaMYRnwKb8XxrVkjbdkifepT0uOPD7/9SNlxjFby++NPYL4zLQpXHHpaj7ceHnLfKe5crSucpqrC6fpIQZlyh7hAHvTudSbf1S7bv39S9h9j/+OTpLKyMh05ktr8LNmI80x2GOx9OFtk+/dwsO9fQ6BdFQc3qCs8+CS6hqSLciZpXd4MVeXP0HzvhAHf8+w20DGGw2GtbHpEf+geegLyac58VfkqVJVToZXecnmNof//9rv+7frH7vj/+LrOvUD35Kw5u+KTwHlmaLaca3bulFasiC3v2CEtX27ay1n2PtV73XuyUvp5LLTVt5ZEwqghrod7wiHtCr2njcG3tTH4tg6ETwz5UrONYtX4viHXmbbcTDjXvNVzQpu6k2/J21d0lea7IoFMJhzfiaA/pZa82wuX6PuFF0uy/lz6v8cP6/MtmyRJ9xWs1jWl55n6epJ1x/jPbx/U+mM74tY5up0KfuSrg+yRHmdzrmHEk01On5aeeSby+dNPS35/9k+JZId9Hc2Dhk6Lcyeq6kzYtCh3ohzJXCAPFS4NdWtZAAAy1B3NewcMnXINlz6WN1VVeTN0Wf4MTXLl2lDdyG3vOjJg6GRIutgzRVW+Cq3zzdQ898SUw7RJx09p3Zb90eWCdVOlmSOtGLBZ3+vhK/5G+nmfYO2KH0vbfjTk9bDLcOhDzun6kHO6fqJVOhBq1qbgQW0Mvq0doXcTQpoD4RN6KFijL7syZwqPD7iK9QFXpC3vRKhTW7rf0cbuQ/pt4B2dDCd2gtze8YIeLbjchkrPTm9L3pfGna9AOKgdXQ3a1FmrjZ3v6GBPa8L2d7bt1TfzF6rQYX1L4j3H96t3wNp9TQcsCZ6QiODJJr/7ndR9Jhhub5eee05avdremrLR7UdfiX7e20K3rnCa1hVOj7TQpSKZEU2ETwCALNIQaNe/tdREl6e68lSVP0Pr8mbo0nFl8g01QjgDhMNh3dqnxW6c4dbHvNNVlVOhtb4ZmuRM8Vqhn1m1zbr3m7Fh7T+eu4TgaaxZtkzq2+LpHL23O09K/+vhnTsTt0nxeni2Y4JudEyItuRt6dOS13qmJe/vAzv1BWdldNRTJkmmJe+x7gOq7mmMjnrKJG7DqQ/7purD/VryNna+o11nWvJaw12669Qfo6OerPRisCH6+cuho5a/PiIy+2ohgz39ZIdmK3Y73i2PT9Xq1Zn5P4Wj1b6OZu1ub9J1E89ProVuKKm00RE+AQCyxD81v6qFvomjvoXubG3vOqLDwTatH7cg6RY6ICWGIbmy5GfKguvh8UaOvuiq1BddlQkteZk26mkgbsOplZ5pWumZpp/qUr3Vc0Ibuw9qU3etftSxWw8VVNld4ogYhqHz3cU6312s7xRcqOZgp7b467Sxs1b3na7RN/MXWlrP66da1O6LzYPoz/Frd2uTLi7KzrvEjmZZ8i6YWUIhqX7jXr2l2LDUK57cofC/LlcWXcvZboY3X+/OuzK5FrrhhIOpzd0UPdkOPh8GAACj3d+dc+GAE2dni0Wec3R48rVZFaYBprH4erh/S15LuPOsnmc0i7TkXaS/yr1IrSF/1s0dOMGZE9eSN9RcgWb4aX2N+t9Q8ecNNXqwaKWldYDgyRZ79kgn+t3o4Hij9Npr0vz59tSUjQqdiXefOGu3bk19H0Y6AQAyXDaHTpJU5Mju4wPSyubr4fFGTtqeazTK9vcjt+GU27C21XRrR53Ur6lom/+9gTeGqTKvSTYLbNw48PpNm6ytAwAAAACAbNPa3aWj3taE9U2+NjV2Zd/oudGO4MkGgwVPg60HAAAAkIEaGqS77op9NDQMvw+AEftl/X7JOUDroiOsnx15w/qCxjha7SxWVydVV0vLBnhs926psVEqybybGQAAAADor7ZWuuGG2PLixVJpqX31pNuCBdJLL8WWzz/fvlqAPh5uPSQN0p35WFut/kF/Ym1BYxzBk8Weemrwx8LhyOPXXGNdPQAAAABwVvLzpQ9+0O4qgDihUEhvOhsHffyQ6331hEJyOWgAswpfaYsN105Hux0AAAAAAGfn0aZ3FfT0DPp4yB3UhmOHLKwIBE8WOn1aeuaZobd5+mmpq8uaegAAAAAAyCb/fnz/sNvc13TAgkrQi+DJQr/7ndTdPfQ27e3S9u2WlAMAAAAAQFZ5ITj8JP4vh45aUAl6ETxZKNk2OtrtAAAAAIx6J09KO3fGPk6etLsijHGvn2pRu69j2O38OX690NpkQUWQmFzcMqHQ0BOL97Vxo3T33ZJhmFsTAAAAzHN42nh95/Y10WVj2iQbqwFM8Npr0ooVseUdO6Tly+2rB2PeT+trpCT/jr6roUZLilaaWg8iCJ4ssmeP1Dj4xPpx3n038h4+f765NQEAAMA89WWF+skNl0SXr3NPtLEaAMh+WzvqpNzktt3mf8/cYhBF8GSR/u1zJ1Ss36gqbrmvTZsIngAAAAAASEZrd5eOeluT3r7J16bGrk6VeHPMKwqSmOPJMv2Dpzc1V5frN9GPNzV3yO0BAAAAAMDAflm/X3KGk9/BEdbPjrxhXkGIIniyQF2dVF2d2j67dyffmgcAAAAAwFj2cOuhlPd5rK3WhErQH8GTBTZtil+eM2fg7fquD4eTn4wcAAAAAICxKhQK6U1nn5EbIUOuLnfCds4utxSMzT5+yPW+ekIhK0oc0wieLNAbPC1eLP3mN9L27QNv9+KL0mOPxeZ26h9YAQAAIHMse+GwAsXfi37Mer7G7pJgtYoK6Ze/jH1UVNhdEZCVHm96T0FPjxQyNL+zTHvKPq8F4ckJ280JnaN9076oxf5yKWgo5A5qw7HUR0ohNUwubrLTp6W2tkjgtG6dZBhSU9PA2zoc0qc/LX3yk9KTT0p33il1dUler5UVAwAAIF1cQf4nfUwrLZXWr7e7CiDrPdD0tuYHyvQfFSt0YeHQdxCdn1+sVxZ+UtWnTuiaQ3/QQ4FaXVN6nkWVjk0ETybzeqWdOyOBU18X6DXdreujy9frbknzJMUHUMGgdbUCAAAAAJBpHjz/Q8pzJbbWDaU3gDrdEzCpKvQ66+DJ7/ens45RJ53H1z888vulQp3USj0XXVeok/L7/XIN8B0xK3wy+qdhyChj4fs3Fo4Rg8v27382nkdzcsbW7Yiz/Wd0LOjs7DTtuXt6ehLWBYPBrPzdz2TZ/v0w+/iMri71bc7o6upS2OTXHGvnmmyXrp9RlyR/T/wfzuFQ4h3uQuFwwmsOtG86mfV72B1IPM+Y+XojwRxPAAAAAAAAMAWtdgAAAABghlBICvRp43G7I/NqAMAYQvAEAAAAACYwXnhB3lWrostdv/+9wsuW2VhRmk2apJ6rr45bBoD+zjp48vl86azDdv17/M08vsGe2ufzDfqYGcLhxJ7XTNZ/rg2OL/Nk+zEyH0xqsv37n23nUcnac6kd+s+ZwPFlHrOO8dHAfk02xmm5a2p0ncufeJntdDrjXvPl4FG9GWzWVzwXpKUOpM70n/N+t6f2er2D/zGQBpa/D19wgXT//dFFO0Y1ZPv1QrYfn5k/o4Yj8drbYRim/16Y8Xv4f0fq9eTRev1q4WLluiO/aR73wL9xfV+vuqVVN9Xs0+alK+SwcbQl4zwBAACAESgyfFrR8d9a1f6gdva8N+z2LwePqqrjEX2w/QF5DacFFQIAMtmlJSX6dfsbKnzuIf3Znj3qGGRi8V7VLa268NmtWrDvSb3d1WZr6CTRagcAAACMyCXOqSqQV9uCddrWUaePOKfLZyReZh8JnVJVxyPa1HNIkuSSQ6tdM60uFwCQYQo8bpUFilTva9H9/te14bm3NNc5MSHRCTvCuvDZrXrFOCq5IqPlPlk0zYaK4zHiCQAAABgBj+GMC5C2Bev01Jlwqa+9oePR0EmKBFaFRva1NAIA0m/N+PLo5z3egKpdRxO2CbtCesXVIDnPtGiGpG/PPs+qEgdF8AQAAACM0DrXuSnvU+WaZUIlAIBs9K1Zs6UUp/wq7s5TeW6uOQWlgFY7AAAAYITWus6VQ4ZCff4q8HtdOjizOG65ryo3wRMy3N690le+ElvesEFavNi+eoAsVllUoLyuXJ32dSS9z8q8UhMrSh7BEwAAADBCEx25WuIs067gkei6VxaX67w/fmfA7ec4Juhcx3irygPM0dEhvfFG/DIA0yzNmaynw7VJb3/DubNNrCZ5tNoBAAAAaZBK6xxtdgCAVP359OTPHV6/V5eUnGNiNckjeLLJS7pIU9QQ/XhJF9ldEgAAAEYglTBpHcETACBFl5dNkavbndS2Cz2jI3SSCJ5sE5BHxzQl+hGQx+6SAAAAMAJzHBM00ygcdrtiw6clzjILKgIAZBOHw6E5xsSktr2qtMLkapJH8AQAAACkgWEYSU0YvtZ1rlwGl+EAgNR9cfL0YbcxAg5dWzHD/GKSxOTiAAAAQJpUuc7TXd2vSJIqapt14692Rh+7c/1y1VZMYH6nsSQ3V5o3L34ZAEZg/axZ+pvG3ZIzPOg2M8PF8jidFlY1NIInAAAAIE0ucU5VgbxqU5emHD+l9fe+GH3swc8s0LsV52i1a6aNFcJSixdL1dV2VwEgixR43CoLFKne2TLoNpdPmGZhRcMjeLLJRDVplX4fXf69VkkaPZN/AQAAIHUew6nVrpl6pGf/gI9f4pyqQsNncVUAgGyyZny57u0cJHgKSTfOPs/agoZBc7lNPqC39KCujH58QG/ZXRIAAADSYKhWOtrsAAAjdeOs2dIgnXbF3XkqH2VtvQRPAAAAQBqtcVXIIWPAx5KZfBwAgKHMKSpQXtfA4dLKvFKLqxkewRMAAACQRhMduVriLEtYP8Mo0LmO8TZUBADINktzJg+4/vqK2RZXMjyCJwAAACDNBmqpW+ost6ES2OrAAenqq2MfBw7YXBCAbPHn0xPPM94ur1ZOGn1zRzO5uG1CUo4heSR1S+oM2V0QAAAA0qTKNUsb+61bNsAoKGS5xkbpgQdiy1/7mjR79I1GOGvLlkmBQGx5FN2+HbBCTyikX7/3ju4/dlDLCkr04zmLLHvty8umyHXArR5P7HdwoXv0hU4SwZP1jtWp4J6b9ez1W6Ti/OjqZ098QsYvPi5de4c0ebqNBQIAACBlt66WDKd0y2ZJ0hzHBJUaeXGbVDr7/UFw21opHJRu3WpVlUB6GYbk4k9KjC3HOjt15+H9evJEnQ46mxV2B2XIoYenr7C0DofDobmOiarW0ei6q0orLK0hWbTaWenhO6S75skT3CxXUfwIJ1dRSM7uzdJd8yLbAQAAIHMYTim8KxImSTIMI2GEk8voc+l929rI9gYjRABgtNvV3KTPvbpDE3c+pCmvb9A/dezR275Ghd1BSdIqx0xb7iT3hUmxQStGwKFrK2ZYXkMyCJ6s8vAdUs0PJVfkQsRwxN/pxHAYMgwjMgat5oeETwAAAJnkls2SsSwufBp0Tqdo6LQsOkIKADB69IRCurfukJbt3qqcXQ9o+eEn9EjoTTXntCWkKEaPQ/dVLrGlzvWzZknBSLYwM1QszyhtdyV4ssKxOmnfDyOfOwa+tW5U7+P7fhjZDwAAAJmhX/i00FmSuA2hEwCMSsc6O3Xzm69q9q4n5Xnpfl33/jY976qT39c15H52jXaSpAKPW2WBIknS5ROn2VJDMmjItcIDN0tuRXqgk+EwJHdY+s+/lm560NTSAAAAkEa3bI6GS+7Hvxv/2GM3SYU1hE7IHg0N0qOPxpY/8xmptNS+eoAU7Wpu0i/e3a9n2uvV7D0zmsmX2nO80HVUxTv/J7Yi3G+DJGOAs9WeE5DCId04+zxzX2gECJ7MFgpJjVulvOE3jROWdHxLZH8HA9MAAAAyRm/4VLhLzdfP1/aPf11XbN1A6ASpujry7/z5UkFB/GNtbbHHk1VSMuBd8oxXX5U6OiSvN/nnWro08e+OhgaptnbwfaqrpRtuiC0vXkzwhFEtrLDurTuk+48d1N6eY7HRTDln/5ynczrSU9wI+NpybRt1lQyCJ7PVH5TyQ0o55nQYkf0aaqXyWaaUBgAAAJOcCZ8mFO/Sp5//rjTeIHSCtH595N/nn5eW9JsTpqZGWpHiXbGuukr69a8TVru//nU5Xn89tefy+xODqieekP7yL1N7HmCUmOTKldcf+ZnuMUIKOYKqUZOue39bJAnJojTkkpzRHfhm0Zd6lGptGtn+LccJngAAADLRLZulvy2Q4TKknrD0A0KnMceXYs9Ophtrx4tR7akLPhr9vK07oLsPH9DDp2v1hpoU9PTYWFn6VeYX2V3CkOjhMlvROSPbf/yk9NQBAAAAa922VuoNnVxG9G53GEMWLJAWLbK7CmssWhQ5XmAUKvC49b3ZlapeUqXui6/Wo1PW6KOhc5XXmZs4JxPSjhFPZiubJZ1ySOOCw9/Rrq9QWGp3SqUV5tUGAAAAc/S9e90PYhOO67a1tNuNJW63tHu3tG9fpJWtV2Vl4raVldKOHak9f8kAd06UFLjnHqmjQ95U5nhyuxPXfepTyYVJPl9ku4GeAxhlHA6HriidqitKp0qSatpa9bN39uu3p95Tg6dVcqaWRF0YKNccX1F0ORgMxj3udDpHWvKwPjGpzPTXGAmCJ7M5HFLJaqkjxQsMQ9KkjzOxOAAAQKbpGzr1hky3ED6NWW63dOGFw29XUCAtX56Wlwz3jrIaaetbaSmThSPrVRYU6d4FfyrpT2Mtec3Jt+Q1BTu1Z2FsRKu/b8gsyUcLKq12lrjqDimgyCimZITCke2/+o9mVgUAAIB0Gyh06nXL5sj63vAJADCqnE1LXp23WZuP1VtbaIYheLLC5OnSgu9FPh8ufOp9fOH3I/sBAAAgMwwVOvUifAKAjNDbkvf0Bz+iU8u/rNdnf07XuuartHO8FOwzjY4h/cWhF+0rNAMQPFnl8zdLld+TeiSFw4kBVCgcWd8j6YLvS5/7jh1VAgAA4GwkEzr1InwCgIzT25JXv/yzOrnwav0gf5nmdU+Rs9vFqKdhEDxZ6fM3S998TRp3WWTi8L7anZH136ohdAIAAMg04WByoVOvaPgUHH5bAMCoktCSV7pGx7v9w+84RjG5uNUmT5duelAKhaSGWqnluDR+UuTudUwkDgAAkJlu3Zr6PkwwDgAZr7clD4MjeLKLwyGVz4p8AAAAAAAAZCGG2AAAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFMQPAEAAAAAAMAUBE8AAAAAAAAwBcETAAAAAAAATEHwBAAAAAAAAFO4znZHwzDSWQdskO3fQ44v842FY8Tgsv37n+3HBwCZgPfizJft30OOD9mAEU8AAAAAAAAwBcETAAAAAAAATGGEw+HwcBt5PB4FAgEr6gGAMcXtdqu7u9vuMmzHeQYAzMF5JoZzDQCYY7hzTVIjnoLBYNoKAgDE8P4awdcBAMzB+2sMXwsAMMdw769JTS7u8/nk9/vldDpVUlKSlsIAYCxrbGxUMBiUz+ezu5RRgfMMAKQX55lEnGsAIL2SPdck1WoHAAAAAAAApIrJxQEAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApvh/OZJc0wfwIYgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkE0lEQVR4nOzdd3hT5dsH8O/J7t670FJ2y96jLCm7QZygooDjJ6IoDtwI7vXiQAVxKyCo4KAMBZStAjLK3mVTSlva0pU0yXn/CE2bJm2T0oym38915YLz5Mk598k6p3ee+zmCKIoiiIiIiIiIiIiI6pnE1QEQEREREREREZFnYuKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiKgGp06dgiAI+Oabb+x+7IYNGyAIAjZs2FDvcTnDN998A0EQcOrUKbsfO2vWLAiCUGu/gQMHol27dnWIrnqCIGDWrFmm5evZD1ew9blzhGPHjmHo0KEICAiAIAj49ddfnfL8Xc/nzBni4+MxceJEV4dBRETUIMlcHQARERERuYcJEyYgIyMDr7/+OgIDA9GtWzesW7fO1WERERFRA8bEExEREZEbefHFF/Hss886fbslJSX4559/8MILL+CRRx4xtd99990YN24clEql02NyF0eOHIFEwkIBIiKiumDiiYiIiMiNyGQyyGTOP0W7fPkyACAwMNCsXSqVQiqVOj0ed9KYk25ERETXiz/dEBGRWyuf7+bo0aMYP348AgICEBYWhhkzZkAURZw9exY33ngj/P39ERkZidmzZ1usIysrC/fddx8iIiKgUqnQsWNHfPvttxb98vLyMHHiRAQEBCAwMBATJkxAXl6e1bgOHz6MW2+9FcHBwVCpVOjWrRuWL19e6/4UFxfj8OHDyM7OrrVv+fxHe/fuxYABA+Dt7Y0WLVpg6dKlAICNGzeiZ8+e8PLyQuvWra2WRO3evRsjRoyAv78/fH19MXjwYPz7778W/Q4cOIAbbrgBXl5eiI2NxWuvvQaDwWA1rtWrV6Nfv37w8fGBn58fRo0ahQMHDtS6PzU5ePAgBg0aBG9vb8TExOCdd94xu1+r1eKll15C165dERAQAB8fH/Tr1w/r16+3e1tPPPEEQkJCIIqiqW3q1KkQBAFz5swxtV26dAmCIGDevHk2xyCKIuLj43HjjTdabLe0tBQBAQF48MEHa4yv6hxP7dq1w6BBgyz6GQwGxMTE4NZbbzW1WXsP79mzp9b5k2bNmoW4uDgAwPTp0yEIAuLj4wFYnyMrPj4eqamp2LJlC3r06AGVSoWEhAR89913ZuvNzc3FU089hfbt28PX1xf+/v4YMWIE0tPTa3wOqiMIQrW38vj27t2LiRMnIiEhASqVCpGRkbj33nuRk5Njsc+CIOD48eOYOHEiAgMDERAQgEmTJqG4uNisL+d4IiIiqjsmnoiIqEEYO3YsDAYD3nrrLfTs2ROvvfYaPvjgAwwZMgQxMTF4++230aJFCzz11FPYtGmT6XElJSUYOHAgFixYgLvuugvvvvsuAgICMHHiRHz44YemfqIo4sYbb8SCBQswfvx4vPbaazh37hwmTJhgEcuBAwfQq1cvHDp0CM8++yxmz54NHx8fjBkzBr/88kuN+7F9+3a0bdsWH3/8sU37feXKFaSmpqJnz5545513oFQqMW7cOPzwww8YN24cRo4cibfeegtFRUW49dZbcfXqVbM4+/Xrh/T0dDz99NOYMWMGMjIyMHDgQGzbts3ULzMzE4MGDcKePXvw7LPPYtq0afjuu+/Mnp9yCxYswKhRo+Dr64u3334bM2bMwMGDB5GcnFznyaevXLmC4cOHo2PHjpg9ezbatGmDZ555BqtXrzb1KSgowBdffIGBAwfi7bffxqxZs3D58mUMGzYMe/bssWt7/fr1Q25urlmybPPmzZBIJNi8ebNZGwD079/f5hgEQcD48eOxevVq5Obmmm03LS0NBQUFGD9+vF3xjh07Fps2bUJmZqZZ+5YtW3DhwgWMGzcOgH3v4apuvvlmvP/++wCAO+64AwsWLMAHH3xQ42OOHz+OW2+9FUOGDMHs2bMRFBSEiRMnmj2vJ0+exK+//orU1FS89957mD59Ovbt24cBAwbgwoULdj0PgPH9V/UWFxcHLy8v+Pr6AgDWrl2LkydPYtKkSfjoo48wbtw4LFmyBCNHjjRLNpa7/fbbcfXqVbz55pu4/fbb8c033+Dll1+2OzYiIiKqhkhEROTGZs6cKQIQ//e//5nadDqdGBsbKwqCIL711lum9itXroheXl7ihAkTTG0ffPCBCEBcuHChqU2r1Yq9e/cWfX19xYKCAlEURfHXX38VAYjvvPOO2Xb69esnAhC//vprU/vgwYPF9u3bi6WlpaY2g8Eg9unTR2zZsqWpbf369SIAcf369RZtM2fOrHXfBwwYIAIQv//+e1Pb4cOHRQCiRCIR//33X1P7H3/8YRHnmDFjRIVCIZ44ccLUduHCBdHPz0/s37+/qW3atGkiAHHbtm2mtqysLDEgIEAEIGZkZIiiKIpXr14VAwMDxQceeMAszszMTDEgIMCsvfx1s3Ufv/vuO1ObRqMRIyMjxVtuucXUptPpRI1GY/bYK1euiBEREeK9995r1l71+f3666/N9iMrK0sEIM6dO1cURVHMy8sTJRKJeNttt4kRERGmxz366KNicHCwaDAY7IrhyJEjIgBx3rx5Zn1Hjx4txsfHm9ZXnarPXfn6PvroI7N+U6ZMEX19fcXi4mJRFO17D1uTkZEhAhDfffdds/aqz58oimJcXJwIQNy0aZOpLSsrS1QqleKTTz5paistLRX1er3FdpRKpfjKK69YbLu2GKt65513LN4/5c9HZYsXL7aIt/x5rvr+uemmm8SQkBCztri4OLPvFSIiIrIdRzwREVGDcP/995v+L5VK0a1bN4iiiPvuu8/UHhgYiNatW+PkyZOmtlWrViEyMhJ33HGHqU0ul+PRRx9FYWEhNm7caOonk8nw0EMPmW1n6tSpZnHk5ubir7/+Mo2SyM7ORnZ2NnJycjBs2DAcO3YM58+fr3Y/Bg4cCFEUMWvWLJv229fX1zSiBQBat26NwMBAtG3bFj179jS1l/+/fN/1ej3WrFmDMWPGICEhwdQvKioKd955J7Zs2YKCggLTvvfq1Qs9evQw9QsLC8Ndd91lFsvatWuRl5eHO+64w7Tf2dnZkEql6NmzZ53K3sr3sfIoIIVCgR49epi9jlKpFAqFAoCxxCw3Nxc6nQ7dunXDrl277NpeWFgY2rRpYxoZt3XrVkilUkyfPh2XLl3CsWPHABhHPCUnJ5vK3myNoVWrVujZsycWLVpkasvNzcXq1atx1113mZXR2aJVq1bo1KkTfvjhB1ObXq/H0qVLoVar4eXlBcD293B9SUxMRL9+/UzLYWFhFp8/pVJpmpRbr9cjJycHvr6+aN26td2vW1Xr16/Hc889h6lTp+Luu+82tZc/H4CxvDE7Oxu9evUCAKvbnDx5stlyv379kJOTY/p8EBER0fVh4omIiBqEpk2bmi0HBARApVIhNDTUov3KlSum5dOnT6Nly5YWV6Rq27at6f7yf6OiokzlOuVat25ttnz8+HGIoogZM2YgLCzM7DZz5kwAxjml6ktsbKxFoiIgIABNmjSxaANg2vfLly+juLjYIn7AuO8GgwFnz54FUPEcVVX1seUJmRtuuMFi39esWVPn/ba2j0FBQWavIwB8++236NChA1QqFUJCQhAWFoaVK1ciPz/f7m3269fPVEq3efNmdOvWDd26dUNwcDA2b96MgoICpKenmyVW7InhnnvuwdatW03vr59++gllZWWmBIlWq0VmZqbZTa/XVxvv2LFjsXXrVlNSc8OGDcjKysLYsWNNfWx9D9eXqp9JwPJ1MxgMeP/999GyZUsolUqEhoYiLCwMe/furdPrVu7cuXMYO3Ys+vbti/fee8/svtzcXDz22GOIiIiAl5cXwsLC0KxZMwCwus2q+xEUFAQAFu8/IiIiqhte1Y6IiBoEa1fVqu5KW6KVeVzqS/mE20899RSGDRtmtU+LFi3qbXvV7aMr933BggWIjIy0uL+uV2KzZV8WLlyIiRMnYsyYMZg+fTrCw8MhlUrx5ptv4sSJE3ZvMzk5GZ9//jlOnjyJzZs3o1+/fhAEAcnJydi8eTOio6NhMBjMEk/2xDBu3Dg8/vjjWLRoEZ5//nksXLgQ3bp1MyWB/v77b4sJwzMyMkwTelc1duxYPPfcc/jpp58wbdo0/PjjjwgICMDw4cPt3vf6Ysvr9sYbb2DGjBm499578eqrryI4OBgSiQTTpk2rdvL62mi1Wtx6661QKpX48ccfLd53t99+O/7++29Mnz4dnTp1gq+vLwwGA4YPH251m674LBERETUmTDwREZFHi4uLw969e2EwGMxGPR0+fNh0f/m/f/75JwoLC81GjBw5csRsfeVla3K5HCkpKY4Ov87CwsLg7e1tET9g3HeJRGIaNRUXF2cazVRZ1cc2b94cABAeHu70fV+6dCkSEhLw888/m42OKh9lZq/yhNLatWuxY8cOPPvsswCME4nPmzcP0dHR8PHxQdeuXesUQ3BwMEaNGoVFixbhrrvuwtatW80m6+7YsSPWrl1r9hhrybxyzZo1Q48ePfDDDz/gkUcewc8//4wxY8ZAqVSa+tj6HnampUuXYtCgQfjyyy/N2vPy8ixGK9rq0UcfxZ49e7Bp0yZERESY3XflyhX8+eefePnll/HSSy+Z2q29v4mIiMg5WGpHREQebeTIkcjMzDSbH0en0+Gjjz6Cr68vBgwYYOqn0+kwb948Uz+9Xo+PPvrIbH3h4eEYOHAg5s+fj4sXL1ps7/LlyzXGU1xcjMOHDyM7O/t6dqtWUqkUQ4cOxW+//WZ2tblLly7h+++/R3JyMvz9/QEY9/3ff//F9u3bTf0uX75sNkcRAAwbNgz+/v544403UFZWZrHN2vb9zJkzpoRfXfYHMB+Fsm3bNvzzzz91Wl+zZs0QExOD999/H2VlZejbty8AY0LqxIkTWLp0KXr16mU2msbeGO6++24cPHgQ06dPh1QqNZurKygoCCkpKWY3lUpVY8xjx47Fv//+i6+++grZ2dlmZXaA7e9hwFhydvjw4esqd7OFVCq1GDn0008/1TgPWjlrMX799deYP38+PvnkE7M5ySpvD7AcrVTbFfqIiIjIcTjiiYiIPNr//vc/zJ8/HxMnTsTOnTsRHx+PpUuXmkag+Pn5AQDUajX69u2LZ599FqdOnUJiYiJ+/vlnq3+Yf/LJJ0hOTkb79u3xwAMPICEhAZcuXcI///yDc+fOIT09vdp4tm/fjkGDBmHmzJk2TzBeV6+99hrWrl2L5ORkTJkyBTKZDPPnz4dGo8E777xj6vf0009jwYIFGD58OB577DH4+Pjgs88+M40WK+fv74958+bh7rvvRpcuXTBu3DiEhYXhzJkzWLlyJfr27YuPP/642njuuecebNy4sU4lTKmpqfj5559x0003YdSoUcjIyMCnn36KxMREFBYW2r0+wJhkWrJkCdq3b2+a16dLly7w8fHB0aNHceedd15XDKNGjUJISAh++uknjBgxAuHh4XWKs9ztt9+Op556Ck899RSCg4MtRp3Z8x7+5ZdfMGnSJHz99deYOHHidcVVk9TUVLzyyiuYNGkS+vTpg3379mHRokVmE95Xp2qM2dnZmDJlChITE6FUKrFw4UKz/jfddBP8/f3Rv39/vPPOOygrK0NMTAzWrFmDjIwMR+0iERER1YKJJyIi8mheXl7YsGEDnn32WXz77bcoKChA69atLf7glkgkWL58OaZNm4aFCxdCEASMHj0as2fPRufOnc3WmZiYiP/++w8vv/wyvvnmG+Tk5CA8PBydO3c2K+9xtaSkJGzevBnPPfcc3nzzTRgMBvTs2RMLFy40uyJeVFQU1q9fj6lTp+Ktt95CSEgIJk+ejOjoaLOrBgLAnXfeiejoaLz11lt49913odFoEBMTg379+mHSpEkO25eJEyciMzMT8+fPxx9//IHExEQsXLgQP/30EzZs2FCndZYnnpKTk01tMpkMvXv3xrp16ywmFrc3BoVCgbFjx2Lu3LlmV12rq9jYWPTp0wdbt27F/fffD7lcbna/Pe9hZ3n++edRVFSE77//Hj/88AO6dOmClStXmkob7VFYWIjS0lIcPHjQ6vOZkZEBHx8ffP/995g6dSo++eQTiKKIoUOHYvXq1YiOjq6PXSIiIiI7CSJnTiQiIiJyiMcffxxffvklMjMz4e3tbdNjZsyYgTfffBM6na5eYjh16hSaNWvm8NFNnqxJkyYYNmwYvvjiC1eHQkRE1OBwjiciIiIiBygtLcXChQtxyy232Jx0AoCLFy/WeeJtqn9lZWXIycnha0JERFRHLLUjIiIiqkdZWVlYt24dli5dipycHDz22GM2Pe7kyZP45Zdf8NNPPyE1NdXBUZIt/vjjDyxZsgQlJSUYPHiwq8MhIiJqkJh4IiIiIqpHBw8exF133YXw8HDMmTMHnTp1sulxmzZtwssvv4yBAwfivffec2yQZJO33noLx48fx+uvv44hQ4a4OhwiIqIGiXM8ERERERERERGRQ3COJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIrc0a9YsCILg6jDcyoIFC9CmTRvI5XIEBgbW23rj4+NtmsxaEATMmjWr3rZLrjVx4kTEx8ebtRUWFuL+++9HZGQkBEHAtGnTrnsbvr6+17UOIiIiatiYeCIiIo8zd+5cfPPNN64OAwBw4cIFzJo1C3v27Lmu9Rw+fBgTJ05E8+bN8fnnn+Ozzz6rnwAboRMnTuDOO+9EeHg4vLy80LJlS7zwwgsO2dauXbswevRoBAcHw9vbG+3atcOcOXMcsq368MYbb+Cbb77BQw89hAULFuDuu+922rYff/xxdOnSxfRctW3bFrNmzUJhYaFZvwMHDuC2225DQkICvL29ERoaiv79+yMtLc1inYIgVHurOlm4wWDAO++8g2bNmkGlUqFDhw5YvHixxTq3b9+OKVOmoGvXrpDL5UyQExER1YJXtSMiIo8zd+5chIaGYuLEia4OBRcuXMDLL7+M+Ph4m69uZs2GDRtgMBjw4YcfokWLFvUXYCOzZ88eDBw4EDExMXjyyScREhKCM2fO4OzZs/W+rTVr1kCtVqNz586YMWMGfH19ceLECZw7d67et1Vf/vrrL/Tq1QszZ850+rZ37NiBfv36YdKkSVCpVNi9ezfeeustrFu3Dps2bYJEYvy99PTp07h69SomTJiA6OhoFBcXY9myZRg9ejTmz5+P//3vf6Z1LliwwGI7//33Hz788EMMHTrUrP2FF17AW2+9hQceeADdu3fHb7/9hjvvvBOCIGDcuHGmfqtWrcIXX3yBDh06ICEhAUePHnXQM0JEROQZmHgiIiJqALKysgCgXkvsiouL4e3tXW/rc3cGgwF333032rRpg/Xr18PLy8th2yooKMA999yDUaNGYenSpaakibvLyspCYmKiS7a9ZcsWi7bmzZvjqaeewvbt29GrVy8AwMiRIzFy5Eizfo888gi6du2K9957zyzxNH78eIt1btiwAYIg4I477jC1nT9/HrNnz8bDDz+Mjz/+GABw//33Y8CAAZg+fTpuu+02SKVSAMBDDz2EZ555Bl5eXnjkkUeYeCIiIqpFwzgLIiIij7ZlyxZ0794dKpUKzZs3x/z58632+/rrr3HDDTcgPDwcSqUSiYmJmDdvnlmf+Ph4HDhwABs3bjSV1AwcOBAAkJubi6eeegrt27eHr68v/P39MWLECKSnp1ts66OPPkJSUhK8vb0RFBSEbt264fvvvzfrc/78edx7772IiIiAUqlEUlISvvrqK9P9GzZsQPfu3QEAkyZNMsVTXgZYXFyMw4cPIzs7u8bnJz4+3jQCJSwszGKupblz5yIpKQlKpRLR0dF4+OGHkZeXZ7aOgQMHol27dti5cyf69+8Pb29vPP/889Vu89tvv4VMJsP06dNrjK2256Bcbc/n1atXMW3aNMTHx0OpVCI8PBxDhgzBrl27atw+YEwozZo1C9HR0fD29sagQYNw8OBBxMfHm416W7NmDfbv34+ZM2fCy8sLxcXF0Ov1ta6/MkEQ8Mgjj+DXX39Fu3btTPv8+++/m/X7/vvvcenSJbz++uuQSCQoKiqCwWCwa1v/93//hz59+iAkJAReXl7o2rUrli5datc6ypXHq1Kp0K5dO/zyyy9m95cnYzIyMrBy5UrTe/XUqVMAbPs81OT8+fMYM2YMfH19ERYWhqeeesqm5758Dqqq7+eqpFIpmjRpUms/jUaDZcuWYcCAAYiNjTW1//bbbygrK8OUKVNMbYIg4KGHHsK5c+fwzz//mNojIiIcmrQkIiLyNBzxRERELrVv3z4MHToUYWFhmDVrFnQ6HWbOnImIiAiLvvPmzUNSUhJGjx4NmUyGtLQ0TJkyBQaDAQ8//DAA4IMPPsDUqVPh6+trmrenfF0nT57Er7/+ittuuw3NmjXDpUuXMH/+fAwYMAAHDx5EdHQ0AODzzz/Ho48+iltvvRWPPfYYSktLsXfvXmzbtg133nknAODSpUvo1auXKRERFhaG1atX47777kNBQQGmTZuGtm3b4pVXXsFLL72E//3vf+jXrx8AoE+fPgCMc8UMGjQIM2fOrHHS7g8++ADfffcdfvnlF8ybNw++vr7o0KEDAOMk7C+//DJSUlLw0EMP4ciRI5g3bx527NiBrVu3Qi6Xm9aTk5ODESNGYNy4cRg/frzV5xgAPvvsM0yePBnPP/88XnvttWrjsuU5sPX5nDx5MpYuXYpHHnkEiYmJyMnJwZYtW3Do0CF06dKl2hgA4LnnnsM777wDtVqNYcOGIT09HcOGDUNpaalZv3Xr1gEAlEolunXrhp07d0KhUOCmm27C3LlzERwcXON2ym3ZsgU///wzpkyZAj8/P8yZMwe33HILzpw5g5CQENO2/P39TQmXo0ePwsfHB3fffTfef/99qFSqWrfz4YcfYvTo0bjrrrug1WqxZMkS3HbbbVixYgVGjRplU6yAMeF2yy23IDExEW+++SZycnIwadIks8RL27ZtsWDBAjz++OOIjY3Fk08+CcCY6LTl9auJXq/HsGHD0LNnT/zf//0f1q1bh9mzZ6N58+Z46KGHzPrqdDrk5eVBq9Vi//79ePHFF+Hn54cePXpYrLeoqAglJSXIz8/H8uXLsXr1aowdO7bGWFatWoW8vDzcddddZu27d++Gj48P2rZta9Zevt3du3cjOTm51n0lIiIiK0QiIiIXGjNmjKhSqcTTp0+b2g4ePChKpVKx6mGquLjY4vHDhg0TExISzNqSkpLEAQMGWPQtLS0V9Xq9WVtGRoaoVCrFV155xdR24403iklJSTXGfd9994lRUVFidna2Wfu4cePEgIAAU6w7duwQAYhff/21xTrWr18vAhBnzpxZ47ZEURRnzpwpAhAvX75sasvKyhIVCoU4dOhQs/36+OOPRQDiV199ZWobMGCACED89NNPLdYdFxcnjho1ShRFUfzwww9FQRDEV1991aJf1VhtfQ5seT4DAgLEhx9+uMY+1mRmZooymUwcM2aMWfusWbNEAOKECRNMbaNHjxYBiCEhIeJdd90lLl26VJwxY4Yok8nEPn36iAaDodbtARAVCoV4/PhxU1t6eroIQPzoo49MbR06dBC9vb1Fb29vcerUqeKyZcvEqVOnigDEcePG2bRvVd/vWq1WbNeunXjDDTfY9PhynTp1EqOiosS8vDxT25o1a0QAYlxcnFnfyu+Fcra8ftWZMGGCCMDs8yWKoti5c2exa9euFv3/+ecfEYDp1rp1a3H9+vVW1/3ggw+a+kkkEvHWW28Vc3Nza4znlltuEZVKpXjlyhWz9lGjRll8j4iiKBYVFYkAxGeffdbq+h5++GGL7ykiIiIyx1I7IiJyGb1ejz/++ANjxoxB06ZNTe1t27bFsGHDLPpXLm/Jz89HdnY2BgwYgJMnTyI/P7/W7SmVStNcO3q9Hjk5OfD19UXr1q3NSroCAwNx7tw57Nixw+p6RFHEsmXLoFarIYoisrOzTbdhw4YhPz/fphKxgQMHQhTFGkc71WTdunXQarWYNm2a2RxCDzzwAPz9/bFy5Uqz/kqlEpMmTap2fe+88w4ee+wxvP3223jxxRdr3LY9z0Ftz2d5n23btuHChQu27LrJn3/+CZ1OZ1YiBQBTp0616Ft+dbTu3btj4cKFuOWWW/DKK6/g1Vdfxd9//40///zTpm2mpKSgefPmpuUOHTrA398fJ0+eNNtWcXEx7rnnHsyZMwc333wz5syZgwcffBBLlizBsWPHat1O5ff7lStXkJ+fj379+tn03ip38eJF7NmzBxMmTEBAQICpfciQITbP5WTL61ebyZMnmy3369fP7Pkql5iYiLVr1+LXX3/F008/DR8fH4ur2pWbNm0a1q5di2+//RYjRoyAXq+HVqutNoaCggKsXLkSI0eOtJgrraSkBEql0uIx5SPTSkpKattFIiIiqgYTT0RE5DKXL19GSUkJWrZsaXFf69atLdq2bt2KlJQU+Pj4IDAwEGFhYaZ5imxJPBkMBrz//vto2bIllEolQkNDERYWhr1795o9/plnnoGvry969OiBli1b4uGHH8bWrVvN4s7Ly8Nnn32GsLAws1t5Yqd8MnBHOn36NADL50qhUCAhIcF0f7mYmBgoFAqr69q4cSOeeeYZPPPMM7XO6wTY9xzU9nwCxqTX/v370aRJE/To0QOzZs2ySORkZmaabpcvXzZ7Dqpe6S84OBhBQUFmbeWJnMqTSgMwlYv9/fffAIzvpcrbys3NNetfOUlaLigoCFeuXLF5W+VzBuXm5pptq/L7cMWKFejVqxdUKhWCg4MRFhaGefPm2fReL1f+/Nj6GbOmttdPq9Wa7UNmZqbZ/E0qlQphYWFm66z6fJXz9/dHSkoKbrzxRrz99tt48sknceONN1qdh61NmzZISUnBPffcgxUrVqCwsNCUCLVm2bJlKC0ttSizA4yvl0ajsWgvL9fknE5ERER1x8QTERE1CCdOnMDgwYORnZ2N9957DytXrsTatWvx+OOPA4BNEze/8cYbeOKJJ9C/f38sXLgQf/zxB9auXYukpCSzx7dt2xZHjhzBkiVLkJycjGXLliE5Odk0wXd53/Hjx2Pt2rVWb3379nXAs3B9avrjOSkpCa1bt8aCBQuQkZFR67rseQ5qez4B4Pbbb8fJkyfx0UcfITo6Gu+++y6SkpKwevVqAMaJtqOioky38knb7VE+h1fVua3Cw8MBwJQIeeyxx8y2dfPNN5v1L7+6WVWVEx62buvmm28229Zjjz0GANi8eTNGjx4NlUqFuXPnYtWqVVi7di3uvPPOahMrjlLb6/f333+b7UNUVBTOnj1renx1z5ctyp/7JUuW1Nr31ltvxY4dO6q9ytyiRYsQEBCA1NRUi/uioqKQmZlp8dxevHgRQMXrSURERPbj5OJEROQyYWFh8PLyslp2dOTIEbPltLQ0aDQaLF++3GzEyfr16y0eKwiC1e0tXboUgwYNwpdffmnWnpeXh9DQULM2Hx8fjB07FmPHjoVWq8XNN9+M119/Hc899xzCwsLg5+cHvV6PlJSUGvexuljqQ1xcHADjc5WQkGBq12q1yMjIqDW2ykJDQ7F06VIkJydj8ODB2LJlS41/bNvzHAA1P5/l5UxRUVGYMmUKpkyZgqysLHTp0gWvv/46RowYgXvuucdscufyJFr5c3D8+HE0a9bMdH9OTo7FiJquXbvi888/x/nz583ay8v7ykflPP300xg/frzp/qojp2zRtWtXrF27FufPnzcbWVR1W7NnzzaLs/w5X7ZsGVQqFf744w+zErCvv/7arjjKnx9bPmM1qen169ixI9auXWvWPzIy0q44q6PRaGAwGGwa5VVeDmet78WLF7F+/XpMnDjRakldp06d8MUXX+DQoUNmJYjbtm0z3U9ERER1wxFPRETkMlKpFMOGDcOvv/6KM2fOmNoPHTqEP/74w6IvYD6qJD8/3+of4j4+PlYvqy6VSi1GNPz0008WiYicnByzZYVCgcTERIiiiLKyMkilUtxyyy1YtmwZ9u/fb7Gd8jKw8lgA65eDLy4uxuHDh5GdnW1xny1SUlKgUCgwZ84cs/368ssvkZ+fb9eVzwAgNjYW69atQ0lJCYYMGWLxPFRmz3NQ2/Op1+stkgXh4eGIjo42lT8lJCQgJSXFdCsfTTV48GDIZDLMmzfP7PEff/yxRUw33ngjlEolvv76a7MRbl988QUA47xHgHGeocrb6tq1a7XPQ3Vuv/12ALBIcn7xxReQyWQYOHAgAGOCqvK2ypMeUqkUgiCYlaydOnUKv/76q11xREVFoVOnTvj222/NnuO1a9fi4MGDNq2jttcvKCjIbB9SUlJsumpfZXl5eSgrK7NoL39tunXrZmqzVsZaVlaG7777Dl5eXlbnrlqyZAkMBoPVMjvA+N6Qy+WYO3euqU0URXz66aeIiYkxXYmSiIiI7McRT0RE5FIvv/wyfv/9d/Tr1w9TpkyBTqfDRx99hKSkJOzdu9fUb+jQoVAoFFCr1XjwwQdRWFiIzz//HOHh4aZymHJdu3bFvHnz8Nprr6FFixYIDw/HDTfcgNTUVLzyyiuYNGkS+vTpg3379mHRokVmo4XKtxUZGYm+ffsiIiIChw4dwscff4xRo0bBz88PAPDWW29h/fr16NmzJx544AEkJiYiNzcXu3btwrp160zzAjVv3hyBgYH49NNP4efnBx8fH/Ts2RPNmjXD9u3bMWjQIMycObNOE4yHhYXhueeew8svv4zhw4dj9OjROHLkCObOnYvu3bubjdqxVYsWLbBmzRoMHDgQw4YNw19//QV/f3+rfW19Dmp7PvPy8hAbG4tbb70VHTt2hK+vL9atW4cdO3Zg9uzZNcYbERGBxx57DLNnz8bo0aMxfPhwpKenY/Xq1QgNDTUbcRYZGYkXXngBL730EoYPH44xY8YgPT0dn3/+Oe644446le9Vp3Pnzrj33nvx1VdfQafTYcCAAdiwYQN++uknPPfcc7WWbo0aNQrvvfcehg8fjjvvvBNZWVn45JNP0KJFC7PPhS3efPNNjBo1CsnJybj33nuRm5tr+oxVN3F3ZbZ8Hq7Xhg0b8Oijj+LWW29Fy5YtodVqsXnzZvz888/o1q2b2Xv5wQcfREFBAfr374+YmBhkZmZi0aJFOHz4MGbPng1fX1+L9S9atAjR0dGmhF9VsbGxmDZtGt59912UlZWhe/fu+PXXX7F582YsWrTIrFzw9OnTWLBgAQDgv//+AwC89tprAIwjzO6+++56eU6IiIg8hvMvpEdERGRu48aNYteuXUWFQiEmJCSIn376qThz5kyLy5QvX75c7NChg6hSqcT4+Hjx7bffFr/66isRgJiRkWHql5mZKY4aNUr08/MTAYgDBgwQRVEUS0tLxSeffFKMiooSvby8xL59+4r//POPOGDAAFMfURTF+fPni/379xdDQkJEpVIpNm/eXJw+fbqYn59vFs+lS5fEhx9+WGzSpIkol8vFyMhIcfDgweJnn31m1u+3334TExMTRZlMJgIQv/76a1EURXH9+vUiAHHmzJm1Pkflz8fly5ct7vv444/FNm3aiHK5XIyIiBAfeughi8vFDxgwQExKSrK67ri4OHHUqFFmbdu2bRP9/PzE/v37i8XFxaIoilZjteU5qO351Gg04vTp08WOHTuKfn5+oo+Pj9ixY0dx7ty5tT4voiiKOp1OnDFjhhgZGSl6eXmJN9xwg3jo0CExJCREnDx5sllfg8EgfvTRR2KrVq1EuVwuNmnSRHzxxRdFrVZr07YAiA8//LBFe1xcnDhhwgSzNq1WK86aNUuMi4sT5XK52KJFC/H999+3aTuiKIpffvml2LJlS1GpVIpt2rQRv/76a6ufC1ssW7ZMbNu2rahUKsXExETx559/FidMmCDGxcVZ7EfV94KtnwdrJkyYIPr4+Fi0V92P48ePi/fcc4+YkJAgenl5iSqVSkxKShJnzpwpFhYWmj128eLFYkpKihgRESHKZDIxKChITElJEX/77TerMRw+fFgEID7xxBM1xqrX68U33nhDjIuLExUKhZiUlCQuXLjQol/559barfL3CBERERkJoujkGSqJiIiIHCwvLw9BQUF47bXX8MILL7g6HCIiIqJGi3M8ERERUYNWPql0ZR988AEAVFtaRURERETOwTmeiIiIqEH74Ycf8M0332DkyJHw9fXFli1bsHjxYgwdOtQ0Cbknys/Pt5p0q6y+ri5HREREVFdMPBEREVGD1qFDB8hkMrzzzjsoKCgwTThePuGzp3rsscfw7bff1tiHMyoQERGRq3GOJyIiIqIG6ODBg7hw4UKNfVJSUpwUDREREZF1TDwREREREREREZFDcHJxIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicgiZLZ18fHxQWloKqVSK8PBwR8dEROTxsrKyoNfroVKpUFRU5OpwXI7HGSKi+sXjjCUea4iI6petxxpBFEWxtpVJpVIYDIZ6DZCIiACJRAK9Xu/qMFyOxxkiIsfgcaYCjzVERI5R27HGplI7qVRabwEREVEFfr8a8XkgInIMfr9W4HNBROQYtX2/2pR44lBUIiLH4PerEZ8HIiLH4PdrBT4XRESOUdv3KycXJyIiIiIiIiIih7BpcnFrbJgaqkEpLS01W1apVC6KxHE8fR89ff8EQTBb9rTPIND4XkOqmae9x/kZbvg8/TX09P0DPH8feZyxn6e9Bzz9exjw/H309O8pT3/9AM/fx7ocazjiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiJyiCPZxTiVV+LqMIiIXMdgAM4eBfZtNf5rMDh184cPA6dPO3WTTpVfAGzbYYDBILo6FKqjAyfKcD5L7+owHCanwIBdR7QQxcb9HpW5OgAiIiLyTN5yCVp8tA2tQryhbhWC1FYh6BnjD6lEcHVoRESOlXka+PYZIOsPwK9SsumqBAgfBkx4G4iMc3gYSiXQogXQti2gVhtvPXoAEg8ZfuDvB0x90oAzZ0WMGi5APVKCITcI8PHhcaahEEWgaWoWOraUQd1fBXU/Jbq0kUPiIecKgT4ChjyZjfwiEam9vaDu64XBXZXwUnrIh9BGgmhD6i02Nhbnz583a/O0jF1paanZskqlclEkjuPp++jp+ycI5l++nvYZBBrfawgAMTExOHfunAuicS+N4TjTWD/DU1Yexbz/LpjawrzlGNkyGOpWoRjaPAh+yobzG5inv4aevn+A5+8jjzM1c9qx5oe3gfTXATkAEUDlP6ANIiAAKAPQ8QVg7DP1umlr38MPPAB88UVFW3g4MGoUkJoKDB0K+PrWawgOV3Uf/9qgwKhbKkbMKJXADQMEpI4wJqKaxDasBIanf09Ze4+Ofe4Kflxb0R4VKkFqPyXU/VQY3EMJb1XDeg2r7uOvW/W44+Uc07KXUkBKVxXUfb0wqrcK0aEN51wIqNuxhomnazz9D17A8/fR0/fP0w9CQON7DQH+QVCuMRxnGutn+Gx+KZrP2YYyK2UQCqmAgfGBSG0ZAnXrEMQHejkr1Drx9NfQ0/cP8Px95HGmZk451vzwNnDgdeP/axqxUf6dmFS/ySdr38MZGUCrVoBOZ9lfoQAGDTKOhEpNBeIcPwjrulXdR6VSiZ4D9Nix0/pr2bE9oB4pgXqkgG5dBLcfSePp31PW3qP7j5ehwx3ZsLarKiUwuLsS6n5KpPZTISZc6qRI667qPsrlSrSfeBGHTlv5EALo2loBdR8vqPt4oXMrudXvcnfCxNN18PQ/eAHP30dP3z9PPwgBje81BPgHQbnGcJxpzJ/hqqOeqtMu3AfqViFQtwpBDzcsyfP019DT9w/w/H3kcaZmDj/WZJ4G5rQ3TmZiy/eXQQR0AB7dV29ld9V9D1cd9VSdDh2MCSh3Lsmzto+rfjeYjXqqTkQ43L4kz9O/p6p7j1Yd9VSdLm1kUPdTIdWNS/Ks7eOSP4vMRj1VJyZMitTeXkjt474leUw8XQdP/4MX8Px99PT98/SDEND4XkOAfxCUawzHGVd9hnNLyrD5dL5TtqUt05otK+QKAMDZglJMXX3crnW5Y0mep38Pe/r+AZ6/jzzO1Mzhx5q3xwHFqwA7RiuIooiL+aOwY9DieglBq63yPawwfg9nZACPP27fuspL8tRqYMiQmkvyVv1uQJn1wRz1zto+iiIw+VE9LmXZvp7ykjz1SAGpI9ynJM8V31OZ2Xps21/m8O0A1Z8rHMzQ4flPrtq1LntK8pZvKbY6osoRtGXmz6VCLofeANz7dg7yC20PonJJXmpvL0SFusdoLyaeroOn/8ELeP4+evr+efrJMtD4XkOAfxCUawzHGVd9hv89mY1H3loGlU5bbZ/jwTG45Bds1ibV69Hr3EG7tlWo8EJ6VAuL9taXzyC02L7k157IFihSGkvvykvybomWQ625iCg/pXlnlQro2BGQy+3ahr08/XvY0/cP8Px95HGmZg491hgMwPQQwFdvX+LJIKIsTwrlRzlw5wuOVy7JU6uBpk3N7w+OLcOVK66Jrb64S0meK76nVmwuhfrxhv0CqpRASg8lUpOtl+TJBp2BvoFfPK9bG4VxgnIXl+Qx8XQdPP0PXsDz99HT98/TT5aBxvcaAvyDoFxjOM645DNcVobCLt3gu39vjd3uVz+FL7uOMmvzKy1CwVupdm1uR3Rr9Pjfpxbt3y99FXfs/8uudXX533zsjm5l1jYgYw82fFvNT/adOwPbtjk0+eTp38Oevn+A5+8jjzM1c+ix5uxR4MvudX54i3d24kSJZeLeXXXoUDEvVI8eQGjThp94qiwywliSlzrC+SV5TDzVj/KSPHV/FTq3lkEx+GyDTzxV5sqSvLoca1w/bp2IiIgcIz291qSTx9i9G18sXIn7J41xdSRE1BjlXb6uh0cqLjWoxNPevcChQ8D27cD997s6mvqXeQn48jsDlqSVITwMaBIrQCoFvFTAysWe9cMoAJy+4EEZmWt2HdbhwMlCbD9Qhsm3eLs6nHp3/rIe89OuYtGmfIQHSdEkXAqJBAj1l+LHFyJdHZ4FJp6IiIg8VWntk3Q2JAHKmuc2OHs5zzmBEBFVFRh2XQ/P1EbUUyCOFRoKjBxpHO00dCjg729sn/yEa+OqLwoFMLCfcd6nFi2BEeN0yDgLZJw1jjry9XFxgA6yeKXG1SHUm4gQCUb1VULdX4WUHgr4ertvCWtdKBXA4C7GeZ/CgwXc8volFF4y4OQl47xS0SHuMQ9UVUw8EREReShRFFF5MPTrY5/G0RjLX9TPhMWifYD52bRUr8SEJz6za3tFCi+0C6v4VbF8KPb3Nz2IT7qPsWtdR0OaAADahnobr3TXOgS9/ToBd3cGACw4eAH/rNmEucs+sWu9REQOEdMCuCoBfPS2XdHuGtEgQpcvhXfzBLSvh2ouUTSYLQuC8Y9uvR44aN+0fSZJSRVzO/XsCUit/F2b2EZAQYFzSlerlp6VH2tOngKKiuxfX1io+ZXu/PyM69t30FDLIz2DRiti1wE9YiOkCPJ3fElhda9fmU7E4VN1G3nVsdW1srp+SnRLtH6lu/YJcqeV2lX3OTx2TodSrf2fk8hgCVL7GOd2GtxVBR8v4/q27C+5/mCdhIknIiIiD3UkqwRtKi2/8IgaSE62Yw297dpedfO0LT0Yh9t+su0vHplEwIC4ALzeKhSprULQPNjLvMO1+M8pTmLvvrN2xUdE5DASCRA+zHhVOzsIAiCPGY69++pnVEZpqfmFJMq/hxcvBu6807Z1yOXAwIEVczg1a1b7Y7asc96fldaONZcvi4hPtP2yeu2TgNQRxonEe3QTIJW6xxXtXGHjjjKUFAvo0UKJZXP8Hb696s4V5i8rwuQ3C2xah1IB3NBNCXV/JVKTVWgSWfson91fRtkfbB1Z28czl3RocccFm9fRuaXcdDW7rq0VLpvsvr4w8UREROSh/s64apZ4cgWDKOLljadr7BPiJcPIliFQtwrB0ObBCFDx9ISIGqAJbwNzVgEy0bZRTwYR0AG45y2HhqXXA6+8UnOf6kroGor/+9CA4uLq769cQpc6QoL4uIb9R3x9SltvTFau2VoGjVaEUuH850ZbJuL1rwpr7BMRIjFdsa4hltC9ubAAZTXkRiuX0KX29kJsuGedC3nW3hAREZHJ0gJ/HOr3MADgzi6h6Bwf7/QYfj50GfuzLGsfEsO8kdryWgldbACkDfyXPCIiRMYBHV8ADrxuTCrV9L1muFZu02mG8XEO9OOPwOHDlu22lNA1BJcvi/h4vmVZXHUldFRBFEVT4qmwWMTGHWUY2lfh9Di+Xl6Ms5csX0NbSugagjOXdPhypWVirboSOk/ExBMREZEHupCvxepCP6zuNh4AcL5zCL6PjXVqDJVHO5WX0KmrK6EjIvIEY58BfgCQ/jogFwER5gkogwgIMI506jQDuH26Q8OpPNqpLiV0DUHl0U7tkwD1SAlSR7CEzhb7j+lx+kJFwidtvdbpiafKo53qUkLXEFQe7VReQqfu44UurRp+CZ2tmHgiIiLyQCsOXjFbXn04D2V6A+RS5/2atvFUHjpH+uKl/nEOKaHL9AvG/F4jTMt5QSH1un4iojoZ+wwwYBzw3bPAxdVAQKXJhK9KgKgRwMR3gPAmDg/lr7+AHj2AV19tmCV0tckvAI6fFPHRbAlL6OpgxQbzOcHS1msx5wXRNOG3M6zaqsGQnp57FbqsKwZcytVj3pNBHllCZ6vGuddEREQeLu2AeeIpr0SPrRlXMbBFgNNiGNQsCIOaBTls/SfCojH59sdMy2OjIx22LSIiu0TGAU8vBjZtAoYPBBQAtAB+3wD07++0MIYMMd48VYA/sOx7/klbV+VlduVOXzBg/zE92rdy3nM6ZqAKYwaqnLY9ZwsPkuDn18NcHYbLeVY6kYiIiFCs1WPd0XyL9rQDec4PhoioMZNIgBIRyBeN/0r45xe5h6wcA/5Nt5ztumoyiqg+8JuPiIjIw/x1rAClOtGivWr5HRERETVOqzZpIVqeKliU3xHVB45LJCIi8jDlZXZ9z6djw08Pm9oH3vYJjma1RqtwTuxNRETUmFU3sunfdB2ycgwID+EYFao/fDcRERF5EFEUzUY2yUS96QYAaRz1RERE1KhptCLWbC2zep8oGkdDEdUnjngiIiLyILvOFeFCgfWTScA4GurJgdFOjMhxupw9hu8XvmVa/uaFdwF0dF1ARERVtW4NfP+9+TKRi23cUYbCYit1dtekrddi4k2eO+E3OR8TT0RERB6k6tXsqtqScRVXinUI8m74pwBeZRq0vnzetKzQaFwYDRGRFWFhwB13uDoKIjO1TSC+ZmsZNFoRSoXgpIjI07HUjoiIyIOsOJhX4/16A/D74Zr7EBERkWcSRbHWxFNhsYiNO6ofPU1kLyaeiIiIPMSFfC12niuqtV9to6KIiIjIM+0/psfpC4Za+9WWnCKyBxNPREREHmKFjROHrz6chzJ97SedRERE5FlsTSilrddCFKufB4rIHkw8EREReQhbRzLlleixNeOqg6MhIiJotcDFixU3LUeRkGut2GDbe/D0BQP2H9M7OBpqLJh4IiIi8gDFWj3WHc23uX/agTzHBUNEREbbtwPR0RW37dtdHRE1Ylk5BvybrrO5P8vtqL4w8UREROQB/jpWgFKd7UPibS3LIyIiIs+wapMW9lTP2To6iqg2TDwRERF5AHsnDD96uRRHs0ocFA0RERG5G3tHMP2brkNWDueEpOvHxBMREVEDJ4pinUYwpXHUExERUaOg0YpYs7XMrseIonGUFNH1YuKJiIiogdt1rggXCipOJkcnBSE+WIlSqQLHA2JMt75tQhEToDD1s3eUFBERETVMG7aXobDYWGcnCMC4kQqEBQsW/e4YpTRr5zxPVB+YeCIiImrgyhNIo5OCsPOJ9vjtvtYI95VhZ2RbtLx3qenWecwAnHihEz65JR4xAQpsybiKK8W2TzJKREREDdOKDVpTwmn/8kAsnu0PPx/LxNO9NyuRsTYY7073RliwgDVby6DR2jExFJEVMlcHQERERNdHEATsfKI9usT61NpXKZNgSt9I3NczHF9uy8LeC8UY0MLfCVESERGRq/h6C9i/PBCJLWpPAfh4C3jqXm88NM4Ln/5QggPH9OiSxNQB1V2d3z2lpaX1GYfLeXl5uToEqmclJZ49aa4gWP5C4Wk8/TWkmnnacaaq+ty/ZwaEWqzTYLD8dVKrLTPrc2/XwHqNpeqx1JGfYZ1Oh60J7SC897up7dYWYU5933j697Cn7x/QOPaRaubo7wxBo4Gy0rJGo4HowG02xr9pHHWs0Wisj/Jx9vlJfW1v5hQpAB1KSytGOotWLnGn1WpRWmqcUFwqAR6+Q2LxuOvB92j90WgtyyBFUXTLc2iW2hERERERERERkUMw8URERERERERERA7BQk0iIiIPlZB3Dk/sWmxa9u37FNAxyIUREREREVFjU+fEk0qlqs843I61eteGruo8Bp62j1X3z9Peo1Vrgz1t/wDLGnZP3Eeynae//o7eP4lEQFRRDh5O/9nUti5/klOf1/ralkEUIanyHS+TWZ7CSCVSi21ae2xdefr3sKefJwCev4+cs8p+Dv8cK5VVFpWAE787PO09DjjmnN9gECGRmK9XqTQAsJwrp+r2yp/j+vr8OfNYIwjFAMzfIwqFAiqVwmHbrMoT36OO+JvG6ntUYfncCYLg8PdoXbDUjoiIiNzatwcv4IWtx5BTYj6JZnReNh7fsMx0C8q+ZLqvRKfHnN2nMfOf484Ol4ioQkAAMGBAxS0gwNURkRWnz4q47V4N9h002PwYURSxep0eN0/UwgNzJ+Rm9p3SYvzbl3DkrOWE4tURRRG//l2EcW9ecvkPEyy1IyIiIrc2ICYI967Zjzm7T+PRznF4okscAKBZbibeW/65qd/Mvn1QotPj833n8NaODFws0uAXdScXRU1EBKB9e2DDBldHQbVoFifBgSMGdBhQilvVUrz0lLzavqIo4vc/DZj1bhm27zLg/vFSi5EoRPWtQzMFNuwrweIHC3HHAF/MuLP6qRNEUcRv/xTj5UW52HNCiydudn3Cm4knIiIicmsJgd5IDPbBwdwivLH9JObsPo3mgd7wrdLv0JVCNP9qMy4WaQAACqmAlKYhzg+YiIganNShUhw6qsPSND2WpunRt4dlcZBGC/QarsH2XQazxxE5miAISO3hg/mrCrBofSEWbyxEz9ZKi375RQZ0eeQc9pyoGBmV2tPHmaFaxVI7IiIicnupCWGm/xeW6ZF++apFnwuFGlPSCQBuaBICXwV/YyMiotqpqySQtm63LLsrK4NZ0kmpBFL6M/FEzpHa09v0f4MB+OeQxqJPUalolnQK8JEgOcn1c1Iy8URERERuT50QXofHhNXeiYiICEDv7hIE23nh18H9JPDxYZkdOcfgTl7wUtr3fhvRzRtymevfo0w8ERERkdvrHRWIEFX1c25Yk9qMiSciIrKNTCZgZIp9o5fUwzjaiZzHSylBSicvux6j7uVdeycnYOKJiIiI3J5UImCkHYmkjmF+aOpv38kZEVG9O3gQGD264nbwoKsjohpULberDed3ImdT97J9viapBBjejYknIiIiIpvZUzrH0U5E5BZyc4G0tIpbbq6rI6IaDLtBCpmNUwN2aicgNpp/TpNzpfawPZHUN0mFYD/3SI7yk0JEREQNwrC4UMhsvGQ153ciIiJ7BfgL6N/btj+RWWZHrhAVIkO3lpZXs7NG7QZXsyvHxBMRERE1CP5KGQbE1D7za4S3At0jA5wQEREReRpby+2YeCJXqXx1u5qobeznDEw8ERERUYNhy9XtRjULg0Rw/RVciIio4bEloRQZDnTtyD+lyTVsGcnUMkaO1k0UTojGNjZWsBIREVFDsz8kASk3f2hafqhFWxdGUz/UCWGYtvFwrX2IiIjqonkzCdq2EnDoqFhtn9ShUkhsLP0mqm+dWygQEyrF+Wx9tX3cabQTwBFPREREHitf5Yc/43qYbmV+Db/8LCHQG4nB1f/Sp5AKSGka4sSIiIjI09R2tTpezY5cSRAEpPaoedRTqhvN7wRwxBMRERE1MOqEcBzMzcCJ0Cg8eOtUU/uJ0Cjc0CQEvgqe3hARUd2ph0rx7sc6q/cplUBKfyaeyLXUPb0xf1WB1fsCfCRITlI5OaKa8cyMiIiIGhR1Qhje/i8Dmf4h+KzPKIv7iIiIrkfv7hIEBwG5VyzvG9xPAh8fltmRa93QyQteSgElGsuS0BHdvCGXudd7lKV2RERE1KD0igpEiEpu9b7UZkw8ERHR9ZHJBIxMsT6qiVezI3fgpZQgpZOX1fvUvdxrfieAiSciIiKP5V1WgvaXj5tu0pIiV4dUL6QSASOtJJg6hvmhqb/1kzAiIiJ7qKuZx4nzO5G7UPeynMdJKgGGd3O/xBNL7YiIiDxU56yj2PLjZNPyukFpQJ84F0ZUf9QJYVhw6IJZm7NHO5UZDJAKAiSCew1nJyKi6zfsBilkMkBXaaqnTu0ExEY7d+yGVitCoeBxpiHQlolQyJ33WqX2sEww9U1SIdjP/ZKjHPFEREREDc6wuFAoYYC3ptR0U8cFOzUGvUFEz+Wb8cDmPVh+OhPFOusT0RIRUcMT4C+gf2/zP5ddUWb32MuluPH+InyxWIuLlwxO3z5VTxRF7DtdijeWZqP3s6fwy7arTt1+VIgM3VoqzdrUbnY1u3Ic8UREREQNjr9ShslF5/HBjAdMbYa+m4DYfk6LQSWT4p4WsXj03/344ugZqKQSDI4Og7ppBEY1iUCsD8v+iBq9Ll2Aw4crlps0cV0sZDf1UCn+2lyR7HFF4unx+xRoO7gQy9caf9zo1kEKdYoM6sFydEqSQOCoW6fSlBmwYX8x0v4rxIr/CnH6svF1aROjwK29/Zwej7qXN/47pqlY7ul+ZXYAE09ERETUQPWNDjRbdkXJ2wOt4/Dm3mO4WKxBqd6AlWcvYeXZSwCAziEBUDeNgLpJJLqEBrAkj6gx8vYGWrd2dRRUR+phUjw+owwAEBkOdO3o/IKhVglS3DVGjgU/G+P4b68e/+3VY+Z7GsRECkgdLId6sAw39JXBS8XjjCNk5emwcmch0v4rxJr0IhSVWl5J7qXbQyGVOv/5V/f0wcwFxssvtoyRo3UThdNjsAUTT0RERNQg9YkKdHUIUMmkeK5DSzz6736L+3bn5GN3Tj5e2X0UUd5KjIqNgLppJFJiQuEt4ykYEZG7a95MgratBBw6KiJ1qBQSiWsSOy9OVWLRr2UwVKm0O58pYv4iLeYv0sJLBQzpJ0PqYDlSb5AhKoKz6tSVsYROgxX/GZNN246VQrTMNZm0iVHg9j7OH+0EAJ2aKxATKsX5bL3bjnYCmHgiIiKiBirGT+XqEACYj3qqzsViDb44esasJC+1SQRSm7Ikj4jInaUOleLQUZ1Lr2ZXddSTNSWlwPK1Opbk1VF1JXS2cNVoJwAQBAGpPXwwf1UBUt10fieAiSciIiLyEP1WbMHWI7ku2XYNP4RaqFyS99DfLMkjInJn6qFSzP6iFDc9VH3Sx7GMP2rUNOLGGpbk1c6WEjpb3Pn+Bdz1wYXaOzqKCHh7y5Cc5B4/yFnDxBMRERF5hPbnTpkSQEVKFfY0TbDo0yrzHMKuFti13vQm8ShUmQ9f9y8uQvvzp+1azyX/QByPiLa8Y9cu/PmvBn8CCFXK0Ts8GH0jgtEtNAAqmQxQqYCOHQG53K7tEZEbyM0F/vmnYrl3byDYuVfgpOvTu7sECXESHD+rd3UodVZdSZ6+4e5SnZSX0JWPaqqthM6+ddfPeuqqVxsV5DL3TSgy8UREROSBbu8UAmlRMPBjRVtsgHtOOFlf5i6ab/r/rqYJ6PrS+xZ9ZqT9iPHbNtq13u4v/B/+a9bSrK39+dPY8vZzdq3ni+QUPDBxqkX7gi/fR9KFszU+NisxEcuWLsVDbdvatU0icrGDB4HU1IrlzZuB5GTXxUN2k8kEdOvUsBNPlZmV5MmAuCZS9O8hQ2CAMWnRJMpz5obafKQIu0+VAAAOnNXgl21XcfmKATB4zj6WGzvA19Uh1IiJJyIiIg/05MBoQBZl1tYmwn0nnawTlfsOKa9v4QcP4rvly5l4IiJyAW8Pm4ovsaUE6hRj6V2vLlKXzU/kaL/tzMfs1dlmbcO7+yHKR4WVOwuRle8ZyUQACPJz72QaE09ERETUMHXsCHTuDOze7epIrovUxjmdVGWuml+EiIgaMrkcGNBTBnWKscQuoal7JykcKSFCgU8mRsFgELHjeCnS/itE2o5C7D1d/QVC6Pox8UREROShsgrKEO7qIBxJLge2bcOFv7dBLC0xuyvM2wfHO3a0fEinJjifnW3RXpMf2rWH6OcHjabipFRS0AHnB3UFAOhFEY/+sx/ZGm2N67nkH2j6f+sAX9OE4i06LgNKS836ni4qwts//YS5X35pV6xERFT/3nxGhecfUTplW5oqxxKl0lgm/+L/abBkue0/QIQECRg5SAZ1ihzD+svg7+eZo5rqSiIR0LOVF3q28sJrd4bhdFYZVuw0JqHW7y+GVmf7pE3zHozAkI4VV5SrfL4AAEql4987EQHundpx7+iIiIiozv66rIQ0PgVyqYDRnQIgCQlxdUj1Ty5H9AA75kvp2rnOmyotrXQpbT9vqJrHAwAWHT+H386XWn/QNVJBQP/IEExpGoHUJhFoGVBpLoYoy9elpKAAe7dvr3OsRERUf8JDJQgPdc62SkvNE0QqlRQXLxnw6x+1J50aSwmdI8SFy/HwiCA8PCIIhSUGrE0vQtp/hTaV5H23oQAPDg2EcG0Ec2mpwex+lcqz59i0BRNPREREHmphfgRWDn4HAPDXUy0wqI2fiyPyPHqDiFf2HLF6X5BCjhFNwqFuEonhseEIVPKqdEREZL+3P9Wg1EolGEvoHMPXS4Kbevnhpl5+NpXk/XOkBGvTizG0k4+VtRHAxBMREZFHKtYY8Oehq6bltPR8Jp4cYMnJ8ziaX2RarlxC1yciCDJJ3f8I2Nq6NWSLF5uWpTKethERNTYXLxkwf1FF+R1L6JzL1pK8WT9kY0hHb9OoJzLHMxgiIiIPtO7QVZSWVcxPkJZegNm3izwhqkd6g4g3049hUFQoUptEQN20Sgnd9RIE6KUV5X22TkJORESe4+1PNUhoyhI6d1FTSR5HPVWPiSciIiIPlJaeb7Z8PEuDI5katIlSuSgiz6Mx6LElNZkldERE5DBPT1big5lerg6DrKhaklfbXFCNGYtAiYiIPIzBIGLF3nyL9qrJKLo+3jIZk05ERORQ0RH8k70hkEgERAZxXE91+MwQERF5mF1nSpCZr0OHnKP4dOvrpvbPfV8Dho92YWRERERE1Ngw8URERORhykc2+ZUVofflfab2Z09mI7dQh2BfHv4bgqjcXNz677+m5eV9+rgwGiIiIqK64ZknERGRh6mupE5vAFbvL8BdvYKdHBHVRUJWFuZ8841peV/z5q4LhojqJjoaePxx82UiokaGiSciIiIPci5Xi91nSqq9Py09n4knIiJnSUgA3nvP1VEQEbkUZyojIiLyICv3FdR4/+/7r6JMJzopGiIiIiJq7Jh4IiIi8iC1Xbkuv0SPLccLnRQNERERETV2TDwRERF5iGKNAX8eulprv9qSU0RERERE9YWJJyIiIg+x7tBVlJbVXkaXll4AUWS5HRERERE5HhNPREREHsLWkUzHszQ4kqlxcDRERITt24HY2Irb9u2ujoiIyOl4VTsiIiIPYDCIWLnX9hK6FXvz0SZK5cCIiIgIWi1w/rz5MhFRI8MRT0RERB5g15kSXMzX2dw/Lb3mq98REREREdUHJp6IiIg8gL0Thm89XojcQtsTVUREREREdcHEExERkQewN/GkNwCr93PUExERERE5Fud4IiIiauDOX9Fi95kS07K/lwQCBGwLb4fg8etN7YHhAUCl/NSKvfm4q1ewM0MlIiIiokaGiSciIqIGbsVe48glfy8JHhscjmkpYRjx4Qlsz9DjijLA1G/u2HjEBsnx8vJMrDt0Fav3XUWZToRcJrgqdKrByfBwPHzvvabljIgIF0ZDREREVDdMPBERETVwm44WYkZqJKalhCHYt+ZDe3JLX6x9sgW2HCvEy8szseV4IQa18XNSpGSPi8HBmDt8uGlZIeEMCURERNTwMPFERETUwH12TxP4KKV2PaY8AVWsMTgoKiIiIiKi60g8lZaW1mccbkcQPL/swNP30dP3j8jTefpxpj73TwqgtLTMrM1gsEwoabVai+1KADjqqfb07+GSkpLaO9WRRqOx2u7Mz4Wnv35A49hHqpmjP1OCRgNlpWWNRgORn+N61Rj20ZM58jOo0+st2vR6ncM/915eXg5df0PEEU9EREQeKrwkByPObjUtq3JvARBQ/QOIiIiIiOoZE09EREQeqmX+GXyzeZZp+fdxnQG0cFk8ZB/BYIC80q+1glzuwmiIiIiI6oazVBIRERG5oT5Hj0Jz112mW+8jR1wdEhHZSyKB6O1tuoEXCSCiRqjOI55UKlV9xuFyVedp8LT9AyzrZz1tHz19/6rWr4ui6KJIHMfT95FzENjH0z7DVTl6/yRW/riRyeQO3a6nH0urfobra//OFhdjfVYW7mzaFLJrr5tSq7Xat/I2i3Q6fJmRgSnNm5seV5887TsY4HGGLDn8e2rQIKCoyLSorKFrffD072GA5/wNnaOOpb/8l4/m4Qp0aFoxv5JMannhFalUZrbNg+dLcfB8KW7tEVgvcQCe/zmsy7GGKXciIiIiF4rx8sLTe/ci8Y8/sOD0aeisTAxfWZFOh3ePHEH8ypVYefGiQ5JOREREDYlMIqDjC8dw25zT2He29ot/HDxfijs+OY12zx2Fh+X23BLneCIiIiJyIYkgYFRUFL46dQr3bN+OVw8exF1Nm1r0E0UR7x45gncOH0b2tRFR6uhoZ4dLRETkdgYn+UIlF7B0Rz6W7sjHrd0DUKa3zCidytbijk9O44dt+RBFQCYFhnXwc0HEjQt/IiMiIiJyscoJpGOFhZh18KBFHx2Ap/fuNSWdACA1KsoZ4REREbk1b6UEg5N8TctLd+Tjt10FFv1WpV/Fkn/zTaOcBrTxhb+XZUke1S8mnoiIiIhcbEhEBJR2lsy18/dHvI+PgyIiIiJqWNSd/Z3yGLIfS+2IiIiIXMxHJsMN4eFYnZlp82NYZkfUAJw5A3z3XcXyPfcAVkppiej6pXbyB3DerseoO7PMzhmYeCIiIiJyA+roaCaeiDzNmTPAjBkVywMHMvFE5CAxwXJ0iffCrlO1Ty4OAIkxSiSEO/pakwSw1I6IiIjILYyyY76mMKUSPYKDHRgNERFRw5PayfYRTCyzcx4mnoiIiIjcQFNvb3QMCLCp78jISEgFwcERERERNSz2JJOMpXnkDEw8EREREbkJW8vnWGZHRERkqUu8F6ICa59RKMRXit4tvZ0QEQGc44mIiMhjnfaNwnPdHjEt946KdWE0ZAt1dDReO3Soxj4KiQRDIyKcFBEREVHDIZEISO3kj8835NbYb2RHP0glHDnsLEw8EREReahzvpF4q+O9puXFEUw8ubtuQUGIUCpxSaNBsUKBvZUmIS5WKAAAA8PC4CeXuypEIiIit5ba2a/WxBPnd3IuJp6IiIiI3IREEDAqKgpfnTqF3QkJ6Ph//2fRh2V2RERE1UtJ8oNKLqC0TLR6v1wqYFgH2ychp+vHOZ6IiIiI3EhtiaVUO65+R0RE1Nh4KyUYnORb7f0D2vjA30vqxIiIiSciIiIiNzIkIgJKifVTtHb+/oj38XFyRERERA1LTaV0qSyzczomnoiIiIjciI9MhhvCw63exzI7IiKi2qV2qj65pO7MMjtnY+KJiIjIQ/W5tAelX/c03ULT/3V1SGSj6srpmHgiIiKqXUywHJ3jVBbtiTFKJIQrXRBR48bJxYmIiDyUIIpQGsoqGqzPsUluKDU6Gh+sXInnf/nF1Pbp2LHoERzswqiIiIgaDnVnf+w+XWrRRs7HxBMRERHVid4g4t+jJUjbeRWTBgUijjmRetPU2xt99HpM3LjR1HbhrrsgFQQXRkVEdmvVCliwwHyZiJxC3dkfr/yaZdHmTFlXdfhg+VmMbB+A/i19oZA1zqIzJp6IiIjIZgXFevyRXoS0nVexanchcq7q0be1F968MxwajcbV4XmUvqGhZst9QkJcFAkR1Vl4ODB+vKujIGqUusR7ISpQhot5OgBAiK8UvVp4OzWGcD8ZzueVYcgHx+CvkmBYUgDUHQIwsl0AQnwbTzqm8ewpERER1cnJS1qk7byKtJ2F2HSwCGV68/tn3RYGgSNx6l3VxBPL7IiIiGwnkQhI7eSPzzfkAgBGdvSDVOL885UZo6Lw064rKCg14KedV/DTziuQCEDvBB+oOwRC3SEAbaNUHn0uxcQTERERmdEbRPxztAQrriWbDp6rfiRT39ZeGNzex4nRNR5t/MyvuuMt42kbERGRPVI7+5kST66a36ldjBdu6xKEH3deMbUZRGDriSJsPVGEZ385j4RQBdQdApHawTNL8ngGQ0RERMgv1mNNlRI6W3C0k+NI+LwSERFdl5QkP6jkAvQGYFgHv9of4CDlo57Eai70cjJbiw//ysKHf2WZleSNaBeAUA8oyWv4e0BERER1UrmEbuPBIuhsyzWZyKTA3DVXMG+N8Rc8vcF8BVKJtL5CrdEXk6MR5OucbRER2aWsDMjLq1gODATkcldFQ9ToeCslGJzkix3nrmLSt6ecsk29vsr5kNR4juKrlOBqqaHWx3tiSR4TT0RERI1E0IFd2HJ4ANL+u4oVuypK6BIKz6Bn6WW71nXAvwXyFAH4ZftVU5u3rhid8w7ZtZ4cRSAO+ze3aG+fdwT+ukKb1qHv2hJI7so/5ojI/WzbBvTrV7H8ySdAhw7V9/f3t37/oUNATk6tmxMqXeRB7NQJUKnMO1y5Ahw4UOt6zERFAc0tv6exYwdgz0UlBAHo29ey/exZ4PRp21ej0UBs0QKIiDC/o6zM+Hzbw88P6NjRsr3q861SGfvxONMgqTv7Y/WxXPy8O8/VodjNWkle6rUkVEMqyWPiiYiIGh29XsSFS8axzqIomn45io0SGuSvSNaE+8kg9zM/zHed8yKEizdZ9H3s2EI8enyRXesf1m8+1kQmm7XFF13AlvX32LWen2NScEufDy3a5+56Fck5u21byXoAnTsb/+DwkD8KygwG5GpKUPnPqktVlomoAXr44Zrv79sX2LLFsv2FF4Bffql19cpK/9fs3AlUvRrm9u3A8OG1x1nZ1KnAnDmW7bfdZlfCCAqF9UTVwoXA88/bvBolgLLPPoP+7rvN77h61TzJZ4tevYB//rFsf+klYOlS8zYPO840JqM6+UH4CUA1ZW4NyclsLeb8lYU5f2XBVyWgf0tfpLT1R2r7AKjkEkglAqIDFK4O0wITT0RE1OhcuiyiaU/L0TSlx/2gVFp5QAOU9mhzoM8VYElFm0amhEouoLTMA868qtq9G0hPB7p1c3Uk9eJE8VXcv2cTKv/5OS59C9YPHuKymIioDqqOOKKGy8OOM41JbLD7JWKul0wCtI5UYtWJXKw6kYsnVhjbowPkOD+rq2uDs6JhjMsiIiIi+3XsaPyF9hplTCRyvmqN355uggcGByIqyMN+fyotdXUERETmqnwPUwPH4wy5ULCPFON7BuOHB5oh+71O+GBsE1eHZDMPO+MkIiIiE7ncWBaQnm48WVYq4a2UYHQ3P4zu5geDQcSujFJsWfko7t02Gkcv2j5XxwH/FpBJgVfHhkMuvVaeWKjCwgG/mvrIpLWfZpT4BeP/mlgWkJ1I/gDnSq5aeUQFia4MW7Zm4qC0GdZ+2RlCUJDN8RMROUXV7+Ha+FdzuffXXweeeKLWh2sqz/EUF2fZoUcPYPPm2uOoLCrKevtPP9k/x5M148fbVSKnKZ/jqSo/P/v3za+aq5y98grw2GPA3r21l0dSg/DOzbFOq7QrKyszW5bL5RBFEa+tykR+iX1XcmkbpYK6fQDUHQPRO8EHUknDnBKCiSciIiJPJpdXWxYgkQjo1twL3R7tAaAHzueWYcXOQqTtvIo/9xXVXpKnByICZJg0KBAAUFrqAyDadLfqukpM+tfao0RjwMTtp1CiEbG/KADtwznvBhG5oRq+h23Wtq1N3cTakltBQUBycs19bNW9e/2sp0kT481G1e6jXF5/+2bj800NxxNDnDdLYmmV96hKpcKagwU2JZ1kEmBAKz+oOwQgtUMgmod5xhwQTDwRERERACAmWI4HhwThwSFBKNYYsG5fEVbsNF4B7+IVndXHvPbzZYzvFwC5zPm/wP21pwQlGmNyLG1bMdo384yTs3J7mzVF7/deMi0fi284Q+qJiIjISBRFzEq7UO39IT5SjGwfgNT2ARiWFIAAL6kTo3MOJp6IiIjIgrWSvLSdV7FiZyF2ZVT8knfyUhkWbs43jXpyprRtxRX//7cIz4/zrFK7qz5e+DexpWlZIXBqTiIiooZm7aGr+OdkkVmbp5TQ2YqJJyIiIqqRqSSvuRdevj3coiSvfNSTM4miiBXbK07ith3RICtPh/BAntoQERGReygf7eSpJXS24tkZERER2aVqSd6f+4pwNqcM0U7MPe0+roX2fBbuyqmYSPavNWMw7vbmzguCiIiIqAbZRXo8nhKBoYn+HllCZysmnoiIqNE5e976pNlX8kRERnj2UOf65q2UQN3NeFWgqpNpOlLatiK0Ks7Awn1PmdpeWNOCiSciIiJyG2G+MtzW1dfVYbgcE09ERNTorF1vqLb97nGcR6chWLGtGFUHqe84qoFGK0Kp8IzkoV9RCZJOnzMtc3JxIiIn69wZSE+vWG7OHzeI6oKJJyIianTW/GU98bRyjQF3j3NyMGS3Czk6/HdMg75V2os1IjbsLcGwbt4uiau+dcg4gy1PvWZaHjT7pRp6ExFRvfPxATp0cHUURA0ef9YlIqJGpaBAxD/brZfa/bHOAJ3O+n3kPlZuL672vrRtRdXeR0RERETOx8QTERE1KmvXG6DTWb8vLx/Y+i8TT+4u7d/qk0srthVDFPkaEhEREbkLJp6IiKhRSfvdepmd6f7VNd9PrlWiMWDdnpJq7z+dpcP+U1onRkRERERENWHiiYiIGg29XsTKP2pOLK2o5X5yrb/2lKBEU/OIprRt1ZfiERER2SwvD1i3ruKWl+fqiIgaJCaeiIio0dj2n4jsnJr7HDkm4tgJJp/clS1JpZpK8YiIiGy2fz8wZEjFbf9+V0dE1CAx8URERI3GilrK7Mqx3M49iaKIFdtrTyptO6JBVl41E3kRERERkVMx8URERI1GbfM72duPnGv3cS3OZ+tr7SeKwKoarnxHRERERM7DxBMRETUKp06L2H/Qtqudbf5bxJUrvDKau0nbZnsJHed5IiIiInIPTDwREVGjYM8oJr0e+P1PjnpyN/Ykk9bsKoZGy+QhERERkavJXB0AERGRM6Strr1Eq7IVvxtwx61SB0VD9rqQo8POYxqztjOqaLzY4nGz5XKFJSI27C3BsG7eTouRiIiIiCwx8URERB7v6lURG7bYN/pl9VoDdDoRMpngoKjIHiutzNl01isarzd/uNrHrNhexMQTERERkYsx8URERB5vzV8GlJXZ95grecDWf0UMSGbiyR2k/Wv7/E4VjynGnIdECELDfA2zAv3xTUqyaflyoL8LoyEiIiKqG87xREREHq/y/E63jZHg+y+s/+7yZ5oco4ZVHBrTVnOeJ3dQojFg3Z4SAECwnwSvTwzGs7cHWvS7ua8PvpgWhvgI4+t7OkuH/ae0zgy1Xh2LjcKkpx403Y7FRrk6JCIiIiK7MfFEREQeTa8XsXqtAbeNkWDfP3L8+K0crVtZHwHTrZOAFT/Ksf0vYwJqxR9MPLmDP/eUwEsh4PWJwcj4Jg7PjwuCv7flKYxcJuC+4f44+mVTUwKKV7cjIiIici2W2hERkUfLzwf+XC5Hu0Tbf2vp3lWCFT9KsGOnASUlIry8GmaplqeIDZUh45s4+PvY9hqWJ6DuSfHDf0c1tT+AiIiIiBymzomnhjpfAjUeJSUlrg7BoRrDZ7Ax7CNVr7S0tF7W4+0NtEgAKq9Oo7U+0XipRgNFacX7rn1SeSz1EoqZxvD+rq/v4TYxAKA1ex10Oh16X9mFtTsnmNreaLoYpaXDzB7bOaH+3ktVOWq9AKDRWk+YOXKbVTWG92hj2EeqGd8DDZ8jz/kFjQbKSssajQaiE7+HAed+77tCY/gMOuo9qtFaTicgiu75nuGIJyIiImqQJDDAR19xMicR7btyIRERUY2ioqB78EGzZSKyHxNPRERERG6o87FT+Gb2Z6blB556EOjvwoCIiBoZMSEBug8+cHUYRA0eE09EREREbshbo0GHU2crLTfcK/QRERFR41XnxJPoYcPZq9aWetr+AZa1niqVykWROEbV19DT9q8qT3yPevrnsDHUsNen+voM5+WLKCwWERtVMTG1UqEHUGa5TaUSKlVFvxOnDIiOEOplcvGq9f2e+B3lzOOMTGY5X4JEInHq81pf28rWlkIniohUepnalDrrczxV3ebhwny08PaDTFL/Fyr2tO9ggMcZsuRp7wFPP98HGsc+Vubp++dpn0HAMX+XXsjXQiWTINinIoWjVFj+ICUIlts7cLEYiZFeLj1G1P9ZChERkRvx8Qa6jSrCIy+W4NxFg02POXHKgHufLMHwu4vh4ed75Aa8JDIkbU3Dk4d3IlNj2wSkhwvzcdfeLbhj7xaHJJ2IiIjIfUgEIOG13Zix6ixyi3Q2PWbP+SLc9NURPPrLKZf/MMFSOyIi8mhyuYBBvaX45NsyfL64DA/cIceIgXKrfU+eMWDO1xp8t6wMej3wyES5yw/U5Pl8ZDL0CgjFe6cPYd7Zo3ioSSuow2Os9j1cmI9XT+7D4ounIAJ4PqGdc4MlIiIip4v0V6B1uAqvrT2PDzdl4rH+keje1Mdq3z3ni/DyH+fw674rAID3boxzZqhWMfFEREQeT50ix5LlOmi1wCfflmHeAssyOwDoOqoYBoP544icQR0ei1XZF1Bi0OO904fwwenD6F2lT5loQOLWNFQuSlCHWU9QERFRPfjvP2DcuIrlJUuAbt1cFw81auqkIGw/U4SrGj1eW3seEiu/jV4sKEPn/9tn8ThX49hsIiLyeCMGySCVViwbqqm4q9zu6wMM6CW13pGonqVWSSAZYH3Oi8qt4QoVegSEOjAqIqJGrrQUOHGi4lZlfikiZ6qaQDJYOVWoOmVWm3AVWoS5ft4IJp6IiMjjBQUKSO5uXxJp2AAZlEqW2ZFzxKp80NnPvl8kR4XFQMJSUCIiokahQ7Q3mgQq7HqMO4x2Aph4IiKiRiJ1sH3V5eoUVqOTc6WGxdrVn2V2REREjYcgCHYnklKZeCIiInIe9RDbE0mCYCzPI3Km6iYUt0YhSDAkJMqB0RAREZG7SU0KtLlvkLcUfeL9HBeMHZh4IiKiRqF1cylaNrPtsNerixThoTxEujutIMc5ZYTpppM27Mngu/qHIFJh2zwMg4Ij4Ctr2PtLRERE9hnUIgA+CtvOUUe2DYJM6h4l+TyrJiKiRsPW8jmW2TUMOwI7osnArabbiSZdXB3SdZEIgs3ldupw+8ryiIiIqOFTySUY0jrApr5qO0ZHORoTT0RE1GikMvFEbi7VxnK7qlfBIyIiosbBlnmeZBIBw9oEOj4YG/HMmoiIGo3k7lIE+AP5BdX3iW8iIKk1f5ch10gJjoJSIoHGYMDfiS2hXP6V6b4ymfHKjB18AxHn5euqEImIiMiFRiUG1tqnX4IfAr3cJ93DM2siImo05HIBIwbWfBBOHSyDwEvUk4v4yGQYHBwJABAlEmgVctNNlBhP21JZZkdERNRoRfgp0KOpT4197L36naMx8URERI2KOqXmCZlru5/I0Wqbv0nNMjsiIqJGrbbEkrslntxn7BUREZETDB8og1QK6PWW9/n6AAN6SZ0fFNVJs+IzeOTMAtPyqfaTAUS4LqB6khoWg4equS9coUKPgFCnxkNERETuRZ0UhBmrz1m9r024Ci3CbLtKrrMw8URERI1KcJCA7h2k+He3ZeZpSLIMSiXL7BqKaE0Wnjj9tWl5ZsEY1wVTj2JVPujkF4Q9V69Y3DcqLAYSloISETmPlD9IkfvpEO2NJoEKnM3TWtyX6majnQAmnoiIqBEa0k9mNfE0cjAPi+Qe1GGxuHTqJG7a+p+p7Ze+3aDuxDI7IiKnSU4GdDpXR0FkQRAEqJOCMHfrJYv73K3MDmDiiYiIGqGUfjK8Okdj3igCwwfwV01yD+rwGPx1MQufzP3O1HaweTyGhES5MCoiIiJyF9YST0HeUvSJ93NRRNXj5OKN2PojV3Exv8zVYRAROV2LOAmgr1KupBcQFlL/h8XCQmDlSutzSv31rxaZlw31vk0TgwE4exTYt9X4r8GB27LiwMky7D2uhSiKTt2uJ+jqH4IQucKsrYt/EHxlnPyeiIiowfD3w4bLWShzwDnYwBb+8FGYn7uObBsEmdT9SvI54qkRu5hfhhveO4pucd5QdwiAukMgOjXx4mXEiahx0EkAqd58uZ6cOQOsWAGkpQHr1wPjxwODB1v2O5tpwOD7ctCjvQzqgQqoByrRobX0+r+HM08D3z4DZP0B+FU60bkqAcKHARPeBiLjrm8bNgj2lyDhlosID5ZC3VeF1L5eGNRVCaWCx5naSAQBvQPDzNr6BoW7KBoiIiKqk6uFmLZvN04XF2F4RBTUkdEYERGFIIWi9sfWQiWXYEjrAPy6r2JOyNTEwOteryMw8dSIje0WhFdWXMB/p4vx3+lizEy7iNggOVLbG5NQg1r7wUvBQXFE5KF0EkBZP4kngwHYscOYaEpLA/burbhPJgOef9764+5KVeLVT4uwfZ8O2/fpMOOjYjSJlCB1gALqQQoM6qGAyt7Jzn94G0h/HZAD8AGASo/30QPFq4A5q4COLwBjn7FzT+0TFSrF5Jt88cEPhfhkWRE+WVYEHy8BQ3sooU72wqg+KoQHs7yxOn2DzBNPfQJ5NTsiIqIGRRQxs00Sbt62FUvOncGSc2cgFQQkh4QiNTIa6shotPbzr/Pq1UlBpsSTTCJgeNvAegq8fjHx1IhJJQJeSo3GXV9mmNrOXSnDp5uy8emmbHgrJEhp6wd1h0CMah+AqAAO7yciD6IXABHGvIwBgMG+BE9hIbBunTHRtHIlcMlybkcAwIQJQEICUFpqeZ9MJmDGZB9MfOGqqe1spgHzfijFvB9K4eMFDOmjgHqgAiP7KREZVkty7Ie3gQOvG4/ugmCWcwIASK41yERjvx/g8OTT0+P98OkvhSi9dtGVohIRv2wsxS8bSyEIQI9EBdTJKqiTVWjfXM5Rt5V08wsxW45UersoEiKiRurcOWDx4orlO+4AYmNdFw81SDdGxaBjQCDS8/MAAHpRxMbsy9iYfRnT96ejpY8v1FHRUEfGoG9IKOQS238MHZUYCEEARBHol+CHQC/3TPG4Z1TkNOWjno5c0ljcV6w1YHl6Ppan5wMAusd7Q90hEKntA1iSR0QeQDCOcpIbgDIpLLM0lqqW0GksvzrN1DTaqVz5qKcTZy1r/4tKgF//1OLXP7UACmsuycs8bRzpJENFgqk6EgEwiMb+A8Y5tOyu8qinqkQR2HZAi20HtHhxfgGaRhpL8tTJXhjYhSV5XjKephERudSpU8DTT1cs9+7NxBPZTSIIplFP1hwrKsR7x4/iveNHESiX21WSF+GnQI+mvth2utAtr2ZXjmc0LrbnbDH2nS9xyrbKyswnEpfLjSOYusb5WE08VbXjVDF2nCrGS8svmJXk3dDGDyo5S/KIqAEqkwBKnbEsTWrAohUGyOUVyQ6DCGScBHbvAXbvBs6eqfRY1bVbDaKaAu/MN/5fpze/HLNMWjEEKsRHjhOo/Xu4cklesL8EnVso0Km5Am3jFBjy3zNoEgrbfxSQCBDlIs688xQ2DfnGtsfUwvI4YyxljAq1rZzuTKaeJXlERERU7xaeOQWnXepkQD+zxQVnTsEgigiQy5FfVvPFvfLKyixK8tSRxtFQrfysX60uNTGQiSeqQVkZ/v5hA77ffLHWrgVyH+wLaWnR3uZKBkI0+XZtdndIaxTLvczaAjUFSLpy0vaVZAJrTofi002x8FZIMKStH1KvjYaKPLrHfBiASgV07AjIWapHRG6mfMSTr/Ek4L6XaukfY9/qz+qB+SvqFlptcgsM+HNXKf7cVQroDdAM/cP+lYhAtG4t5j+5GhDMf0A44tUc2XLzUi+5QYsehXvs2kS+zA/7vdtatLctPopgXV71DywAstKAL9OArwQgsZkczVO7Y/jgYLRvzuMJETUgZWVAerr1mmvAOIpGWiW5fvEicOKEfdtp1gwICbFs37LFvvV4eQFdu1q2Hz8OZGbat6727YGAAPO2wkJgzx771hMaCrRpY9EspKcbn1979OplHJJcWWamcf+qqjxpIzVoE3dth95ZV9l97GGzxXt2bqvTaiqX5D1VQ0meOikIC3dmo0VYLb+IuhATT65SVgb07Ikpu3djig3dt0R0RL8bv7Rof33HXNx8ar1dm0669QccDG5u1tYj6wD+WD3VrvXMSRqLx/pOR7HWgN/S8/HbtZK88z+OQXTeBfPOnTsD27Yx+UREbkawnGS8AWopz4Ai2ABbygUrEyQC5MEitpy6HSgxPxm7o8VHWBI6xqwtRHcFWw7eYtc2Nvj1wqCknyza3zr7JkZfWWf7ig4Arc9uwDPfNEdcpBRR0SI4BoqI3N61c37s3l19n8JCwMfHvG35cmDyZPu2NXs2MMXKXxb9+lm21aRVK+DIEcv2d98FPvvMvnWtXw8MHGjedvSo/TGNG2c+19I18ilTgF277FtXfj7gX2Uy5xUrgAcesG89RE5WtSRvxLWSvGHhkXgkOdLV4dWI9VGukp5e8wGoAdPqrGSSd+/Glj/+cn4wRERWhIYAO9bLsWO9HLekNvz0Rbg05/pWcP1X9HWq05l6pB8yILx9In6Z+rWp/YEx4S6Mqn6dKr2K+05sNmt78KSdoxaIyPU8+Jy/UVK574gSql5Wae3TGTQ0eWVl+OH8aYzfuxWRa37F07lb4PPbUoT99purQ7OKI55cpbqhtg1Y93hvpLYPQNQqOWA5hywKC4qcHxQRkRUKhYBuXYyjgxL+avgTWGfprZRW2ENbP3E4WnSoBEOG+yC1r3HycZUyFlh5BvgIQOfOiE2xUhrSQJWKehwpNS+lP1piX2k9EbkBDzznb7Q6dzZOH0INzqrzmRCdVWbnYAGVRjqdz9Pg6QvbYYABZTCWnJZq7Sw9dRImntzE7DEzcCKydbX3F6l80TfKx6J92c1PYl3xfTZtw3DtwxYR3RwBCm9Irl316HKhDts1SUge/YVdMV/xD8XojsYJxke1D0BUwLUyuoilmLJuB7BvH+Yu/tSudRIROVt8jBR9O1seDvV6IC8PyL0CXMm1fwoJwFhdbMuPo2WiiFKD/eV+EgCBcgVEWXuUXZFAFqCHUNsV7SoRDSL0+RI8mvKLxRxPVwOao6+X+VAomT4CU2KXV7s+g8H8ynwSiQSFCj/0ClTg3/3m2a1nmzyHd6IeqjE+QQAS4+Xo00GBvh0U+EvdBULVcpTevYEdOziXIBE1DJ98AnToYN5m7UAxejSQlGTfups1s96+ebP19up4eVlvnz4duPtu+9bVvr1lW6tW9scUGmq1uWzuXCjtPUB7e1u2pabWHBPnrG3Q0s5lIlCqRNsA65Nz17etW81HKPftmwwA2J1/BcV6+8/3qpvbae5VO+ZodjEmnlylZ0+89c5JzF5YhBfu9cGTU2Lr+EVmOcledUqr/OKiunaQu/OLk1h8yR9bIzvVuo6YQDnUHQKQ2iEQN7T2g5fCSrVm9+7Ye0ELXLlqc2xERK4y5Q4vTLmjmpPsawwGY24jLc04DUR6um3rjmwCHNsHKJXVfwcDwK3T8rFsrW0nIk0iJUgdoIB6kAKDeiigUl5LNL09DCheZVtg1wgCIIsZgbkf3mjHo6q/jHR1+7joj2L8uz/X7L5D3q2srqPy1exG9lEhorar2QUHG28e6GR0GB59fJxpOSMmzIXREFG96NABSE6uvV9UlPFmL2sjrGzZni1atDDerpevb73FJHbsWD/lb5GRxht5HI1ejzUXs6ATBawZOQDeVSeWdwBhYIrZ8hZRxInCQrReZ9t5WuWr2aVGRqO1n3/tD3JzTDy5ilyOH3b7Iluuwo/pckxzUfb80MUSLPnvSo19ykvo1B0C0amJl+2X6iYi8hASiXFu2J49gddeA86cMSag0tKAv/4CtNWUqp09C3z9dc3zw+49osOytTXXuvVoL4N6oALqgUp0aC21/j084W1gzipAJgK2jHoyiIAOwD1v1d73Ouj1Il75qqDGPk0jpVD3VVUqoeNxBgAuhgXio9srTl4VAqfmJCIisseGS9ko1OkAAOsuXsboJnVI6NaD148crPGqepVL6IZHRCJYoXRidI7HxJOLnM3UY89R4wfg331lyMrVI7y2X3Ud4NWVF1H1/e8lFzAk0d+yhI6IiAAATZsaLxw0ZYrxYkTr1lWMhsrKMu/7xhvApEnVr+uVeZbz33l7AUP7KKAeqMDIfkpEhtmQcIiMAzq+ABx43ZhUqin5ZLj2xd9phvFxDrRkXQmOntGZtQkC0DNJgdS+KqiTVWjfXM4fNYiIiKjepZ3LrPj/+YsuSTydKCzEd2dPWbRXV0LniZh4cpEVWyqGwYoisPpvDSakWqk3dqDKo53KS+jUHQIxqLoSOiIisuDrC4wZY7yVl+SVj4ZKT68Y9TRxouVjK492ahIpgXqgAqkDq5TQ2WPsM8APANJfB+QiIMI8AWUQAQHGkU6dZgC3T7d/G3aoPNrJ7hI6IiJP4ONjnJS68jIROYUoilhxviLxtOJcJgyiCImTf+wqH+3kiSV0tmLiyUXSNmkslp2deFq1vwCzUqNYQkdEVE8ql+S9+mpFSd6ePcbJyqVVci2rN2vx6lTvmkvo7DX2GWDAOOC7Z4FLvwN+lSb8LpICEcOBie8A4U2uf1u12JyuwZDuSsx5PBADOrOEjogaoc6dgV27XB0FUaO0P68Ap4uKTcuZpRrszMlD99Ag5wUR4A+daMCibr08soTOVkw8uUBRiQH7/jmPu3I2mtq2bhoIjTYQSoXzTsqfHBLh0PWLEKCpPHkbE1tE1MiUl+QB1ud7feZ+B/3gEBkHPL3YOATrwkngyiUgKAKITjBmx5xkYBcVBnaph0lfGytRhFRfKXEo43GUiIjIVmmVRjuVW3E+07mJp/wCfNetl/O256aYeHKBddu0iLt6AgtPTTW1JSt/wcZdLTG0l+dkQP9ukQjVJ7+Ylr/r2sl1wRARNUYSCRDbwnijBqfv3uPYMvlt0/KgT58FeO5KRERkk7RzF622vdyxrQuiadw4kY8LpG228rM3gLRN1tuJiIiIiIiIyDZZpRpsy7a8evvuK/k4V1TigogaNyaenMxgELFii8bqfSu2aCDWcIlFIiIiIiIiIqrZqvOZqO4v6xVWSvDIsZh4crL/DpbhUo7B6n2nLuhx4ITO6n1ERERERNTAHDkCjB9fcTtyxNURETUKaeeqTy5ZK8Ejx+IcT06Wttn6aKfK97drIXdSNERERERE5DCXLwOLFlUsT54MtG7tuniIGgGNXo81F7Oqvf/PzMso0ungI2M6xFn4TDvZimrmdyqXtrkUz03ydVI0jhWbexnjt20wLXu3DgdaxbouICIiIiIiIvJoGy5lo1BXfSWRxmDAnxcvY3STKCdG1bgx8eREZzP12HO05lK6f/eVIStXj/BgqZOicpy43Cy8+et3puXfb7sRQA/XBUREREREREQeraYyO1Of8xeZeHIizvHkRCu21H7VOlEEVv9dczkeEREREREREZkTRdGmycNXnMuEgRf2chomnpwobZNtCSVb+xERERERERGR0f68ApwuKq61X2apBjtz8hwfEAFg4slpikoM+Os/2xJKf/yrgUbL7CsRERERERGRrdJsGO1U0ZdXt3MWJp6cZO02LTRa2/oWFovYuMvGzkRERERERESEtHO2J5NsmQuK6gcTT05S29XsqkrbZF9/IiIiIiIiosYqq1SDbdlXbO6/50o+zhWVODAiKser2jmBwSBixRbzMrszihi8GP202XJlK7ZoMGe6CEEQnBIjERERuZdilQIHmkVXWla6MBoiIiL3tup8JuydsGbF+UxMbtXMIfFQBSaenOC/g2W4lGMwazuriMXrUdOqfcypC3ocOKFDuxZyB0dHRERE7mh36zi0+/4V07JC4EB1IiKi6tSldC7t3EUmnpyAZzBOkLa5YrRToJ+AJ+7ysdrvqbt94O9TMcKp8uOIiIiIiIiIyJJGr8eai1mm5X7hIRgSFW7Rb2BEKG6IDDMt/5l5GUU6nVNibMyYeHKCtM2lCPQT8MpkX5xKC8ezE60nnmY+4IuM5eGYcb8v/H0EpNk5LxQRERERERFRY7PhUjYKdTr0Cw/BXynJ2DikHzoE+lv0Swzww5/X7r8hMgwagwHrKiWsyDFYaudgVwoMuOUGFR4d54MAX2Oe7/IVfbX9gwMkeGWyHx6/0wdzlhShsNgAX2/mB4mIiIiIGpyOHYHt2yuW27RxXSxEHixHo8VfKckYGBFq0zzJ/SNC8WdEMjZdysapomInRNi41TnxVFrq2aNx6mv/vBTA9PFyAFqUr7K01GC1b2mpBjKJYHrcM/eYP+66Y/HyMlsuKXHcDP4Gg8FiOJ1er3Pq+8bT36ONYeL5xrCPVD2+/uTuHHmc0Wisl9s789jWGD6DjWEfqWYO/0zJ5UD79lU36rDNVT3fp4bP0/+mqa/9uznKWD5X+fip01kO+NDr9Wbb7BHgix4Bvg59nh21bm01JYLu+J7hiCcX6V24A2uPjTMtD2m5BMAQ1wXkAMfCozFxwmOm5aFN410XDBERUQPT4uwlPLNgtWn5/btHAR1dGBARERFRHTDx5CISGOBjKDFb9jRZ/kH4tk+Kabl/aFgNvYmIiKiyiNwC3J+2xbS8aFSyC6MhIiIiqhtOHkRERERERERERA5R5xFPKpWqPuNwO47cP5XK+uTiKpUSKpXzcoH1tY86gwEyiXncEonlfsjlcottWntsXVWds8rT36OiKLo6hHpXda4NT9tHziViH09//T1t/wDLOQU87Xu46mtYb8dR0QCZYH4sVIrW52eouk2DKEKECKlw/cfSxnAcbWzvUaqdw98D+fnAvn0Vy+3bAwEBjt1mJTzWNDyevn9VOXL/ZDKpRZtUKnX6c1of2yst00MlN98fhcx6Oqfq9krL9FBIBat/ozsLRzzRdZu8eR/m7M9AiZXJ26pzNK8Q96zfjTXnLjswMiIiIvd3qawEQw6txpaCTJsfYxBFLM3JwLDDv0MAkw1EbmvfPqBfv4pb5SQUEZGNVp67hMjly7Hw+FmbH1Napsf//t6NZqtXuTTpBDDxRPWga1gAHvv7AJov+cssASXT6xBUdNV0E8rKTAmntj9twE8nL2JgdKiLoyciInKtGIUPcnUa9Du4EikHa05AlSecOu79Bbcd+wtNFb6QcJQLERGRR7spLhLZQjHuPrGx1gRUecLJf/VSfH71AJoqfJ0YqXWcXJyuW2rTCEzBflws1uCxvw/grT3HoTOI6JlxBFvefdbU755X5mBCZDMYro34HRwTCm8rwx+JiIgaG3VgU+wqysGfBRfw58EL6OgdjKqniXoAHff+gv0lVyoeF9TEqXESERGR80kkEiRKQ7APl3BJWYC7T2yEqlQJVKniM0gN8F+9FGXKMkBpbJvQNM75AVfBEU903Zr4eqFjiL9p+WKxBpdLtRb9Tl4tNiWdAEDdNMIZ4REREbm91CoJpPTiXIs+BohmSSelIEVKQIzDYyMiIiLXGxtjnkAqVWksO0lFY9LpGkEnwb0tmXgiD1GXJNKopuEOiISIiKjh6eITiii5t12PGeQfBV+p3EERERERkTt5uHUzQG9feX28IchiUnJXYOKJ6oU6zr4kUucQf8T6ejkoGiIiooZFIggWo55qwzI7IiKixiNQJUeUzr/2jpXcGBHroGjsw8QT1YtuYYGI9FLa3F8dxzI7IiKiytRBTe3qn2pnfyIiImrYhofYUWJvAB5PbO64YOzAxBPVC4kg2FU6x8QTERGRucH+0VAJtg2H7+gdjKZK11+lhoiIiJznybYtALH2fgAQpPVFU1/7yvgdhYknF9EKCpyTR5luWkHh6pCuW6qNyaQobyW6hAY4OBoiIqKGxVsqw+CAaJv62js6ioiIiBq+pGB/+Gpsm7JmgH+kg6OxnczVATRWO3w6o0mHna4Oo14NiQmFUiqBRm+osV9q0whIBPsmRSMiImoM1EFNsTLvLABgX/MYJH/6jOm+fc1jzPoRERFR49PbJwJr9adq7Te1lXuU2QFMPFE98pHLcEN0CFafvVxjv1RezY6IiMiq1KAmQIbx/wW+3tjasaVFnwi5F7r5hDo5MiIiInIH/2uegLVHT9XYR6FR4IaYMOcEZAOW2lG9qm3uJpVUgpRY9/kAEBERuZMYhQ+6+ITU2GdUYBOOHCYiImqkbo6LhFRb8xiiTgr3+pubI56oXqU2jcAU7K/2/sExofCW2TZxKhERUWOkDmyKXUU51d8f1MSJ0RDRdYmIAO67z3yZiOg6SCQSJEpDsA+Xqu0zoWmcEyOqHRNPVK+a+HqhY4g/0nMKrN6vbsqDLRERUU1Sg5rg5fO7rd6nFKQYEmDHpZSJyLVatgS++MLVURCRhxkbE4d9mdYTT4JOgntbMvFEAJppTuORrK9Nyx+HTwLgGUkZddMIpOcU4KrSG/80a21qv6r0Rmoc53ciIiKqSRefUETJvXE1LxdtTl80tR+Oi0K/mBbwkcpdGB0RERG52tS2zfDi+R2AVLS4L94QBJXcvaqMmHhykeiyTDyR9Zlp+eegES6Mpn6p48Lx2u5j2NukGfo8+3+m9i6hAYjxse3Sj0RERI2VRBCQGtQEB/9Lx5bJb5vakz99BuqkG1wYGREREbkDf4Uc0boAXJDmWdx3Y0Ss8wOqBScXp3rXLSwQkV5Ki3ZezY6IiMg26qCmVttHcX4nIiIiAjAsJNqy0QA8ntjc+cHUgoknqncSQcAoK0mm2q54V98K9WUQRcuhh0RERO5usH80lFVO01oo/dFU6evUOAoNWqduz9k8ff+IPEmh6Nmf10JR69F/u+hFA0oMOleH4VGebNsCqPKWCdL6oqmvt2sCqgETT+QQqVWSTFHeSnQJDXBqDEdK89B8/xI8emYr1hacg9agd+r2iYiI6spbKkNX31Cztr5+zp8L8vmsfzHg1C/4v+zdOKK54vTtO9o/2otonfkNnsrbhI2ac9CJBleHRJ5m1y4gKanitmuXqyNqMAyiiG3683hRuwEdSz7HUv0hV4dU707r8/FxyS4My/8J9179HYIguDqkelVg0GBp8TFMyPkDrS9+i1Iw8VSfkoL94asxn8pmgH+ki6KpGed4IocYEhMKpVQCjd54ApfaNAISJ3+RdvUJQzuvIHx0+QA+unwAfhI5hvnHIjUwDiP9myBMbsd8U7OGAYIUmLnK9se8PBIQ9cCsP+wPnoiIGr2qiaa+fs4vWZ8e0hnNjy3EpuILmJ71N1oqAqD2jUeqXzySvaMgF9xr8lJ7pSibIlSiwuzCnZhduBOBghIjVPFQeyVguCoeQRKVq0Okhq64GDh40Hy5oXLC+XChqMVa/Umk6Y9hpf4EslAEAGguBGG8tH1donYretGA7bqLWKE9iTTtcezTZ5vu2xl4jwsjqz+ndPlIK8lAWslJbCg9hzIY/x58yb8nv1MdoLdPBNbqT5mWp7ZyvzI7gIknchAfuQwTdAVI+exjAEDfyCAg7B2gbVunxjEzqivS8s8AAK4ayrA0LwNL8zIgwPghVQfGITWgKZJUQTX/wiBIAXGr8eBpy8H25ZHG/kLf+tkRIiJqdPpUSTS18Qp0egxN5H64PygR867sBwAc0+bjvdx0vJebjkCJEsN9m0LtF4/hvk0RLG14f1AIgoBZ/r0xNPtnAECeqMHikiNYXHIEUgjop4xBqioBalUCWsmDXBwtkYs56Hz4jCEfafpjWKE/hr8Mp6GFZZXCi/K+kAkNs1jnqkGLtWWnkKY9gZXak7gsWiYfRytaoIusYV7hXC8asE2bibSSk0grycCBshyLPv6CAtP8O7sgOs/3YPMErD16CgCg0ChwQ0yYawOqBhNP5DDDvaW4adfWiobnnnF6DF19wqAOaGpKPpUTAfxddAl/F13Cc+e3o5nCD6kBTaEOjMMA3ygoJFV+wZ25quLgWdvBtvJB1p5fhIiIiCqpOjLX2SOHyz0X2gVfXDlo+tW6XJ5BgyUFx7Ck4BikENDXOwpq33io/eLRWtlwkjQpyqboo4jC39qLZu16iNigOYcNmnN4Kn8TWsmCoFYlIFXVDMnKmAb7RzBRndXT+bBBFLHDcAFp+mNI0x/DXjGrxs02xNFOp/X5SNOeQJr2BDaUnbWaTKtspncfJ0VWPwoMGqwpPYO0kpNYVXIK2YaSGvtP8+vM0U4OclNcJKT7ZdArdOikcM+kE8DEEzlQn4hgs+VivQ4GfZnDtldaZd06vTF59GREB4vEU1UZ2qtmJXlD/WOhrlqSZ8vBlkknIiJykGJDGQwOnAy71FDlOGowJlaCpEqMD2yFr/MOV/tYPURsKr5gVpKXei0JVVtJnk40oFR0zrwfpaL1fXzKrxtuzkmr8bFHdVdYkkdUx/Ph6krobPG4rIdxbqBrkyiXVplkXCc6PgmshLTG77HyEro07Qms0J4wK6GrzTB5PFpJg0yTp7ti/6QQ4CXIa+yTocvHCisldLXxEeS437ddxcUcvBVm9zvyIg9a6ADJtTgNAgDPmkMLACQSCRKlIdiHS5jQNM7V4VSLiSdymAhvpdny0OOrsNX3qIuisd1VQxmW5WVgmbWSvJdWQnhllPWDLZNORETkQENPp2Fr6MHaO7qBY9p8vJ+bjvdtKMn7U3MGw7N/cVGkdVO1JC9ZEQO1F0vyqJGoKflU6Xz4zIzFSCv7r8YSOls8UvYHHimrYY6omgfb1IsvFKNwn6yTWZstJXS2+KPsFPxyPqy+g+05ujobJU/AioBbzNpsKaGzRZFYhqYXvqxoOPS22f1+5+bWab02Cbt2A4BNTR23HRcbGxOH/ecu496WTDwRocOxcxZtu1s3QbGXeYIq4Gox2p24YNe6L4YG4GSs5dDCrgdPQaW171fUrZ1amP5fXpJ3+uRhrLiYgyiZF/q2S8WkjVkICN4KPN4HeHwJ8PVkJp2IiMjpOh06C59i+34t/qdTMxik5r+gR17OR/Mztv9CDwAZsSG4EBFo0d535wmLtrM4iLkA5gNorwpFX69I9PWOQlOFH/wlVwArfw80z7iMyMtX7YppX5soFPiblyj6FGnQ6cB5u9aTHeyDIy0s51vpeOA8fIs0Fu06nMAv2IRfADSV+qGPIhp9FVForwiDrHcfQMZTbvIwVpJPhpdHQCL+jRNIxM1P34S9pR+7Osp6Z28JXUNjbwkduYepbZth8bnTUMnd94IfPAq6gLdKwISR3sCRirYJI70hl3ne0L/K5r692KKtw+IZ2Ncy1qyt28HTWPfwB3at+5PbBuCRZ+60aF/y/Bdoce6yzevRSSWQb5tn0X7HH9vx7pyfzRv7K4BBByB+1g6CTGDSiYiInO7LGYvQ5ZDlDzs18dkxG8VVRiWPXr8P819eYtd6nph+E96fONiifcs979u1nrYt4oD1j1m0T5+/Hg8u+teudQ38cQo29m5h1tbq5GVsucW+P4AXj+6MOz+526L986d/RPe9Z+1a133nFyM+uAkEAegsicAoeYvaH0TUEFRKPokv+kMiE/CnIQYpz6YCtczb1NDkGEpwa8FvWKZ1/+qNujBAxBv52/FawXaUOKn02dmmJjaDv0SJnqGeMyr1n8s5mHF4LwDAzwdI2bwe/lIFfu7jfhe4YuLJBXy8JHjgZm+g0nnZAzd7AwoPSzypPHy+g01aoJ/SmHTSicBrTDoREVE9qnQc/TmlI47Fue+koddD7uGTdP9kOIyr2lMAgAfkHZl4Is8y6VPg2o+wok6Ez31f4ClZCdL0x3BErFtpljsKkXhhqf+NOKrPRZrGOOJpi+4c9OUTTzVwEgh4PqAHJvt2wOrSU0grOYnfS04hX3Tc/EvO5hWgx2vNE10dRr3anXcFf+KUceHaYCdJiRSA+yWePPtI784SE5H11QqkYgXyFq4AEj3rQwAA6NgR/9/evcdHVd/5H3+fuSfkRogBknCLmAqR63opN4srXQqS2tZuq3ZbdV3b7o+1tv62+uv211W7bXdtV9vV7s31p3X57U/9ed2CFGxRXEBFFEs0igiRKAmQGBICSSaZzMz+MWSSyeQyQ+ack5m8no9HHuScOWfmc0gy5+Sd7+d72hek1x0oBrM4u0ifziuLf+BSj9QbOrmMyF98AABIlQULpEWR2093+DxqLMqzuSAAGODnV0evhw2XoU/e95f6medy7c/6pg74/lz3uFdppWOGnBkyqXOFs1D/M/sibS+4Wo2F6/UfOVfoGu8cFRjekXdOA4VOn74y4Xw9VrRWTWXf0AvFV+k7uYs021Vgd2mj9kxbrd0ljGuMeLJLYaGe7LxCz0l6plu6oXDEPdKP2y3Pa3vUsneP5I+fD0GSti1cIE2YELPOmN6qlrnrknqpq6dM0WfLSmPW+bxeuZ6Yqz0nG/WdI4kP1fcZTq3KK1VV/gxdkT9dpZ4J0jcullb/cd9GT90m5ddIJytj53ga6dayAAAkyu2Wdu9W+97XtTYnW40VFXGbuB5ZrJb25Ca0PTzvEskZOw+E48Y1Or7sazHrPO6+Ow/9c8tb2nw69g6xH5RNGvT5l//7dzTZmaVl2VO0NHuqFvmK5HUMfcnp8XnUOPWCuPWOH6xSy03HRzye/p6cV6lwfn7sytzTatm+RpLUHYi9q53HHbmL05uBRv112yvR9R8Xxl6b9Lrpp19STnuXsgyXLvZM0VJPiZZ6pmqiM36U9790van/21Ojjuzh7xQFpK271kauh1/0RzoBzkxD0Xs9fJ6jULc6LtGt7kvUEu7U1jN3tftN8JBa5E/4ZX7h/rSudVVGl/0Dfq/w+cwPfXLkiVtX6MjStb65utY3V4FwULsC9dH5n94PtST83KvdM7Uh94rosr9rwPF5zT8+j+LnBnIbTl3mm6bLfNN0T8Gleq+nRRs7a7Wp8wPt7GpQKMHRXhMMt34/5SvKd0T+D4uLi2Meb2w0ty0zFAqpZP8GHXR9rJ5QSC4HY2/sYITD4RG/Y8rKylRfHzspYwK7pRXDiE3hrTi+NWukLVukz39eevrpkbcfLTuO0Up+f+wJzHemReGqQ8/r6dbDw+471Z2tdfnTVZU/Q5fnlSp7mAvkIe9eZ/Jd7TL96ydl/jEOPD5JKi0t1ZEjyc3Pkok4z2SGod6HM0Wmfw2H+vo1BNpVfnCDusJDT6JrSLo4a7LW5cxUVe5MzfdOGvQ9z26DHWM4HNbKpif0X93DT0A+3ZmrKl+5qrLKtdJbJq8x/N9vv+ffrr/rjv3D103uBXoga83ZFZ8AzjPDs+Vcs3OntGJF3/KOHdLy5aa9nGXvU73XvScrpV/0hbb69pJIGDXM9XBPOKRdoY+0Mfi+Ngbf14HwiWFfqsIoVI3vG3KdactNh3PNez0ntKk78Za8fQXXab4rEsikw/GdCPqTasn7Yf4S/SD/EknWn0v///HD+nLLJknSQ3mrdUPJeaa+nmTdMf7T+we1/tiOmHWObqeCl39tiD1S42zONYx4ssnp09ILL0Q+f/55ye/P/CmR7LCvo3nI0GlxdpGqzoRNi7KL5EjkAnm4cGm4W8sCAJCm7m7eO2jolG249Ec501SVM1NX5M7UZFe2DdWN3vauI4OGToakSzxTVeUr1zrfLM1zFyUdpk0+fkrrtuyPLuetmybNGm3FgM36Xw9f9VfSL/oFa1f9VNr2k2Gvh12GQ59yztCnnDP091qlA6FmbQoe1Mbg+9oR+jAupDkQPqHHgjX6E1f6TOHxCVehPuGKtOWdCHVqS/cH2th9SL8JfKCT4fhOkB92vKIn8660odKz09uS95UJ5ysQDmpHV4M2ddZqY+cHOtjTGrf9vW179a3chcp3WN+S+MDx/eodsPZQ0wFLgifEI3iyyW9/K3WfCYbb26WXXpJWr7a3pkz0w6NvRD/vbaFblz9d6/JnRFrokpHIiCbCJwBABmkItOtfW2qiy9NcOarKnal1OTN12YRS+YYbIZwGwuGw7uzXYjfBcOuPvDNUlVWutb6ZmuxM8lphgNm1zXrwW33D2n86dwnB03izbJnUv8XTOXZvd56QgdfDO3fGb5Pk9XCFY5JudUyKtuRt6deS13qmJe9vAjt1tbMyOuopnSTSkvdU9wFV9zRGRz2lE7fh1B/6pukPB7Tkbez8QLvOtOS1hrt036nfR0c9WenVYEP089dDRy1/fUSk99VCGnv+2Q5VqO92vFuenqbVq9PzL4Vj1b6OZu1ub9JNRecn1kI3nGTa6AifAAAZ4mfNb2qhr2jMt9Cdre1dR3Q42Kb1ExYk3EIHJMUwJFeGfE9ZcD080cjSNa5KXeOqjGvJS7dRT4NxG06t9EzXSs903aPL9F7PCW3sPqhN3bX6ScduPZZXZXeJo2IYhs53F+p8d6G+m3ehmoOd2uKv08bOWj10ukbfyl1oaT1vn2pRu69vHkR/ll+7W5t0SUFm3iV2LMuQd8H0EgpJ9Rv36j31DUu96tkdCv/LcmXQtZztZnpz9eG8axNroRtJOJjc3E3Rk+3Q82EAADDW/fU5Fw46cXamWOQ5R4en3JhRYRpgGouvhwe25LWEO8/qecaySEvexfrL7IvVGvJn3NyBk5xZMS15w80VaIZ76ms08IaKv2io0aMFKy2tAwRPttizRzox4EYHxxult96S5s+3p6ZMlO+Mv/vEWbtza/L7MNIJAJDmMjl0kqQCR2YfH5BSNl8PTzSyUvZcY1Gmvx+5DafchrWtpls76qQBTUXb/B8NvjFMlX5Nshlg48bB12/aZG0dAAAAAABkmtbuLh31tsatb/K1qbEr80bPjXUETzYYKngaaj0AAACANNTQIN13X99HQ8PI+wAYtV/W75ecg7QuOsL6+ZF3rC9onKPVzmJ1dVJ1tbRskMd275YaG6Xi9LuZAQAAAICBamulW27pW168WCopsa+eVFuwQHrttb7l88+3rxagn8dbD0lDdGc+1Varv9UfWFvQOEfwZLHnnhv6sXA48vgNN1hXDwAAAACcldxc6aKL7K4CiBEKhfSus3HIxw+5PlZPKCSXgwYwq/A/bbGR2ulotwMAAAAA4Ow82fShgp6eIR8PuYPacOyQhRWB4MlCp09LL7ww/DbPPy91dVlTDwAAAAAAmeTfju8fcZuHmg5YUAl6ETxZ6Le/lbq7h9+mvV3avt2ScgAAAAAAyCivBEeexP/10FELKkEvgicLJdpGR7sdAAAAgDHv5Elp586+j5Mn7a4I49zbp1rU7usYcTt/ll+vtDZZUBEkJhe3TCg0/MTi/W3cKN1/v2QY5tYEAAAA8xyePlHf/eGa6LIxfbKN1QAmeOstacWKvuUdO6Tly+2rB+PePfU1UoK/R9/XUKMlBStNrQcRBE8W2bNHahx6Yv0YH34YeQ+fP9/cmgAAAGCe+tJ8/f0tl0aXb3IX2VgNAGS+rR11UnZi227zf2RuMYgieLLIwPa5EyrUr1UVs9zfpk0ETwAAAAAAJKK1u0tHva0Jb9/ka1NjV6eKvVnmFQVJzPFkmYHB07uaqyv16+jHu5o77PYAAAAAAGBwv6zfLznDie/gCOvnR94xryBEETxZoK5Oqq5Obp/duxNvzQMAAAAAYDx7vPVQ0vs81VZrQiUYiODJAps2xS7PmTP4dv3Xh8OJT0YOAAAAAMB4FQqF9K6z38iNkCFXlztuO2eXWwr2zT5+yPWxekIhK0oc1wieLNAbPC1eLP3619L27YNv9+qr0lNP9c3tNDCwAgAAQPpY9sphBQq/H/2Y/XKN3SXBauXl0i9/2fdRXm53RUBGerrpIwU9PVLI0PzOUu0p/bIWhKfEbTcndI72Tb9Gi/1lUtBQyB3UhmPJj5RCcphc3GSnT0ttbZHAad06yTCkpqbBt3U4pC98Qfrc56Rnn5XuvVfq6pK8XisrBgAAQKq4gvwlfVwrKZHWr7e7CiDjPdL0vuYHSvV/ylfowvzh7yA6P7dQbyz8nKpPndANh/5LjwVqdUPJeRZVOj4RPJnM65V27owETv1doLd0v26OLt+s+yXNkxQbQAWD1tUKAAAAAEC6efT8TynHFd9aN5zeAOp0T8CkqtDrrIMnv9+fyjrGnFQe38DwyO+X8nVSK/VSdF2+Tsrv98s1yFfErPDJGJiGIa2Mh6/feDhGDC3Tv/6ZeB7NyhpftyPO9O/R8aCzs9O05+7p6YlbFwwGM/JnP51l+tfD7OMzurrUvzmjq6tLYZNfc7ydazJdqr5HXZL8PbG/OIdD8Xe4C4XDca852L6pZNbPYXcg/jxj5uuNBnM8AQAAAAAAwBS02gEAAACAGUIhKdCvjcftjsyrAQDjCMETAAAAAJjAeOUVeVetii53/e53Ci9bZmNFKTZ5snquvz5mGQAGOuvgyefzpbIO2w3s8Tfz+IZ6ap/PN+RjZgiH43te09nAuTY4vvST6cfIfDDJyfSvf6adRyVrz6V2GDhnAseXfsw6xicD+zXFmKDlrmnRdS5//GW20+mMec3Xg0f1brBZX/VckJI6kDzTv88H3J7a6/UO/ctAClj+PnzBBdLDD0cX7RjVkOnXC5l+fGZ+jxqO+Gtvh2GY/nNhxs/hfx6p17NH6/WPCxcr2x35SfO4B/+J6/961S2tuq1mnzYvXSGHjaMtGecJAAAAjEKB4dOKjv/QqvZHtbPnoxG3fz14VFUdT+ii9kfkNZwWVAgASGeXFRfrV+3vKP+lx/Sne/aoY4iJxXtVt7Tqwhe3asG+Z/V+V5utoZNEqx0AAAAwKpc6pylPXm0L1mlbR50ud86Qz4i/zD4SOqWqjie0qeeQJMklh1a7ZlldLgAgzeR53CoNFKje16KH/W9rw0vvaa6zKC7RCTvCuvDFrXrDOCq5IqPlPlcw3YaKYzHiCQAAABgFj+GMCZC2Bev03Jlwqb+9oePR0EmKBFb5Rua1NAIAUm/NxLLo5z3egKpdR+O2CbtCesPVIDnPtGiGpO9UnGdViUMieAIAAABGaZ3r3KT3qXLNNqESAEAm+vbsCinJKb8Ku3NUlp1tTkFJoNUOAAAAGKW1rnPlkKFQv98K/F6XDs4qjFnur8pN8IQ0t3ev9NWv9i1v2CAtXmxfPUAGqyzIU05Xtk77OhLeZ2VOiYkVJY7gCQAAABilIke2ljhLtSt4JLrujcVlOu/33x10+zmOSTrXMdGq8gBzdHRI77wTuwzANEuzpuj5cG3C299yboWJ1SSOVjsAAAAgBZJpnaPNDgCQrG/OSPzc4fV7dWnxOSZWkziCJ5u8pos1VQ3Rj9d0sd0lAQAAYBSSCZPWETwBAJJ0ZelUubrdCW270DM2QieJ4Mk2AXl0TFOjHwF57C4JAAAAozDHMUmzjPwRtys0fFriLLWgIgBAJnE4HJpjFCW07XUl5SZXkziCJwAAACAFDMNIaMLwta5z5TK4DAcAJO+aKTNG3MYIOHRj+Uzzi0kQk4sDAAAAKVLlOk/3db8hSSqvbdat/7gz+ti965ertnwS8zuNJ9nZ0rx5scsAMArrZ8/WXzXulpzhIbeZFS6Ux+m0sKrhETwBAAAAKXKpc5ry5FWbujT1+Cmtf/DV6GOPfnGBPiw/R6tds2ysEJZavFiqrra7CgAZJM/jVmmgQPXOliG3uXLSdAsrGhnBk02K1KRV+l10+XdaJWnsTP4FAACA5HkMp1a7ZumJnv2DPn6pc5ryDZ/FVQEAMsmaiWV6sHOI4Ckk3VpxnrUFjYDmcpt8Qu/pUV0b/fiE3rO7JAAAAKTAcK10tNkBAEbr1tkV0hCddoXdOSobY229BE8AAABACq1xlcshY9DHEpl8HACA4cwpyFNO1+Dh0sqcEourGRnBEwAAAJBCRY5sLXGWxq2faeTpXMdEGyoCAGSapVlTBl1/c3mFxZWMjOAJAAAASLHBWuqWOstsqAS2OnBAuv76vo8DB2wuCECm+OaM+POMt8urlZPH3tzRTC5um5CUZUgeSd2SOkN2FwQAAIAUqXLN1sYB65YNMgoKGa6xUXrkkb7lP/szqWLsjUY4a8uWSYFA3/IYun07YIWeUEi/+ugDPXzsoJblFeuncxZZ9tpXlk6V64BbPZ6+n8GF7rEXOkkET9Y7Vqe8B27XizdvkQpzo6tfPPFZGf/wGenGu6UpM2wsEAAAAEm7c7VkOKU7NkuS5jgmqcTIidmk0jngF4K71krhoHTnVquqBFLLMCQXv1JifDnW2al7D+/XsyfqdNDZrLA7KEMOPT5jhaV1OBwOzXUUqVpHo+uuKym3tIZE0Wpnpcfvlu6bJ09ws1wFsSOcXAUhObs3S/fNi2wHAACA9GE4pfCuSJgkyTCMuBFOLqPfpfddayPbG4wQAYCxbldzk7705g4V7XxMU9/eoJ917NH7vkaF3UFJ0irHLFvuJHf15L5BK0bAoRvLZ1peQyIInqzy+N1SzY8lV+RCxHDE3unEcBgyDCMyBq3mx4RPAAAA6eSOzZKxLCZ8GnJOp2jotCw6QgoAMHb0hEJ6sO6Qlu3eqqxdj2j54Wf0ROhdNWe1xaUoRo9DD1UusaXO9bNnS8FItjArVCjPGG13JXiywrE6ad+PI587Br+1blTv4/t+HNkPAAAA6WFA+LTQWRy/DaETAIxJxzo7dfu7b6pi17PyvPawbvp4m1521cnv6xp2P7tGO0lSnset0kCBJOnKoum21JAIGnKt8MjtkluRHuhEOAzJHZb+/X9Jtz1qamkAAABIoTs2R8Ml99Pfi33sqduk/BpCJ2SOhgbpySf7lr/4RamkxL56gCTtam7SP3y4Xy+016vZe2Y0ky+553il66gKd/6/vhXhARskGAOcrfasgBQO6daK88x9oVEgeDJbKCQ1bpVyRt40RljS8S2R/R0MTAMAAEgbveFT/i413zxf2z/zdV21dQOhE6Tq6si/8+dLeXmxj7W19T2eqOLiQe+SZ7z5ptTRIXm9iT/X0qXxv3c0NEi1tUPvU10t3XJL3/LixQRPGNPCCuvBukN6+NhB7e051jeaKevsn/N0VkdqihsFX1u2baOuEkHwZLb6g1JuSEnHnA4jsl9DrVQ225TSAAAAYJIz4dOkwl36wsvfkyYahE6Q1q+P/Pvyy9KSAXPC1NRIK5K8K9Z110m/+lXcavfXvy7H228n91x+f3xQ9cwz0l/8RXLPA4wRk13Z8voj39M9RkghR1A1atJNH2+LJCEZlIZcmjW2A98M+q8eo1qbRrd/y3GCJwAAgHR0x2bpf+fJcBlST1j6EaHTuONLsmcn3Y2348WY9twFn45+3tYd0P2HD+jx07V6R00KenpsrCz1KnML7C5hWPRwma3gnNHtP3FyauoAAACAte5aK/WGTi4jerc7jCMLFkiLFtldhTUWLYocLzAG5Xnc+n5FpaqXVKn7kuv15NQ1+nToXOV0ZsfPyYSUY8ST2UpnS6cc0oTgyHe06y8UltqdUkm5ebUBAADAHP3vXvejvgnHddda2u3GE7db2r1b2rcv0srWq7IyftvKSmnHjuSev3iQOydKCjzwgNTRIW8yczy53fHrPv/5xMIkny+y3WDPAYwxDodDV5VM01Ul0yRJNW2t+vkH+/WbUx+pwdMqOZNLoi4MlGmOryC6HAwGYx53Op2jLXlEn51cavprjAbBk9kcDql4tdSR5AWGIWnyZ5hYHAAAIN30D516Q6Y7CJ/GLbdbuvDCkbfLy5OWL0/JS4Z7R1mNtvWtpITJwpHxKvMK9OCCT0r6ZF9LXnPiLXlNwU7tWdg3otXfP2SW5KMFlVY7S1x3txRQZBRTIkLhyPZf+zszqwIAAECqDRY69bpjc2R9b/gEABhTzqYlr87brM3H6q0tNM0QPFlhygxpwfcjn48UPvU+vvAHkf0AAACQHoYLnXoRPgFAWuhtyXv+ost1avmf6O2KL+lG13yVdE6Ugv2m0TGk/3HoVfsKTQMET1b58u1S5felHknhcHwAFQpH1vdIuuAH0pe+a0eVAAAAOBuJhE69CJ8AIO30tuTVL/9jnVx4vX6Uu0zzuqfK2e1i1NMICJ6s9OXbpW+9JU24IjJxeH/tzsj6b9cQOgEAAKSbcDCx0KlXNHwKjrwtAGBMiWvJK1mj493+kXccp5hc3GpTZki3PSqFQlJDrdRyXJo4OXL3OiYSBwAASE93bk1+HyYYB4C019uSh6ERPNnF4ZDKZkc+AAAAAAAAMhBDbAAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgCkIngAAAAAAAGAKgicAAAAAAACYguAJAAAAAAAApiB4AgAAAAAAgClcZ7ujYRiprAM2yPSvIceX/sbDMWJomf71z/TjA4B0wHtx+sv0ryHHh0zAiCcAAAAAAACYguAJAAAAAAAApjDC4XB4pI08Ho8CgYAV9QDAuOJ2u9Xd3W13GbbjPAMA5uA804dzDQCYY6RzTUIjnoLBYMoKAgD04f01gv8HADAH7699+L8AAHOM9P6a0OTiPp9Pfr9fTqdTxcXFKSkMAMazxsZGBYNB+Xw+u0sZEzjPAEBqcZ6Jx7kGAFIr0XNNQq12AAAAAAAAQLKYXBwAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYAqCJwAAAAAAAJiC4AkAAAAAAACmIHgCAAAAAACAKQieAAAAAAAAYIr/Bovbn4yIhWEhAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -243,12 +243,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "rollouts for ../examples/model.hallway-jvq.final.zanj on RDFS-g6-n7-a_dfs-h65218\n" + "rollouts for ../examples/model.hallway-jvq.final.zanj on RDFS-g6-n7-a_dfs-h36900\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYtklEQVR4nOzdd3hTZfsH8O/J7l500lJG2XuV0ULZs3UrDhRwb9yivoooKuhPXK8gLlBAQXldLSBLtsgQKHtvSvceSZvk/P4ITZsmbRPaNKPfz3XlgvOc55xznyY9Se4+z30EURRFEBERERERERERNTKJowMgIiIiIiIiIiL3xMQTERERERERERHZBRNPRERERERERERkF0w8ERERERERERGRXTDxREREREREREREdsHEExERERERERER2QUTT0REREREREREZBdMPBERERERERERkV0w8URERERERERERHbBxBMREVEdzp8/D0EQsHjxYpu33bx5MwRBwObNmxs9rqawePFiCIKA8+fP27ztm2++CUEQ6u03bNgwdOvW7Tqiq50gCHjzzTeNyw05D0ew9mdnD6dOncKYMWPg5+cHQRDw22+/NcnPryG/Z02hdevWmDp1qqPDICIickkyRwdARERERM5hypQpOHfuHN555x34+/ujX79+2LBhg6PDIiIiIhfGxBMRERGRE/nPf/6DGTNmNPlxy8rKsHPnTrz22mt48sknje333nsv7rzzTiiVyiaPyVmcOHECEgknChAREV0PJp6IiIiInIhMJoNM1vQf0bKysgAA/v7+Ju1SqRRSqbTJ43EmzTnpRkRE1FD80w0RETm1yno3J0+exOTJk+Hn54fg4GC8/vrrEEURly5dwo033ghfX1+EhYXhww8/NNtHZmYmHnjgAYSGhkKlUqFnz5747rvvzPrl5+dj6tSp8PPzg7+/P6ZMmYL8/HyLcR0/fhy33XYbAgMDoVKp0K9fP/zxxx/1nk9paSmOHz+O7OzsevtW1j86ePAgEhIS4OnpiZiYGKxcuRIAsGXLFgwYMAAeHh7o2LGjxSlR+/fvx/jx4+Hr6wtvb2+MHDkS//zzj1m/I0eOYMSIEfDw8EBkZCRmz54NvV5vMa41a9ZgyJAh8PLygo+PDyZOnIgjR47Uez51OXr0KIYPHw5PT0+0bNkS77//vsn68vJyvPHGG+jbty/8/Pzg5eWFIUOGYNOmTTYf67nnnkNQUBBEUTS2PfXUUxAEAZ9++qmxLSMjA4IgYMGCBVbHIIoiWrdujRtvvNHsuGq1Gn5+fnjkkUfqjK9mjadu3bph+PDhZv30ej1atmyJ2267zdhm6TV84MCBeusnvfnmm4iOjgYAvPjiixAEAa1btwZguUZW69atkZiYiO3btyM2NhYqlQpt27bF999/b7Lf3NxcvPDCC+jevTu8vb3h6+uL8ePHIzU1tc6fQW0EQaj1URnfwYMHMXXqVLRt2xYqlQphYWG4//77kZOTY3bOgiDg9OnTmDp1Kvz9/eHn54dp06ahtLTUpC9rPBEREV0/Jp6IiMglTJo0CXq9HnPmzMGAAQMwe/ZsfPzxxxg9ejRatmyJuXPnIiYmBi+88AK2bt1q3K6srAzDhg3DkiVLcM899+CDDz6An58fpk6dik8++cTYTxRF3HjjjViyZAkmT56M2bNn4/Lly5gyZYpZLEeOHMHAgQNx7NgxzJgxAx9++CG8vLxw00034ddff63zPHbv3o3OnTvjv//9r1XnnZeXh8TERAwYMADvv/8+lEol7rzzTqxYsQJ33nknJkyYgDlz5qCkpAS33XYbioqKTOIcMmQIUlNT8dJLL+H111/HuXPnMGzYMOzatcvYLz09HcOHD8eBAwcwY8YMPPPMM/j+++9Nfj6VlixZgokTJ8Lb2xtz587F66+/jqNHjyI+Pv66i0/n5eVh3Lhx6NmzJz788EN06tQJL7/8MtasWWPsU1hYiK+//hrDhg3D3Llz8eabbyIrKwtjx47FgQMHbDrekCFDkJuba5Is27ZtGyQSCbZt22bSBgBDhw61OgZBEDB58mSsWbMGubm5JsdNTk5GYWEhJk+ebFO8kyZNwtatW5Genm7Svn37dqSlpeHOO+8EYNtruKZbbrkFH330EQDgrrvuwpIlS/Dxxx/Xuc3p06dx2223YfTo0fjwww8REBCAqVOnmvxcz549i99++w2JiYmYN28eXnzxRRw6dAgJCQlIS0uz6ecAGF5/NR/R0dHw8PCAt7c3AGD9+vU4e/Yspk2bhs8++wx33nknli9fjgkTJpgkGyvdcccdKCoqwnvvvYc77rgDixcvxqxZs2yOjYiIiGohEhERObGZM2eKAMSHH37Y2KbVasXIyEhREARxzpw5xva8vDzRw8NDnDJlirHt448/FgGIS5cuNbaVl5eLgwYNEr29vcXCwkJRFEXxt99+EwGI77//vslxhgwZIgIQFy1aZGwfOXKk2L17d1GtVhvb9Hq9OHjwYLF9+/bGtk2bNokAxE2bNpm1zZw5s95zT0hIEAGIP/zwg7Ht+PHjIgBRIpGI//zzj7F97dq1ZnHedNNNokKhEM+cOWNsS0tLE318fMShQ4ca25555hkRgLhr1y5jW2Zmpujn5ycCEM+dOyeKoigWFRWJ/v7+4kMPPWQSZ3p6uujn52fSXvm8WXuO33//vbFNo9GIYWFh4q233mps02q1okajMdk2Ly9PDA0NFe+//36T9po/30WLFpmcR2ZmpghAnD9/viiKopifny9KJBLx9ttvF0NDQ43bPf3002JgYKCo1+ttiuHEiRMiAHHBggUmfW+44QaxdevWxv3VpubPrnJ/n332mUm/xx9/XPT29hZLS0tFUbTtNWzJuXPnRADiBx98YNJe8+cniqIYHR0tAhC3bt1qbMvMzBSVSqX4/PPPG9vUarWo0+nMjqNUKsW33nrL7Nj1xVjT+++/b/b6qfx5VPfjjz+axVv5c675+rn55pvFoKAgk7bo6GiT6woRERFZjyOeiIjIJTz44IPG/0ulUvTr1w+iKOKBBx4wtvv7+6Njx444e/assW316tUICwvDXXfdZWyTy+V4+umnUVxcjC1bthj7yWQyPPbYYybHeeqpp0ziyM3NxV9//WUcJZGdnY3s7Gzk5ORg7NixOHXqFK5cuVLreQwbNgyiKOLNN9+06ry9vb2NI1oAoGPHjvD390fnzp0xYMAAY3vl/yvPXafTYd26dbjpppvQtm1bY7/w8HDcfffd2L59OwoLC43nPnDgQMTGxhr7BQcH45577jGJZf369cjPz8ddd91lPO/s7GxIpVIMGDDguqa9VZ5j9VFACoUCsbGxJs+jVCqFQqEAYJhilpubC61Wi379+mHfvn02HS84OBidOnUyjozbsWMHpFIpXnzxRWRkZODUqVMADCOe4uPjjdPerI2hQ4cOGDBgAJYtW2Zsy83NxZo1a3DPPfeYTKOzRocOHdCrVy+sWLHC2KbT6bBy5UokJSXBw8MDgPWv4cbSpUsXDBkyxLgcHBxs9vunVCqNRbl1Oh1ycnLg7e2Njh072vy81bRp0ya88soreOqpp3Dvvfca2yt/HoBhemN2djYGDhwIABaP+eijj5osDxkyBDk5OcbfDyIiImoYJp6IiMgltGrVymTZz88PKpUKLVq0MGvPy8szLl+4cAHt27c3uyNV586djesr/w0PDzdO16nUsWNHk+XTp09DFEW8/vrrCA4ONnnMnDkTgKGmVGOJjIw0S1T4+fkhKirKrA2A8dyzsrJQWlpqFj9gOHe9Xo9Lly4BqPoZ1VRz28qEzIgRI8zOfd26ddd93pbOMSAgwOR5BIDvvvsOPXr0gEqlQlBQEIKDg7Fq1SoUFBTYfMwhQ4YYp9Jt27YN/fr1Q79+/RAYGIht27ahsLAQqampJokVW2K47777sGPHDuPr6+eff0ZFRYUxQVJeXo709HSTh06nqzXeSZMmYceOHcak5ubNm5GZmYlJkyYZ+1j7Gm4sNX8nAfPnTa/X46OPPkL79u2hVCrRokULBAcH4+DBg9f1vFW6fPkyJk2ahLi4OMybN89kXW5uLqZPn47Q0FB4eHggODgYbdq0AQCLx6x5HgEBAQBg9vojIiKi68O72hERkUuwdFet2u60JVqo49JYKgtuv/DCCxg7dqzFPjExMY12vNrO0ZHnvmTJEoSFhZmtv947sVlzLkuXLsXUqVNx00034cUXX0RISAikUinee+89nDlzxuZjxsfH46uvvsLZs2exbds2DBkyBIIgID4+Htu2bUNERAT0er1J4smWGO688048++yzWLZsGV599VUsXboU/fr1MyaB/v77b7OC4efOnTMW9K5p0qRJeOWVV/Dzzz/jmWeewU8//QQ/Pz+MGzfO5nNvLNY8b++++y5ef/113H///Xj77bcRGBgIiUSCZ555ptbi9fUpLy/HbbfdBqVSiZ9++snsdXfHHXfg77//xosvvohevXrB29sber0e48aNs3hMR/wuERERNSdMPBERkVuLjo7GwYMHodfrTUY9HT9+3Li+8t+NGzeiuLjYZMTIiRMnTPZXOW1NLpdj1KhR9g7/ugUHB8PT09MsfsBw7hKJxDhqKjo62jiaqbqa27Zr1w4AEBIS0uTnvnLlSrRt2xa//PKLyeioylFmtqpMKK1fvx579uzBjBkzABgKiS9YsAARERHw8vJC3759ryuGwMBATJw4EcuWLcM999yDHTt2mBTr7tmzJ9avX2+yjaVkXqU2bdogNjYWK1aswJNPPolffvkFN910E5RKpbGPta/hprRy5UoMHz4c33zzjUl7fn6+2WhFaz399NM4cOAAtm7ditDQUJN1eXl52LhxI2bNmoU33njD2G7p9U1ERERNg1PtiIjIrU2YMAHp6ekm9XG0Wi0+++wzeHt7IyEhwdhPq9ViwYIFxn46nQ6fffaZyf5CQkIwbNgwLFy4EFevXjU7XlZWVp3xlJaW4vjx48jOzm7IadVLKpVizJgx+P33303uNpeRkYEffvgB8fHx8PX1BWA493/++Qe7d+829svKyjKpUQQAY8eOha+vL959911UVFSYHbO+c7948aIx4Xc95wOYjkLZtWsXdu7ceV37a9OmDVq2bImPPvoIFRUViIuLA2BISJ05cwYrV67EwIEDTUbT2BrDvffei6NHj+LFF1+EVCo1qdUVEBCAUaNGmTxUKlWdMU+aNAn//PMPvv32W2RnZ5tMswOsfw0Dhilnx48fb9B0N2tIpVKzkUM///xznXXQKlmKcdGiRVi4cCE+//xzk5pk1Y8HmI9Wqu8OfURERGQ/HPFERERu7eGHH8bChQsxdepU/Pvvv2jdujVWrlxpHIHi4+MDAEhKSkJcXBxmzJiB8+fPo0uXLvjll18sfjH//PPPER8fj+7du+Ohhx5C27ZtkZGRgZ07d+Ly5ctITU2tNZ7du3dj+PDhmDlzptUFxq/X7NmzsX79esTHx+Pxxx+HTCbDwoULodFo8P777xv7vfTSS1iyZAnGjRuH6dOnw8vLC19++aVxtFglX19fLFiwAPfeey/69OmDO++8E8HBwbh48SJWrVqFuLg4/Pe//601nvvuuw9btmy5rilMiYmJ+OWXX3DzzTdj4sSJOHfuHL744gt06dIFxcXFNu8PMCSZli9fju7duxvr+vTp0wdeXl44efIk7r777gbFMHHiRAQFBeHnn3/G+PHjERIScl1xVrrjjjvwwgsv4IUXXkBgYKDZqDNbXsO//vorpk2bhkWLFmHq1KkNiqsuiYmJeOuttzBt2jQMHjwYhw4dwrJly0wK3temZozZ2dl4/PHH0aVLFyiVSixdutSk/8033wxfX18MHToU77//PioqKtCyZUusW7cO586ds9cpEhERUT2YeCIiIrfm4eGBzZs3Y8aMGfjuu+9QWFiIjh07mn3hlkgk+OOPP/DMM89g6dKlEAQBN9xwAz788EP07t3bZJ9dunTB3r17MWvWLCxevBg5OTkICQlB7969Tab3OFrXrl2xbds2vPLKK3jvvfeg1+sxYMAALF261OSOeOHh4di0aROeeuopzJkzB0FBQXj00UcRERFhctdAALj77rsRERGBOXPm4IMPPoBGo0HLli0xZMgQTJs2zW7nMnXqVKSnp2PhwoVYu3YtunTpgqVLl+Lnn3/G5s2br2uflYmn+Ph4Y5tMJsOgQYOwYcMGs8LitsagUCgwadIkzJ8/3+Sua9crMjISgwcPxo4dO/Dggw9CLpebrLflNdxUXn31VZSUlOCHH37AihUr0KdPH6xatco4tdEWxcXFUKvVOHr0qMWf57lz5+Dl5YUffvgBTz31FD7//HOIoogxY8ZgzZo1iIiIaIxTIiIiIhsJIisnEhEREdnFs88+i2+++Qbp6enw9PS0apvXX38d7733HrRabaPEcP78ebRp08buo5vcWVRUFMaOHYuvv/7a0aEQERG5HNZ4IiIiIrIDtVqNpUuX4tZbb7U66QQAV69eve7C29T4KioqkJOTw+eEiIjoOnGqHREREVEjyszMxIYNG7By5Urk5ORg+vTpVm139uxZ/Prrr/j555+RmJho5yjJGmvXrsXy5ctRVlaGkSNHOjocIiIil8TEExEREVEjOnr0KO655x6EhITg008/Ra9evazabuvWrZg1axaGDRuGefPm2TdIssqcOXNw+vRpvPPOOxg9erSjwyEiInJJrPFERERERERERER2wRpPRERERERERERkF0w8ERERERERERGRXTDxRERELu3NN9+EIAiODoPIKSxevBiCIOD8+fMm7R988AHatm0LqVRqdc2p+o6xd+/eBu2HiIiImgcmnoiIqNmaP38+Fi9e7OgwAABpaWl48803ceDAgQbtZ+rUqRAEwfhQKpXo0KED3njjDajVarP+1fvKZDIEBgaib9++mD59Oo4ePWrW//z58ybbVH8MHDjQ2K+8vByffPIJevfuDV9fX/j7+6Nr1654+OGHcfz48QadoyVFRUV46aWX0KZNGyiVSrRs2RK33XYbSktLG+0YlQmX2h7Lli1rtGM1pnXr1uGll15CXFwcFi1ahHfffbdJj6/X67FgwQL06tULHh4eCAoKwogRI5CammrsU9fravny5Sb7Wrx4MW644QZERUXBy8sL3bp1w+zZsy2+vhcsWIDbb78drVq1giAImDp1aq1x/vvvv0hMTERYWBi8vb3Ro0cPfPrpp9DpdI368yAiImpueFc7IiJqtubPn48WLVrU+WW0qaSlpWHWrFlo3bp1g0ekKJVKfP311wCAgoIC/P7773j77bdx5swZi8mR0aNH47777oMoiigoKEBqaiq+++47zJ8/H3PnzsVzzz1nts1dd92FCRMmmLQFBwcb/3/rrbdizZo1uOuuu/DQQw+hoqICx48fR0pKCgYPHoxOnTo16ByrKygoQEJCAi5fvoyHH34YMTExyMrKwrZt26DRaODp6dkoxxk6dCiWLFli1v7RRx8hNTUVI0eObJTjNLa//voLEokE33zzDRQKRZMf//7778eyZctw33334cknn0RJSQn279+PzMxMs76WXleDBg0y/r+0tBTTpk3DwIED8eijjyIkJAQ7d+7EzJkzsXHjRvz1118mIyDnzp2LoqIixMbG4urVq7XG+O+//2Lw4MFo3749Xn75ZXh6emLNmjWYPn06zpw5g08++aQRfhJERETNExNPREREbkYmk2Hy5MnG5ccffxyDBw/Gjz/+iHnz5iE0NNSkf4cOHUz6A4bbyCclJeH5559Hp06dzJIBffr0Mdum0p49e5CSkoJ33nkHr776qsm6//73v8jPz2/A2Zl75ZVXcOHCBezbtw9t2rQxtr/88suNepy2bduibdu2Jm1lZWV4/PHHMWLECISFhTXq8RpLZmYmPDw8HJJ0+umnn/Ddd9/hl19+wc0331xv/7peVwCgUCiwY8cODB482Nj20EMPoXXr1sbk06hRo4zrtmzZYhzt5O3tXet+Fy5cCADYunUrAgMDAQCPPPIIEhISsHjxYiaeiIiIGoBT7YiIyGVs374d/fv3h0qlQrt27YxfFmtatGgRRowYgZCQECiVSnTp0gULFiww6dO6dWscOXIEW7ZsMU7pGTZsGAAgNzcXL7zwArp37w5vb2/4+vpi/PjxJlODKn322Wfo2rUrPD09ERAQgH79+uGHH34w6XPlyhXcf//9CA0NhVKpRNeuXfHtt98a12/evBn9+/cHAEybNs0YT+U0wNLSUhw/fhzZ2dnX9XMTBAHx8fEQRRFnz561apugoCAsX74cMpkM77zzjk3HO3PmDAAgLi7ObJ1UKkVQUJBV+/n555/RpUsXqFQqdOvWDb/++iumTp2K1q1bG/vk5+dj0aJFePjhh9GmTRuUl5dDo9HYFO+wYcPQrVs3HD16FMOHD4enpydatmyJ999/v95tk5OTUVRUhHvuuceqY/3++++YOHEiIiIioFQq0a5dO7z99tvXNZ3ryJEjGDFiBDw8PBAZGYnZs2dDr9eb9BEEAYsWLUJJSYnZ62r9+vWIj4+Hv78/vL290bFjR7NEYV00Gg2ee+45BAcHw8vLCzfffDOysrJM+sybNw+xsbG4+eabodfrUVJSUu9+S0pKUF5ebnGdQqEwSTpVqkxqHTt2zKQ9OjraqhpwhYWFUKlU8Pf3N2kPDw+Hh4dHvdsTERFR7Zh4IiIil3Do0CGMGTMGmZmZePPNNzFt2jTMnDkTv/76q1nfBQsWIDo6Gq+++io+/PBDREVF4fHHH8fnn39u7PPxxx8jMjISnTp1wpIlS7BkyRK89tprAICzZ8/it99+Q2JiIubNm4cXX3wRhw4dQkJCAtLS0oz7+Oqrr/D000+jS5cu+PjjjzFr1iz06tULu3btMvbJyMjAwIEDsWHDBjz55JP45JNPEBMTgwceeAAff/wxAKBz58546623AAAPP/ywMZ6hQ4cCAHbv3o3OnTvjv//973X//CqLTQcEBFi9TatWrZCQkIB//vkHhYWFJutKS0uRnZ1t8qioqABg+LIPAMuWLYNWq72ueFetWoVJkyZBLpfjvffewy233IIHHngA//77r0m/7du3Q61WIyYmBrfddhs8PT3h4eGBuLg4m+pl5eXlYdy4cejZsyc+/PBDdOrUCS+//DLWrFlT53bLli2Dh4cHbrnlFquOs3jxYnh7e+O5557DJ598gr59++KNN97AjBkzrI4VANLT0zF8+HAcOHAAM2bMwDPPPIPvv//ebGTOkiVLMGTIECiVSpPX1ZEjR5CYmAiNRoO33noLH374IW644Qbs2LHD6hieeuoppKamYubMmXjssceQnJyMJ5980ri+sLAQu3fvRv/+/fHqq6/Cz88P3t7eaNu2LX766SeL+5w1axa8vb2hUqnQv39/rFu3zuqfBwC0aNHC6virGzZsGAoLC/HII4/g2LFjuHDhAr744gv88ssveOWVV65rn0RERHSNSERE5AJuuukmUaVSiRcuXDC2HT16VJRKpWLNt7PS0lKz7ceOHSu2bdvWpK1r165iQkKCWV+1Wi3qdDqTtnPnzolKpVJ86623jG033nij2LVr1zrjfuCBB8Tw8HAxOzvbpP3OO+8U/fz8jLHu2bNHBCAuWrTIbB+bNm0SAYgzZ86s81iiKIpTpkwRvby8xKysLDErK0s8ffq0+H//93+iIAhit27dRL1eb9IfgPjEE0/Uur/p06eLAMTU1FRRFA0/BwAWH5s2bRJFURT1er2YkJAgAhBDQ0PFu+66S/z8889Nnrv6dO/eXYyMjBSLioqMbZs3bxYBiNHR0ca2efPmiQDEoKAgMTY2Vly2bJk4f/58MTQ0VAwICBDT0tLqPVZlrN9//72xTaPRiGFhYeKtt95a63Y5OTmiQqEQ77jjDqvPy9Jr85FHHhE9PT1FtVpt9X6eeeYZEYC4a9cuY1tmZqbo5+cnAhDPnTtnbK98TVT30UcfiQDErKwsq49ZadGiRSIAcdSoUSavp2effVaUSqVifn6+KIqiuG/fPuNzExoaKs6fP19ctmyZGBsbKwqCIK5Zs8a47YULF8QxY8aICxYsEP/44w/x448/Flu1aiVKJBIxJSWl3phGjRol+vr6inl5ebX28fLyEqdMmWJxnVarFZ988klRLpcbX89SqVRcsGCBdT8UIiIiqhVHPBERkdPT6XRYu3YtbrrpJrRq1crY3rlzZ4wdO9asf/WpMQUFBcjOzkZCQgLOnj2LgoKCeo+nVCohkUiMx87JyTFORdq3b5+xn7+/Py5fvow9e/ZY3I8oivjf//6HpKQkiKJoMjpo7NixKCgoMNlfbYYNGwZRFPHmm2/W2xcwTFUKDg5GcHAwYmJi8MILLyAuLg6///67VdOOqqusi1NUVGTS/vDDD2P9+vUmj549ewIwTO9au3YtZs+ejYCAAPz444944oknEB0djUmTJtVb4yktLQ2HDh3CfffdZ1KXJyEhAd27dzfpW1xcbDzmxo0bcffdd+Oxxx7Db7/9hry8PJNRbvWdZ/XaQgqFArGxsXVOTVy5ciXKy8utnmYHmL42i4qKkJ2djSFDhhinU1pr9erVGDhwIGJjY41twcHBVsdSOaXs999/N5ueZ62HH37Y5PU0ZMgQ6HQ6XLhwAUDVc5OTk4Pff/8djz32GO6++25s3LgRQUFBmD17tnHbVq1aYe3atXj00UeRlJSE6dOnY//+/QgODsbzzz9fZxzvvvsuNmzYgDlz5phNlbOWVCpFu3btMHbsWHz33XdYsWIFkpKS8NRTT+G33367rn0SERGRAYuLExGR08vKykJZWRnat29vtq5jx45YvXq1SduOHTswc+ZM7Ny5E6WlpSbrCgoK4OfnV+fx9Ho9PvnkE8yfPx/nzp0zqb9TvT7Ryy+/jA0bNiA2NhYxMTEYM2YM7r77bmNto6ysLOTn5+PLL7/El19+afFYlu7s1VAqlQrJyckAgMuXL+P99983Fpi2VWXywMfHx6S9ffv2JkWca1IqlXjttdfw2muv4erVq9iyZQs++eQT/PTTT5DL5Vi6dCnKy8uRm5trsl1wcLAxcRETE2O235iYGJNkXeU5JSUlmSSpBg4ciDZt2uDvv/8GYCgCXjPpWL0YeGRkpFlSLiAgAAcPHqz1HJctW4bAwECMHz/epL24uNj4cwMMSY3KO/4dOXIE//nPf/DXX3+ZTV+0Jila6cKFCxgwYIBZe8eOHa3aftKkSfj666/x4IMPYsaMGRg5ciRuueUW3Hbbbcaka+X0tUp+fn4mr6HqSWCgahpnXl4egKrnpk2bNiaxent7IykpCUuXLoVWq4VMZvnjaGBgIKZNm4Y5c+bg8uXLiIyMNOuzYsUK/Oc//8EDDzyAxx57zKpzt2TOnDn45JNPcOrUKePr6I477sDw4cPxxBNPIDExsdY4iYiIqG4c8URERG7lzJkzGDlyJLKzszFv3jysWrUK69evx7PPPgsAVo3uePfdd/Hcc89h6NChWLp0KdauXYv169eja9euJtt37twZJ06cwPLlyxEfH4///e9/iI+Px8yZM02ONXnyZLPRQZUPSwW4G0oqlWLUqFEYNWoUpk6dio0bNyI9PR2PPPKIzfs6fPgwpFKpyd3ibBUeHo4777wTW7duRfv27fHTTz9Bq9Xi77//Rnh4uMnj0qVLNu07IiICAMzu1AcAISEhxiTIihUrzI5VnVQqtbh/URQttl+8eBHbtm3D7bffDrlcbrLu//7v/0yOU1k4Pj8/HwkJCUhNTcVbb72F5ORkrF+/HnPnzgVg3WuzsXh4eGDr1q3YsGED7r33Xhw8eBCTJk3C6NGjjYnWmj+vFStWmOyjvp9Zfc9NRUVFvcXGo6KiAMAsQQkYiqPfd999mDhxIr744ot6zrhu8+fPx4gRI8zufHfDDTcgLS3NWCONiIiIbMc/3RARkdMLDg6Gh4cHTp06ZbbuxIkTJsvJycnQaDT4448/TEZkbNq0yWzb2qadrVy5EsOHD8c333xj0p6fn29WvNjLywuTJk3CpEmTUF5ejltuuQXvvPMOXnnlFQQHB8PHxwc6na7O0UF1xdIYwsPD8eyzz2LWrFn4559/MHDgQKu2u3jxIrZs2YJBgwaZjXi6HnK5HD169MCpU6eQnZ2Nnj17Yv369SZ9wsLCoFAoAACnT58220fNtr59+wIw3DmwprS0NHTq1AkAMHbsWLNjNcSPP/4IURQtTm277777EB8fb1yuHPmzefNm5OTk4JdffjEWjgeAc+fO2Xz86Ohoq34f6iKRSDBy5EiMHDkS8+bNw7vvvovXXnsNmzZtwqhRo8x+Xl27drUpxoiICISFhdX63KhUqnpfV5VTHStHjFXatWsXbr75ZvTr1w8//fRTg0cjZWRkWLyzYGXB/Ostkk9EREQc8URERC5AKpVi7Nix+O2333Dx4kVj+7Fjx7B27VqzvoDpSJWCggIsWrTIbL9eXl4W6w1JpVKzkS4///yz2RfonJwck2WFQoEuXbpAFEVUVFRAKpXi1ltvxf/+9z8cPnzY7DjVbz3v5eUFABbjqaz/k52dbbbOWk899RQ8PT0xZ84cq/rn5ubirrvugk6nM97tz1qnTp0yeZ4q5efnY+fOnQgICEBwcDACAgKMI7MqHyqVChEREejWrRu+//57kylrW7ZswaFDh0z22bFjR/Ts2RO///67yc9n3bp1uHTpEkaPHg3AkHyreayG+OGHH9CqVSuTBFOltm3bmhynclSbpddmeXk55s+fb/PxJ0yYgH/++Qe7d+82tmVlZWHZsmVWbW9pBFGvXr0AABqNBgDMfl41R4lZY9KkSbh06ZJJEis7Oxu///47RowYYZzWV/13odKVK1fw7bffokePHibHPnbsGCZOnIjWrVsjJSXluqaQ1tShQwesX7/e5Hdap9Php59+go+PD9q1a9fgYxARETVXHPFEREQuYdasWfjzzz8xZMgQPP7449Bqtfjss8/QtWtXkzo8Y8aMgUKhQFJSEh555BEUFxfjq6++QkhICK5evWqyz759+2LBggWYPXs2YmJiEBISghEjRiAxMRFvvfUWpk2bhsGDB+PQoUNYtmwZ2rZta7L9mDFjEBYWhri4OISGhuLYsWP473//i4kTJxpHcsyZMwebNm3CgAED8NBDD6FLly7Izc3Fvn37sGHDBmMCoF27dvD398cXX3wBHx8feHl5YcCAAWjTpg12796N4cOHY+bMmVYXGK8pKCgI06ZNw/z583Hs2DF07tzZuO7kyZNYunQpRFFEYWEhUlNT8fPPP6O4uBjz5s3DuHHjbDpWamoq7r77bowfPx5DhgxBYGAgrly5gu+++w5paWn4+OOPa52mVendd9/FjTfeiLi4OEybNg15eXn473//i27dupkkowDgo48+wujRoxEfH49HHnkEBQUFmDdvHjp06NCguj+1OXz4MA4ePIgZM2bYNFJt8ODBCAgIwJQpU/D0009DEAQsWbKk1ul8dXnppZewZMkSjBs3DtOnT4eXlxe+/PJLREdH11mXqtJbb72FrVu3YuLEiYiOjkZmZibmz5+PyMhIi8m06/XKK6/gp59+wq233ornnnsOfn5++OKLL1BRUYF3333X5Hwqp8lGRETg/PnzWLhwIUpKSvDJJ58Y+xUVFWHs2LHIy8vDiy++iFWrVpkcr127dhg0aJBxOTk5GampqQAMo5cOHjxoLGp+ww03oEePHgCAGTNmYPLkyRgwYAAefvhheHh44Mcff8S///6L2bNnm02nJCIiIhs45mZ6REREttuyZYvYt29fUaFQiG3bthW/+OILcebMmWLNt7M//vhD7NGjh6hSqcTWrVuLc+fOFb/99luz28ynp6eLEydOFH18fEQAYkJCgiiKoqhWq8Xnn39eDA8PFz08PMS4uDhx586dYkJCgrGPKIriwoULxaFDh4pBQUGiUqkU27VrJ7744otiQUGBSTwZGRniE088IUZFRYlyuVwMCwsTR44cKX755Zcm/X7//XexS5cuokwmEwGIixYtEkVRFDdt2iQCEGfOnFnvz2jKlCmil5eXxXVnzpwRpVKpyS3lce3W8QBEiUQi+vv7i7179xanT58uHjlyxGwf586dEwGIH3zwQa0xZGRkiHPmzBETEhLE8PBwUSaTiQEBAeKIESPElStX1nsOlZYvXy526tRJVCqVYrdu3cQ//vhDvPXWW8VOnTqZ9V2/fr04cOBAUaVSiYGBgeK9994rXr161arjJCQkiF27djVrnzJlihgdHW3WPmPGDBGAePDgQavPpdKOHTvEgQMHih4eHmJERIT40ksviWvXrhUBiJs2bbJpXwcPHhQTEhJElUoltmzZUnz77bfFb775xux1buk1sXHjRvHGG28UIyIiRIVCIUZERIh33XWXePLkyXqPu2jRIhGAuGfPHpP2ytdpzfM4c+aMePPNN4u+vr6ih4eHOGLECHH37t0mfX744Qdx6NChYnBwsCiTycQWLVqIN998s/jvv/+a9Kt8/dX2qP7arjz32vpW/n5V+vPPP8WEhASxRYsWokKhELt37y5+8cUX9f48iIiIqG6CKF7Hn9mIiIiIHKBXr14IDg5u1HpNRERERGQ/rPFERERETqeiosKsoPPmzZuRmpqKYcOGOSYoIiIiIrIZRzwRERGR0zl//jxGjRqFyZMnIyIiAsePH8cXX3wBPz8/HD58GEFBQY4O0S7KyspQUFBQZ5/AwEDjnf+IiIiInB2LixMREZHTCQgIQN++ffH1118jKysLXl5emDhxIubMmeO2SScAWLFiBaZNm1Znn02bNnHUFxEREbkMjngiIiIichJXr17FkSNH6uzTt29fBAQENFFERERERA3DxBMREREREREREdkFi4sTEREREREREZFdMPFERERERERERER2wcQTERERERERERHZBRNPRERERERERERkF0w8ERERERERERGRXTDxREREREREREREdsHEExERERERERER2QUTT0REREREREREZBdMPBERERERERERkV0w8URERERERERERHbBxBMREREREREREdkFE09ERERERERERGQXTDwREREREREREZFdMPFERERERERERER2wcQTERERERERERHZBRNPRERERERERERkF0w8ERERERERERGRXTDxREREREREREREdsHEExERERERERER2QUTT0REREREREREZBdMPBERERERERERkV0w8URERERERERERHbBxBMREREREREREdkFE09ERERERERERGQXTDwREREREREREZFdMPFERERERERERER2wcQTERERERERERHZBRNPRERERERERERkF0w8ERERERERERGRXcis6eTl5QW1Wg2pVIqQkBB7x0RE5PYyMzOh0+mgUqlQUlLi6HAcju8zRESNi+8z5vheQ0TUuKx9rxFEURTr25lUKoVer2/UAImICJBIJNDpdI4Ow+H4PkNEZB98n6nC9xoiIvuo773Gqql2Uqm00QIiIqIqvL4a8OdARGQfvL5W4c+CiMg+6ru+WpV44lBUIiL74PXVgD8HIiL74PW1Cn8WRET2Ud/1lcXFiYiIiIiIiIjILqwqLm6JFaWhXIparTZZVqlUDorEftz9HN39/ARBMFl2t99BoPk9h1Q3d3uN83fY9bn7c+juzx/g/ufI9xnb8ffY9bj7OfL8XJ+7n+P1vNdwxBMREREREREREdkFE09ERERERERERGQXTDwREREREREREZFdMPFERERERERERER2wcQTERERERERERHZBRNPRERERERERERkF0w8ERERERERERGRXTDxREREREREREREdsHEExERERERERER2QUTT0REREREREREZBdMPBERERERERERkV0w8URERERERERERHbBxBMREREREREREdkFE09ERERERERERGQXTDwREREREREREZFdMPFERERERERERER2wcQTERERERERERHZBRNPRERERM2YRiNi804tRFF0dCh2IYoiDh7WIz3DPc+PiIjI2ckcHQARERERNa3MbD1Wb9IieUMF1m3T4r5bFBjYW3B0WI1GrRaxebuI5D91SPlTD0EATv6rgF7v6MiIiIiaHyaeiIiIiNycKIo4fEKP5A0VSN6gxa4DOlQOcFIogBmPKwGUOzTGhsrIFLFqrR4pa/VYt0mPkpKqdV9+IoNCIUCtdlx8REREzRUTT0RERERuSKMRsfkfLVI2apG8sQIXLlueavbgJAWiIiQul5QRRRGHjohI/lOP5D/12P2vCEuzBaOjgCl3sboEERGRozDxREREROQmak6hKy6pu3/VaCfXoNGI2LStagrdxcv1b/PaC4bRTkREROQYTDwRERERuajqU+hSNmrxz36dxVE/tenfQ4p9h3XYd1iH8nKdyTqFoqKRo7UsOFDA4H61fyTNzDJMoUv+03wKXX08PAB/P+D3VYZzK69xSgq5zsJWjW/iWAlkMia/iIioeWLiiYiIiMiFaDQituzSInmDFikbK3C+lil01tixV4cde0trWau97v3aYny8iNXPnkblXD8xNhaHTspMptC10GWig/4Uetmw34uSKFwqa4U7plY/DwGDtDshgfVVxsuhwB5Zf7P2NvqziNBftWofY//0gWxAL0Aut/q4RERE7oKJJyIiIiInZ+sUOlchEyvwyZpRwA+pxrY+HS/hQHqwSb8x2g1YWna/Tfv+j3Im3lG9Yta+vmQivFBbss3cZaElonzPmLU/qfkCz5V/at1OhgDo3RvYtYvJJyIianaYeCIiIiJyMhev6jD1P4UAAE05cOGKHtm5IjR57pW06Fl+GO3zUk3aLqcBcMda4Pv3A6mpQL9+jo6EiIioSTHxRERERORkStUiNu0xLUikkAP7V3sjZWMFkjdqsftA09QnsieVaH4rvY/eleHnHRKs36xHWZkDgrInV7t1IBERUSNg4omIiIjIRfTqKkWvrlL852kgPVOPVX9pkfJXBdZt1aL0OpI0LQIFhIcYil6LetNaUYLE/sWw2+VJgMxqDZ9/jskPBWHyk3KUlYnYtM1Q5+nvlFGIT9to074vSqKgUAAdY6rOQxT1eKQoBRLRUONJEOofWlUhKNDdx/xnsV79GFLLb6pzWz9tLtqk7YK+VUc8PzcM6NLFpnMgIiJyB0w8EREREbmgsBAJHrhTgQfuVECtFrFp57WC439V4FKadQXHw0MEHFjjDYlEgLrGaByVSmWPsE1t9zTUP6rUo4exBpKHh4AJY6SYMEYK8cNIHDjYEinX7m63Z5915yfRAj8tlqFTB0OCyXCOg4zrG3aOna49aqfVAqGht6LkNPDoMMDLqwGHIyIiclHuOIOeiIiIqFlRqQSMHy7H/Hc8cOFvHxxY4423n1citpe0zu0OHdfj1z+b5u51DSEIAnr3lOD1l2TY/ZcCaccV+OpTGW4YL4GHR+3b6fXA7P9z3JTEnTuB3FxAowHWr3dYGERERA7FxBMRERGRGxEEAT27SPGfp1XY9bs3ru7xwTfve+CmsTJ4WkjSzPpEDb3euhFEziI8TMCD90nx+49y5JxVYNVPMjx6vwSRLc37/rhSj+Mn9U0fJIDk5Kr/p6Q4JAQiIiKHY+KJiIiIyI2FhUhw/yQFfv3SCzkHfLF6sScem6xAVIShbpGrjHqqTeWUvAXz5Lh4WIF9W+R461Up+vcxnJ8jRz3VTDzpHZP/IiIicijWeCIiIiJqJiqn5I0fLsfnogoHj+mRvKECf26pwIThAgTB/gXF7ckwJa9yWh5wNV3EqnV6rFmvx8VLIkKCmy6W06eBC8dL0QGXDA0ZwL7tUeg31LPpgiAiInICTDwRERERNUOVU/J6djHUgapZXNwdVE7Je/C+ynNsumOnpAB9sA/bq1VP/+qbbeg3NL7pgiAiInICnGpHRERERNTIqk+zq7RjR9PHQURE5Ggc8UREREREjuHrC8TFmS67gYICYOtWYECN9tNngEuXgKgoh4RFRETkEEw8EREREZFj9OgBbN/u6Cga3Z9/Atpa6rWnpACPPda08RARETkSp9oRERERETWilJTa11magkdEROTOmHgiIiIiImokWi2wenXt6//6Cygpabp4iIiIHI2JJyIiIiKiRrJzJ5CbW/t6jQZYv77p4iEiInI0Jp6IiIiIiBqJNVPp6pqKR0RE5G6YeCIiIiIixzh2DLjllqrHsWOOjqjBrE086fX2j4WIiMgZ8K52REREROQYOTnAr79WLT/3nONiaQSnTwPHj9ffLyMD2LsXiI21f0xERESOxhFPRERERESNwJYpdLy7HRERNRdMPBERERERNQJbkklMPBERUXPBqXZERERERA1UUABs3WralotA/IEkk+VKqanApUtAVFRTRUhEROQYTDwRERERETXQn38CWq1p2zF0wY34o9ZtUlKAxx6zc2BEREQOxql2REREREQNdD1T5zjdjoiImgMmnoiIiIiIGkCrBVavrlru0QMYPty838CBpney++svoKTE/vERERE5EhNPREREREQNsHMnkJdnSDj973/A/v3AgAHm/bp3B/75x5Ckio0FNBpg/fqmj5eIiKgpscYTEREREVEDnD9vSDjddBMgqefPuoIAjB8PjBsHrF0LXLjQFBESERE5znUnntRqdWPG4XAeHh6ODoEaWVlZmaNDsCtBEBwdgt25+3NIdXO395ma+Dvs+uz5GtVodE1+zJqfhZri+RM0GiirLWs0GogueI633274t7y8qk2rlaEbjuEzPGVs+yvrI6jVnY3Lw4YZ/nXzy51Taw7XYnJt7vZe2hy/d7vbc3g9OOKJiIiIiMgO/FCAYdhiXN5ZXuDAaIiIiByDNZ6IiIiIiIiIiMguOOKJiIiIiBxC7NULmn//rVqOjnZgNERERGQP1514UqlUjRmH0xFF0dEhNLqadSHc7TmsOUff3c6v5txgdzs/wP1fo2Qbd3/++T7j+hrr/PR6ERKJ6XuYUqkFUFLvMUVRhCjCbPvG0CTPn0oFBAXZ/zi1Ht5+5yiz8ClbKpW5/e+Fq3G3a3FzuA67+znyO43rc/fn8Hpwqh0RERGRA13J1OOWZwtw4HiF1duIooh1f2tw0/QCuNn3ZiIiInIzTDwREREROVBUmBRnLunQ+468ehNQlQmnuPvyMPbRAvj7SCCV8q5cRERE5LxY44mIiIjIwRKHKnDwpBa/btTg140axPWWm/XR6oC4+/KwM1VrbEtKUDRlmEREREQ244gnIiIiIgdLSlCaLO/Ybz7qSa+HSdJJLgPGDHbxxFNeHrB2bdUjL8/REREREVEj44gnIiIiIgeL7S5DSKCAzFzrCzYl9JPD19vF/4Z45AgwblzV8rZtQHy84+IhIiKiRufin1aIiIiIXJ9EImDiUGX9HaupOUqKiIiIyBkx8URERETkBGxNJDHxRERERK6AiSciIiIiJzB6kBwK85riFnVtJ0WbSKl9AyIiIiJqBEw8ERERETkBb08Jhve3rlh40jCOdnIFuxGLcKQZH+eCYx0dEhERUZNj4omIiIjISSQNsy7xlDjUxe9m10xUQIF0hBsfOimfNyIian6YeCIiIiJyEolWFBhvESBgYA8r5+QRERERORgTT0REREROIjpCih4dZHX2mRCvhFQqNFFERERERA3DxBMRERGRE6lvGl1SAqdrERERkeuo+09qRERERNSkkhKUePfrUovr5DJgzGAmnlxFC2RhFDYYl73LRgEIdlxAREREDsDEExEREZETie0uQ0iggMxc0WzdsP5y+HpzwLqr6IgT+BF3G5ffL9gGJp6IiKi54ScXIiIiIicikQiYWEuRcWuKjxMRERE5E454IiIiInIySQlKLPpNbbHdrYSHA089ZbpMREREboWJJyIiIiInM3qQHAo5UF5R1da1nRRtIqWOC8oe2rUDPv3U0VEQERGRHTnvVDu9Hrh0Eji0w/CvXu/oiIiIiIiahLenBMP7mxYRTxrmZqOdmgU94CEAfoLhX5GfZ4mIqPlxvhFP6ReA714GMtcCPtXenIskQMhYYMpcICzacfERERFR03tzLCBIgZmrrd9m1gRA1AFvrrVfXHaUNEyBtX+XVy272zQ7d5Z+AfdceRlvPfUnEOhjbH4+7wZg7jh+niUiombFuUY8rZgLfNodKF0NeOlM13npDO2fdjf0IyIiouZDkALiDkMyyRqzJhj6C647Na16IfEWAQIGdHe+vxeSBdc+z3Ztsxoyf9MRThI/PT/PEhFRs+M8iacVc4Ej7xjGYAkCIBFM10sEQ7sMhn58syYiImo+Zq4GhDjrkk/GpFOcbSOknEx0hBQ9OhiSTRPilZBKhXq2IIer9nlWEAQINT7PCvw8S0REzZBzJJ7SLwCp7xj+XzPhVFPl+tR3DNsRERFR82BN8slNkk6VEoca6jwlJSjq6emi9uwBWreueuzZ4+CAGoCfZ4mIiCxyjsTTdy8DctT/Jl1JIhj6fz/DnlERERGRs6kr+eRmSSfAUNdJLgPGDHbTxJNGA1y4UPXQaBwd0fXj51kiIiKLHF8sQK83FBL3tnE7EUDGn4btJc6RPyMiInJqJSXA/v22bRMUBHTubN6emgoUFZk0CTWTBsoaxbAHDADkctO2jAzg1CnbYrp/IfDtI1XJp5mr3TLpBACx3WWYNE4JX29+1nFq/DxLRERUK8cnnq6cvnb3OhvrFkgEw3ZpZ4HIGLuERkRE5FbOnAGGDLFtm9tuA37+2bz90UeBf/4xaar3nms5OUBgoGnbmjXAtGm2xfTuuybJJvE/vhBkglslnXILdVi6rhQA0KED8OnKIkglwBO3+NSzJTkEP88SERHVyvGJp/yshm2fl8E3aiIiouZo5uqqpJNWBGa7R9IJADLz9Jj+SZ5Jm0LOxJPT4udZIiKiWjl+TK9/cMO2DwhtnDiIiIjItcyaAEEmQNSKgEyo/253RPbCz7NERES1cvyIp5YxQJEE8NJZX4wRAPQiUCIFItraLzYiIiJ30q4dsG2bbdsEBVlu/+ILsxpPmho1npQ1azz5WBitM3687TFFRxun2e3Wt8XIF+9F/sfrIa1e84moKfHzLBERUa0cn3iSSICQsUCpjR8SBQCh41iIkYiIqDb5+cDevVXL/foB8fGNs++ePc2aRLXatEGlqn8/oaGGhy2uJZ00wkAMeH44gHJsfHU+xrz7hGnBcaKmws+zREREtXKOd7kpc4EKGP7qYw29aOh/3xx7RkVEROTaDh8GRo+uehw+7OiIGq7a3euWvPK+sTlFe9qQbBLiqpJPRE2Jn2eJiIgsco7EU1g00PM1w//re7OuXN/rdcN2RERE1DxUSzph5mqkVJw2rkquOA1RFJl8Isfh51kiIiKLnCPxBACTXga6vgZoAVEUIdZ4wxb1IiCKgBZAt9eBO150TJxERETU9GokndSiFuu1542rz4sFOKLPNiww+USOUu3zLETRPAHFz7NERNQMOU/iCTC8WT99COcyJ0KbbxqavkACeE0EnjnCN2kiIqLmRtQZk04A8Jf2AkpRYdIludoIqKrkk64poyQyfp6F10RD4fDqSqT8PEtERM2O44uL1xQWjY19fsR3D2/Fdo9hgAJAOfB85834+N+hjo6OiIiIHOHNtSaLydrTZl2StafxCgZVNbDAuPMTBEChMF12B2HRwEs/Ano9kHYWyMsAAkINd69jIXEiImpmnC/xZCQBykSg7NqiwDdpIiIiMkzJr17fqdI/uivI0pciWOLpgKjousTFARqNo6OwH4kEiIwxPIiIiJopZnOIiIjIpRzQZ+CyWGTWLgJYrT3T9AERERERUa2YeCIiIiKXklJRe3Ip2cJIKCIiIiJyHCaeiIiIyKVYqu9Uaa32HDSitgmjISIiIqK6OG2NpxPoiLvwg3G53LOjA6MhIiIiZ3BVX4w9uqu1ri9GObZqL2G0vE0TRkVEREREtXHaxFM2grEcdxmXRyrq6ExERETNwiorajgla08z8eQqLl0Cli6tWp48GYiKclw8RERE1OicNvFEREREVFNyxSkr+pzGJ6pREAShCSKiBrlwAXj11arlIUOYeCIiInIzTDwRERG5q/Bw4PHHTZddWJlYgQ3aC/X2Oy8W4Ig+G92kwU0QFRERERHVhYknIiIid9WuHfD5546OotFs0l5EKSqs6ptccZqJJyIiIiIn4LR3tZOjHGG4anzI9OWODomIiIgcqK672dWUYkNfIiIiIrIfp008xWI3riLC+OhUuNvRIREREZGDiKKIlArrk0k7dVeQpS+1Y0REREREZA2nTTwRERERVTqgz8Blscjq/iKA1VbcAY+IiIiI7IuJJyIiInJ6yTaMdmrINkRERETUuJh4IiIicld79wIxMVWPvXsdHdF1S6kxeilS8DHrEyJ4QgGpcXmt9hzKRZ3dYyMiIiKi2jHxRERE5K7UauDMmaqHWu3oiK7LVX0x9uiuAgBul3fCIe8H8Liij1m/4bJonPV5FE8q+kABKYpRji3ai00dLhERERFVw8QTERERObU12jPGhNNPnjehmzS41r4tJT74zGOMMQG1Xnu+6QIlIiIiIjMyRwdAREREVJdJ8s64X9HTpm0qE1AlYrmdoiIiIiIia1x34kltx+H6FRVSsza9XmfXY9YkCEKTHctRysrKHB2CXTWH55DInTXlNd8RmuL8BI0GymrLGo0Goh2P6+HhYbd9m3k2AZg5zqRpxfLlWPHATU0Wgj2fQ41G2+THdMSxmvo1WpO7X2eofvy86Pr4nYacHd9rOOKJiIiIiBxEjIlBxZdfmiwTERGRe2HiiYiIiIgcIzQUunvvdXQUREREZEcsLk5ERERERERERHZx3SOeVCpVowSwZYvh34SEqja53LyfRCI1Oebly8C6dcD99zdKGGZzgxvr/JxJzbml7naO7v4c1pzfLYqigyKxH3d/jXKOvm3c7fmvqUnOT6mssagE7HjcprwOv6feiVc1W0zaJt15J5bf/6Pdjlnzd7ixzu9Shhab9qtx9ygvyGSGYyiVFRb7Vj9mSZke36wqweM3eRu3a0zu/jsINI9zpLq52+cpd/8sBdjvWuws3P07DV+jzZPDRzyFhwPDhgHDh1cloQCgAH7YjATjo0TmB8CQcHrySaBdOyAtzTExExERETWWlsFSvLQgH13uvYolf5ZAq637i3BJmR4f/FCI1renYdXfZXZJOhERERE1FofXeOrQAWjfHti82ZCAGjYMiIkBDqM7hmOzsV/vckPC6auvgPJrd0ZOSnJAwERERESNSCIRMHGQB75dVYL73snB298V4J4xXmb99Hrggx8K8f4Phcgu0AMAkuKa8E6C9lBRARQVVS37+Fge+k5EREQuy+EjngDTBNLmzcDXX5v32b8f+PzzqqRTVBTQo0eThEdERERkV0mDqxJIpy5r8ea3BWZ9tDrgpQX5xqQTACQOdvHE065dQFBQ1WPXLkdHRERERI3M6RJP1kpMBFguhYiIqB5SadWDnNbo/iooFbZt062tHK3DHT54nYiIiKhOTpF4iosD/P1t24bT7IiIiOoRHw9otVWP+HhHR0S18PKQYEQf24qPJrn6aCciIiJqFpwi8SSXA+PHW9/fy8tQjJyIiIjIXdiaSHL5+k5ERETULDhF4gkwTJ2rrjOO4nfcYHx0xlHjutGj7Xo3aCIiIqImN9GGxFOwvwSxnW2cm0dERETkAE5TGGD8eEP5CZ3OsByIXNyAZOP69/GS8f81k1RERERErq5VqAw9Y+RIPV1Rb98JAz0glbLYJRERETk/pxnxFBBgfemJiRPtGwsRERGRI1g7fY7T7IiIiMhVOE3iCbCuYHhsLBAWZv9YiIiIXN7ly8AHH1Q9Ll92dERUD2vqPCnkwJhY1hwgIiIi1+A0U+0AwxS6F16ouw/vZkdERGSl8+eBl6qmqmPQICAy0mHhUP36dVIgNFCCjFx9rX2G9VLBx9Op/nZIREREVCun+tTSsSPQvn3dfZh4IiIiInclkQiYOKjuUU+cZkdERESuxKkST0DdiaWoKKBHj6aLhYiIiKip1TfdLtGGu98REREROZpLJZ4SEwGBN3AhIiIiNza6vwpKheV13drK0TrcqSolEBEREdXJ6T65xMUB/v4A8s3XcZodERERuTsvDwlG9FFhzT9qs3XWFB93KT4+wMCBpstERETkVpwu8SSXA+PGAZeWm7Z7qIDhwx0TExEREVFTShzsYTnx5G71nXr2BHbudHQUREREZEdON9UOsDyyqX9/QMU7BxMREVEzYKmOU7C/BLGda5mDR0REROSknDLxNH48IK0RWVxc08ZQXiHi+Y8K8ftmNUrKar+lsSubvzkTX2zJwuW8ckeHYhd/p+fizb0n8G9WPkRRdHQ4RERuRyfqsSM3CzOOH8CJ4kKz9dsK0vHWxQPYX5zD67CNWoXK0DNGbtI2cZAHpFIWuySiKlqdiG0ni/HSz1dwJlNjtn7T4RK8vTILB86reR0mIodxuql2ABAQcO3udQeq2qpP/28KCrkALw8BN72QB6UCGNFPiaShSiTGqxAVJm3aYOxkQBsv9Hv3OB77Aegd5YGkHv5I6uGHPq08IZG4/gfb/iH+uHfTAczadwoRnkoktgpFUnQoRrRsAU+ZezyHRERNrbCiAmuzryI54zJWZ15FToUGcQHBeK9jT2g0pl96BvgE456TWzHz4n60VHgiMTAKSYFRGOEXDg+pU34EcSpJcR5IPV1hXObd7IgIAApKdfjzcCGSUwuw5nAhckt0GNbRG+/froRabTpFd1AHD0z+7Are+CkLUUEyJPb1QVJfbwzv6gWVwinHIBCRG3LaT30xd/RBxwPHAQA9ugM/j45q8hieucsLn/xYgsISEWv+1mDN3xo8jkL06iBD4hAVkoYo0a+L3GWTNH2jvZDUww/JBwuw/1IZ9l8qw1urriLcT46J3f2Q1MMPozr7wtNF35TkEgn+06c97t+SirRSDb48fhFfHr8ID6kEI1u2QFJ0KBJbhSLCi3M4iYjqcra0GMkZl5GccQVbc7NQIZqOBH6zQ3cIFm47q5BI8VpkDzx6ZieulJdiYfoJLEw/AQ+JFKP9I5AYGIXEwCiEKzyb6lRcStJgD8z+zjCSTCEHxsTy/YqouTqdoUFyagFSDhZg66liaHWm62cmhVncTqWQ4JWbW+Cpb9NxKUeLBevysGBdHjyVAkZ390ZSP29M7OODMH+n/VpIRG7Aaa8w427xxDOvdgQA3HsHAAd8Jg30k2D6XV54++tik/YDJ7U4cLIYs78pRliQBBPjlUgaosKoAQp4ebhWkmZmYjiSDxaYtF0tqMDX27Px9fZsqOQCRnbyRWJ3PyT28ENkgGvVlpjcviVm7zuFs0WlxrYynR4pFzORcjETwCH0beGHxFYhSIoORZ8Wfha/PBERNSc6UY+dedlIyUxDcsYVHC0uqLVvXEAwRgaF1rp+Wmh7vHP5IC5pSoxtZXod/si9hD9yLwEA+nm3QNK10VC9vAJ5Hb6mXycFQgMlyMjVY1gvFXw8XeszhlWOHQPeeKNq+a23gM6dHRcPkZPQ6kTsPFOC5NQCJKcW4Hi6+TS6SsM6emNYp9rvCPngCH+892s20vK0xrZSjYjf9xbh971FAK4iNkaFxD4+SOrng57RSl6HiahROW3iqWNHoH174NQpy8XGm0r1UU+WpOfo8c3vZfjm9zKXnJJXfdSTJeoKEasOFWDVoQKXnJJXfdRTbf7NLsC/2QUmU/ISo0MxklPyiKgZKagox7rsdJMpdNaobbRTpeqjnmqztzgbe4uzOSWvBolEwMRBHvh2VYn73c2uUk4OsHJl1fL06Y6LhcjBLE2hs0Zto50qVR/1VJvdp9XYfVrNKXlEZBdO/WkuKQn4ck0B3lqqB5ba91g6vemFXSopM/7fy0OoNfFUnaYcJlPyenaQIameKXk/7M7F//blNfwErKDT1ThHqSGpkpZfYam7RbZOyTtdUIKXdx1rWOBWMn8ODedXobe+kGL1KXkqqQSjrk3Jm9gqBC293PRDPxG5r5gYpH/+KX7JOQ8A+FefjvxjfxlXl+i0uKouw1VNGbLLNTBeLeXXHvUQAEw5uRU4aViuWbi2MiGlh/XX4epT8qQQECzxQLjUC2FSL3gIVR9bTgRcBoKs3q3LShrs5oknombg6GUNXl+eaXFdcbkOV4vLkV5cjuzSChuulgYCgHu+uGhcFmvsQYDhOqwTAXhoYY1LpRVYsK0MC7ZlQioBQvxkCA+QIcxfBpXc8h8aFt8fDR8V/2BLRJY5feIpZftlZCSfsnqbNHkYzimjzdr7l+yHQrT+7m16SLDTu79Ze1T5ZbQqv2LdTvYBm/YBC79oB2lYCCbGK5E4RIXRAxTwkumAXbtQsjULGbtyrdpdodwLh4Lam7V3yjuHIE3t0yAs2R/UEaVy0w+x/ppCdM07a/1O0oG/LrXA19sjzafknU4FNBpo84qQse1gvbsSIeDvmC5m7ZG5WYjOtfxGXZtTIRHI9A0waZPptBhw7oRN+ylSeiLl2rQ8AOjTwg9JrUJwuyYfXfTlVX/hV6mAnj0BuRXf0oiImlJYGM5NnoQnDq4CAEi1+Ri46V+TLj7XHh1q2UWxhwqp7VuZtXe8cBUtCoqsDqUdgAMxrVDiaVqnyLe4FN3PXq53+0IAhToB0EmQ7hOAM/08m0XiaVQ/Ffp3ViA6zKk/shFRHbILtfhld+X1UgSkIiDTGx7Sht1pTgSQVmzld5zr+KiqA3C1uBxXi8uBS7X3++o+3jGPiGrnvJ9icnMRX7ATo7Tp+PzEg1ZvNi/kYTwf9aZZ+y9nHkRkxVWr91Mi8YB37zNm7fflrMTstPet3g8ATG79GZbJbzWZkndT1yIs/3oIHgLwkJX72R7aE0Nu/Mas/Z0983HL+U02xdT1thU4GtjOpC028wjWrnnKpv182nUSpse9aDYl78pPNyEiPw2dAGy3Yj8amQyqz381a5+8azPe++17m2KaOmU6vhs8yqTNR12G7R/MsGk/O9t0xOAZ/2dc3pddgH3ZBei6cA667tth0re8V08U/r0NLTxqn19PROQI2mqFwD015dj+xBybtt/TqTViv3rDrH3mot9x18bdNu2rz9czsb+j6R+Hep+6iM1P2/a+uvCGBDw68DagXAKIQIhSBakggafoPn8AqNCKSL9Wj+Wle7xxKcswOjkq2H3OkcjdpReWo0In4kqBBlBUGBJNEhFw8lIV16PmSCsiouqcN/F09ixkNyXic0fH0cgEAejVQY4BXd33g2N0kAJKmfvOBZdZ+LCgOJCK99d+h/dvetIBERER1U4muOH1WARQqAL0UkAQkSkVAa0EpX5ywMvRwTWOM1cr0PmxCyZtCpkAzW8xDoqIiGw1/qvjOHDl2g1uQq41FikAPQA3yz0J7nZCRNSonDfx1LMn0Ls3sH+/oyNpMKUCuHm44c53E+KUCA2SAlki8KyjI2scggAMbGMoUp7Ywx/dIlQQfpAC2Y6OrPG09vFAUqtQJEWHYuS6UGCveR+5xvqpnERE1AAVEkB7LaEm0wNSfdUyEZEz00gBtaxqqp1MD/DyRURuznkTT3I5sGsXkj/bhZK8Uqs38w0Ix/+FmE932nLmB0i1tScGtNoahanlcvxfB8N+vvhfKU5fMqz/Pug2bPYZVG8coQESxPVSYHAPOT5P7AZVVKBpB39/YNs2HLxciqNX1fXuDwA0nj74v7aRZu0FsbOwvPCZerfXaqsKCt7frhvg4wcA2H66GL8dyMfukK6Iv+Frq2LxlAvo39oLfWLbIn1cD4T41hjB9fPPgEaDHLUG6y/Xn4ESBQH/19v89sk+rR/E8hsnWBWT9lrx9D5R0egU1AJyueHlna/RYs7eY4h/0frpJQKAthGheC+2E5JahaJLgHdVTae338by+xKx9e91mD/3R6v3SUTkCNFKb/xfa0PNQkGrxfL/fWdcJ0JEZrka58tKca60GNnl5neyK/ZQAmXmBWNn3XUzFiSOxgD/FsbvTPoaN3OovKmGWtTh37JsnIwKNdvP/vatEP+5+VRoAUC4zBPRCh+0VvggUKowXodlLVpgfDCQkboFP7zyLQAR0AtY/PkbQKvR1vxYiIgcYsowf3QP9jYu60URl/PLcTS9DEczypBWYP1NfwBAKgBjO/sbZ+/pa9xsR3LtZjslaj02HSmxad8CgNYhCnSJVKBrpArBftJaxzV58M53RFQH5008AYBcjqTn4htpZ8PqXKtWmyZ/VCpD8dPTl7R4+bOq4qmXFJG4pDBP/ggCENtVjqQhSiQNVaF7jKzO20tDLgfi49EDQA+rz6E25h/kLbF0jqIoYumuHABAvtIXO8J61bp9dJACSd39kNTTHwntvaGU1/EG09/wJScIwJ1WRVeLHu3q73NNbc/hW/+ehFYqw46YrnVu7yOXYWxkMJKiQzE+KhjBHkrLHTt3xpXAChzMOmp1bEREjhKh9MTzkd2qGlr3qrXvFXUpUjKuIDnzCjZmZ0Bd+QXGwt9tToS1wokwYFqPAZgWZbhW13Yd/s+Ff7HjkuUbTRR6e2JHD0Npcx+pHOMCWiIpMArjAyLRQq6yuA0AZGbuwyq1Bh3PVd2AQqHmyFMicm439PPBLT0Ca11/KbccKakFSE4txF/Hi6DR1l07SScCdw3yw+RBhn3Wdh1+eWkGNu03/+NCTX6eEozr5Y2kvj4Y18sLQT7O/XWRiFwDryT1eOfbYuh0ltd5eQgYM1BhOoXOxfyRWoADl8osrrM4ha6uZJoTytdU4KND52pdX30KXUJ4EBRS/rWGiJqvlipPPBLdHo9Et0epTosN2elIybiClMw0XNVYfq+YffoIJrdsA7nE8vUzp0KNT9OO1XrMtiofJAVGISkwCkN8Q6GQ2PBe2sC7QREROZuoQAUeGx6Mx4YHo0Sjw4ajRUhOLUTKwQJkFGotbvN2SjrujA2ATGr5c3pWoRb/XVv7XbRjwhRI6uuNxL4+GNLJE3KZa33eJyLnx8RTHU5f0mLJatMP2q3CpEgaokTiECWG9VVCpXTdC7MoingzJc2kzVspwZguvkjq4YcJ3fzMp9C5mE8Pn0N+edWQZQHAoNAAJEWHmk+hIyIiI0+pDDeERuKG0EjoRRH7CnKRnHkFKRlXsK8wz9jvbGkxll45Zxz1VNNHaUdQpKu6DksgYLBvCJICo5AYGIXOHn7Xfx2W6uvvQ0TkKA3MjXsppbixtz9u7O0PvV7E3vOlSDlYiOQafzg+maHB8t15xlFPNf3fHzko1VQFIxGAuE6eSOprGNnUMULBz8NEZFdMPNXhnW+LodcDA7rZMIXOhVSOdrJpCp0LqRztZPUUOiIiskgiCOjnH4R+/kGY1aGH2ZS8ylFPNVWOdvKVyjHWyil01tKLekBm+q2uRMepdkTkPErUjZccl0gExLb1QmxbL7x1U7hxSl7KwUJsPFZkHPVUU+Vop+pT6Mb39kagt+vN1CAi18XEUy3KK0SM6KfAnCd9XHIKnTUkAnDwjS4uOYXOGheKy/DTqD6cQkdE1MhqTsnbmJ2OS+pSREhMP1Zc1JTg184jbJ9CZ4WD6lyzO0Fd1BZZ7kxE5AAFpeZDnkrUtdTwsJGlKXmX88oR5m3a72J2BZJfbsUpdETkUEw81UIhF3DvRE9Hh2FXST39HR2CXfUM8nV0CEREbs9TKkNSqOGmGzWL2vb2DrLbcfdoMhFRoy1HsFyHipxY795AamrVcjvrbypC5OwKS3RAjZz7gTPluDe2cY9TOSUPML8O923r0bgHIyK6Dkw8EV2n/R2j0OPH143L3brEODAaIqLm5bJQYJZ40sgqUKgth69M4ZCY6Dp4eQE9Gn5/XyJnc/ZqBdTlAGrkffacrP/OckRE7obzj4iuU6mHEofaRxofGs+G1ywhIqL67SvKRoWywnyFBPgs/WjTB0REVEPKrhKL7ftOa6DV8Y6cRNS8MPFERERELuXjrEO1rltRfLIJIyEisix5V6nF9hK1iL+Pqi2uIyJyV0w8ERERkUtZp7lQ67qj0kzo9Y13JykiIlsVluix5VDtNedSaklKERG5KyaeiIiIyGXkVmiQoSqodb1OqcWvebUnpsjJ5OcDGzZUPfLzHR0RUYOt/bcUFdra1yfXMg2PiMhdsbg40XXyKypFv6NVX248B7VwYDRERM3DpxmHAWnd9VEW5h7FrUFtmigiapDDh4HRo6uWt20D4uMdFw9RI0jZXXdi6filCpxOq0BMhLyJIiIiciwmnoiuU7czadjwxMfG5deWRwG9HRcPEVFz8FPxacDT8P8d/dtCuPCRWZ+duitNHBURkYFOJ2L1nvqn0iX/U4Jnb/G3f0BERE6AU+2IiIjIJej1epyQZdXbr9ijFEdK85ogIiIiU/8cVyO7oP46cym7WeeJiJoPJp6IiIjIJfyYcxZ6RR2FUyoJwEcZtd/5jojIXmq7m11NWw+VoaBEZ+doiIicAxNPRERE5BK+zjtmdd816vP2C4SIqBbJ/1hXOFyrA/7cW/ud74iI3AkTT0REROQSdotpVvdNU+WhUFtux2iIiEydvVqBoxcrrO5vbZKKiMjVsbg4EREROb19Rdko9TAdHRCRno9JyQeMyyuSeiEtzN+wIBXxWfpRvBbZq8liJKLmLWWXbYmk1XtKodWJkEkFO0VEROQcmHgiIiIip/dx1iGzTy1tLuVi3uzfjcu7e7WqSjwBWFF8Cq+hV9MESETNnrX1nSrlFeux85gaQ7p52CkiIiLnwKl2RERE5PTWaS7YvM1RaQb0+vrvLkVE1FCFJXpsOWR7zabkf3h3OyJyf0w8ERERkVPLrdAgQ1UAABC0EozWtEdUWaBZP2W5HFO0vSDTyAEAOqUWv+bZnrAiIrLV2n9LUXHtppu92inw28wwqJTmU+geGu+DZ2/2g0phWJds4/Q8IiJXxMQTERERObWPMw5DEAWM1rTHxZYPYF37iVAKUvOOooDFbYehoO3DxgTUwtyjTR8wETU7ybtKjAmnff+NxI2DvGCpcpO/lwTzHmmBc4tb4dmb/XA+Q4vTadYXJCcickWs8UREREROravKHxeDH0Ck0suq/p5SORa3HYb5ujgszTpj5+iIiICHxvsivqsKgmBdofCwQBnmPdICL93uj8JSTgkmIvd23Yknay+qRI5SVmb7PHtrVVSY/2VKr9NDrVbb7Zg1NeWxmoqHh2lxTXs+h+T83PE1Xl1zeB9trN/hG71bAqLpa0IURQs9RZM+EgD3+be222vJrs+hV1tg2J8mTeUaTZO+bprid1AIDIT0kUeMy7rAQIh8L6Um1Fivgf4xAjQajUmbCPPrlFanMzmmv6fh0Vhx1Pws1Rw0h/dTd9YcPu/zvYYjnoiu29UWfvj89gTjcl6Ieb0RIiIiqp3Yti20H3/s6DCIiIjIjph4IrpOZyOD8eTLdxuXb/SJcGA0RERERERERM6HxcWJiIiIiIiIiMgurnvEk+XaCq6r5txgdzs/wHxuqUqlclAk9lHzOWys8zulLkC0whsKSdUdlORyuVk/qVRickxRFHFUnYeuHvaZguduz58lzeEcqXbu/vzzfcZ6JzX5aC33MbkOW67pIZhdh49p8tBFZZ/rcGM9h9kFOmj1IsICqj6WHb9Ujs6PXTDpp1AqoalxzOOXyhETIYdM2vAaJ+7+OcGS5nCOVLfGeg0cSS9F1zBPkzbBwn3tZFKpyTGL1DrklmoRHahslDhq4nuN6+H5uZ/mcI714YgnonocV+cj5vByLMw6inK9rt7+oihiVcFFxB7/DctyTzdBhERE7u2QOgcdT/6Ir3Otvw4nF55Hv9MrsaLA+a/DHkoBXR+/gOe/zkJ6ntaqbY5fKsc9H6Tjrg/SGyXpREQN89a6yxi78Bj+PldkVf8itQ5zNl5Bm3f2o7i8/usaEZErY+KJqB4jfVsiS6vGoxe315mAEgFjwinx9J/YW5qFJL/opg+YiMjNjPGOQpq2BA9d2WJMQNX2N/zKhNMNF9ZgnzobST6tmzLU6+KlkmBgRxXm/ZaPtg+erzMBVZlw6vL4BfywpQgT+nla7Ocy9u4FYmKqHnv3OjoiouuS1CUA604UIO6zI3UmoMq0emPC6ZVVl+CrlKJLaPO7Ex0RNS8sLk5UD0+JDKN8WyKl4CIuVZTg0YvbIYGAvkfPY/mrXxv73f3uQ0jsct64HCxTIdYr2AERExG5Fx+pAsO8WmJd8SWcryjCQ1e2AEotSloF4ZF3bzf2O9raDzdcWGNcDpd5oo+Ha1yHk2K9sHpvKco0Iub9lo+P/8g361OuFdHl8QuoPnMmKdar6YK0B7UaOHPGdJnIBY3v7A+JAOhFYN2JAqw7UQALM+0w/98r0FdbTuoaUMvUYSIi98HEE5EVkvyikVJw0bishwhVuRYxl7OMbYryCpNtJvq1glTgoEIiosaQ5BONdcWXTNrSQ/3w5T2DqxrKJUBZ1WKiTzQkLvKFLjHWC4/Nr3pP0est96uedArxlyK2A+tGEDmDIC854tr4YNvZaiOdLFx+av5qJ3UNsGtcRETOgN+Kiaww0a+Vzdtwmh0RUeNJ8m3dJNs4SmQLOXq3s6248MR+XpBIXCOxRtQcJHWxLYnko5RiaFsfO0VDROQ8mHgiskJLhRf6eLawur9CkGC0b0s7RkRE1LxEK3zQ3Ya706kEKUZ6u9Z1OLG/bdPmXH6aHZGbsXX00thOflDI+HWMiNwfr3REVkqyYdTTMJ8I+EgVdoyGiKj5SfSxfiTpSO9IeErkdoym8dmSSFLIBIzu7eKFxYncTMcQFdoFWT9y0dYRUkREroqJJyIr2TJ1zpYkFRERWafmHeokOj08SzXGh0Snr9bX9aY7941RIixAalXf4T084O3Bj3FEzkQQBKtHPUkEYEJnf/sGRETkJPiJhchKfTxbIEJu3V+XE1nfiYio0cV6hiBYWlVMe9C+8yjpPMP4GLT/nHFdoq/rXYclEsHq6XacZkfknKxNPA1q7YMW3q41KpOI6Hox8URkJUEQrCoy3k0VgNZKFookImpsUkGCiVYklHqrWqCl3LsJImp8iVYmlKztR0RNa0hbH/ip6h+5mNjF3/7BEBE5CSaeiGxgzXS7JH/X+ys7EZGrqDndzmIfFxztVGlUL08o5XXfqa5HawWiQzhSgsgZyaUSjOvkX28/WwuRExG5MiaeiGww0rclVELdf8WypRYUERHZZrR3JBRC3R9frElOOSsvlQQje3rU2YejnYicW32jmdoEKtEltO7fcyIid8LEE5ENPCUyjPKt/fbcwTIVYr2CmzAiIqLmxUeqwDCv2q/D4TJP9PFw7etwffWbWN+JyLmN7+wPSR0DF5O6BkAQ6h7ZSETkTph4IrJRXSOaJvq1grSev8QTEVHD1HXHukSfaEhc/AtdXSOaQvyliO2gqnW9S5JKqx5EbiDIS464NrXX++Q0OyJqbvgNmchG1QuMa6US4wMAEq0oPk5ERA2T5Nu61nWueDe7miJbyNGrrdLiuon9vCCpayiFq4mPB7Taqkd8vKMjImoUSV0sJ5c8ZBIMbcub0BBR8yJzdABErqalwgt9PFtgRy9AvmuBsV0hSDDGN9JxgRERNRPRCh94Q2HWLgAY5e0e1+GkWC8cOKux2E5Ezi+pawBeSrlo1t4r1BsKGf/2T0TNC696RNchycLIpmE+EfCRmn8RIiKixhcM8wSMQpTBU+Ied3uzlGBSyASM7u3pgGiIyFYdQ1RQ6M2nj/YL42gnImp+mHgiug6W6jxZSkYRETVnR3KLcDCnEKIoNvq+g2GegFGI7jOQu2+MEmEBpl9ah/fwgLcHP7oRuQJBEOCnr1GPTQT6uFviSa8HLp0EDu0w/KvXOzoiInJC7vMJjcie3hwLCFJg5moAQG/PFgiXe+JqRamxS2LNZNSsCYCoA95c25SREhE5jUClHG2XbUKIhxJJrUOQGB2C4S2DoGyEItJ+UKK0RpvSjRJPEomAif298M26QmMbp9kRuRZfvQeyUFLVUCaDr9JNrlPpF4DvXgYy1wI+1ZJNRRIgZCwwZS4Q5vo194iocfDPZkTWEKSAuMOQTAIgEQSTQuLdVAForaz2F6xZEwz9Bd6hh4iar3AvFR7tGo2LxWX4/PAFjF+1B0Hfrsctf+7FouOXkFlqXsPIWpZuRS4V3ajoNswTTXXd7c5lXb4MfPBB1ePyZUdHRNRovEUFoKt2XSqyfNMAl7NiLvBpd6B0NeClM13npTO0f9rd0I+ICBzxRGSdmaurkkmzJgAzV+P2YgX8vjeMZhrhEwE8OgiIjKyWdIozjpAiImquXurVFl8cuQC1zvAX8RKtDr+ey8Cv5zIgAIgN8UdS6xAktQ5F90Afiwml2pR4KLCva0vjcqmHm3ypu2ZUL08o5QI0FSJ6tFYgOsQ96leZOH8eeOmlquVB195LidyAAAEoVgB+15LsxW5QC3TFXODIO4ZvkYJguKtDdZV33ZSJhn4rAEx6uYmDJCJnw8QTkbVqJJ+GDH8Joz/9pWr9uEnANw8z6UREVE3lqKePD54zWycC2JWZj12Z+fjP7pNo5e1hSEJFh2JYy8B6p+Qd6BaJvqtfMC5HlQQ1dvgO5aWSYGRPD6zeW4qkAW442omoOSi6lngqlwAaFx8Jn34BSL2WdJLU80cCiQDoRUP/hDs57Y6omWPiicgW1ZJPql9fNV33v5cAvyNMOhGRU8kq0+DPi1lNcqyKigqTZbncMEIn3NO6kUiVU/I+P3wBXjIpxkS1QFLrUExsFYIQK/fhbpJivbB6bykS+zPxROSSShSGLHuREubDg1zMdy8DchhGOllDIgByEfh+BvDSj3YNjYicGxNPRLaqTD757QCGKoCt5YZ/mXQiIid0uqAU9/2Var5CFBF35qhN+ypVKLG/VYxZe0zmFYQW5te5bVyN5UMtW6PQwzSZ4q0uRc/LVSOjMo8D3wD4FkCXQG/EhQVicFgA2vl6ouvlIyhRXEJWoDdOtgux6TxcycReCozRHUFsZjqQXcuXve7dAT8/07biYuDAAZuOJfj4QOzY0XzFgQOG/dli4EBAVuNjZno6cPq0advBg7btl8jV6CRAqdz1p9np9YZC4t42bicCyPjTsL2E5YWJmismnoiux8zVwLODgeFHgCFKQCYABV2Bj5h0IiLXINXrsX2ebXU3joS3QrfX55u1v7zuf3jw73U27Sv+ubnYEdPVpK1T+mWrY5p37d+lN/XFvZ9MtunYLqOiAlGJ8Vi7fz/wZx39Nm0Chg0zbTt5EhgyxKbDyW6/HRXff2++4qGHgL17bdoXCgoAX1/TtpQUw76ImpsCJVDi4jXarpy+dvc6G0dtSQTDdmlngUjzP1wQUfPAxBPR9Xp2OfBlN0PSSSsalomInElaGiSffY2nzlwBAKzsHYer/u5VB6lDRTC+UY6HTJAg0td9pqOdzyrH6y+vwpL9+x0dStNSqRwdAVGjaTmgAJpOZSjTiPBQlgEApAH+sH3YkBPIb+CU7bwMJp6ImjEmnoiu16JHq5JOMsGwzGl2RORMzp7FgDkzMeDa4r6odm6XeIr1D0JsqIXpYS5OXaHHuUuFjg6jafXuDfTs6egoiBrNlTI1juWWGBau/aOT6B0XUEP4Bzds+4DQxomDiFwSE09E16Py7nZCHDDb9G53TD4RkbPQiyKqV9ToEeQDhAUYFkQRj79jPm2uLmqFCnGV21ez4e77sW/iTdDrRZN2ybW7HulEEUdyTWsEHWrZ2mw/x8MiEf/cXOOyAKBLgDcGhwcgLiwQ7Xw9IdQsahvcwC9DLuTp2Nfw6YfjzFd0727e1qEDsG2bTfvX+vhYXvHVV7bXePL0NG9LTKw9JpXKkHSSu/h0JCJ31TIGKJIAXrr672hXnV4ESqRARFv7xUZETo+JJyJbVU86VSaZZjL5RETO51hOCapXUZo/tDsQP7haS82S3w2jVqtNllXXpk0tO3kFX248UO/2xSpPHOjUw3g3uwmtQhDaTO9mZ8mhgA5AfLx1nb29re97jVjj+TPq1cum/dQqLMzwICLXI5EAIWOBUhs/4woAQsexsDhRM8fEE5EtLCWdKjH5RERO5u/LBehafze70ulFvLX3VJ19Wnl7IKl1CBKjQzAsIggqmbSJoiMiIqtNmQt8uhqQidaNetKLgBbAfXPsHhoROTcmnoisVVfSqRKTT0TkRHZczoej7yG2/HQaThaUmLQJAAaE+iMxOgRJrUPRPdDHfAodId2jBRbG3GZczvBo4cBoiKjZC4sGer4GHHnHkFSqK/lUOfW61+uG7YioWWPiicga1iSdKjH5RERO4GKBGqfzyxwaQ/XRTl4yKafQ2eiMTys8GvuGcVkhY3KOyJVoysX6O7maSS8DKwCkvgNRLgIiIFRLQIl6EYIAw0inXq8Dd7zoqEiJyIkw8URkDVFnXdKpkjH5pLNvXEREtUg5k23WVqHToylLN2+7movRUS3waXxXJEQEcgodETUrhSXmd7DT6dwgGTXpZSDhThx/ZQZifNZAHlh1TvoCCaQtxwNT3wdCohwYJBE5EyaeiKzx5lrbt+FIJyJyoOTT5omnA5nF6N+EMQxrGYRhLYOa8IhERM6joEQ0+7Z1/IIW6OaYeBpVWDR+bvMj1s3ciu0ewwAFgHLg3fjNeP2ToY6OjoicDG8vQERE5GaKy7X460KuWfvfl/ObPhgiomaooFiP4lLzEU97j5U7IBp7kgBlIlAgGv4V+PWSiMzxykBERORm1p/LRbmF6Rw7LudDFN1gmgcRkZNb+4/aYvue4xVNHAkRkeMx8URERORmLNV3AoC0knIcyymxuI6cT5/cozienGR89M454uiQiMhKyTssJ56uZutw8iKTT0TUvDDxRERE5Eb0oohVZ3JqXW+p9hM5Jw+tGh2LLhgfHlqNo0MiIitotSJW/2058QQAKbUkpYiI3BWLixMREbmRPVcLkVFiqCFyNjAcT9zwlHHd2cBwJJ/OxssDWzsoOiIi97fzcDlyC83rO1VK3q7Gc3f5NGFE9nMCHXEXfjAuB/h2dGA0ROSsmHgiIiJyI9VHNF31bYH5g240WZ9xpQDZpeVo4alo6tCIiJqFlB1lda7flqpBXqEeAb6uP/kkG8FYjruMy5NVDgyGiJyW61/tiIiIyCj5VN1T6fQisLqOqXhERNQwydvrnkqn0wF/1lJ8nIjIHTHxRERE5CYuFqhxMKu43n61FR8nIqKGOXNZi2PntfX2q29UFBGRO2HiiYiIyE1Ym1D682wOynW11x8hIqLrk7zduoTSmp1qaLWinaMhInIOTDwRERG5iZp3rBP0eii05caHoDckm4rKddh6Kd8BERIRubf6ptlVyisSseNguZ2jsT85yhGGq8aHVOf650REjY+JJyIiIjdQXK7FXxdyTdoGXzwCzesTjI/BF48Y1yWfymrqEImI3FpBsR5bD2is7m/t6ChnFovduIoI46Ndzm5Hh0REToiJJyIiIjew/lwuynXWT9tIPp0NUeQ0DyKixrL2HzW0Ouv7J+9ggXEiah6YeCIiInIDthYMP1egxrGcEjtFQ0TU/NiaSDp5UYuTFyvsFA0RkfNg4omIiMjF6UURq87k2LxdzZpQRER0fbRaEav/tn0EUwpHPRFRM8DEExERkYvbc7UQGSWGgq4SAZjcNQzt/D3M+o1tE4QOgZ7GZSaeiIgax87D5cgtNNzAQSoFpkzwhFwmmPVL6K1Eu5ZS47K1xciJiFwZE09EREQuLvl0tjHhdPTBgViS1BVBHnKzfoMifHHkwQFYktgFHQI9sfNKAbJLeQciZ7UjpA+Euw8aH3+H9nF0SERUi+TtZcaE0/Efw7D49UDIpOb9YrsocHx5GBb/JwDtWkqxLVWDvGsJKyIidyVzdABERETUMH5KGY4+OBAdg7zq7SuTSDC5Wzju7BKK5UczcDynFPGeiiaIkojIfQX6SnD8xzDERNX/9UomEzBlohfuGeuJH9aV4viFCgzqrmyCKImIHOO6E09qtXsPC3XH8/PwMJ12UVbm+rdwrYs7PofVufv5AYAgmA9Rp+bD3V/jjXl+T/UMNdunXm/+F3StTmvS57aYgEaNpeb7jLuz52tUo7E8Es2ex2xuzx/g/tcZql9jvQaeuUMBQAu1Wmtss3TfUK3W9Dp8xwgpANFur0V7vsa1WvMhXXq9zu6/V83xWkWuje81nGpHRERERERERER2wsQTERERERERERHZBWs8ERERETmhiNIMTLqw1rj8a7txAGIcFxARERHRdbjuxJNKpWrMOJyOu58f4H7nWLNmlbudX03ueH7u/hyyZpVt3O35r8ne5yeRmA9qlklldj2uu/8O16zR0Fjnp9WJkElNrw9KJdCm+Arm7f8/Y9v+kO5mx9TrRYgApJLGv76IoqUKNa7NXs8hua5G+z3W6yGrcd219Fspk5lfhy1t21ga7fy0gKzGN8eaywAgkUjNz8/Cto3J3a5V7n6dqvl52N2eP8D9n8Prwal2REREbqpUrsLBsDbGh44FWZ1SRoEWo987h+0nSqzeRq8XsXJXAcbOPW/xyy0RNa1pv5/AF3uvQKM1v7FDbY5mleCu/x3FtgsFdoyscXzzDTB9OpCWZtpeAD9sRoLxUSr3M67LzwdmzTI8iKh541Q7IiIiN7W/ZXv0nP6VcfnHLl0dGA3VpmWgHLnFWgx56yxGdvXCm7eGooWP+d2iAEPC6Zc9hZj1SwYOX9bg/oQASOww2omIbNMz1AuPrTqFd7ddxKtDWmFar/Ba+x7NKsHbWy9gxeFM+Cil+O6mTk0Y6fUZNQp49FFg4ULgkUeAl182tB9GdwzHZmO/yQGGhNMnnwAffQQUFAB//umQkInIiTDxRERERORgSX18se+8GhuPlGDjkbPo2UoF7xp9dHoRPV85hcOXNdW282naQInIoqQOLfDi+rO4VKjBY6tO4Z1tF1Eu05r1W3HhMv5v/ilUTi4aFxMIhdT5J6G0awd07gwcOwZ8+qkhAdW6tXm/bdsM7QXXBnF5ewPDhjVhoETklJz/KkdERETk5hJ7myaQUi+qzfroRZgknZRyAaO61UxPEZEjdGzhifaBVdOZLxdqoJPqzPpdLClD9Yo2ie2DmiC6xpGYWPV/jQY4ccK8z4ULVUknABgzxlCzjoiaNyaeiIiIiBysT2sPhPvbNhB9eGcveKssT8kjoqaX2MG2JJJEACa4UOIpKcn2baonq4io+WLiiYiIiMjBJBLBbNRTfZL6+NopGiK6Hkk2Jp4GR/khyFNup2ga36BBQGCg9f0FAZg40X7xEJHrYI0nIiIiN9U+6zJe3fyDcdmnxxtAlzAHRkR1Serji6825Vnd39ZEFRHZV3wrP/gppSjQmE+xs8TWRJWjyWTAhAnA0qVVbZ1xFHMww7g8A3NwDF0AAAMGACEhTR0lETkjJp6IiIjcVEhJHqbuW2dc3pDzuAOjofqM7OoNlVyAukKst2/PViq0aqFogqiIyFpyqQTj2wdh+eFMq/q7WuIJMEy3q554CkQubkCycfl9vGTSl4gI4FQ7IiIiIqfgqZRgZFfrioXzbnZEzsnaZFLbABU6tfC0czSNb+xYw8gnazDxRESVmHgiIiIichLWJpRY34nIOY2LCYRUqL9fUocgCIIVHZ2Mnx8wdGj9/aKjgW7d7B8PEbkGJp6IiIiInERi7/oTSqF+MvRr41FvPyJqeoEecsS18qu3X1KHFk0QjX1YM5IpMdFQXJyICGCNJyIiIiKn0TJQjj6tVdh3Xo0zPlF4pP/rxnVnfKIAABN7+UAi4Tc6ImeV1CEIWy8U1LreVynFkOj6k1POKikJePbZ+vsQEVVi4omIiIjIiST18cW+82qkewTjy/a3W1jP+k5EziypQwu8uP5srevHxQRCIXXdiSft2gGdOwPHjlle7+0NDBvWpCERkZNz3SseERERkRtK7F17YkkpFzC6GxNPRM6sYwtPtA+sfTpsYnvXu5tdTYmJta8bMwZQKpsuFiJyfkw8ERERETmRPq09EO5veVD6iC5e8FLx4xuRs6vt7nYSABPcIPFU11Q6TrMjopr4yYWIiIjIiUgkQq2jnng3OyLXkNTRcnKpo68PgjzlTRxN4xs0CAgMNG8XAEyY0OThEJGTY+KJiIiIyMkk9fGFRK+Dp7bU+JDodZjYi9PsiFxBXJQfJDrzr1r9gvybPhg7kMksJ5i6dAFCQpo+HiJybkw8ERERUYPo9SJKynWODsOuitVNe34ju3pjWP5BlPw00Pi4V3oMrVoomjQOIro+cqkEvqXeZu39ggIcEI19WJpSFxfX9HG4u2JdhaNDIGowJp6IiIjIZqXlOvxxNAcP/XIK7f5vL3JLtY4OqVHp9SJ2ny/G68lX0PvdI/hxb26THt9TKUHfNqbFieM6ejZpDETUMH41E0+lMrT0VDkmGDsYOxaQSU3bmHhqfC9e2I3hR1dj3tVDOFlW4OhwiK6L5cqVRERE5PIOhrXFoEc/NS4/37FLg/Z3uUCDVcdzkXwsFxvPFECt1QMAHh8Yjih/JdRqdYP272glGh02HC9E8qECrDpcgPRCw1+ZowMVmDIwCHpteZPGE9fBs8ayV5Men4gaxqfUG9Cj6k/9mV4QBMGRITUqPz/AM74POm45DgBoGQFsvC3KwVG5n5cieqBD6s/YXHgVz1/YjQ4qPyQFRCEpoBXifEIhEziWhJwfE09ERERuqkjlhX+iq5JNWm/b6gPp9SL2pRUj+Vguko/nYn9aiVkfhVTAjITIBsfqKJdyy5FyOB/Jh/Lx14kiaLSiWZ/XxoVDIZNA3cSDugbXSDR1Cuf9yYlciUwvBfJVQOC1pHym+yWPx9zkiWe3dDT8/xZAcL9TdLg2Kh9MDW6PrzNPAgBOqgvw4dUCfHj1MPylCoz3j0RSQCuM849EgIzvE+ScmHgiIiIio9JyHTaczkfy8VysOp6Hq0V1j/J5sH8Yovxd54OuXi9i78USJB8qQMqhfBy4XFZn/8rRTo4Q7Gv6MU0icZ+REkTNRqaXIfFUIQHyPOrv72KSkoBnn636P9nHqxG9sDjrFLSi6R9H8nXl+DHnLH7MOQspBAzxDUNSQBQS/Vuhg4efg6IlMsfEExERUTN3uUCDlOO5SKkxha4+MomAJweFo1hjKLytrlFgXCs0TUFuT7mkzqRMbVPorPHMiFCUa0WUa3VQa2qcH+x7fhKNDqzqROTisryATjlAticgul/yuF07oHNn4NIlICHB0dHYj1qvNUv62O1YNYqJa3VSBMtVuDOoLZZmn6l1Ox1EbC68yil55JSYeCIiImpmrJlCZw2tXkSXj/Y1cnS2u/pqLMJ8TO/2Zs0UOms8u/ISnl15qTHCtFnc1VPY7pAjE1GjKVEAJXIgy33TyImJwJkzgNJ1Br/a7IlzO/Ft1klHh2ETTskjZ8LEExERkZvyUZega8YFhBbnoX3OZRTrYjH3Vy/svFCE7Gt3ofMEUP0mRJle/jgV2MpsX73TT8CzQmPT8f+O7Aaxxl9Yw4uy0TY/zab9nPWPwFWfFqaNooi4y4cAAPKdFdCrZDieUYYdZ0vw95linMqqirXftX9LZSrsD+5ktv+Y/IsILbPtrnWHAmNQqDS9Y5V3eQl65pyyaT9ZKn+cDGht1t4r6wR62LgvInJSGV6GkU/uKDcX97XYifQKAKsADBoEBAY6OqrGVVGB6EPHEZdR+2gjANjfoRVKPUwTOn5Fpeh29opNh7sa5IezkSFm7X2PnYeq3PoRuwCwo2d7AKZT8lpl5uGGAhFxPiEY7BOKVpXvZSoV0LMnIJfbdAwiazDxRERE5Iam9QiHtOgsHpr1dFXjmq/q3W5xt3GYlviaefuqd9Ej66xNMShf2IhymelIpJtPbsXn6z+yaT9Pj5qOz/rdZtImFXXYvuwJw8Iywz9drj0eqmU/RwLaoNudP5m1v7z/ezx4/HebYoq/6SvsCO9l0tYp/zy2/1bb0S1b2n4c7h31tln7N5vfRp/sEzbti4icS+cRRfCL1aC0QgrP/sUAAHmANwD3qPW0dYce55YdxJQFiegGAB8D2+ZuxpCX3GjOXUUFMGAA3ti/H2/U07XHkpk4FGN6V79+x85jw/R5Nh3y81uG48kX7zFrX/76QsRcybJ6P1qpBPLtX5q137FuFz74fKXFba527wj1zh1o4+WY2obkvjjRk4iIyA092jsSDw1s5+gwqDGpVI6OgIhscEyWiS0Vl7EHadhScRlbKi6jwtO2kaPObPN2Pb76Tl+jrWnqIDWZ1FRg/35HR9Go6qo0Fn7oBDL/3dlksVDzwcQTERGRu+rZE+jd29FRUGPo3dvwfBIRUdNRqx0dQaPwlshxS2BrLGo7BG9E1v25QKJ2n+QoOQ9OtSMiInJXcjmwa5fhL7Z1fHi+UqDB3xcKseNCIdYVKCz2mTrxVbMaTzIJ8PUtMQjyNGxTXlFusv7ykDhAYvo3LsnVKOSdu8Gm05jZpg1eD48wbRRF5I3cBADwU0nrvKtdkVqL3edLsemyFoElUuSWmN6Nbm7v+7C4U6LFbZ8YGoxxXQ23pC4vrzq/5V26QhlsWoNDKGqLvIc3WX1eADChRQtktu9o1i67+3vklZYCADx8PKHq15t1N4iIHKzo04+g7d7d4rqNvXoCXqa1vIR2+cjrMcGmY9wcGIgb2rYxLquuVW3/5FMtNmeds3o/oTIVngjtjKSAVhjmGw6lRGpYMfk+IH4oAOCOS3+ixdFTmD/bfBo6UWNi4omIiMidyeVAv351dmkJ4PZrjwK1FutO5SP5WA5Wn8hDzrUi5PvDzJMjAPBfaQQ+HtMWAKCukdxSqSzcNad9tOHRGMYMs6qbD4CR1x5v6kTsPFeM5IP5SD5UgOMZapz2b4XT/uYF1QHgap4St43sCrlUYuH8aiSCfAKBCOtiqld8bOPsh4iIGo1P735AfLz1GwR7AMPCbTqGR833GrkKFzXFeL+lAhUR7WvdTgAwwDsYSQGtkBTQCt08AiAIFv4oExlpeAD499Q5hGtLbYqP6How8URERERGfioZbu/eArd3bwGdXsTOi4VIPpaL5OO5OJZZZtZ/4e50vJwQiXBfyyOlnI1MKmBIjA+GxPjg/VuicDpTjZTDBUg+lI+tp4qh1ZvWJzmbrcHS3bmYNqhFLXskIiJ3leblgR3x/QEAnlIZJgQG1lkjyV7eu5KKClFv1u4lkWGsfyQS/aMwMSAKIXL3KFxP7oeJJyIiIrJIKhEQ39oP8a39MHd8G5zJKUPK8VwkH8vFlnOF0OpFqLV6zN1yGR8ntXV0uNclJkSFZ0ao8MyIUOSXarH2aCGSD+Vj9ZEC5JUapuTNXnMVk2Pd7PbgRGR3Ol39fci5/R7kg8f/U3V32NSocPRo4hguaorxTdZJ43IrhZdxVJPJFDoiJ8bEExEREVmlXZAHpse1xPS4lihQa7H2ZB5Sjufif0ey8XJCJAJcY9BTrfw9ZZjULxCT+gVCW2NK3tLdubirt7ejQyQiF1JU4mZ3eGuGkrMumy5nXkYPn4AmjWFu2kH09QqqfwodkRNj4omIiIhs5qeS4Y4ewbijRzB0ehGlFTrAwjQAV1VzSl5eqRaA1tFhEZELKSjWAzVKwV3J1AG1l+khJ1Ki1eKv3HSTtuSsK3itneXi4vYyO6ovAmQWaiY2ktOtgvHgrLuNy/e1a223Y1HzxcQTERERNYhUIsBHKYNa7b6JmQBP9z4/ImpcWq2IwmIRqDE4Zu9hLRDnmJjINutzrkKjN/2Dyu6CbGRoyhCqbLpaSvZMOgFARrAvvrltsHH5ztCQOnoTXR9J/V2IiIiIiIjIWn8fqLBY42nvUSawXUVKjWl2ACACWJ2d1vTBELk4jngiIiIiIiJqRMmbyy22Hz+rRV6BHgF+/Pu/M9OLIlKyrqDH2Qv44tPFxvZHn56K5JAoTGvZznHBEbkgJp6IiIiIiIgaUfLmcqCnebteD6zZVo67E1VNH5QdpEnCMU9Rdde3PM9wB0bTePYW5CCjXI2YUjUGHT9tbPcpVWNdzlWodTqopLybHJG1mHgiIiIiIiJqJKcuaHHinM5i4gkwJKXcJfF0TtIWz6veNy5P9nWPkVw172ZXXYlOi825GRgXHNGEEdmPVKuDp7pqhJ6g5XRQanxMPBERERERETWSlFqm2VVas70cFRUi5HKhiSIiWyVnXaln/WW3STwNTD2P7fd9ZFzes7YNMKaNAyMid+QeKWkiIiIiIiInUFt9p0oFRSJ27K9oomjIVpfKSpBalFdnn5SsKxBFsYkiInJ9TDwRERERERE1gvxCPbbtqz+pVF9yihwnpZ7RTgBwUV2CQ8X59g+GyE0w8URERERERNQI/txeDmtK5DDx5Lzqqu9k0i/Tun5ExMQTERERERFRo0jZYl1C6dQFHU6cc/0izv11e3CpqJ3x0TZzj6NDapASrRZ/5aZb1be+OlBEVIWJJyIiIiIiogbSakWs3mr9SCZ3GPWkEMsRKV4xPmR61z6n9TlXodHrreq7uyAbGZoyO0dE5B6YeCIiIiIiImqgvw9UIK/Q+oLT1o6OoqaTYuU0OwAQAazOTrNfMERuhIknIiIiIiKiBrJ1BNP2fRXIK7BudA3Zn14UrSosXh3rPBFZh4knIiIiIiKiBrI18aTTAWu2cdSTs9hbkIOMcrVN26zLuQq1TmeniIjcBxNPREREREREDXDqghYnzlUlIEKDBEil5v1ahpp+/XKHOk/uoubd7Dp7+Zn1kQkCYjx9jMslOi0252bYPTYiV8fEExERERERUQOkXEsghQYJ+OhlL5xdGwSFXDDrd/cEFfat9MdNIxUAgD93lKOiwvq6UGQ/ldPshgSE4K9+o7C8Zzx2dWqHwJ8XGB+pXTrgWFwSFncbhHYe3te243Q7ovrIHB0AERERERGRK9t7RIuPXvbCw7d7wNPDPOFUXe/Ocvz6qR/2H6vAWwtK8feBCiT0VzRRpGTJpbIS+Mrk+KvfKAwLDIUgCDhUlAetTIY8H29jP2+pDDKJBFNatsM94W2w7Oo5LEk7B1EUIQh1P+9EzRkTT0RERERERA2waLYPFArbEg+VCajyco54crRQpQqb+4+2KXlUPQElAnDVtFOxpxJ7urYyLuu8vRwYDbmr6048qdW2FV5zNe5+fgCYlXdxzeH5Kysrc3QI5EDufh1uDr/D5Nrc8XfQw8PD0SGQk2nM13nNXYkwTyhpdVqLx7TXr5s9f4+1WvM2vU7X5NeOxjqepuayxnL9LXufX83rlD0/D4uiiNTOkYj96SVj26qw9k36HDaHz0P8TsMaT0REREREREREZCecakdERERERERUQ0heAcbvSTUubx3Yx4HRELkuJp6IiIiIiIjIZnpIUALPqmXBvSbUtL+SjsXzvjIuj/lopgOjIXJd1514UqlUjRmHw9Wcd+lu5we4/znWnIvM83M9zeEcyXru9vy7+zUYcP/fYZ6f63P338PmUCulsTXWa2Dev+dxa/tQRPtW1ecRLJSblkllxmPq9CJWnkpHtK8HBob7N0oc9nqN/5aig5+vgOFDqxJLMpkWO2WD4O2ba2ybHCGBSiU3Lh84qMf+gyKmTZY2ShxA0/0eKyss1+Vp6utGYx1vbvY+3OvXERHyquLhlq4ZCoXCeEytqMcPBSfRU9UCPVUtGiUOd78OA83j/dRW7pWSJiIiIiIiamJpJRq0X7QNj244gguFdRcS1ulFrDhxFT2W7MA9aw6hQ4Bnnf2dQXALASOSKjBsYjk2b9PX2//AQT1uuacCvYdUQMJvnE7hTHkB2p5egunp25BWUWJs73g2HT+8sMj48DxxGlpRj+/zj6PzmR/wyNXNaK/wc2Dk5A441Y6IiIiIiKgBktoG48N/z2Phocv49sgV3N+1JXQynVm//cW56LHkPI7mGr74D20ZgECVoqnDtdnA/gKCAoEt20UMT6xAQryAAH/z0TLnL4q45Z4K/JpiSE4JAjBhDDNPziDJpzW+yj+KT3MPYmHeETwS0BWlohbt8kpw15p/jf0+fPgwpvhdwenyAgBAondreErkte2WyCpMPBERERERETVAXIQ//JUy5Gu0qNCLWHjoMmBhds2GvKsmy4ltg5sowoaRSgVMGCPBkuWGhNKW7SIA0azf9p2m7YNiBQS34BRQZzDSKxIqQQq1qING1OHT3IMAgHY1+v1adA6ny6uShYk+0U0YJbkrpp+JiIiIiIgaQPb/7d15cBzlncbxp6dnpJE0su5rLNmSUGyBgw0GvMYCjHEKy46aqizZJLWQ1ALJhkoqlVDJbkJtskBByMHCbiiKrVwkRQhLsmErGzmkEhuvDWYXzGlsCxvs2LF8IdmyhWVdc/T+ocuj0Ugz9rTm8PdTNX/M28e8LbWm3Y/f39sul9bWJz4HjpUhwZMkWa2J3zq2reF2M13kuzxaXVCb8HZtvvrkdwYXHEY8AQAAAMB5shor9R97jsW9flNxvhaWFMy8YppYs9olj0cKBCba6sIH9ZnAL8ffP+m5RZ2ueePvrbUET+nEKqzX7/v+Evf6S70VmuvxOdgjXCgIngAAAADgPLXWl8s0DIXs6BK0qViNFRn1JMI5cwytbDG0cfPE8c0Ld+qBofvG3282rxsPnurnSYsuzpzjuxCMjF7aEvf6FqOdkCRE0AAAAABwnkq8Hl07tzju9TOpzG5MIiOYrLVmRgVrF4K5Hp+WeuM/76zCeuc6gwsKwRMAAAAAJIHVWBnXekW5bl3jL3G4N8nXtsaMe91zmRMKzot3FFONO1+XJxBSAdPh2wAAAAAAkiDep9S1zi+Xx8y8W7HGBkOXNM88isnnk65rYbRTOmqLcxRTm69eLkasIUky79sOAAAAANLQgpICLSjJn3G9TCyzGxPPSKY1N7iUm0tokY6WeitU447jHKXMDknE5OIAAAAAkCRWY6Uefv1AzOUuQ1rbUD57HUoya61L3/u30IzrZIO/VJXr7r/7m/H3ByszNzAc4zIMtfnq9eNTHTHX8RqmVhfUzmKvkO0IngAAAAAgSazGimmDpxZ/iUq9ObPXoSRbfpWhslLpRM/Uyw1DWndjdgRPhyrK9N1P3TT+3mdmx+2zVTh98LS6oFb5Ls8s9gjZLju+EQAAAAAgDbT4i1WSGzugyOQyO0kyTWPaYOnqZYYqyimzS2erC2rlNWJPFE+ZHZItOyJbAAAAAEgDbpdLaxsq9PTuo1Muz/TgSRqZ5+kXz4RjLkN6y3d59JGCOq3vO6C3mmu19D+/Pr7s3fmV+lWcT74D4sW3AgAAAAAkUVvD1OFSdU6eFpYUzHJvkm/Napc8MSqx2gieMkJb4XxJ0pmCXL15Sd34a2FZreZ6fCnuHbIN3woAAAAAkESt9eWSHd1+ZWGZjCx4RP2cOYZWtkQfR02VtOjizD++C0FbjFFNFqOd4ACCJwAAAABIohKvR77ewqj2KwvLUtAbZ0w1sqlluSsrgrUxK3a9q0HrtvHX8p17Ut2lpJnr8WmpN3pkXhvzO8EBBE8AAAAAkGRzeoojG4ZMXVxQlNTPGBiwtX5jQJ//xoD2HYiec+n5I9362iu7tOXocQXDU8/JdK6sVlPvuj6kW71PjL8uu7k5qZ8xk95AQJ997TX9qrNTvYFA0vdv2LZyA8HxlzHVMLYMNnl0U407f8owyknrB/6su3u36qWhwwrZyT1H00GX3a/PDjynZwO7ddoeSnV3UobJxQEAAAAgyYp6SnSksXOi4dAcua84///3P3IsrPXPB9W+MajntwY1MCi1Xm/qonqXBgcj1722qkyffXG7Ht65TyU5Hq2tq5RVV63W2koV58aYpClOjQ2GKi6p0i93/60kyeeTnrByzmufiSryeOR1ufSpl1+W2zB0XUWFrJoaWX6/LvIxT9FMrMJ6/ev+F3T5OyPnaZuvXq6qD6Si5Aak07kht053nNyg755+VeWuPK3z1svyNupG73zNceXOWj+cUmnka9gO6eMDv1WOTF1vzpPlaZLlbtJ8V4I/53vXSIYp3fNc/Nvct06yQ9K9f0zss5KM4AkAAAAAkix30CudypWKR0c5HDy3m3nbtvXmzrDaNwbVviGg13dEjwq5566pb9BzTJf+6bIP6XNbt+vkcEBP7zusp/cdlmkYura6VFZdtax5VfpQ0bmFNFarSx27Q5KkNTe4lJMz+2V232hu1o/379dwOKxNXV3a1NWlu7ZvV3NhoSy/X1ZNja4uK5PbRbHPZJd7K7Rq3wn99rZHJxpfvEq65ppZ60O+y6OvF16pr/a+oOPhAT3Z/46e7H9HHrl0fW6t2ryNsvIa1eCevTAs2b6Z06JfBjo0rJD+FNqvP4X260vaoEtdFWpzj4RQy8wamcYM56hhSvZLI2FSPOHTfetG1jdaknMg54G/PgAAAABwwljYFJZ0aE7cm51dQld7VZ+uWHdG9z4yNGXo1Hq9qeVLY48n+ExTnep9+RFtIdvW5qMn9NVtu7TgN5vU/JtN+odtu/TC0RMJleSdPc+TtTY1t5a1+fn6XENDVPvu06f10J49um7zZlW1t+vTr7yiXztUkpepXIahFfk1qe6G7ixYrEpX5DkaUFgbhg7qy72b1XjsCX342JO6u3er/nfoSMaV5C0wS3WL55Ko9h3hbn1n+P+0ov8Xqul7TLcN/F7/FdgTuyTvnudGQqSx8Gk6Z4dOiYyQcggjngAAAADACQeLpMVd0vs+aWj6W68jx8L6/aag2jcEtXG0hC4esUY7jTl71FMse3r7tGdHn/5lR2IleVcvM1RWKvWclNbdmLoxDWePeppKz/Cwnjp4UE8dPEhJ3iQt+dWp7kLEqKdYdgVPaNfpExlbkjc26ikcY56wbrtfPw/s0M8DO6YvybvnuYlQKdbIpzQLnSSCJwAAAABwxvs+KWBI5f3SzR26931Tj/9hNKCxpdNnbHX32DreY+t03+gNqV/SJ+LbvWFI6zYa0sbp17NdtlQS3z7PLskzwoaKTxWr/Hi5yrvLlT8QOSrFDAdUXXBSJZ/eqTtfCqvP51PI7ewtZnhSuOQaLaHLM82YwdPZgrYdUZJ3cWGh2i7gkrwrvJUR779y8n+0s/uYY58X9fs7PfLzHrCDce9jqpI8K69RlrdR9TFK8m4880zM0CfZoo4xNHqOyq0zmnnE3VQleZa7SW1jJXnThU9pGDpJBE8AAAAA4AzbkE7kSwt6pLIB7RiSdGTSOm5JlaOvRHcv6eR5d3Ka/btsnSw9qZOlJ/Xegvek43nSnnLp3TKpc45aBl7Rzu5WadfI+l+44w69PX9+zP19kJenHVMsbz50SGV9fQn17c36evV7vRFtxX19WnToUEL7OVpcrIdGy/JKc3K0rrpalt+v5nff0eL9nTPvIMN5XZGRwPDb2zUY6Bp/f6yiUPsaop90t/TtTuUNJla2+NKyxqg2/9FTaujskSEp3pmI9s0v17GqkdLVsZK85/sP6FevP6EGs0gtuX615Ph1iad0fN6koTNbFJoUPJ3Jz9FbS/xR+1/wXrcqjp9J6Ni2f7hGfYWRI6/m9A7q0o6JEO+yOPbzfqVPey8qj2jbEe6We9tb2jIQUImRq6vNuWpZeata/rtH7qKXpLtWSHc9I/3szrQMnSSCJwAAAABIusZal4YDpnpOl+qYelLdneQoH5DKO6WWTmnALW3plH4zsfjxn/502s23Llyoa++/P6r92888o7/eti2hrix6+GF11NVFtC3bu1d/fPDBhPbzaGurvnz77ZIiS/L2f/GLery7O2Lded6ChPadiR7/5rMR7394y3Ld+d3oIXhPf+kpLfxzd1T7dIzOR6LaPtn+lh65/3cJ7efz3/m4fnTriog271BAW29+LOY2W6Zoe2OxX1e8+KWo9m99f5Nu/fVbCfXpqk1f0GtXRJ6Pl3Yc09bWHya0n598+kp97rGbo9p/8flfa9HurugNrsuRVu2S/aMPy3AbaRk6SQRPAAAAAJB0z/5gpOTnhaO2Vj63N8W9SbLTOdK7ZRo8MJzqnjgizzSVZ5pR7T+5clUKeuOwSaPGkGFeGJauzR0JnYK29ED6hU4ST7UDAAAAAMzkiE/aPF/60VLpkaul9oXafvRaveFZnOqeJYXf69XfNzaqvaVFx2+6SVW5kyasvvxyacmS1HTOSUuWqHfJolT3AufquhxpLHRyGzM/7S5FDNu2Z5xhq7a2VocPH45oi2OzjDI4GPnYCG8WJr/ZfowcX+bL9mM0DCOqbe7cuTqU4FwE2YjrTHbI9mPk+DJfth8j15nppepac7R/UOsPvj/lMlu2jnXb2tER0vZ3wtp7IKxEumSa0ictj8YG54RCoUnLRxb02kP6XTCxUVceudTsKtNis0KLzUqVGFP/vRjBgCp8z8sIzvwYvoDPp57m5qj24r17lXvqVFz9CgZHJqE+fvHFCubny+MZeeret3bu1NCJEwnN8bSwsFBLFi7UNcuX6/Li4si/oVdflYZGH2vv9Y6ETp7YT/hLlsl/x7Nxjh4cOKHXX90gc3AoatlAVbk+uGheVHv5mx0y43304qj3VyxVIBg5L1RRV48KDxzWkfAZPdX/Tlz7GZvjKd9w68bc+WrLa9RHPfNUve3tmNu0B/bKnjTHU7AgTycuiz4fi/YckPd4YrOn9SxeoEDhSClmIDByjDm9fSrdtVdut1u2pH8ffkN9M0wufvYcT4akZaZflrtJn3i7X02DuZHnx7P/KBXtknoXzeocT+dyrSF4GpXt/xCRsv8YOb7Ml+3HyA1BbFxnskO2HyPHl/my/Ri5zkwvE641PSdt/WFzUOs3BvSHzUH1fjDzNj95yKs7PpUjKfY5/pWXd+oHu/48475q8nPVVlcta16VVvvLle/wE+rOxVTHuLmrS6u2TDWLT6Q809RHKitl+f36aE2N/Hl5TnXznKUieJpNsc7R23v+pJ/175px+zqzUG3eBlneRq3y1slrZMY52h54TzcNPBtjiwkF8uhGd4Msd5PWuS9SlSvGvGKxnl43C0+1O5drTfr9lgAAAADgAlRaYuiWj3l0y8c8CgRsbX01pPYNQbVvDGrvgfCU2zzw6JA+c7NHHk/0zaA0MuLqh7sPxPzMpWVFsuZVqa2uWkvLi+Sa4qYy3d3X0RFzmd/rleX3q62mRjdUVqZlmHah2xc8pSf7Y/8Ol3mqZeU1yvI2arGnfMrgI53Ztq17h7bGXD7PmCPL3aQ2T5OuN+fNHKZNFy7d89zE8vvWpc1E4/zVAQAAAECa8XgMrVrh1qoVbj38z7b27Atr/caREGrrqyGFR3OoA522nnw2MD7qabLvvb1Xg6GJ0MprurTaXzEaNlVpbkH6jfpJxOauLm2e9PS5K0pKZNXUyPL7o0vokHa+/cE2hc4qg4soofM2qNrM7KcJrg/u1RvhiXJbQ9JfmX61uZtkuZt0qasi/nM0nhFNaRg+ETwBAAAAQBozDEPNTaaam0x97c7cqJK8sVFPk42NdsqEErpzdV9HR0aU0GFqY6OdMqGE7lyMjXaKu4RuOomU0aVZ+JQdv00AAAAAuEBMVZJ3tMtWZVnkel0DQ3rxo9dkbAndTHoDAX11wQKtrqpS3tgM68goJ8ODer3ylowsoYvHcQ3oQe9KrYynhG4mdiixuZvGw6fQzOs6jOAJAAAAADLUWEmeJE2a01hLyopS0KPZU+TxqM3vT3U3cB6uzKlOdRccVWHka427NDk7u/ePiW+TBmV2kuRKdQcAAAAAAACQnQieAAAAAAAA4AiCJwAAAAAAADiC4AkAAAAAAACOIHgCAAAAAACAIwieAAAAAAAA4AiCJwAAAAAAADiC4AkAAAAAAACOIHgCAAAAAACAIwieAAAAAAAA4AiCJwAAAAAAADiC4AkAAAAAAACOIHgCAAAAAACAIwieAAAAAAAA4AiCJwAAAAAAADiC4AkAAAAAAACOIHgCAAAAAACAI9znuqFhGMnsBwAAEbjOAACcxrUG6Y5zFNmAEU8AAAAAAABwBMETAAAAAAAAHGHYtm3PtFJOTo4CgcBs9AcALigej0fDw8Op7kbKcZ0BAGdwnZnAtQYAnDHTtSauEU+hUChpHQIATOD7dQQ/BwBwBt+vE/hZAIAzZvp+jWtyca/Xq8HBQZmmqcrKyqR0DAAuZF1dXQqFQvJ6vanuSlrgOgMAycV1JhrXGgBIrnivNXGV2gEAAAAAAACJYnJxAAAAAAAAOILgCQAAAAAAAI4geAIAAAAAAIAjCJ4AAAAAAADgCIInAAAAAAAAOILgCQAAAAAAAI4geAIAAAAAAIAj/h/T0HsnJM1DQQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZuElEQVR4nOzdd3xT5f4H8M/J7l50UaCMsvewjBYKsqFVryKgooB7455XcQt6BcdPEMdFBRSV6ypDQGWLDIEyy97QvehI2iTP74/QtGnSNoGmGf28X6+84DznOed8T5OcnHzzDEkIIUBERERERERERNTAZK4OgIiIiIiIiIiIvBMTT0RERERERERE5BRMPBERERERERERkVMw8URERERERERERE7BxBMRERERERERETkFE09EREREREREROQUTDwREREREREREZFTMPFEREREREREREROwcQTERERERERERE5BRNPREREdTh16hQkScKXX37p8Lbr16+HJElYv359g8fVGL788ktIkoRTp045vO0rr7wCSZLqrTd06FB069btCqKrnSRJeOWVV8zLV3MermDv384Zjh49ilGjRiEoKAiSJOHnn39ulL/f1bzPGkPr1q0xbdo0V4dBRETkkRSuDoCIiIiI3MPUqVNx8uRJvPnmmwgODka/fv3w+++/uzosIiIi8mBMPBERERG5kX//+9947rnnGv24ZWVl2Lp1K1588UU8/PDD5vLbb78dkydPhlqtbvSY3MXhw4chk7GjABER0ZVg4omIiIjIjSgUCigUjX+Llp2dDQAIDg62KJfL5ZDL5Y0ejztpykk3IiKiq8WfboiIyK1Vjndz5MgRTJkyBUFBQQgPD8dLL70EIQTOnj2L66+/HoGBgYiKisJ7771ntY+srCzcddddiIyMhEajQc+ePfHVV19Z1SsoKMC0adMQFBSE4OBgTJ06FQUFBTbjSk9Px4QJExAaGgqNRoN+/frh119/rfd8SktLkZ6ejpycnHrrVo5/tHfvXiQlJcHX1xdxcXFYtmwZAGDDhg3o378/fHx80LFjR5tdonbv3o2xY8ciMDAQ/v7+GD58OP7++2+regcOHMC1114LHx8ftGjRAm+88QaMRqPNuFatWoXBgwfDz88PAQEBGD9+PA4cOFDv+dTl4MGDGDZsGHx9fRETE4N33nnHYn15eTlefvll9O3bF0FBQfDz88PgwYOxbt06h4/1xBNPICwsDEIIc9kjjzwCSZLw4YcfmssyMzMhSRLmz59vdwxCCLRu3RrXX3+91XG1Wi2CgoJw33331RlfzTGeunXrhmHDhlnVMxqNiImJwYQJE8xltl7De/bsqXf8pFdeeQWxsbEAgKeffhqSJKF169YAbI+R1bp1ayQnJ2Pz5s2Ij4+HRqNB27Zt8fXXX1vsNy8vD0899RS6d+8Of39/BAYGYuzYsUhLS6vzb1AbSZJqfVTGt3fvXkybNg1t27aFRqNBVFQU7rzzTuTm5lqdsyRJOHbsGKZNm4bg4GAEBQVh+vTpKC0ttajLMZ6IiIiuHBNPRETkESZNmgSj0YhZs2ahf//+eOONN/D+++9j5MiRiImJwezZsxEXF4ennnoKGzduNG9XVlaGoUOHYtGiRbjtttvw7rvvIigoCNOmTcMHH3xgrieEwPXXX49FixZhypQpeOONN3Du3DlMnTrVKpYDBw5gwIABOHToEJ577jm899578PPzww033ICffvqpzvPYvn07OnfujP/7v/+z67zz8/ORnJyM/v3745133oFarcbkyZPx3XffYfLkyRg3bhxmzZqFkpISTJgwAZcuXbKIc/DgwUhLS8MzzzyDl156CSdPnsTQoUOxbds2c72MjAwMGzYMe/bswXPPPYfHHnsMX3/9tcXfp9KiRYswfvx4+Pv7Y/bs2XjppZdw8OBBJCYmXvHg0/n5+RgzZgx69uyJ9957D506dcKzzz6LVatWmesUFRXh888/x9ChQzF79my88soryM7OxujRo7Fnzx6Hjjd48GDk5eVZJMs2bdoEmUyGTZs2WZQBwJAhQ+yOQZIkTJkyBatWrUJeXp7FcVNTU1FUVIQpU6Y4FO+kSZOwceNGZGRkWJRv3rwZFy5cwOTJkwE49hqu6cYbb8TcuXMBALfccgsWLVqE999/v85tjh07hgkTJmDkyJF47733EBISgmnTpln8XU+cOIGff/4ZycnJmDNnDp5++mns27cPSUlJuHDhgkN/B8D0+qv5iI2NhY+PD/z9/QEAa9euxYkTJzB9+nR89NFHmDx5MpYuXYpx48ZZJBsrTZw4EZcuXcLbb7+NiRMn4ssvv8Srr77qcGxERERUC0FEROTGZs6cKQCIe++911ym1+tFixYthCRJYtasWeby/Px84ePjI6ZOnWoue//99wUAsXjxYnNZeXm5GDhwoPD39xdFRUVCCCF+/vlnAUC88847FscZPHiwACAWLlxoLh8+fLjo3r270Gq15jKj0SgGDRok2rdvby5bt26dACDWrVtnVTZz5sx6zz0pKUkAEN988425LD09XQAQMplM/P333+by1atXW8V5ww03CJVKJY4fP24uu3DhgggICBBDhgwxlz322GMCgNi2bZu5LCsrSwQFBQkA4uTJk0IIIS5duiSCg4PFPffcYxFnRkaGCAoKsiivfN7sPcevv/7aXKbT6URUVJS46aabzGV6vV7odDqLbfPz80VkZKS48847Lcpr/n0XLlxocR5ZWVkCgJg3b54QQoiCggIhk8nEzTffLCIjI83bPfrooyI0NFQYjUaHYjh8+LAAIObPn29R97rrrhOtW7c27682Nf92lfv76KOPLOo9+OCDwt/fX5SWlgohHHsN23Ly5EkBQLz77rsW5TX/fkIIERsbKwCIjRs3msuysrKEWq0WTz75pLlMq9UKg8FgdRy1Wi1ee+01q2PXF2NN77zzjtXrp/LvUd23335rFW/l37nm6+df//qXCAsLsyiLjY21uK4QERGR/djiiYiIPMLdd99t/r9cLke/fv0ghMBdd91lLg8ODkbHjh1x4sQJc9nKlSsRFRWFW265xVymVCrx6KOPori4GBs2bDDXUygUeOCBByyO88gjj1jEkZeXhz///NPcSiInJwc5OTnIzc3F6NGjcfToUZw/f77W8xg6dCiEEHjllVfsOm9/f39zixYA6NixI4KDg9G5c2f079/fXF75/8pzNxgMWLNmDW644Qa0bdvWXC86Ohq33norNm/ejKKiIvO5DxgwAPHx8eZ64eHhuO222yxiWbt2LQoKCnDLLbeYzzsnJwdyuRz9+/e/om5vledYvRWQSqVCfHy8xfMol8uhUqkAmLqY5eXlQa/Xo1+/fti1a5dDxwsPD0enTp3MLeO2bNkCuVyOp59+GpmZmTh69CgAU4unxMREc7c3e2Po0KED+vfvjyVLlpjL8vLysGrVKtx2220W3ejs0aFDB/Tq1QvfffeducxgMGDZsmVISUmBj48PAPtfww2lS5cuGDx4sHk5PDzc6v2nVqvNg3IbDAbk5ubC398fHTt2dPh5q2ndunV4/vnn8cgjj+D22283l1f+PQBT98acnBwMGDAAAGwe8/7777dYHjx4MHJzc83vDyIiIro6TDwREZFHaNWqlcVyUFAQNBoNmjVrZlWen59vXj59+jTat29vNSNV586dzesr/42OjjZ316nUsWNHi+Vjx45BCIGXXnoJ4eHhFo+ZM2cCMI0p1VBatGhhlagICgpCy5YtrcoAmM89OzsbpaWlVvEDpnM3Go04e/YsgKq/UU01t61MyFx77bVW575mzZorPm9b5xgSEmLxPALAV199hR49ekCj0SAsLAzh4eFYsWIFCgsLHT7m4MGDzV3pNm3ahH79+qFfv34IDQ3Fpk2bUFRUhLS0NIvEiiMx3HHHHdiyZYv59fXDDz+goqLCnCApLy9HRkaGxcNgMNQa76RJk7BlyxZzUnP9+vXIysrCpEmTzHXsfQ03lJrvScD6eTMajZg7dy7at28PtVqNZs2aITw8HHv37r2i563SuXPnMGnSJCQkJGDOnDkW6/Ly8jBjxgxERkbCx8cH4eHhaNOmDQDYPGbN8wgJCQEAq9cfERERXRnOakdERB7B1qxatc20JWyM49JQKgfcfuqppzB69GibdeLi4hrseLWdoyvPfdGiRYiKirJaf6UzsdlzLosXL8a0adNwww034Omnn0ZERATkcjnefvttHD9+3OFjJiYm4rPPPsOJEyewadMmDB48GJIkITExEZs2bULz5s1hNBotEk+OxDB58mQ8/vjjWLJkCV544QUsXrwY/fr1MyeB/vrrL6sBw0+ePGke0LumSZMm4fnnn8cPP/yAxx57DN9//z2CgoIwZswYh8+9odjzvL311lt46aWXcOedd+L1119HaGgoZDIZHnvssVoHr69PeXk5JkyYALVaje+//97qdTdx4kT89ddfePrpp9GrVy/4+/vDaDRizJgxNo/pivcSERFRU8LEExERebXY2Fjs3bsXRqPRotVTenq6eX3lv3/88QeKi4stWowcPnzYYn+V3daUSiVGjBjh7PCvWHh4OHx9fa3iB0znLpPJzK2mYmNjza2Zqqu5bbt27QAAERERjX7uy5YtQ9u2bfHjjz9atI6qbGXmqMqE0tq1a7Fjxw4899xzAEwDic+fPx/NmzeHn58f+vbte0UxhIaGYvz48ViyZAluu+02bNmyxWKw7p49e2Lt2rUW29hK5lVq06YN4uPj8d133+Hhhx/Gjz/+iBtuuAFqtdpcx97XcGNatmwZhg0bhi+++MKivKCgwKq1or0effRR7NmzBxs3bkRkZKTFuvz8fPzxxx949dVX8fLLL5vLbb2+iYiIqHGwqx0REXm1cePGISMjw2J8HL1ej48++gj+/v5ISkoy19Pr9Zg/f765nsFgwEcffWSxv4iICAwdOhQLFizAxYsXrY6XnZ1dZzylpaVIT09HTk7O1ZxWveRyOUaNGoVffvnFYra5zMxMfPPNN0hMTERgYCAA07n//fff2L59u7ledna2xRhFADB69GgEBgbirbfeQkVFhdUx6zv3M2fOmBN+V3I+gGUrlG3btmHr1q1XtL82bdogJiYGc+fORUVFBRISEgCYElLHjx/HsmXLMGDAAIvWNI7GcPvtt+PgwYN4+umnIZfLLcbqCgkJwYgRIyweGo2mzpgnTZqEv//+G//973+Rk5Nj0c0OsP81DJi6nKWnp19Vdzd7yOVyq5ZDP/zwQ53joFWyFePChQuxYMECfPzxxxZjklU/HmDdWqm+GfqIiIjIedjiiYiIvNq9996LBQsWYNq0afjnn3/QunVrLFu2zNwCJSAgAACQkpKChIQEPPfcczh16hS6dOmCH3/80eYX848//hiJiYno3r077rnnHrRt2xaZmZnYunUrzp07h7S0tFrj2b59O4YNG4aZM2faPcD4lXrjjTewdu1aJCYm4sEHH4RCocCCBQug0+nwzjvvmOs988wzWLRoEcaMGYMZM2bAz88Pn376qbm1WKXAwEDMnz8ft99+O/r06YPJkycjPDwcZ86cwYoVK5CQkID/+7//qzWeO+64Axs2bLiiLkzJycn48ccf8a9//Qvjx4/HyZMn8cknn6BLly4oLi52eH+AKcm0dOlSdO/e3TyuT58+feDn54cjR47g1ltvvaoYxo8fj7CwMPzwww8YO3YsIiIirijOShMnTsRTTz2Fp556CqGhoVatzhx5Df/000+YPn06Fi5ciGnTpl1VXHVJTk7Ga6+9hunTp2PQoEHYt28flixZYjHgfW1qxpiTk4MHH3wQXbp0gVqtxuLFiy3q/+tf/0JgYCCGDBmCd955BxUVFYiJicGaNWtw8uRJZ50iERER1YOJJyIi8mo+Pj5Yv349nnvuOXz11VcoKipCx44drb5wy2Qy/Prrr3jsscewePFiSJKE6667Du+99x569+5tsc8uXbpg586dePXVV/Hll18iNzcXERER6N27t0X3Hlfr2rUrNm3ahOeffx5vv/02jEYj+vfvj8WLF1vMiBcdHY1169bhkUcewaxZsxAWFob7778fzZs3t5g1EABuvfVWNG/eHLNmzcK7774LnU6HmJgYDB48GNOnT3fauUybNg0ZGRlYsGABVq9ejS5dumDx4sX44YcfsH79+ivaZ2XiKTEx0VymUCgwcOBA/P7771YDizsag0qlwqRJkzBv3jyLWdeuVIsWLTBo0CBs2bIFd999N5RKpcV6R17DjeWFF15ASUkJvvnmG3z33Xfo06cPVqxYYe7a6Iji4mJotVocPHjQ5t/z5MmT8PPzwzfffINHHnkEH3/8MYQQGDVqFFatWoXmzZs3xCkRERGRgyTBkROJiIiInOLxxx/HF198gYyMDPj6+tq1zUsvvYS3334ber2+QWI4deoU2rRp4/TWTd6sZcuWGD16ND7//HNXh0JERORxOMYTERERkRNotVosXrwYN910k91JJwC4ePHiFQ+8TQ2voqICubm5fE6IiIiuELvaERERETWgrKws/P7771i2bBlyc3MxY8YMu7Y7ceIEfvrpJ/zwww9ITk52cpRkj9WrV2Pp0qUoKyvD8OHDXR0OERGRR2LiiYiIiKgBHTx4ELfddhsiIiLw4YcfolevXnZtt3HjRrz66qsYOnQo5syZ49wgyS6zZs3CsWPH8Oabb2LkyJGuDoeIiMgjcYwnIiIiIiIiIiJyCo7xRERERERERERETsHEExEREREREREROQUTT0RE5NFeeeUVSJLk6jCI3MKXX34JSZJw6tQpi/J3330Xbdu2hVwut3vMqfqOsXPnzqvaDxERETUNTDwREVGTNW/ePHz55ZeuDgMAcOHCBbzyyivYs2fPVe1n2rRpkCTJ/FCr1ejQoQNefvllaLVaq/rV6yoUCoSGhqJv376YMWMGDh48aFX/1KlTFttUfwwYMMBcr7y8HB988AF69+6NwMBABAcHo2vXrrj33nuRnp5+Vedoy6VLl/DMM8+gTZs2UKvViImJwYQJE1BaWtpgx6hMuNT2WLJkSYMdqyGtWbMGzzzzDBISErBw4UK89dZbjXbszz77DElJSYiMjIRarUabNm0wffp0q8RYpczMTNx3332IiYmBRqNB69atcdddd1nVW7p0Kfr06QONRoPw8HDcddddyMnJsbnPL774Ap07d4ZGo0H79u3x0Ucf2ax3/vx5TJw4EcHBwQgMDMT111+PEydOXPG5ExERkQlntSMioiZr3rx5aNasGaZNm+bqUHDhwgW8+uqraN269VW3SFGr1fj8888BAIWFhfjll1/w+uuv4/jx4zaTIyNHjsQdd9wBIQQKCwuRlpaGr776CvPmzcPs2bPxxBNPWG1zyy23YNy4cRZl4eHh5v/fdNNNWLVqFW655Rbcc889qKioQHp6OpYvX45BgwahU6dOV3WO1RUWFiIpKQnnzp3Dvffei7i4OGRnZ2PTpk3Q6XTw9fVtkOMMGTIEixYtsiqfO3cu0tLSMHz48AY5TkP7888/IZPJ8MUXX0ClUjXqsXfv3o02bdrguuuuQ0hICE6ePInPPvsMy5cvR1paGpo3b26ue/bsWSQkJAAA7r//fsTExODChQvYvn27xT7nz5+PBx98EMOHD8ecOXNw7tw5fPDBB9i5cye2bdsGjUZjrrtgwQLcf//9uOmmm/DEE09g06ZNePTRR1FaWopnn33WXK+4uBjDhg1DYWEhXnjhBSiVSsydOxdJSUnYs2cPwsLCnPyXIiIi8mKCiIjIg82cOVNc6cdZ165dRVJSUsMGdIV27NghAIiFCxde1X6mTp0q/Pz8LMqMRqMYMGCAkCRJZGRkWKwDIB566CGr/eTk5IiBAwcKAGLFihXm8pMnTwoA4t133601hu3btwsA4s0337Rap9frRU5OjqOnVacHHnhABAcHixMnTjTofu1RWloqAgICxMiRIxv92LYsXLhQABAnT540l02fPt3qNdEQx9ixY8cVbb9z504BQLz99tsW5WPHjhVt2rSp8/Wh0+lEcHCwGDJkiDAajeby1NRUAUB8+OGH5rLS0lIRFhYmxo8fb7GP2267Tfj5+Ym8vDxz2ezZswUAsX37dnPZoUOHhFwuF88///wVnScRERGZsKsdERF5jM2bN+Oaa66BRqNBu3btsGDBApv1Fi5ciGuvvRYRERFQq9Xo0qUL5s+fb1GndevWOHDgADZs2GDuKjV06FAAQF5eHp566il0794d/v7+CAwMxNixY5GWlmZ1rI8++ghdu3aFr68vQkJC0K9fP3zzzTcWdc6fP48777zT3N2oa9eu+O9//2tev379elxzzTUAgOnTp5vjqewGWFpaivT09Fq7EtVHkiQkJiZCCGF316GwsDAsXboUCoUCb775pkPHO378OACYW69UJ5fL7W498sMPP6BLly7QaDTo1q0bfvrpJ0ybNg2tW7c21ykoKMDChQtx7733ok2bNigvL4dOp3Mo3qFDh6Jbt244ePAghg0bBl9fX8TExOCdd96pd9vU1FRcunQJt912m13H+uWXXzB+/Hg0b94carUa7dq1w+uvvw6DweBQzABw4MABXHvttfDx8UGLFi3wxhtvwGg0WtSRJAkLFy5ESUmJ1etq7dq1SExMRHBwMPz9/dGxY0e88MILdh9fp9PhiSeeQHh4OPz8/PCvf/0L2dnZ9W5X+fwVFBSYy9LT07Fq1So8/fTTCAsLg1arRUVFhdW2+/fvR0FBASZNmmQxtltycjL8/f2xdOlSc9m6deuQm5uLBx980GIfDz30EEpKSrBixQpz2bJly3DNNdeY34cA0KlTJwwfPhzff/99vedEREREtWNXOyIi8gj79u3DqFGjEB4ejldeeQV6vR4zZ85EZGSkVd358+eja9euuO6666BQKJCamooHH3wQRqMRDz30EADg/fffxyOPPAJ/f3+8+OKLAGDe14kTJ/Dzzz/j5ptvRps2bZCZmYkFCxYgKSkJBw8eNHcP+uyzz/Doo49iwoQJmDFjBrRaLfbu3Ytt27bh1ltvBWAas2bAgAGQJAkPP/wwwsPDsWrVKtx1110oKirCY489hs6dO+O1117Dyy+/jHvvvReDBw8GAAwaNAgAsH37dgwbNgwzZ87EK6+8ckV/v8oxdUJCQuzeplWrVkhKSsK6detQVFSEwMBA87rS0lKrRFhQUBCUSiViY2MBAEuWLEFCQgIUCsdvN1asWIFJkyahe/fuePvtt5Gfn4+77roLMTExFvU2b94MrVaLuLg4TJgwAT///DOMRiMGDhyIjz/+2O5ui/n5+RgzZgxuvPFGTJw4EcuWLcOzzz6L7t27Y+zYsbVut2TJEvj4+ODGG2+06zhffvkl/P398cQTT8Df3x9//vknXn75ZRQVFeHdd9+1ax8AkJGRgWHDhkGv1+O5556Dn58fPv30U/j4+FjUW7RoET799FNs377d3P1y0KBBOHDgAJKTk9GjRw+89tprUKvVOHbsGLZs2WJ3DI888ghCQkIwc+ZMnDp1Cu+//z4efvhhfPfdd1Z1c3NzYTAYcObMGbz22msAYNE18ffffwdgeg8OHz4cf/75J+RyOUaOHIn58+ebk1WVScWa51lZtnv3bhiNRshkMuzevRsA0K9fP4t6ffv2Na+fMmUKjEYj9u7dizvvvNNqn/Hx8VizZg0uXbqEgIAAu/82REREVI2rm1wRERHZ44YbbhAajUacPn3aXHbw4EEhl8ututqVlpZabT969GjRtm1bi7LautpptVphMBgsyk6ePCnUarV47bXXzGXXX3+96Nq1a51x33XXXSI6Otqq+9DkyZNFUFCQOda6utqtW7dOABAzZ86s81hCVHW1y87OFtnZ2eLYsWPiP//5j5AkSXTr1s2ie5IQtXe1qzRjxgwBQKSlpQkhqrra2XqsW7dOCGHq2peUlCQAiMjISHHLLbeIjz/+2OK5q0/37t1FixYtxKVLl8xl69evFwBEbGysuWzOnDkCgAgLCxPx8fFiyZIlYt68eSIyMlKEhISICxcu1Husyli//vprc5lOpxNRUVHipptuqnW73NxcoVKpxMSJE+0+L1uvzfvuu0/4+voKrVZr934ee+wxAUBs27bNXJaVlSWCgoKsutrZ6n45d+5cAUBkZ2fbfcxKlV3tRowYYfF6evzxx4VcLhcFBQVW26jVavPrJCwszKJLnBBCPProo+Z1Y8aMEd9995149913hb+/v2jXrp0oKSkRQgiRnZ0tJEkSd911l8X26enp5v1XvtceeughIZfLbZ5DeHi4mDx5snmfACze25U+/vhjAUCkp6c78BciIiKi6tjVjoiI3J7BYMDq1atxww03oFWrVubyzp07Y/To0Vb1q7eGKCwsRE5ODpKSknDixAkUFhbWezy1Wg2ZTGY+dm5urrkr0q5du8z1goODce7cOezYscPmfoQQ+N///oeUlBQIIZCTk2N+jB49GoWFhRb7q83QoUMhhLC7tVNJSQnCw8MRHh6OuLg4PPXUU0hISMAvv/xi0T3JHv7+/gBMs8ZVd++992Lt2rUWj549ewIwde9avXo13njjDYSEhODbb7/FQw89hNjYWEyaNMmii5UtFy5cwL59+3DHHXeYjw8ASUlJ6N69u0Xd4uJi8zH/+OMP3HrrrXjggQfw888/Iz8/Hx9//LHd5zllyhTzskqlQnx8fJ1dE5ctW4by8nK7u9kBlq/NS5cuIScnB4MHDzZ3p7TXypUrMWDAAMTHx5vLwsPD7Y4lODgYgKnrX83uefa69957LV5PgwcPhsFgwOnTp63qrlq1CitXrsR7772HVq1aoaSkxGJ95fMYFRWFFStWYOLEiXjqqafw2Wef4fjx4+buq82aNcPEiRPx1Vdf4b333sOJEyewadMmTJo0CUqlEgBQVlZm/re2wdQ1Go1FPcD0vrdVr3odIiIichy72hERkdvLzs5GWVkZ2rdvb7WuY8eOWLlypUXZli1bMHPmTGzduhWlpaUW6woLCxEUFFTn8YxGIz744APMmzcPJ0+etBh/p/r4RM8++yx+//13xMfHIy4uDqNGjcKtt95qHtsoOzsbBQUF+PTTT/Hpp5/aPFZWVlbdJ38FNBoNUlNTAQDnzp3DO++8g6ysLJvdk+pTmRCo2c2offv2GDFiRK3bqdVqvPjii3jxxRdx8eJFbNiwAR988AG+//57KJVKLF68GOXl5cjLy7PYLjw83Jy4iIuLs9pvXFycRbKu8pxSUlIsklQDBgxAmzZt8NdffwEwJQ5qJh2joqLM/2/RooVVUi4kJAR79+6t9RyXLFmC0NBQq654xcXF5r8bYBrXqnLGvwMHDuDf//43/vzzTxQVFVlsZ09StNLp06fRv39/q/KOHTvatf2kSZPw+eef4+6778Zzzz2H4cOH48Ybb8SECRPMSdeMjAyLbYKCgixeQ9WTwEBVN878/Hyr4w0bNgwAMHbsWFx//fXo1q0b/P398fDDDwOoeh4nTpxoPj4A3Hzzzbj99tvx119/4e677wZgmqmurKwMTz31FJ566ikAwJQpU9CuXTv8+OOP5teBj48PysvLbZ6/Vqs1H7PyX1tjg2m1Wos6RERE5Di2eCIiIq9y/PhxDB8+HDk5OZgzZw5WrFiBtWvX4vHHHwcAu1p3vPXWW3jiiScwZMgQLF68GKtXr8batWvRtWtXi+07d+6Mw4cPY+nSpUhMTMT//vc/JCYmYubMmRbHmjJlilXroMqHrQG4r5ZcLseIESMwYsQITJs2DX/88QcyMjJw3333Obyv/fv3Qy6Xo02bNlccT3R0NCZPnoyNGzeiffv2+P7776HX6/HXX38hOjra4nH27FmH9l053patsb4iIiLMSZDvvvvO6ljVyeVym/sXQtgsP3PmDDZt2oSbb77Z3NKm0n/+8x+L41QOWF1QUICkpCSkpaXhtddeQ2pqKtauXYvZs2cDsO+12VB8fHywceNG/P7777j99tuxd+9eTJo0CSNHjjQnWmv+vWqO3eTo36xSu3bt0Lt3byxZssRcVtvzWDkYffVkVlBQEH755RecPn0aGzZswKlTp7Bo0SJcvHgR4eHh5tZc0dHRMBgMVsnd8vJy5Obmmo8ZGhoKtVqNixcvWsVaWVZZl4iIiBzHFk9EROT2wsPD4ePjg6NHj1qtO3z4sMVyamoqdDodfv31V4sWGevWrbPatrZuZ8uWLcOwYcPwxRdfWJQXFBSgWbNmFmV+fn6YNGkSJk2ahPLyctx4441488038fzzzyM8PBwBAQEwGAx1tg6qK5aGEB0djccffxyvvvoq/v77bwwYMMCu7c6cOYMNGzZg4MCBDTKwslKpRI8ePXD06FHk5OSgZ8+eWLt2rUWdqKgoc/eoY8eOWe2jZlnfvn0BmGYOrOnChQvo1KkTAGD06NFWx7oa3377LYQQNru23XHHHUhMTDQvV7aWWb9+PXJzc/Hjjz9iyJAh5vUnT550+PixsbF2vR/qIpPJMHz4cAwfPhxz5szBW2+9hRdffBHr1q3DiBEjrP5eXbt2dTjO2pSVlVm0MKrteSwvL0dOTo65xVh1rVq1Mr/HCwoK8M8//+Cmm24yr68cWH7nzp0YN26cuXznzp0wGo3m9TKZDN27d8fOnTutjrFt2za0bduWA4sTERFdBbZ4IiIityeXyzF69Gj8/PPPOHPmjLn80KFDWL16tVVdwLLVRWFhIRYuXGi1Xz8/P5vjDcnlcqtWGz/88IPVl+Lc3FyLZZVKhS5dukAIgYqKCsjlctx000343//+h/3791sdp/rU835+fgBgM57K8X9qziLniEceeQS+vr6YNWuWXfXz8vJwyy23wGAwmGf9s9fRo0ctnqdKBQUF2Lp1K0JCQhAeHo6QkBBzy6zKh0ajQfPmzdGtWzd8/fXXFl3WNmzYgH379lnss2PHjujZsyd++eUXi7/PmjVrcPbsWYwcORKAKflW81hX45tvvkGrVq0sEkyV2rZta3GcylZttl6b5eXlmDdvnsPHHzduHP7++29s377dXJadnW3RiqguNbs4AlWJmsqEUM2/V81WYvXR6/U2u91t374d+/bts5htbujQoYiIiMCSJUvM3dsA0yyABoPB/DzW5vnnn4derze3bASAa6+9FqGhoZg/f75F3fnz58PX1xfjx483l02YMAE7duywSD4dPnwYf/75J26++Wb7T5qIiIissMUTERF5hFdffRW//fYbBg8ejAcffBB6vR4fffQRunbtajEOz6hRo6BSqZCSkoL77rsPxcXF+OyzzxAREWHVlaZv376YP38+3njjDcTFxSEiIgLXXnstkpOT8dprr2H69OkYNGgQ9u3bhyVLlqBt27YW248aNQpRUVFISEhAZGQkDh06hP/7v//D+PHjzS0kZs2ahXXr1qF///6455570KVLF+Tl5WHXrl34/fffzQmAdu3aITg4GJ988gkCAgLg5+eH/v37o02bNti+fTuGDRuGmTNn2j3AeE1hYWGYPn065s2bh0OHDqFz587mdUeOHMHixYshhEBRURHS0tLwww8/oLi4GHPmzMGYMWMcOlZaWhpuvfVWjB07FoMHD0ZoaCjOnz+Pr776ChcuXMD7779fazetSm+99Rauv/56JCQkYPr06cjPz8f//d//oVu3bhbJKACYO3cuRo4cicTERNx3330oLCzEnDlz0KFDBzzwwAMOxW6P/fv3Y+/evXjuueccaqk2aNAghISEYOrUqXj00UchSRIWLVpUb9c0W5555hksWrQIY8aMwYwZM+Dn54dPP/0UsbGxdY5LVem1117Dxo0bMX78eMTGxiIrKwvz5s1DixYtbCbTrkRxcTFatmyJSZMmoWvXrvDz88O+ffuwcOFCBAUF4aWXXjLXVavVePfddzF16lQMGTIEt99+O86cOYMPPvgAgwcPxo033miuO2vWLOzfvx/9+/eHQqHAzz//jDVr1uCNN94wd2sETC3NXn/9dTz00EO4+eabMXr0aGzatAmLFy/Gm2++idDQUHPdBx98EJ999hnGjx+Pp556CkqlEnPmzEFkZCSefPLJBvl7EBERNVmumUyPiIjIcRs2bBB9+/YVKpVKtG3bVnzyySdi5syZoubH2a+//ip69OghNBqNaN26tZg9e7b473//azXNfEZGhhg/frwICAgQAERSUpIQQgitViuefPJJER0dLXx8fERCQoLYunWrSEpKMtcRQogFCxaIIUOGiLCwMKFWq0W7du3E008/LQoLCy3iyczMFA899JBo2bKlUCqVIioqSgwfPlx8+umnFvV++eUX0aVLF6FQKAQAsXDhQiGEEOvWrRMAxMyZM+v9G02dOlX4+fnZXHf8+HEhl8vF1KlTzWW4PAU9ACGTyURwcLDo3bu3mDFjhjhw4IDVPk6ePCkAiHfffbfWGDIzM8WsWbNEUlKSiI6OFgqFQoSEhIhrr71WLFu2rN5zqLR06VLRqVMnoVarRbdu3cSvv/4qbrrpJtGpUyerumvXrhUDBgwQGo1GhIaGittvv11cvHjRruMkJSWJrl27WpVPnTpVxMbGWpU/99xzAoDYu3ev3edSacuWLWLAgAHCx8dHNG/eXDzzzDNi9erVAoBYt26dQ/vau3evSEpKEhqNRsTExIjXX39dfPHFF1avc1uviT/++ENcf/31onnz5kKlUonmzZuLW265RRw5cqTe4y5cuFAAEDt27LAor3ydVp6HTqcTM2bMED169BCBgYFCqVSK2NhYcdddd1nEV923334revbsKdRqtYiMjBQPP/ywKCoqsqizfPlyER8fLwICAoSvr68YMGCA+P7772uN99NPPxUdO3YUKpVKtGvXTsydO1cYjUaremfPnhUTJkwQgYGBwt/fXyQnJ4ujR4/W+/cgIiKiuklCXMHPbEREREQu0KtXL4SHhzfoeE1ERERE5Dwc44mIiIjcTkVFBfR6vUXZ+vXrkZaWhqFDh7omKCIiIiJyGFs8ERERkds5deoURowYgSlTpqB58+ZIT0/HJ598gqCgIOzfvx9hYWGuDtEpysrKUFhYWGed0NBQ88x/RERERO6Og4sTERGR2wkJCUHfvn3x+eefIzs7G35+fhg/fjxmzZrltUknAPjuu+8wffr0OuusW7eOrb6IiIjIY7DFExEREZGbuHjxIg4cOFBnnb59+yIkJKSRIiIiIiK6Okw8ERERERERERGRU3BwcSIiIiIiIiIicgomnoiIiIiIiIiIyCmYeCIiIiIiIiIiIqdg4omIiIiIiIiIiJyCiSciIiIiIiIiInIKJp6IiIiIiIiIiMgpmHgiIiIiIiIiIiKnYOKJiIiIiIiIiIicgoknIiIiIiIiIiJyCiaeiIiIiIiIiIjIKZh4IiIiIiIiIiIip2DiiYiIiIiIiIiInIKJJyIiIiIiIiIicgomnoiIiIiIiIiIyCmYeCIiIiIiIiIiIqdg4omIiIiIiIiIiJyCiSciIiIiIiIiInIKJp6IiIiIiIiIiMgpmHgiIiIiIiIiIiKnYOKJiIiIiIiIiIicgoknIiIiIiIiIiJyCiaeiIiIiIiIiIjIKZh4IiIiIiIiIiIip2DiiYiIiIiIiIiInIKJJyIiIiIiIiIicgomnoiIiIiIiIiIyCmYeCIiIiIiIiIiIqdg4omIiIiIiIiIiJyCiSciIiIiIiIiInIKhT2V/Pz8oNVqIZfLERER4eyYiIi8XlZWFgwGAzQaDUpKSlwdjsvxc4aIqGHxc8YaP2uIiBqWvZ81khBC1LczuVwOo9HYoAESEREgk8lgMBhcHYbL8XOGiMg5+DlThZ81RETOUd9njV1d7eRyeYMFREREVXh9NeHfgYjIOXh9rcK/BRGRc9R3fbUr8cSmqEREzsHrqwn/DkREzsHraxX+LYiInKO+6ysHFyciIiIiIiIiIqewa3BxW+wYGsqjaLVai2WNRuOiSJzH28/R289PkiSLZW97DwJN7zmkunnba5zvYc/n7c+htz9/gPefIz9nHMf3sefx9nPk+Xk+bz/HK/msYYsnIiIiIiIiIiJyCiaeiIiIiIiIiIjIKZh4IiIiIiIiIiIip2DiiYiIiIiIiIiInIKJJyIiIiIiIiIicgomnoiIiIiIiIiIyCmYeCIiIiIiIiIiIqdg4omIiIiIiIiIiJyCiSciIiIiIiIiInIKJp6IiIiIiIiIiMgpmHgiIiIiIiIiIiKnYOKJiIiIiIiIiIicgoknIiIiIiIiIiJyCiaeiIiIiIiIiIjIKZh4IiIiIiIiIiIip2DiiYiIiIiIiIiInIKJJyIiIiIiIiIicgomnoiIiIiaMJ1OYP1WPYQQrg7FKYQQ2LvfiIxM7zw/IiIid6dwdQBERERE1LiycoxYuU6P1N8rsGaTHnfcqMKA3pKrw2owWq3A+s0Cqb8ZsPw3IyQJOPKPCkajqyMjIiJqeph4IiIiIvJyQgjsP2xE6u8VSP1dj217DKhs4KRSAc89qAZQ7tIYr1ZmlsCK1UYsX23EmnVGlJRUrfv0AwVUKglareviIyIiaqqYeCIiIiLyQjqdwPq/9Vj+hx6pf1Tg9DnbXc3unqRCy+Yyj0vKCCGw74BA6m9GpP5mxPZ/BGz1FoxtCUy9haNLEBERuQoTT0REREReomYXuuKSuutXtXbyDDqdwLpNVV3ozpyrf5sXnzK1diIiIiLXYOKJiIiIyENV70K3/A89/t5tsNnqpzbX9JBj134Ddu03oLzcYLFOpapo4GhtCw+VMKhf7bekWdmmLnSpv1l3oauPjw8QHAT8ssJ0buU1TkmlNNjYquGNHy2DQsHkFxERNU1MPBERERF5EJ1OYMM2PVJ/12P5HxU4VUsXOnts2WnAlp2ltazVX/F+HTE2UWDl48dQ2ddPxMdj3xGFRRe6ZoYsdDAeRS8H9ntG1hJny1ph4rTq5yFhoH4rZLB/lPFyqLBDcY1VeRvjCTQ3XrRrH6N/C4Cify9AqbT7uERERN6CiSciIiIiN+doFzpPoRAV+GDVCOCbNHNZn45nsScj3KLeKP3vWFx2p0P7/rd6Jt7UPG9VvrZkPPxQW7LN2jkpBi0Dj1uVP6z7BE+Uf2jfTgYD6N0b2LaNySciImpymHgiIiIicjNnLhow7d9FAABdOXD6vBE5eQK6fO9KWvQs34/2+WkWZecuAPDGscB37wbS0oB+/VwdCRERUaNi4omIiIjIzZRqBdbtsByQSKUEdq/0x/I/KpD6hx7b9zTO+ETOpBHWU+nNfUuBH7bIsHa9EWVlLgjKmTxt6kAiIqIGwMQTERERkYfo1VWOXl3l+PejQEaWESv+1GP5nxVYs1GP0itI0jQLlRAdYRr0Whgtx4qSZM4fDLtdvgzIqlbw8ceYck8YpjysRFmZwLpNpnGe/lo+AokX/nBo32dkLaFSAR3jqs5DCCPuu7QcMmEa40mS6m9aVSGp0D3A+m+xVvsA0spvqHPbIH0e2lzYBmOrjnhydhTQpYtD50BEROQNmHgiIiIi8kBRETLcNVmFuyaroNUKrNt6ecDxPytw9oJ9A45HR0jYs8ofMpkEbY3WOBqNxhlhW9rsaxr/qFKPHuYxkHx8JIwbJce4UXKI91pgz94YLL88u92OXfadn0wPfP+lAp06mBJMpnMcaF5/defY6fKjdno9EBl5E0qOAfcPBfz8ruJwREREHsobe9ATERERNSkajYSxw5SY96YPTv8VgD2r/PH6k2rE95LXud2+dCN++q1xZq+7GpIkoXdPGV56RoHtf6pwIV2Fzz5U4LqxMvj41L6d0Qi88R/XdUncuhXIywN0OmDtWpeFQURE5FJMPBERERF5EUmS0LOLHP9+VINtv/jj4o4AfPGOD24YrYCvjSTNqx9oYTTa14LIXURHSbj7Djl++VaJ3BMqrPhegfvvlKFFjHXdb5cZkX7E2PhBAkhNrfr/8uUuCYGIiMjlmHgiIiIi8mJRETLcOUmFnz71Q+6eQKz80hcPTFGhZXPTuEWe0uqpNpVd8ubPUeLMfhV2bVDitRfkuKaP6fxc2eqpZuLJ6Jr8FxERkUtxjCciIiKiJqKyS97YYUp8LDTYe8iI1N8r8NuGCowbJkGSnD+guDOZuuRVdssDLmYIrFhjxKq1Rpw5KxAR3nixHDsGnE4vRQecNRVkArs2t0S/Ib6NFwQREZEbYOKJiIiIqAmq7JLXs4tpHKiag4t7g8oueXffUXmOjXfs5cuBPtiFzdVGT//si03oNySx8YIgIiJyA+xqR0RERETUwKp3s6u0ZUvjx0FERORqbPFERERERK4RGAgkJFgue4HCQmDjRqB/jfJjx4GzZ4GWLV0SFhERkUsw8URERERErtGjB7B5s6ujaHC//Qboaxmvffly4IEHGjceIiIiV2JXOyIiIiKiBrR8ee3rbHXBIyIi8mZMPBERERERNRC9Hli5svb1f/4JlJQ0XjxERESuxsQTEREREVED2boVyMurfb1OB6xd23jxEBERuRoTT0REREREDcSernR1dcUjIiLyNkw8EREREZFrHDoE3Hhj1ePQIVdHdNXsTTwZjc6PhYiIyB1wVjsiIiIico3cXOCnn6qWn3jCdbE0gGPHgPT0+utlZgI7dwLx8c6PiYiIyNXY4omIiIiIqAE40oWOs9sREVFTwcQTEREREVEDcCSZxMQTERE1FexqR0RERER0lQoLgY0bLcvyEIpfkWKxXCktDTh7FmjZsrEiJCIicg0mnoiIiIiIrtJvvwF6vWXZIXTB9fi11m2WLwceeMDJgREREbkYu9oREREREV2lK+k6x+52RETUFDDxRERERER0FfR6YOXKquUePYBhw6zrDRhgOZPdn38CJSXOj4+IiMiVmHgiIiIiIroKW7cC+fmmhNP//gfs3g30729dr3t34O+/TUmq+HhApwPWrm38eImIiBoTx3giIiIiIroKp06ZEk433ADI6vlZV5KAsWOBMWOA1auB06cbI0IiIiLXueLEk1arbcg4XM7Hx8fVIVADKysrc3UITiVJkqtDcDpvfw6pbt72OVMT38Oez5mvUZ3O0OjHrHkv1BjPn6TTQV1tWafTQXjgOd58s+nf8vKqMr1egW44hI/wiLnsz+y50Go7m5eHDjX96+WXO7fWFK7F5Nm87bO0KX7v9rbn8EqwxRMRERERkRMEoRBDscG8vLW80IXREBERuQbHeCIiIiIiIiIiIqdgiyciIiIicgnRqxd0//xTtRwb68JoiIiIyBmuOPGk0WgaMg63I4RwdQgNrua4EN72HNbso+9t51ezb7C3nR/g/a9Rcoy3P//8nPF8DXV+RqOATGb5GaZW6wGU1HtMIQSEgNX2DaFRnj+NBggLc/5xaj28885RYeMuWy5XeP37wtN427W4KVyHvf0c+Z3G83n7c3gl2NWOiIiIyIXOZxlx4+OF2JNeYfc2Qgis+UuHG2YUwsu+NxMREZGXYeKJiIiIyIVaRslx/KwBvSfm15uAqkw4JdyRj9H3FyI4QAa5nLNyERERkfviGE9ERERELpY8RIW9R/T46Q8dfvpDh4TeSqs6egOQcEc+tqbpzWUpSarGDJOIiIjIYWzxRERERORiKUlqi+Utu61bPRmNsEg6KRXAqEEennjKzwdWr6565Oe7OiIiIiJqYGzxRERERORi8d0ViAiVkJVn/4BNSf2UCPT38N8QDxwAxoypWt60CUhMdF08RERE1OA8/G6FiIiIyPPJZBLGD1HXX7Gamq2kiIiIiNwRE09EREREbsDRRBITT0REROQJmHgiIiIicgMjByqhsh5T3Kau7eRo00Lu3ICIiIiIGgATT0RERERuwN9XhmHX2DdYeMpQtnbyBNsRj2hcMD9Ohse7OiQiIqJGx8QTERERkZtIGWpf4il5iIfPZtdEVECFDESbHwY5nzciImp6mHgiIiIichPJdgww3ixEwoAedvbJIyIiInIxJp6IiIiI3ERsczl6dFDUWWdcohpyudRIERERERFdHSaeiIiIiNxIfd3oUpLYXYuIiIg8R90/qRERERFRo0pJUuOtz0ttrlMqgFGDmHjyFM2QjRH43bzsXzYCQLjrAiIiInIBJp6IiIiI3Eh8dwUiQiVk5QmrdUOvUSLQnw3WPUVHHMa3uNW8/E7hJjDxRERETQ3vXIiIiIjciEwmYXwtg4zbM/g4ERERkTthiyciIiIiN5OSpMbCn7U2y71KdDTwyCOWy0RERORVmHgiIiIicjMjByqhUgLlFVVlXdvJ0aaF3HVBOUO7dsCHH7o6CiIiInIi9+1qZzQCZ48A+7aY/jUaXR0RERERUaPw95Vh2DWWg4inDPWy1k5NghHwkYAgyfSv4P0sERE1Pe7X4injNPDVs0DWaiCg2ofzJRkQMRqYOhuIinVdfERERNT4XhkNSHJg5kr7t3l1HCAMwCurnReXE6UMVWH1X+VVy97Wzc6bZZzGbeefxWuP/AaEBpiLn8y/Dpg9hvezRETUpLhXi6fvZgMfdgdKVwJ+Bst1fgZT+YfdTfWIiIio6ZDkgNhiSibZ49VxpvqS53ZNqz6QeLMQCf27u9/vhWTD5fvZrm1WQhFs2cJJFmTk/SwRETU57pN4+m42cOBNUxssSQJkkuV6mWQqV8BUjx/WRERETcfMlYCUYF/yyZx0SnCshZSbiW0uR48OpmTTuEQ15HKpni3I5ardz0qSBKnG/azE+1kiImqC3CPxlHEaSHvT9P+aCaeaKtenvWnajoiIiJoGe5JPXpJ0qpQ8xDTOU0qSqp6aHmrHDqB166rHjh0uDugq8H6WiIjIJvdIPH31LKBE/R/SlWSSqf7XzzkzKiIiInI3dSWfvCzpBJjGdVIqgFGDvDTxpNMBp09XPXQ6V0d05Xg/S0REZJPrBwswGk0Difs7uJ0AkPmbaXuZe+TPiIiI3FpJCbB7t2PbhIUBnTtbl6elAZcuWRRJNZMG6hqDYffvDyiVlmWZmcDRo47FdOcC4L/3VSWfZq70yqQTAMR3V2DSGDUC/Xmv49Z4P0tERFQr1yeezh+7PHudg+MWyCTTdhdOAC3inBIaERGRVzl+HBg82LFtJkwAfvjBuvz++4G//7YoqnfOtdxcIDTUsmzVKmD6dMdieusti2ST+HcgJIXkVUmnvCIDFq8pBQB06AB8uOwS5DLgoRsD6tmSXIL3s0RERLVyfeKpIPvqts/P5Ac1ERFRUzRzZVXSSS+AN7wj6QQAWflGzPgg36JMpWTiyW3xfpaIiKhWrm/TGxx+dduHRDZMHERERORZXh0HSSFB6AWgkOqf7Y7IWXg/S0REVCvXt3iKiQMuyQA/g/2DMQKAUQAlcqB5W+fFRkRE5E3atQM2bXJsm7Aw2+WffGI1xpOuxhhP6ppjPAXYaK0zdqzjMcXGmrvZbTe2xfCnb0fB+2shrz7mE1Fj4v0sERFRrVyfeJLJgIjRQKmDN4kSgMgxHIiRiIioNgUFwM6dVcv9+gGJiQ2z7549rYqEVmtZoNHUv5/ISNPDEZeTTjppAPo/OQxAOf54YR5GvfWQ5YDjRI2F97NERES1co9PuamzgQqYfvWxh1GY6t8xy5lRERERebb9+4GRI6se+/e7OqKrV232ukXPv2MuXq4/Zko2SQlVySeixsT7WSIiIpvcI/EUFQv0fNH0//o+rCvX93rJtB0RERE1DdWSTpi5EssrjplXpVYcgxCCySdyHd7PEhER2eQeiScAmPQs0PVFQA8IISBqfGALowCEAPQAur0ETHzaNXESERFR46uRdNIKPdbqT5lXnxKFOGDMMS0w+USuUu1+FkJYJ6B4P0tERE2Q+ySeANOH9aP7cDJrPPQFlqEZC2WA33jgsQP8kCYiImpqhMGcdAKAP/WnUYoKiyqp1VpAVSWfDI0ZJZH5fhZ+400Dh1dXIuf9LBERNTmuH1y8pqhY/NHnW3x170Zs9hkKqACUA092Xo/3/xni6uiIiIjIFV5ZbbGYqj9mVSVVfwzPY2BVAQcYd3+SBKhUlsveICoWeOZbwGgELpwA8jOBkEjT7HUcSJyIiJoY90s8mcmAMgGUXV6U+CFNREREpi751cd3qvS34TyyjaUIl/m6ICq6IgkJgE7n6iicRyYDWsSZHkRERE0UszlERETkUfYYM3FOXLIqFwBW6o83fkBEREREVCsmnoiIiMijLK+oPbmUaqMlFBERERG5DhNPRERE5FFsje9UabX+JHRC34jREBEREVFd3HaMp8PoiFvwjXm53LejC6MhIiIid3DRWIwdhou1ri9GOTbqz2Kksk0jRkVEREREtXHbxFMOwrEUt5iXh6vqqExERERNwgo7xnBK1R9j4slTnD0LLF5ctTxlCtCypeviISIiogbntoknIiIioppSK47aUecYPtCMgCRJjRARXZXTp4EXXqhaHjyYiSciIiIvw8QTERGRt4qOBh580HLZg5WJCvyuP11vvVOiEAeMOegmD2+EqIiIiIioLkw8EREReat27YCPP3Z1FA1mnf4MSlFhV93UimNMPBERERG5Abed1U6JckThovmhMJa7OiQiIiJyobpms6tpuQN1iYiIiMh53DbxFI/tuIjm5kenou2uDomIiIhcRAiB5RX2J5O2Gs4j21jqxIiIiIiIyB5um3giIiIiqrTHmIlz4pLd9QWAlXbMgEdEREREzsXEExEREbm9VAdaO13NNkRERETUsJh4IiIi8lY7dwJxcVWPnTtdHdEVW16j9VILKcCqToTkCxXk5uXV+pMoFwanx0ZEREREtWPiiYiIyFtptcDx41UPrdbVEV2Ri8Zi7DBcBADcrOyEff534UFVH6t6wxSxOBFwPx5W9YEKchSjHBv0Zxo7XCIiIiKqhoknIiIicmur9MfNCafvfW9AN3l4rXVjZAH4yGeUOQG1Vn+q8QIlIiIiIisKVwdAREREVJdJys64U9XToW0qE1AlotxJURERERGRPa448aR1YnP9igq5VZnRaHDqMWuSJKnRjuUqZWVlrg7BqZrCc0jkzRrzmu8KjXF+kk4HdbVlnU4H4cTj+vj4OG3fVh5PAmaOsSj6bulSfHfXDY0WgjOfQ51O3+jHdMWxGvs1WpO3X2eofrxf9Hz8TkPujp81bPFERERERC4i4uJQ8emnFstERETkXZh4IiIiIiLXiIyE4fbbXR0FEREROREHFyciIiIiIiIiIqe44hZPGo2mQQLYsMH0b1JSVZlSaV1PJpNbHPPcOWDNGuDOOxskDKu+wQ11fu6kZt9SbztHb38Oa/bvFkK4KBLn8fbXKPvoO8bbnv+aGuX81Ooai2rAicdtzOvw29qteEG3waJs0uTJWHrnt047Zs33cEOd39lMPdbt1uLWEX5QKEzHUKsrbNatfsySMiO+WFGCB2/wN2/XkLz9PQg0jXOkunnb/ZS330sBzrsWuwtv/07D12jT5PIWT9HRwNChwLBhVUkoAChEENYjyfwoUQQBMCWcHn4YaNcOuHDBNTETERERNZSYcDmemV+ALrdfxKLfSqDX1/1FuKTMiHe/KULrmy9gxV9lTkk6ERERETUUl4/x1KED0L49sH69KQE1dCgQFwfsR3cMw3pzvd7lpoTTZ58B5ZdnRk5JcUHARERERA1IJpMwfqAP/ruiBHe8mYvXvyrEbaP8rOoZjcC73xThnW+KkFNoBACkJDTiTILOUFEBXLpUtRwQYLvpOxEREXksl7d4AiwTSOvXA59/bl1n927g44+rkk4tWwI9ejRKeEREREROlTKoKoF09Jwer/y30KqO3gA8M7/AnHQCgORBHp542rYNCAuremzb5uqIiIiIqIG5XeLJXsnJAIdLISIiqodcXvUgtzXyGg3UKse26dZWidbRLm+8TkRERFQnt0g8JSQAwcGObcNudkRERPVITAT0+qpHYqKrI6Ja+PnIcG0fxwYfTfH01k5ERETUJLhF4kmpBMaOtb++n59pMHIiIiIib+FoIsnjx3ciIiKiJsEtEk+AqetcdZ1xEL/gOvOjMw6a140c6dTZoImIiIga3XgHEk/hwTLEd3awbx4RERGRC7jNwABjx5qGnzAYTMuhyMN1SDWvfwfPmP9fM0lFRERE5OlaRSrQM06JtGMV9dYdN8AHcjkHuyQiIiL35zYtnkJC7B96Yvx458ZCRERE5Ar2dp9jNzsiIiLyFG6TeALsGzA8Ph6IinJ+LERERB7v3Dng3XerHufOuToiqoc94zyplMCoeI45QERERJ7BbbraAaYudE89VXcdzmZHRERkp1OngGequqpj4ECgRQuXhUP169dJhchQGTLzjLXWGdpLgwBft/rtkIiIiKhWbnXX0rEj0L593XWYeCIiIiJvJZNJGD+w7lZP7GZHREREnsStEk9A3Ymlli2BHj0aLxYiIiKixlZfd7tkB2a/IyIiInI1j0o8JScDEidwISIiIi828hoN1Crb67q1VaJ1tFuNlEBERERUJ7e7c0lIAIKDARRYr2M3OyIiIvJ2fj4yXNtHg1V/a63W2TP4uEcJCAAGDLBcJiIiIq/idoknpRIYMwY4u9Sy3EcDDBvmmpiIiIiIGlPyIB/biSdvG9+pZ09g61ZXR0FERERO5HZd7QDbLZuuuQbQcOZgIiIiagJsjeMUHixDfOda+uARERERuSm3TDyNHQvIa0SWkNC4MZRXCDw5twi/rNeipKz2KY092bz1WfhkQzbO5Ze7OhSn+CsjD6/sPIx/sgsghHB1OEREXscgjNiSl43n0vfgcHGR1fpNhRl47cwe7C7O5XXYQa0iFegZp7QoGz/QB3I5B7skoip6g8CmI8V45ofzOJ6ls1q/bn8JXl+WjT2ntLwOE5HLuF1XOwAICbk8e92eqrLq3f8bg0opwc9Hwg1P5UOtAq7tp0bKEDWSEzVoGSVv3GCcpH8bP/R7Kx0PfAP0bumDlB7BSOkRhD6tfCGTef6N7TURwbh93R68uusomvuqkdwqEimxkbg2phl8Fd7xHBIRNbaiigqszrmI1MxzWJl1EbkVOiSEhOPtjj2h01l+6ekfEI7bjmzEzDO7EaPyRXJoS6SEtsS1QdHwkbvlLYhbSUnwQdqxCvMyZ7MjIgAoLDXgt/1FSE0rxKr9RcgrMWBoR3+8c7MaWq1lF92BHXww5aPzePn7bLQMUyC5bwBS+vpjWFc/aFRu2QaBiLyQ2971xU3sg4570gEAPboDP4xs2egxPHaLHz74tgRFJQKr/tJh1V86PIgi9OqgQPJgDVIGq9Gvi9JjkzR9Y/2Q0iMIqXsLsftsGXafLcNrKy4iOkiJ8d2DkNIjCCM6B8LXQz+UlDIZ/t2nPe7ckIYLpTp8mn4Gn6afgY9chuExzZASG4nkVpFo7sc+nEREdTlRWozUzHNIzTyPjXnZqBCWLYFf6dAdko1pZ1UyOV5s0QP3H9+K8+WlWJBxGAsyDsNHJsfI4OZIDm2J5NCWiFb5NtapeJSUQT544ytTSzKVEhgVz88roqbqWKYOqWmFWL63EBuPFkNvsFw/MyXK5nYalQzP/6sZHvlvBs7m6jF/TT7mr8mHr1rCyO7+SOnnj/F9AhAV7LZfC4nIC7jtFWbMjb547IWOAIDbJwJwwT1paJAMM27xw+ufF1uU7zmix54jxXjji2JEhckwPlGNlMEajOivgp+PZyVpZiZHI3VvoUXZxcIKfL45B59vzoFGKWF4p0Akdw9Cco8gtAjxrLElprSPwRu7juLEpVJzWZnBiOVnsrD8TBaAfejbLAjJrSKQEhuJPs2CbH55IiJqSgzCiK35OViedQGpmedxsLiw1roJIeEYHhZZ6/rpke3x5rm9OKsrMZeVGQ34Ne8sfs07CwDo598MKZdbQ/XyC+V1+LJ+nVSIDJUhM8+Iob00CPD1rHsMuxw6BLz8ctXya68BnTu7Lh4iN6E3CGw9XoLUtEKkphUiPcO6G12loR39MbRT7TNC3n1tMN7+KQcX8vXmslKdwC87L+GXnZcAXER8nAbJfQKQ0i8APWPVvA4TUYNy28RTx45A+/bA0aO2BxtvLNVbPdmSkWvEF7+U4YtfyjyyS171Vk+2aCsEVuwrxIp9hR7ZJa96q6fa/JNTiH9yCi265CXHRmI4u+QRURNSWFGONTkZFl3o7FFba6dK1Vs91WZncQ52FuewS14NMpmE8QN98N8VJd43m12l3Fxg2bKq5RkzXBcLkYvZ6kJnj9paO1Wq3uqpNtuPabH9mJZd8ojIKdz6bi4lBfh0VSFeW2wEFjv3WAaj5YVdLisz/9/PR6o18VSdrhwWXfJ6dlAgpZ4ued9sz8P/duVf/QnYwWCocY5yU1LlQkGFreo2Odol71hhCZ7ddujqAreT9XNoOr8Ko/0DKVbvkqeRyzDicpe88a0iEOPnpTf9ROS94uKQ8fGH+DH3FADgH2MGCg79aV5dYtDjorYMF3VlyCnXwXy1VF5+1EMCMPXIRuCIabnmwLWVCSkj7L8OV++SJ4eEcJkPouV+iJL7wUequm05HHIOCLN7tx4rZZCXJ56ImoCD53R4aWmWzXXF5QZcLC5HRnE5ckorHLhamkgAbvvkjHlZ1NiDBNN12CAA+Ohhj7OlFZi/qQzzN2VBLgMighSIDlEgKlgBjdL2Dw1f3hmLAA1/sCUi29w+8bR88zlkph61e5sLyiicVMdalV9TshsqYf/sbUbIsNX/GqvyluXn0Kr8vH072QWs2wUs+KQd5FERGJ+oRvJgDUb2V8FPYQC2bUPJxmxkbsuza3dFSj/sC2tvVd4p/yTCdLV3g7Bld1hHlCotb2KDdUXomn/C/p1kAH+ebYbPN7ew7pJ3LA3Q6aDPv4TMTXvr3ZWAhL/iuliVt8jLRmye7Q/q2hyNaI6swBCLMoVBj/4nDzu0n0tqXyy/3C0PAPo0C0JKqwjcrCtAF2N51S/8Gg3QsyegtONbGhFRY4qKwskpk/DQ3hUAALm+AAPW/WNRJeDyo0Mtuyj20SCtfSur8o6nL6JZ4SW7Q2kHYE9cK5T4Wo5TFFhciu4nztW7fRGAIoMEGGTICAjB8X6+TSLxNKKfBtd0ViE2yq1v2YioDjlFevy4vfJ6KQC5ABRG00N+dTPNCQAXiu38jnMFt6oGABeLy3GxuBw4W3u9z+7gjHlEVDv3vYvJy0Ni4VaM0Gfg48N3273ZnIh78WTLV6zKfzx+N1pUXLR7PyUyH/j3Pm5VfkfuMrxx4R279wMAU1p/hCXKmyy65N3Q9RKWfj4Y9wC4x879bI7sicHXf2FV/uaOebjx1DqHYuo64TscDG1nURafdQCrVz3i0H4+7DoJMxKetuqSd/77G9C84AI6Adhsx350CgU0H/9kVT5l23q8/fPXDsU0beoMfDVohEVZgLYMm999zqH9bG3TEYOe+495eVdOIXblFKLrglnoumuLRd3yXj1R9NcmNPOpvX89EZEr6KsNBO6rK8fmh2Y5tP2OTq0R/9nLVuUzF/6CW/7Y7tC++nw+E7s7Wv441PvoGax/1LHP1QXXJeH+AROAchkggAi1BnJJBl/hPT8AVOgFMi6Px/LMbf44m21qndwy3HvOkcjbZRSVo8IgcL5QB6gqTIkmmQDcfKiKK1GzpRURUXXum3g6cQKKG5LxsavjaGCSBPTqoET/rt574xgbpoJa4b19wRU2bhZUe9Lwzuqv8M4ND7sgIiKi2ikkL7weCwBFGsAoBySBLLkA9DKUBikBP1cH1zCOX6xA5wdOW5SpFBJ0P8e5KCIictTYz9Kx5/zlCW4iLhdeUgFGAF6We5K87YSIqEG5b+KpZ0+gd29g925XR3LV1CrgX8NMM9+NS1AjMkwOZAvgcVdH1jAkCRjQxjRIeXKPYHRrroH0jRzIcXVkDad1gA9SWkUiJTYSw9dEAjut6yh19nflJCKiq1AhA/SXE2oKIyA3Vi0TEbkznRzQKqq62imMAC9fROTl3DfxpFQC27Yh9aNtKMkvtXuzwJBo/CfCurvThuPfQK6vPTGg19cYmFqpxH86mPbzyf9Kceysaf3XYROwPmBgvXFEhsiQ0EuFQT2U+Di5GzQtQy0rBAcDmzZh77lSHLyorXd/AKDzDcB/2rawKi+MfxVLix6rd3u9vmpAwTvbdQMCggAAm48V4+c9Bdge0RWJ131uVyy+SgnXtPZDn/i2yBjTAxGBNVpw/fADoNMhV6vD2nP1Z6CEJOE/va2nTw5ofTeWXj/Orpj0lwdP79MyFp3CmkGpNL28C3R6zNp5CIlP29+9RALQtnkk3o7vhJRWkegS4l81ptPrr2PpHcnY+NcazJv9rd37JCJyhVi1P/7T2jRmoaTXY+n/vjKvExDIKtfiVFkpTpYWI6fceia7Yh81UGY9YOyrt/wL85NHon9wM/N3JmONyRwqJ9XQCgP+KcvBkZaRVvvZ3b4VEj+27gotAYhW+CJWFYDWqgCEylXm67CiWTOMDQcy0zbgm+f/C0AARglffvwy0GqkPX8WIiKXmDo0GN3D/c3LRiFwrqAcBzPKcDCzDBcK7Z/0BwDkEjC6c7C5956xxmQ7ssuT7ZRojVh3oMShfUsAWkeo0KWFCl1baBAeJK+1XZMPZ74jojq4b+IJAJRKpDyR2EA7G1rnWq3WMvmj0ZgGPz12Vo9nP6oaPPWsqgXOqqyTP5IExHdVImWwGilDNOgep6hzemkolUBiInoA6GH3OdTG+kbeFlvnKITA4m25AIACdSC2RPWqdfvYMBVSugchpWcwktr7Q62s4wPmGtOXnDAAk+2KrhY92tVf57LansPX/jkCvVyBLXFd69w+QKnA6BbhSImNxNiW4Qj3Uduu2LkzzodWYG/2QbtjIyJyleZqXzzZoltVQetetdY9ry3F8szzSM06jz9yMqGt/AJj43ebw1GtcDgKmN6jP6a3NF2ra7sO//v0P9hy1vZEE0X+vtjSwzS0eYBciTEhMUgJbYmxIS3QTKmxuQ0AZGXtwgqtDh1PVk1AodKy5SkRubfr+gXgxh6hta4/m1eO5WmFSE0rwp/pl6DT1z12kkEAtwwMwpSBpn3Wdh1+dnEm1u22/nGhpiBfGcb08kdK3wCM6eWHsAD3/rpIRJ6BV5J6vPnfYhgMttf5+UgYNUBl2YXOw/yaVog9Z8tsrrPZha6uZJobKtBVYO6+k7Wur96FLik6DCo5f60hoqYrRuOL+2Lb477Y9ig16PF7TgaWZ57H8qwLuKiz/VnxxrEDmBLTBkqZ7etnboUWH144VOsx22oCkBLaEimhLTE4MBIqmQOfpVc5GxQRkbtpGarCA8PC8cCwcJToDPj94CWkphVh+d5CZBbpbW7z+vIMTI4PgUJu+z49u0iP/1td+yzacVEqpPT1R3LfAAzu5AulwrPu94nI/THxVIdjZ/VYtNLyRrtVlBwpg9VIHqzG0L5qaNSee2EWQuCV5RcsyvzVMozqEoiUHkEY1y3Iugudh/lw/0kUlFc1WZYADIwMQUpspHUXOiIiMvOVK3BdZAtcF9kCRiGwqzAPqVnnsTzzPHYV5ZvrnSgtxuLzJ82tnmqae+EALhmqrsMySBgUGIGU0JZIDm2Jzj5BV34dlhvrr0NE5CpXmRv3U8txfe9gXN87GEajwM5TpVi+twipNX44PpKpw9Lt+eZWTzX959dclOqqgpFJQEInX6T0NbVs6thcxfthInIqJp7q8OZ/i2E0Av27OdCFzoNUtnZyqAudB6ls7WR3FzoiIrJJJknoFxyGfsFheLVDD6sueZWtnmqqbO0UKFditJ1d6OxlFEZAYfmtrsTArnZE5D5KtA2XHJfJJMS39UN8Wz+8dkO0uUve8r1F+OPQJXOrp5oqWztV70I3trc/Qv09r6cGEXkuJp5qUV4hcG0/FWY9HOCRXejsIZOAvS938cgudPY4XVyG70f0YRc6IqIGVrNL3h85GTirLUVzmeVtxRldCX7qfK3jXejssFebZzUT1Bn9JduViYhcoLDUuslTibaWMTwcZKtL3rn8ckT5W9Y7k1OB1GdbsQsdEbkUE0+1UCkl3D7e19VhOFVKz2BXh+BUPcMCXR0CEZHX85UrkBJpmnSj5qC2vf3DnHbcHbosNK9RlivZHoeK3Fjv3kBaWtVyO/snFSFyd0UlBqBGzn3P8XLcHt+wx6nskgdYX4f7tvVp2IMREV0BJp6IrtDuji3R49uXzMvdusS5MBoioqblnFRolXjSKSpQpC9HoELlkpjoCvj5AT2ufn5fIndz4mIFtOUAauR9dhypf2Y5IiJvw/5HRFeo1EeNfe1bmB8636sfs4SIiOq361IOKtQV1itkwEcZBxs/ICKiGpZvK7FZvuuYDnoDZ+QkoqaFiSciIiLyKO9n76t13XfFRxoxEiIi21K3ldosL9EK/HVQa3MdEZG3YuKJiIiIPMoa3ela1x2UZ8FobLiZpIiIHFVUYsSGfbWPObe8lqQUEZG3YuKJiIiIPEZehQ6ZmsJa1xvUevyUX3tiitxMQQHw++9Vj4ICV0dEdNVW/1OKCn3t61Nr6YZHROStOLg40RUKulSKfgervtz4DmzmwmiIiJqGDzP3A/K6x0dZkHcQN4W1aaSI6Krs3w+MHFm1vGkTkJjouniIGsDy7XUnltLPVuDYhQrENVc2UkRERK7FxBPRFep2/AJ+f+h98/KLS1sCvV0XDxFRU/B98THA1/T/Lde0hXR6rlWdrYbzjRwVEZGJwSCwckf9XelS/y7B4zcGOz8gIiI3wK52RERE5BGMRiMOK7LrrVfsU4oDpfmNEBERkaW/07XIKax/nLnl2znOExE1HUw8ERERkUf4NvcEjKo6Bk6pJAFzM2uf+Y6IyFlqm82upo37ylBYYnByNERE7oGJJyIiIvIIn+cfsrvuKu0p5wVCRFSL1L/tGzhcbwB+21n7zHdERN6EiSciIiLyCNvFBbvrXtDko0hf7sRoiIgsnbhYgYNnKuyub2+SiojI03FwcSIiInJ7uy7loNTHsnVA84wCTErdY17+LqUXLkQFmxbkAh9lHMSLLXo1WoxE1LQt3+ZYImnljlLoDQIKueSkiIiI3AMTT0REROT23s/eZ3XX0uZsHua88Yt5eXuvVlWJJwDfFR/Fi+jVOAESUZNn7/hOlfKLjdh6SIvB3XycFBERkXtgVzsiIiJye2t0px3e5qA8E0Zj/bNLERFdraISIzbsc3zMptS/ObsdEXk/Jp6IiIjIreVV6JCpKQQASHoZRurao2VZqFU9dbkSU/W9oNApAQAGtR4/5TuesCIictTqf0pRcXnSzV7tVPh5ZhQ0ausudPeMDcDj/wqCRmVal+pg9zwiIk/ExBMRERG5tfcz90MSEkbq2uNMzF1Y03481JLcuqKQ8GXboShse685AbUg72DjB0xETU7qthJzwmnX/7XA9QP9YGvkpmA/Gebc1wwnv2yFx/8VhFOZehy7YP+A5EREnohjPBEREZFb66oJxpnwu9BC7WdXfV+5El+2HYp5hgQszj7u5OiIiIB7xgYisasGkmTfQOFRoQrMua8Znrk5GEWl7BJMRN7tihNP9l5UiVylrMzxfvb2qqiw/mXKaDBCq9U67Zg1NeaxGouPj+Xgms58Dsn9eeNrvLqm8DnaUO/h6/1jAGH5mhBC2KgpLOrIANwR3NppryWnPod+bYGhv1kUlet0jfq6aYz3oBQaCvl995mXDaGhEPwspUbUUK+Ba+Ik6HQ6izIB6+uU3mCwOGawr+nRUHHUvJdqCprC56k3awr3+/ysYYsnoit2sVkQPr45ybycH2E93ggRERHVTrRtC/3777s6DCIiInIiJp6IrtCJFuF4+NlbzcvXBzR3YTRERERERERE7oeDixMRERERERERkVNccYsn22MreK6afYO97fwA676lGo3GRZE4R83nsKHO76i2ELEqf6hkVTMoKZVKq3pyuczimEIIHNTmo6uPc7rgedvzZ0tTOEeqnbc///ycsd8RXQFaKwMsrsO2x/SQrK7Dh3T56KJxznW4oZ7DnEID9EaBqJCq27L0s+Xo/MBpi3oqtRq6GsdMP1uOuOZKKORXP8aJt98n2NIUzpHq1lCvgQMZpega5WtRJtmY104hl1sc85LWgLxSPWJD1Q0SR038rPE8PD/v0xTOsT5s8URUj3RtAeL2L8WC7IMoNxrqrS+EwIrCM4hP/xlL8o41QoRERN5tnzYXHY98i8/z7L8OpxadQr9jy/Bdoftfh33UEro+eBpPfp6NjHy9Xdukny3Hbe9m4JZ3Mxok6UREV+e1NecwesEh/HXykl31L2kNmPXHebR5czeKy+u/rhEReTImnojqMTwwBtl6Le4/s7nOBJQAzAmn5GO/YWdpNlKCYhs/YCIiLzPKvyUu6Etwz/kN5gRUbb/hVyacrju9Cru0OUgJaN2YoV4RP40MAzpqMOfnArS9+1SdCajKhFOXB0/jmw2XMK6fr816HmPnTiAuruqxc6erIyK6IildQrDmcCESPjpQZwKqTG80J5yeX3EWgWo5ukQ2vZnoiKhp4eDiRPXwlSkwIjAGywvP4GxFCe4/sxkySOh78BSWvvC5ud6tb92D5C6nzMvhCg3i/cJdEDERkXcJkKsw1C8Ga4rP4lTFJdxzfgOg1qOkVRjue+tmc72DrYNw3elV5uVohS/6+HjGdTgl3g8rd5aiTCcw5+cCvP9rgVWdcr1AlwdPo3rPmZR4v8YL0hm0WuD4cctlIg80tnMwZBJgFMCaw4VYc7gQNnraYd4/52GstpzSNaSWrsNERN6DiSciO6QExWJ54RnzshECmnI94s5lm8tU5RUW24wPagW5xEaFREQNISUgFmuKz1qUZUQG4dPbBlUVlMuAsqrF5IBYyDzkC11yvB8emFf1mWI02q5XPekUESxHfAeOG0HkDsL8lEhoE4BNJ6q1dLJx+an51k7pGuLUuIiI3AG/FRPZYXxQK4e3YTc7IqKGkxLYulG2cZUWzZTo3c6xwYXH9/ODTOYZiTWipiCli2NJpAC1HEPaBjgpGiIi98HEE5EdYlR+6OPbzO76KkmGkYExToyIiKhpiVUFoLsDs9NpJDmG+3vWdTj5Gse6zXl8NzsiL+No66XRnYKgUvDrGBF5P17piOyU4kCrp6EBzREgVzkxGiKipic5wP6WpMP9W8BXpnRiNA3PkUSSSiFhZG8PH1icyMt0jNCgXZj9LRcdbSFFROSpmHgispMjXeccSVIREZF9as5QJzMY4VuqMz9kBmO1up7X3blvnBpRIXK76g7r4QN/H97GEbkTSZLsbvUkk4BxnYOdGxARkZvgHQuRnfr4NkNzpX2/LidzfCciogYX7xuBcHnVYNoDd51CSefnzI+Bu0+a1yUHet51WCaT7O5ux252RO7J3sTTwNYBaObvWa0yiYiuFBNPRHaSJMmuQca7aULQWs2BIomIGppckmG8HQml3ppmiFH6N0JEDS/ZzoSSvfWIqHENbhuAIE39LReTuwQ7PxgiIjfBxBORA+zpbpcS7Hm/shMReYqa3e1s1vHA1k6VRvTyhVpZ90x1PVqrEBvBlhJE7kgpl2FMp+B66zk6EDkRkSdj4onIAcMDY6CR6v4Vy5GxoIiIyDEj/VtAJdV9+2JPcspd+WlkGN7Tp846bO1E5N7qa83UJlSNLpF1v8+JiLwJE09EDvCVKTAisPbpucMVGsT7hTdiRERETUuAXIWhfrVfh6MVvujj49nX4frGb+L4TkTubWznYMjqaLiY0jUEklR3y0YiIm/CxBORg+pq0TQ+qBXk9fwST0REV6euGeuSA2Ih8/AvdHW1aIoIliO+g6bW9R5JLq96EHmBMD8lEtrUPt4nu9kRUVPDb8hEDqo+wLheLjM/ACDZjsHHiYjo6qQEtq51nSfOZldTi2ZK9GqrtrlufD8/yOpqSuFpEhMBvb7qkZjo6oiIGkRKF9vJJR+FDEPachIaImpaFK4OgMjTxKj80Me3Gbb0ApTb5pvLVZIMowJbuC4wIqImIlYVAH+orMolACP8veM6nBLvhz0ndDbLicj9pXQNwTPLz1iV94r0h0rB3/6JqGnhVY/oCqTYaNk0NKA5AuTWX4SIiKjhhcM6AaMSCvjKvGO2N1sJJpVCwsjevi6Ihogc1TFCA5XRuvtovyi2diKipoeJJ6IrYGucJ1vJKCKipuxA3iXszS2CEKLB9x0O6wSMSnhPQ+6+cWpEhVh+aR3Wwwf+Prx1I/IEkiQhyFhjPDYB9PG2xJPRCJw9AuzbYvrXaHR1RETkhrznDo3ImV4ZDUhyYOZKAEBv32aIVvriYkWpuUpyzWTUq+MAYQBeWd2YkRIRuY1QtRJtl6xDhI8aKa0jkBwbgWExYVA3wCDSQVCjtEaZ2osSTzKZhPHX+OGLNUXmMnazI/IsgUYfZKOkqqBMgUC1l1ynMk4DXz0LZK0GAqolmy7JgIjRwNTZQJTnj7lHRA2DP5sR2UOSA2KLKZkEQCZJFgOJd9OEoLW62i9Yr44z1Zc4Qw8RNV3Rfhrc3zUWZ4rL8PH+0xi7YgfC/rsWN/62EwvTzyKr1HoMI3vZmopcLrxo0G1YJ5rqmu3OY507B7z7btXj3DlXR0TUYPyFCjBUuy5dsj1pgMf5bjbwYXegdCXgZ7Bc52cwlX/Y3VSPiAhs8URkn5krq5JJr44DZq7EzcUqBH1tas10bUBz4P6BQIsW1ZJOCeYWUkRETdUzvdrikwOnoTWYfhEv0Rvw08lM/HQyExKA+IhgpLSOQErrSHQPDbCZUKpNiY8Ku7rGmJdLfbzkS91lI3r5Qq2UoKsQ6NFahdgI7xi/ysKpU8Azz1QtD7z8WUrkBSRIQLEKCLqcZC/2grFAv5sNHHjT9C1SkkyzOlRXOeumQpjqfQdg0rONHCQRuRsmnojsVSP5NHjYMxj54Y9V68dMAr64l0knIqJqKls9vb/3pNU6AWBbVgG2ZRXg39uPoJW/jykJFRuJoTGh9XbJ29OtBfqufMq83LIkrKHDdyk/jQzDe/pg5c5SpPT3wtZORE3BpcuJp3IZoPPwlvAZp4G0y0knWT0/EsgkwChM9ZMms9sdURPHxBORI6olnzQ/vWC57n/PAEEHmHQiIreSXabDb2eyG+VYFRUVFstKpamFTrSvfS2RKrvkfbz/NPwUcoxq2QwprSMxvlUEIuzch7dJiffDyp2lSL6GiScij1SiMmXZL6lh3TzIw3z1LKCEqaWTPWQSoBTA188Bz3zr1NCIyL0x8UTkqMrkU9AWYIgK2Fhu+pdJJyJyQ8cKS3HHn2nWK4RAwvGDDu2rVKXG7lZxVuVxWecRWVRQ57YJNZb3xbRGkY9lMsVfW4qe56paRmWlA18A+C+ALqH+SIgKxaCoELQL9EXXcwdQojqL7FB/HGkX4dB5eJLxvVQYZTiA+KwMIKeWL3vduwNBQZZlxcXAnj0OHUsKCIDo2NF6xZ49pv05YsAAQFHjNjMjAzh2zLJs717H9kvkaQwyoFTp+d3sjEbTQOL+Dm4nAGT+ZtpexuGFiZoqJp6IrsTMlcDjg4BhB4DBakAhAYVdgblMOhGRZ5Abjdg8x7FxNw5Et0K3l+ZZlT+75n+4+681Du0r8YnZ2BLX1aKsU8Y5u2Oac/nfxTf0xe0fTHHo2B6jogItkxOxevdu4Lc66q1bBwwdall25AgweLBDh1PcfDMqvv7aesU99wA7dzq0LxQWAoGBlmXLl5v2RdTUFKqBEg8fo+38scuz1znYaksmmba7cAJoYf3DBRE1DUw8EV2px5cCn3YzJZ30wrRMROROLlyA7KPP8cjx8wCAZb0TcDHYu8ZB6lARji/UY6GQZGgR6D3d0U5ll+OlZ1dg0e7drg6lcWk0ro6AqMHE9C+ErlMZynQCPuoyAIA8JBiONxtyAwVX2WU7P5OJJ6ImjIknoiu18P6qpJNCMi2zmx0RuZMTJ9B/1kz0v7y4q2U7r0s8xQeHIT7SRvcwD6etMOLk2SJXh9G4evcGevZ0dRREDeZ8mRaH8kpMC5f/MciMrgvoagSHX932IZENEwcReSQmnoiuROXsdlIC8IblbHdMPhGRuzAKgeojavQICwCiQkwLQuDBN627zdVFq9IgoXL7an6/9U7sGn8DjEZhUS67POuRQQgcyLMcI2hfTGur/aRHtUDiE7PNyxKALiH+GBQdgoSoULQL9IVUc1Db8Kv8MuRBHo1/ER++N8Z6Rffu1mUdOgCbNjm0f31AgO0Vn33m+BhPvr7WZcnJtcek0ZiSTkoP745E5K1i4oBLMsDPUP+MdtUZBVAiB5q3dV5sROT2mHgiclT1pFNlkmkmk09E5H4O5Zag+ihK84Z0BxIHVSupOeT31dFqtRbLmsvdppYcOY9P/9hT7/bFGl/s6dTDPJvduFYRiGyis9nZsi+kA5CYaF9lf3/7614majx/Zr16ObSfWkVFmR5E5HlkMiBiNFDq4D2uBCByDAcWJ2rimHgicoStpFMlJp+IyM38da4QXeuv5lQGo8BrO4/WWaeVvw9SWkcgOTYCQ5uHQaOQN1J0RERkt6mzgQ9XAgphX6snowD0AO6Y5fTQiMi9MfFEZK+6kk6VmHwiIjey5VwBXD2H2NJjF3CksMSiTALQPzIYybERSGkdie6hAdZd6AgZPs2wIG6CeTnTp5kLoyGiJi8qFuj5InDgTVNSqa7kU2XX614vmbYjoiaNiScie9iTdKrE5BMRuYEzhVocKyhzaQzVWzv5KeTsQueg4wGtcH/8y+ZllYLJOSJPoisX9VfyNJOeBb4DkPYmhFIAApCqJaCEUUCSYGrp1OslYOLTroqUiNwIE09E9hAG+5JOlczJJ4Nz4yIiqsXy4zlWZRUGIxpz6OZNF/MwsmUzfJjYFUnNQ9mFjoialKIS6xnsDAYvSEZNehZImoz0559DXMAqKEOrzslYKIM8Ziww7R0goqULgyQid8LEE5E9Xlnt+DZs6URELpR6zDrxtCerGNc0YgxDY8IwNCasEY9IROQ+CkuE1bet9NN6oJtr4mlQUbH4oc23WDNzIzb7DAVUAMqBtxLX46UPhrg6OiJyM5xegIiIyMsUl+vx5+k8q/K/zhU0fjBERE1QYbERxaXWLZ52Hip3QTTOJAPKBFAoTP9K/HpJRNZ4ZSAiIvIya0/modxGd44t5woghBd08yAicnOr/9baLN+RXtHIkRARuR4TT0RERF7G1vhOAHChpByHcktsriP30yfvINJTU8yP3rkHXB0SEdkpdYvtxNPFHAOOnGHyiYiaFiaeiIiIvIhRCKw4nlvreltjP5F78tFr0fHSafPDR69zdUhEZAe9XmDlX7YTTwCwvJakFBGRt+Lg4kRERF5kx8UiZJaYxhA5ERqNh657xLzuRGg0Uo/l4NkBrV0UHRGR99u6vxx5RdbjO1VK3azFE7cENGJEznMYHXELvjEvhwR2dGE0ROSumHgiIiLyItVbNF0MbIZ5A6+3WJ95vhA5peVo5qtq7NCIiJqE5VvK6ly/KU2H/CIjQgI9v/NJDsKxFLeYl6doXBgMEbktz7/aERERkVnq0bq70hkFsLKOrnhERHR1UjfX3ZXOYAB+q2XwcSIib8TEExERkZc4U6jF3uzieuvVNvg4ERFdnePn9Dh0Sl9vvfpaRREReRMmnoiIiLyEvQml307kotxQ+/gjRER0ZVI325dQWrVVC71eODkaIiL3wMQTERGRl6g5Y51kNEKlLzc/JKMp2XSp3ICNZwtcECERkXerr5tdpfxLAlv2ljs5GudTohxRuGh+yA2ef05E1PCYeCIiIvICxeV6/Hk6z6Js0JkD0L00zvwYdOaAeV3q0ezGDpGIyKsVFhuxcY/O7vr2to5yZ/HYjotobn60y93u6pCIyA0x8UREROQF1p7MQ7nB/m4bqcdyIAS7eRARNZTVf2uhN9hfP3ULBxgnoqaBiSciIiIv4OiA4ScLtTiUW+KkaIiImh5HE0lHzuhx5EyFk6IhInIfTDwRERF5OKMQWHE81+Htao4JRUREV0avF1j5l+MtmJaz1RMRNQFMPBEREXm4HReLkFliGtBVJgFTukahXbCPVb3RbcLQIdTXvMzEExFRw9i6vxx5RaYJHORyYOo4XygVklW9pN5qtIuRm5ftHYyciMiTMfFERETk4VKP5ZgTTgfvHoBFKV0R5qO0qjeweSAO3N0fi5K7oEOoL7aeL0ROKWcgcldbIvpAunWv+fFXZB9Xh0REtUjdXGZOOKV/G4UvXwqFQm5dL76LCulLo/Dlv0PQLkaOTWk65F9OWBEReSuFqwMgIiKiqxOkVuDg3QPQMcyv3roKmQxTukVjcpdILD2YifTcUiT6qhohSiIi7xUaKEP6t1GIa1n/1yuFQsLU8X64bbQvvllTivTTFRjYXd0IURIRucYVJ560Wu9uFuqN5+fjY9ntoqzM86dwrYs3PofVefv5AYAkWTdRp6bD21/jDXl+j/SMtNqn0Wj9C7reoLeoMyEupEFjqfk54+2c+RrV6Wy3RHPmMZva8wd4/3WG6tdQr4HHJqoA6KHV6s1ltuYN1estr8MTr5UDEE57LTrzNa7XWzfpMhoNTn9fNcVrFXk2ftawqx0RERERERERETkJE09EREREREREROQUHOOJiIiIyA01L83EpNOrzcs/tRsDIM51ARERERFdgStOPGk0moaMw+14+/kB3neONces8rbzq8kbz8/bn0OOWeUYb3v+a3L2+clk1o2aFXKFU4/r7e/hmmM0NNT56Q0CCrnl9UGtBtoUn8ec3f8xl+2O6G51TKNRQACQyxr++iKErRFqPJuznkPyXA32PjYaoahx3bX1rlQorK/DtrZtKA12fnpAUeObY81lAJDJ5NbnZ2PbhuRt1ypvv07VvB/2tucP8P7n8Eqwqx0REZGXKlVqsDeqjflh4ICsbimzUI+Rb5/E5sMldm9jNAos21aI0bNP2fxyS0SNa/ovh/HJzvPQ6a0ndqjNwewS3PK/g9h0utCJkTWML74AZswALlywLC9EENYjyfwoVQaZ1xUUAK++anoQUdPGrnZEREReandMe/Sc8Zl5+dsuXV0YDdUmJlSJvGI9Br92AsO7+uGVmyLRLMB6tijAlHD6cUcRXv0xE/vP6XBnUghkTmjtRESO6RnphwdWHMVbm87ghcGtML1XdK11D2aX4PWNp/Hd/iwEqOX46oZOjRjplRkxArj/fmDBAuC++4BnnzWV70d3DMN6c70pIaaE0wcfAHPnAoWFwG+/uSRkInIjTDwRERERuVhKn0DsOqXFHwdK8MeBE+jZSgP/GnUMRoGezx/F/nO6atsFNG6gRGRTSodmeHrtCZwt0uGBFUfx5qYzKFforep9d/oc/jPvKCo7F42JC4VK7v6dUNq1Azp3Bg4dAj780JSAat3aut6mTabywsuNuPz9gaFDGzFQInJL7n+VIyIiIvJyyb0tE0hpZ7RWdYwCFkkntVLCiG4101NE5Aodm/mifWhVd+ZzRToY5AaremdKylB9RJvk9mGNEF3DSE6u+r9OBxw+bF3n9OmqpBMAjBplGrOOiJo2Jp6IiIiIXKxPax9EBzvWEH1YZz/4a2x3ySOixpfcwbEkkkwCxnlQ4iklxfFtqieriKjpYuKJiIiIyMVkMsmq1VN9UvoEOikaIroSKQ4mnga1DEKYr9JJ0TS8gQOB0FD760sSMH688+IhIs/BMZ6IiIi8VPvsc3hh/Tfm5YAeLwNdolwYEdUlpU8gPluXb3d9RxNVRORcia2CEKSWo1Bn3cXOFkcTVa6mUADjxgGLF1eVdcZBzMJz5uXnMAuH0AUA0L8/EBHR2FESkTti4omIiMhLRZTkY9quNebl33MfdGE0VJ/hXf2hUUrQVoh66/ZspUGrZqpGiIqI7KWUyzC2fRiW7s+yq76nJZ4AU3e76omnUOThOqSal9/BMxZ1iYgAdrUjIiIicgu+ahmGd7VvsHDOZkfknuxNJrUN0aBTM18nR9PwRo82tXyyBxNPRFSJiSciIiIiN2FvQonjOxG5pzFxoZBL9ddL6RAGSbKjopsJCgKGDKm/Xmws0K2b8+MhIs/AxBMRERGRm0juXX9CKTJIgX5tfOqtR0SNL9RHiYRWQfXWS+nQrBGicQ57WjIlJ5sGFyciAjjGExEREZHbiAlVok9rDXad0uJ4QEvcd81L5nXHA1oCAMb3CoBMxm90RO4qpUMYNp4urHV9oFqOwbH1J6fcVUoK8Pjj9dchIqrExBMRERGRG0npE4hdp7TI8AnHp+1vtrGe4zsRubOUDs3w9NoTta4fExcKldxzO560awd07gwcOmR7vb8/MHRoo4ZERG7Oc694RERERF4ouXftiSW1UsLIbkw8Ebmzjs180T609u6wye09bza7mpKTa183ahSgVjdeLETk/ph4IiIiInIjfVr7IDrYdqP0a7v4wU/D2zcid1fb7HYyAOO8IPFUV1c6drMjopp450JERETkRmQyqdZWT5zNjsgzpHS0nVzqGBiAMF9lI0fT8AYOBEJDrcslAOPGNXo4ROTmmHgiIiIicjMpfQIhMxrgqy81P2RGA8b3Yjc7Ik+Q0DIIMoP1V61+YcGNH4wTKBS2E0xdugAREY0fDxG5NyaeiIiI6KoYjQIl5QZXh+FUxdrGPb/hXf0xtGAvSr4fYH7cLj+EVs1UjRoHEV0ZpVyGwFJ/q/J+YSEuiMY5bHWpS0ho/Di8XbGhwtUhEF01Jp6IiIjIYaXlBvx6MBf3/HgU7f6zE3mleleH1KCMRoHtp4rxUup59H7rAL7dmdeox/dVy9C3jeXgxAkdfRs1BiK6OkE1E0+lCsT4alwTjBOMHg0o5JZlTDw1vKdPb8ewgysx5+I+HCkrdHU4RFfE9siVRERE5PH2RrXFwPs/NC8/2bHLVe3vXKEOK9LzkHooD38cL4RWbwQAPDggGi2D1dBqtVe1f1cr0Rnwe3oRUvcVYsX+QmQUmX5ljg1VYeqAMBj15Y0aT0IH3xrLfo16fCK6OgGl/oARVT/1Z/lBkiRXhtSggoIA38Q+6LghHQAQ0xz4Y0JLF0flfZ5p3gMd0n7A+qKLePL0dnTQBCElpCVSQlohISASColtScj9MfFERETkpS5p/PB3bFWySe/v2PhARqPArgvFSD2Uh9T0POy+UGJVRyWX8FxSi6uO1VXO5pVj+f4CpO4rwJ+HL0GnF1Z1XhwTDZVCBm0jN+oaVCPR1Cma85MTeRKFUQ4UaIDQy0n5LO9LHo+6wRePb+ho+v+NgOR9p+hybTQBmBbeHp9nHQEAHNEW4r2LhXjv4n4Ey1UYG9wCKSGtMCa4BUIU/Jwg98TEExEREZmVlhvw+7ECpKbnYUV6Pi5eqruVz93XRKFlsOfc6BqNAjvPlCB1XyGW7yvAnnNlddavbO3kCuGBlrdpMpn3tJQgajKy/EyJpwoZkO9Tf30Pk5ICPP541f/JOV5o3gtfZh+FXlj+OFJgKMe3uSfwbe4JyCFhcGAUUkJaIjm4FTr4BLkoWiJrTDwRERE1cecKdVienoflNbrQ1Uchk/DwwGgU60wDb2trDDCulxpnQG5fpazOpExtXejs8di1kSjXC5TrDdDqapwfnHt+Mp0BHNWJyMNl+wGdcoEcX0B4X/K4XTugc2fg7FkgKcnV0TiP1qi3Svo47Vg1BhPXG+QIV2owOawtFuccr3U7AwTWF11klzxyS0w8ERERNTH2dKGzh94o0GXurgaOznEXX4hHVIDlbG/2dKGzx+PLzuLxZWcbIkyHJVw8is0uOTIRNZgSFVCiBLK9N42cnAwcPw6oPafxq8MeOrkV/80+4uowHMIueeROmHgiIiLyUgHaEnTNPI3I4ny0zz2HYkM8Zv/kh62nLyHn8ix0vgCqT0KU5ReMo6GtrPbVO+MwfCt0Dh3/rxbdIGr8whp9KQdtCy44tJ8Twc1xMaCZZaEQSDi3DwCg3FoBo0aB9MwybDlRgr+OF+NodlWs/S7/W6rQYHd4J6v9xxWcQWSZY7PW7QuNQ5HacsYq//IS9Mw96tB+sjXBOBLS2qq8V/Zh9HBwX0TkpjL9TC2fvFFeHu5othUZFQBWABg4EAgNdXVUDauiArH70pGQWXtrIwDY3aEVSn0sEzpBl0rR7cR5hw53MSwIJ1pEWJX3PXQKmnL7W+wCwJae7QFYdslrlZWP6woFEgIiMCggEq0qP8s0GqBnT0CpdOgYRPZg4omIiMgLTe8RDfmlE7jn1UerCld9Vu92X3Ybg+nJL1qXr3gLPbJPOBSD+qk/UK6wbIn0ryMb8fHauQ7t59ERM/BRvwkWZXJhwOYlD5kWlpj+6XL5cU8t+zkQ0gbdJn9vVf7s7q9xd/ovDsWUeMNn2BLdy6KsU8EpbP65tqPbtrj9GNw+4nWr8i/Wv44+OYcd2hcRuZfO115CULwOpRVy+F5TDABQhvgD8I6xnjZuMeLkkr2YOj8Z3QDgfWDT7PUY/IwX9bmrqAD698fLu3fj5Xqq9lg0E/viLGf163foFH6fMcehQ3584zA8/PRtVuVLX1qAuPPZdu9HL5dBuflTq/KJa7bh3Y+X2dzmYveO0G7dgjZ+rhnbkLwXO3oSERF5oft7t8A9A9q5OgxqSBqNqyMgIgccUmRhQ8U57MAFbKg4hw0V51Dh61jLUXe2frMRn31lrFHWOOMgNZq0NGD3bldH0aDqGmkset9hZP2ztdFioaaDiSciIiJv1bMn0Lu3q6OghtC7t+n5JCKixqPVujqCBuEvU+LG0NZY2HYwXm5R932BTOs9yVFyH+xqR0RE5K2USmDbNtMvtnXcPJ8v1OGv00XYcroIawpVNutMG/+C1RhPChnw+Y1xCPM1bVNeUW6x/tzgBEBm+RuX7GJL5J+8zqHTmNmmDV6Kbm5ZKATyh68DAARp5HXOandJq8f2U6VYd06P0BI58kosZ6Ob3fsOfNkp2ea2Dw0Jx5iupimpy8urzm9pl65Qh1uOwSFdaov8e9fZfV4AMK5ZM2S172hVrrj1a+SXlgIAfAJ8oenXm+NuEBG52KUP50LfvbvNdX/06gn4WY7lJbUrQH6PcQ4d41+hobiubRvzsubyqO0ffKjH+uyTdu8nUqHBQ5GdkRLSCkMDo6GWyU0rptwBJA4BAEw8+xuaHTyKeW9Yd0MnakhMPBEREXkzpRLo16/OKjEAbr78KNTqseZoAVIP5WLl4XzkXh6EfHeUdXIEAP5P3hzvj2oLANDWSG5pNDZmzWkfa3o0hFFD7aoWAGD45ccrBoGtJ4uRurcAqfsKkZ6pxbHgVjgWbD2gOgBczFdjwvCuUMplNs6vRiIoIBRobl9M9UqMb5j9EBFRgwno3Q9ITLR/g3AfYGi0Q8fwqflZo9TgjK4Y78SoUNG8fa3bSQD6+4cjJaQVUkJaoZtPCCTJxo8yLVqYHgD+OXoS0fpSh+IjuhJMPBEREZFZkEaBm7s3w83dm8FgFNh6pgiph/KQmp6HQ1llVvUXbM/As0ktEB1ou6WUu1HIJQyOC8DguAC8c2NLHMvSYvn+QqTuK8DGo8XQGy3HJzmRo8Pi7XmYPrBZLXskIiJvdcHPB1sSrwEA+MoVGBcaWucYSc7y9vk0VAijVbmfTIHRwS2QHNwS40NaIkLpHQPXk/dh4omIiIhsksskJLYOQmLrIMwe2wbHc8uwPD0PqYfysOFkEfRGAa3eiNkbzuH9lLauDveKxEVo8Ni1Gjx2bSQKSvVYfbAIqfsKsPJAIfJLTV3y3lh1EVPivWx6cCJyOoOh/jrk3n4JC8CD/66aHTatZTR6NHIMZ3TF+CL7iHm5lcrP3KrJogsdkRtj4omIiIjs0i7MBzMSYjAjIQaFWj1WH8nH8vQ8/O9ADp5NaoEQz2j0VKtgXwUm9QvFpH6h0Nfokrd4ex5u6e3v6hCJyINcKvGyGd6aoNTsc5bLWefQIyCkUWOYfWEv+vqF1d+FjsiNMfFEREREDgvSKDCxRzgm9giHwShQWmEAbHQD8FQ1u+Tll+oB6F0dFhF5kMJiI1BjKLjzWQag9mF6yI2U6PX4My/Doiw1+zxebGd7cHFneaNlX4QobIyZ2ECOtQrH3a/eal6+o11rpx2Lmi4mnoiIiOiqyGUSAtQKaLXem5gJ8fXu8yOihqXXCxQVC6BG45id+/VAgmtiIseszb0IndHyB5XthTnI1JUhUt14Yyk5M+kEAJnhgfhiwiDz8uTIiDpqE10ZWf1ViIiIiIiIyF5/7amwOcbTzoNMYHuK5TW62QGAALAy50LjB0Pk4djiiYiIiIiIqAGlri+3WZ5+Qo/8QiNCgvj7vzszCoHl2efR48RpfPLhl+by+x+dhtSIlpge0851wRF5ICaeiIiIiIiIGlDq+nKgp3W50Qis2lSOW5M1jR+UE1yQRWOOqmrWt3zfaBdG03B2FuYis1yLuFItBqYfM5cHlGqxJvcitAYDNHLOJkdkLyaeiIiIiIiIGsjR03ocPmmwmXgCTEkpb0k8nZS1xZOad8zLUwK9oyVXzdnsqisx6LE+LxNjwps3YkTOI9cb4KutaqEn6dkdlBoeE09EREREREQNZHkt3ewqrdpcjooKAaVSaqSIyFGp2efrWX/OaxJPA9JOYfMdc83LO1a3AUa1cWFE5I28IyVNRERERETkBmob36lS4SWBLbsrGikactTZshKkXcqvs87y7PMQQjRSRESej4knIiIiIiKiBlBQZMSmXfUnlepLTpHrLK+ntRMAnNGWYF9xgfODIfISTDwRERERERE1gN82l8OeIXKYeHJfdY3vZFEvy756RMTEExERERERUYNYvsG+hNLR0wYcPun5gzhfY9iBs5famR9ts3a4OqSrUqLX48+8DLvq1jcOFBFVYeKJiIiIiIjoKun1Ais32t+SyRtaPalEOVqI8+aHwujZ57Q29yJ0RqNddbcX5iBTV+bkiIi8AxNPREREREREV+mvPRXIL7J/wGl7W0dR41luZzc7ABAAVuZccF4wRF6EiSciIiIiIqKr5GgLps27KpBfaF/rGnI+oxB2DSxeHcd5IrIPE09ERERERERXydHEk8EArNrEVk/uYmdhLjLLtQ5tsyb3IrQGg5MiIvIeTDwRERERERFdhaOn9Th8sioBERkmQS63rhcTafn1yxvGefIWNWez6+wXZFVHIUmI8w0wL5cY9Fifl+n02Ig8HRNPREREREREV2H55QRSZJiEuc/64cTqMKiUklW9W8dpsGtZMG4YrgIA/LalHBUV9o8LRc5T2c1ucEgE/uw3Akt7JmJbp3YI/WG++ZHWpQMOJaTgy24D0c7H//J27G5HVB+FqwMgIiIiIiLyZDsP6DH3WT/ce7MPfH2sE07V9e6sxE8fBmH3oQq8Nr8Uf+2pQNI1qkaKlGw5W1aCQIUSf/YbgaGhkZAkCfsu5UOvUCA/wN9cz1+ugEImw9SYdrgtug2WXDyJRRdOQggBSar7eSdqyph4IiIiIiIiugoL3wiASuVY4qEyAVVezhZPrhap1mD9NSMdSh5VT0AJAJ6adir2VWNH11bmZYO/nwujIW91xYknrdaxgdc8jbefHwBm5T1cU3j+ysrKXB0CuZC3X4ebwnuYPJs3vgd9fHxcHQK5mYZ8ndfclYB1Qklv0Ns8prPebs58H+v11mVGg6HRrx0NdTxdzWWd7fG3nH1+Na9TzrwfFkIgrXMLxH//jLlsRVT7Rn0Om8L9EL/TcIwnIiIiIiIiIiJyEna1IyIiIiIiIqohIr8QY3ekmZc3DujjwmiIPBcTT0REREREROQwI2QogW/VsuRdHWran8/Al3M+My+PmjvThdEQea4rTjxpNJqGjMPlava79LbzA7z/HGv2Reb5eZ6mcI5kP297/r39Ggx4/3uY5+f5vP192BTGSmloDfUamPPPKdzUPhKxgVXj80g2hptWyBXmYxqMAsuOZiA20AcDooMbJA5nvcZ/Xm5AUKCEYUOqEksKhR5bFQPhH5hnLpvSXAaNRmle3rPXiN17BaZPkTdIHEDjvY/VFbbH5Wns60ZDHW92zi7cHtQRzZVVg4fbumaoVCrzMfXCiG8Kj6Cnphl6apo1SBzefh0GmsbnqaO8KyVNRERERETUyC6U6NB+4Sbc//sBnC6qeyBhg1Hgu8MX0WPRFty2ah86hPjWWd8dhDeTcG1KBYaOL8f6TcZ66+/Za8SNt1Wg9+AKyPiN0y0cLy9E22OLMCNjEy5UlJjLO57IwDdPLTQ/fA8fg14Y8XVBOjof/wb3XVyP9qogF0ZO3oBd7YiIiIiIiK5Cyv+3d+/RcdZ1Hsc/zzwzyeTW3G/TpE3S2AYqLRTolgZaSj29OcM5iqvuFt0VVDh6PMrRXfWsLnC8r1t25XjYgxf0ALLoyuqaCkdbui2EVYoFekloIbWx6Y2kTRqa5jaXZ/9Ik3QymWSmnSeZmb5f58wf83su83uSJ/P0+fT3/T11pdqyp12P7j+mx1qO667FcxV0BiPWe62vW0ueaFdr98iN/6q5hSpyZ8x0d+O24kZDxUXSrmZLa7x+rb7ZUGFB5GiZ9qOW3r/Zr19tHQmnDEPatI7kKRn48mr0w7Oterh7nx7tadE9hYvVbwW0oOe8/ua5PWPrbfnkAf1d/nG1DfdKkry5Ncp2uKLtFogJwRMAAAAAXIZGT4EKMp06OxSQP2Tp0f3HpEmqa7b3nAx7760rnaEeXh7TNLRpnUNPPD0SKO1qtiRZEes1/yG8/ablhkpLKAFNBmtzquQ2TA1aQQ1ZQT3cvU+StGDCer86d0Rtw+NhoTdv/gz2EumK+BkAAAAALoPT4dDGmvjnwPGlSPAkSb4N8d86etdzu5kssh0urc2pins7b25N4juDKw4jngAAAADgMvnqyvSfh07FvH59QbYWFeZMv2KSWL/WIZdL8vvH26pDR/VR/8/G3j/u2qwOx7yx976NBE/JxJdXo9/2/SXm9Ze5SzXXlWtjj3ClIHgCAAAAgMu0oaZEpmEoaEWWoE3GV1eaUk8inDPH0OpGQ9t3jh/fvFCHvj704Nj7neaqseCpZp60+KrUOb4rwcjopV0xr+9jtBMShAgaAAAAAC5TodulW+YWxLx+KpXZjYpnBJNvo5lSwdqVYK4rV8vcsZ93vrwa+zqDKwrBEwAAAAAkgK+uLKb18jOdutlTaHNvEs+73ox53UuZEwr2i3UUU6UzW9fFEVIBU+HbAAAAAAASINan1G2YXyKXmXq3YnW1hq5umH4UU26utKqR0U7JyBvjKCZvbo0cjFhDgqTetx0AAAAAJKGFhTlaWJg97XqpWGY3KpaRTOtvcygzk9AiGS1zl6rSGcM5SpkdEojJxQEAAAAgQXx1Zdqypz3qcochbawtmbkOJZhvo0Pf+ffgtOukg7+Ul+jLf//XY++PlqVuYDjKYRjy5tboh2dbo67jNkytzamawV4h3RE8AQAAAECC+OpKpwyeGj2FKnJnzFyHEmzFjYaKi6Qz3ZMvNwxp07r0CJ6OlRbr2x++fex9rpket8++vKmDp7U5Vcp2uGawR0h36fGNAAAAAABJoNFToMLM6AFFKpfZSZJpGlMGSzctN1RaQpldMlubUyW3EX2ieMrskGjpEdkCAAAAQBJwOhzaWFuqpw6enHR5qgdP0sg8T088HYq6DMkt2+HSe3KqtbWvXa83VGnZf31xbNmb88v08xiffAfEim8FAAAAAEggb+3k4VJFRpYWFebMcG8Sb/1ah1xRKrG8BE8pwZs3X5J0PidTr11dPfZaVFylua7cWe4d0g3fCgAAAACQQBtqSiQrsv2GvGIZafCI+jlzDK1ujDyOynJp8VWpf3xXAm+UUU0+RjvBBgRPAAAAAJBAhW6XcnvzItpvyCuehd7YY7KRTY0rHGkRrI1a2fKmBn0fG3utOHBotruUMHNduVrmjhyZ52V+J9iA4AkAAAAAEmxOd0F4w5Cpq3LyE/oZAwOWtm73654vDehwe+ScS8+f6NIXXm7RrpOnFQhNPifTpfJtMPWm41260/3Y2OvaOxoS+hnT6fX79fE//Uk/7+hQr9+f8P0blqVMf2DsZUw2jC2FTRzdVOnMnjSMstPWgT/ry73NemnouIJWYs/RZNBp9evjA8/qGf9BnbOGZrs7s4bJxQEAAAAgwfK7C3WirmO84dgcOa+//P/3P3EqpK3PB9S0PaDnmwMaGJQ23GpqQY1Dg4Ph695SXqyPv7hXWw4cVmGGSxury+SrrtCGqjIVZEaZpClGdbWGSq8u188O/q0kKTdXesyXcVn7jFe+yyW3w6EP//GPchqGVpWWyldZKZ/HowW5zFM0HV9ejf7tyAu67o2R89SbWyNH+TtSfmID0qncllmtu3u26dvnXlGJI0ub3DXyueu0zj1fcxyZM9YPu5QZ2Rq2gvrAwK+VIVO3mvPkc9XL56zXfEecP+cH1kuGKd3/bOzbPLhJsoLSA7+L77MSjOAJAAAAABIsc9Atnc2UCi6Mcjh6aTfzlmXptQMhNW0PqGmbX3v2R44Kuf++yW/QM0yH/unad+kTzXvVM+zXU4eP66nDx2Uahm6pKJKvukK+eeV6V/6lhTS+DQ61HgxKktbf5lBGxsyX2X2poUE/PHJEw6GQdnR2akdnp+7bu1cNeXnyeTzyVVbqpuJiOR0U+0x0nbtUaw6f0a8/9vB444s3SjffPGN9yHa49MW8G/T53hd0OjSgx/vf0OP9b8glh27NrJLXXSdfVp1qnTMXhiXaVzIa9TN/q4YV1O+DR/T74BF9Rtt0jaNUXudICLXcrJRpTHOOGqZkvTQSJsUSPj24aWR9ozExB3IZ+OsDAAAAADuMhk0hScfmxLzZxSV0VTf26fpN5/XAQ0OThk4bbjW1Yln08QQfra9WTW52WFvQsrTz5Bl9fneLFv5yhxp+uUP/sLtFL5w8E1dJ3sXzPPk2zs6tZVV2tj5RWxvRfvDcOX330CGt2rlT5U1N+sjLL+sXNpXkpSqHYWhlduVsd0P35ixRmSP8HPUrpG1DR/XZ3p2qO/WY3n3qcX25t1n/N3Qi5UryFppF2uy6OqJ9f6hL3xr+g1b2P6HKvu/rYwO/1X/7D0Uvybv/2ZEQaTR8msrFoVM8I6RswognAAAAALDD0XxpSaf0dq40NPWt14lTIf12R0BN2wLafqGELhbRRjuNunjUUzSHevt0aH+f/nV/fCV5Ny03VFwkdfdIm9bN3piGi0c9TaZ7eFhPHj2qJ48epSRvgsbsitnuQtiop2haAmfUcu5MypbkjY56CkWZJ6zL6tdP/fv1U//+qUvy7n92PFSKNvIpyUInieAJAAAAAOzxdq7kN6SSfumOVj3wtqlHnrsQ0FjSufOWurotne62dK7vwg2pR9IHY9u9YUibthvS9qnXsxyWVBjbPi8uyTNChgrOFqjkdIlKukqUPRA+KsUM+VWR06PCjxzQvS+F1Jebq6DT3lvM0IRwyXGhhC7LNKMGTxcLWFZYSd5VeXnyXsElede7y8Lef67nf3Wg65Rtnxfx+zs38vMesAIx72OykjxfVp187jrVRCnJW3f+6aihT6JFHGPwwjkqp85r+hF3k5Xk+Zz18o6W5E0VPiVh6CQRPAEAAACAPSxDOpMtLeyWige0f0jSiQnrOCWVXXjFu3tJPZfdySn277DUU9SjnqIevbXwLel0lnSoRHqzWOqYo8aBl3Wga4PUMrL+p+6+W/vmz4+6v3eysrR/kuUNx46puK8vrr69VlOjfrc7rK2gr0+Ljx2Laz8nCwr03QtleUUZGdpUUSGfx6OGN9/QkiMd0+8gxbkd4ZHA8L69GvR3jr0/VZqnw7WRT7pbtq9DWYPxlS2+tLwuos1z8qxqO7plSIp1JqLD80t0qnykdHW0JO/5/nb9fM9jqjXz1ZjpUWOGR1e7isbmTRo6v0vBCcHT+ewMvb7UE7H/hW91qfT0+biObe+7K9WXFz7yak7voK5pHQ/xro1hP2+X5aptQUlY2/5Ql5y7X9euAb8KjUzdZM5V4+o71fg/3XLmvyTdt1K672npJ/cmZegkETwBAAAAQMLVVTk07DfVfa5Ip9Q9291JjJIBqaRDauyQBpzSrg7pl+OLH/nxj6fcvHnRIt3yta9FtH/j6af1/t274+rK4i1b1FpdHda2vK1Nv/vmN+Paz8MbNuizd90lKbwk78inP61HurrC1p3nzolr36noka88E/b+0c0rdO+3I4fgPfWZJ7Xoz10R7VMxOh6KaPtQ0+t66Gu/iWs/93zrA/rBnSvD2txDfjXf8f2o2+yapO3VJR5d/+JnItq/+i87dOcvXo+rTzfu+JT+dH34+XhN6yk1b3g0rv386CM36BPfvyOi/Yl7fqHFBzsjN1iVIa1pkfWDd8twGkkZOkkETwAAAACQcM98b6Tk54WTllY/2zbLvUmwcxnSm8UabB+e7Z7YIss0lWWaEe0/umHNLPTGZhNGjSHFvDAs3ZI5EjoFLOnryRc6STzVDgAAAAAwnRO50s750g+WSQ/dJDUt0t6Tt+hV15LZ7llCeNxufbKuTk2NjTp9++0qz5wwYfV110lLl85O5+y0dKl6ly6e7V7gUq3KkEZDJ6cx/dPuZolhWda0M2xVVVXp+PHjYW0xbJZSBgfDHxvhTsPkN92PkeNLfel+jIZhRLTNnTtXx+KciyAdcZ1JD+l+jBxf6kv3Y+Q6M7XZutac7B/U1qNvT7rMkqVTXZb2twa1942Q2tpDiqdLpil9yOfS6OCcYDA4YfnIgl5rSL8JxDfqyiWHGhzFWmKWaolZpkJj8r8XI+BXae7zMgLTP4bPn5ur7oaGiPaCtjZlnj0bU78CgZFJqE9fdZUC2dlyuUaeuvfVAwc0dOZMXHM8LcrL09JFi3TzihW6rqAg/G/olVekoQuPtXe7R0InV/Qn/CXKxL/jmThHjw6c0Z5XtskcHIpYNlBeoncWzItoL3mtVWasj1684O2Vy+QPhM8Lld/Zrbz24zoROq8n+9+IaT+jczxlG06ty5wvb1ad3uuap4rd+6Ju0+RvkzVhjqdATpbOXBt5PuYfapf7dHyzp3UvWSh/3kgppt8/cowZvX0qammT0+mUJek/hl9V3zSTi188x5Mhabnpkc9Zrw/u61f9YGb4+fHMP0r5LVLv4hmd4+lSrjUETxek+z9EpPQ/Ro4v9aX7MXJDEB3XmfSQ7sfI8aW+dD9GrjNTS4VrTXePped2BrR1u1/P7Qyo953pt/nRd926+8MZkqKf45/74wF9r+XP0+6rMjtT3uoK+eaVa62nRNk2P6HuUkx2jDs7O7Vm12Sz+ITLMk29p6xMPo9H762slCcry65uXrLZCJ5mUrRz9K7u3+sn/S3Tbl9t5snrrpXPXac17mq5jdQ4R5v8b+n2gWeibDEuRy6tc9bK56zXJucClTuizCsW7el1M/BUu0u51iTfbwkAAAAArkBFhYY2v8+lze9zye+31PxKUE3bAmraHlBbe2jSbb7+8JA+eodLLlfkzaA0MuLq0YPtUT9zWXG+fPPK5a2u0LKSfDkmualMdg+2tkZd5nG75fN45K2s1G1lZUkZpl3pDgfO6vH+6L/D5a4K+bLq5HPXaYmrZNLgI5lZlqUHhpqjLp9nzJHPWS+vq163mvOmD9OmCpfuf3Z8+YObkmaicf7qAAAAACDJuFyG1qx0as1Kp7b8s6VDh0Paun0khGp+JajQhRyqvcPS48/4x0Y9TfSdfW0aDI6HVm7TobWe0gthU7nm5iTfqJ947Ozs1M4JT5+7vrBQvspK+TyeyBI6JJ1vvLNbwYvK4MJK6Ny1qjBT+2mCWwNtejU0Xm5rSPor0yOvs14+Z72ucZTGfo7GMqIpCcMngicAAAAASGKGYaih3lRDvakv3JsZUZI3OuppotHRTqlQQnepHmxtTYkSOkxudLRTKpTQXYrR0U4xl9BNJZ4yuiQLn9LjtwkAAAAAV4jJSvJOdloqKw5fr3NgSC++9+aULaGbTq/fr88vXKi15eXKGp1hHSmlJzSoPWWbU7KELhanNaBvuldrdSwldNOxgvHN3TQWPgWnX9dmBE8AAAAAkKJGS/IkacKcxlpanD8LPZo5+S6XvB7PbHcDl+GGjIrZ7oKtSo1srXcWJWZnD/wu/m2SoMxOkhyz3QEAAAAAAACkJ4InAAAAAAAA2ILgCQAAAAAAALYgeAIAAAAAAIAtCJ4AAAAAAABgC4InAAAAAAAA2ILgCQAAAAAAALYgeAIAAAAAAIAtCJ4AAAAAAABgC4InAAAAAAAA2ILgCQAAAAAAALYgeAIAAAAAAIAtCJ4AAAAAAABgC4InAAAAAAAA2ILgCQAAAAAAALYgeAIAAAAAAIAtCJ4AAAAAAABgC+elbmgYRiL7AQBAGK4zAAC7ca1BsuMcRTpgxBMAAAAAAABsQfAEAAAAAAAAWxiWZVnTrZSRkSG/3z8T/QGAK4rL5dLw8PBsd2PWcZ0BAHtwnRnHtQYA7DHdtSamEU/BYDBhHQIAjOP7dQQ/BwCwB9+v4/hZAIA9pvt+jWlycbfbrcHBQZmmqbKysoR0DACuZJ2dnQoGg3K73bPdlaTAdQYAEovrTCSuNQCQWLFea2IqtQMAAAAAAADixeTiAAAAAAAAsAXBEwAAAAAAAGxB8AQAAAAAAABbEDwBAAAAAADAFgRPAAAAAAAAsAXBEwAAAAAAAGxB8AQAAAAAAABb/D/hmoeyLbrdJQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -260,12 +260,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "rollouts for ../examples/model.hallway-jvq.final.zanj on pRDFS-g6-n5-a_dfs_percolation-h15463\n" + "rollouts for ../examples/model.hallway-jvq.final.zanj on pRDFS-g6-n5-a_dfs_percolation-h73517\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbrUlEQVR4nOzdd3xT5f4H8E92unfppGVvy0b23q2i8hNUFHBf90JxIKCCihdFuYKIiop45YKzRWQoKCDKEMreZbd076bNeH5/lKZNk7ZJm9Gmn/frlRec5zznnO9JTk6Tb54hEUIIEBERERERERER2ZnU1QEQEREREREREZF7YuKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiKgW58+fh0Qiweeff27zttu3b4dEIsH27dvtHpczfP7555BIJDh//rzN286bNw8SiaTOesOGDUPXrl3rEV3NJBIJ5s2bZ1xuyHm4grXPnSOcPn0aY8aMgZ+fHyQSCX744QenPH8NeZ85Q2xsLGbMmOHqMIiIiJokuasDICIiIqLGYfr06UhJScGCBQvg7++P3r17Y+vWra4Oi4iIiJowJp6IiIiIGpFXXnkFs2fPdvpxS0pKsHv3brz88st47LHHjOV33303pk6dCpVK5fSYGouTJ09CKmVHASIiovpg4omIiIioEZHL5ZDLnf8RLSMjAwDg7+9vUi6TySCTyZweT2PSnJNuREREDcWfboiIqFGrGO/m1KlTmDZtGvz8/BASEoI5c+ZACIFLly7h5ptvhq+vL8LCwrB48WKzfaSnp+O+++5DixYtoFarERcXhy+++MKsXm5uLmbMmAE/Pz/4+/tj+vTpyM3NtRjXiRMnMHnyZAQGBkKtVqN379746aef6jyf4uJinDhxApmZmXXWrRj/6NChQxg6dCg8PT3Rtm1brF+/HgDw+++/o1+/fvDw8ECHDh0sdok6cOAAxo8fD19fX3h7e2PkyJH466+/zOodPXoUI0aMgIeHB6KiovDGG2/AYDBYjGvjxo0YPHgwvLy84OPjg4kTJ+Lo0aN1nk9tjh07huHDh8PT0xORkZFYtGiRyfqysjK8+uqr6NWrF/z8/ODl5YXBgwdj27ZtNh/rmWeeQVBQEIQQxrLHH38cEokEH3zwgbHs2rVrkEgkWL58udUxCCEQGxuLm2++2ey4Go0Gfn5+eOihh2qNr/oYT127dsXw4cPN6hkMBkRGRmLy5MnGMkvX8MGDB+scP2nevHmIiYkBAMyaNQsSiQSxsbEALI+RFRsbi/j4eOzcuRN9+/aFWq1G69at8eWXX5rsNzs7G8899xy6desGb29v+Pr6Yvz48UhOTq71OaiJRCKp8VER36FDhzBjxgy0bt0aarUaYWFhuPfee5GVlWV2zhKJBGfOnMGMGTPg7+8PPz8/zJw5E8XFxSZ1OcYTERFR/THxRERETcKUKVNgMBjw1ltvoV+/fnjjjTewZMkSjB49GpGRkXj77bfRtm1bPPfcc/jjjz+M25WUlGDYsGFYvXo17rrrLrzzzjvw8/PDjBkz8P777xvrCSFw8803Y/Xq1Zg2bRreeOMNXL58GdOnTzeL5ejRo7jxxhtx/PhxzJ49G4sXL4aXlxcmTZqE77//vtbz2LNnDzp16oT//Oc/Vp13Tk4O4uPj0a9fPyxatAgqlQpTp07F2rVrMXXqVEyYMAFvvfUWioqKMHnyZBQUFJjEOXjwYCQnJ+P555/HnDlzkJKSgmHDhuHvv/821ktLS8Pw4cNx8OBBzJ49G0899RS+/PJLk+enwurVqzFx4kR4e3vj7bffxpw5c3Ds2DEMGjSo3oNP5+TkYNy4cYiLi8PixYvRsWNHvPDCC9i4caOxTn5+Pj755BMMGzYMb7/9NubNm4eMjAyMHTsWBw8etOl4gwcPRnZ2tkmybMeOHZBKpdixY4dJGQAMGTLE6hgkEgmmTZuGjRs3Ijs72+S4iYmJyM/Px7Rp02yKd8qUKfjjjz+QlpZmUr5z505cvXoVU6dOBWDbNVzdrbfeivfeew8AcMcdd2D16tVYsmRJrducOXMGkydPxujRo7F48WIEBARgxowZJs/ruXPn8MMPPyA+Ph7vvvsuZs2ahcOHD2Po0KG4evWqTc8DUH79VX/ExMTAw8MD3t7eAIAtW7bg3LlzmDlzJpYuXYqpU6fim2++wYQJE0ySjRVuv/12FBQU4M0338Ttt9+Ozz//HPPnz7c5NiIiIqqBICIiasTmzp0rAIgHH3zQWKbT6URUVJSQSCTirbfeMpbn5OQIDw8PMX36dGPZkiVLBADx1VdfGcvKyspE//79hbe3t8jPzxdCCPHDDz8IAGLRokUmxxk8eLAAIFatWmUsHzlypOjWrZvQaDTGMoPBIAYMGCDatWtnLNu2bZsAILZt22ZWNnfu3DrPfejQoQKA+Prrr41lJ06cEACEVCoVf/31l7F806ZNZnFOmjRJKJVKcfbsWWPZ1atXhY+PjxgyZIix7KmnnhIAxN9//20sS09PF35+fgKASElJEUIIUVBQIPz9/cUDDzxgEmdaWprw8/MzKa943aw9xy+//NJYVlpaKsLCwsRtt91mLNPpdKK0tNRk25ycHNGiRQtx7733mpRXf35XrVplch7p6ekCgFi2bJkQQojc3FwhlUrF//3f/4kWLVoYt3viiSdEYGCgMBgMNsVw8uRJAUAsX77cpO5NN90kYmNjjfurSfXnrmJ/S5cuNan3yCOPCG9vb1FcXCyEsO0atiQlJUUAEO+8845JefXnTwghYmJiBADxxx9/GMvS09OFSqUSzz77rLFMo9EIvV5vdhyVSiVee+01s2PXFWN1ixYtMrt+Kp6Pqv773/+axVvxPFe/fm655RYRFBRkUhYTE2NyXyEiIiLrscUTERE1Cffff7/x/zKZDL1794YQAvfdd5+x3N/fHx06dMC5c+eMZT///DPCwsJwxx13GMsUCgWeeOIJFBYW4vfffzfWk8vl+Ne//mVynMcff9wkjuzsbPz222/GVhKZmZnIzMxEVlYWxo4di9OnT+PKlSs1nsewYcMghMC8efOsOm9vb29jixYA6NChA/z9/dGpUyf069fPWF7x/4pz1+v12Lx5MyZNmoTWrVsb64WHh+POO+/Ezp07kZ+fbzz3G2+8EX379jXWCwkJwV133WUSy5YtW5Cbm4s77rjDeN6ZmZmQyWTo169fvbq9VZxj1VZASqUSffv2NXkdZTIZlEolgPIuZtnZ2dDpdOjduzf++ecfm44XEhKCjh07GlvG7dq1CzKZDLNmzcK1a9dw+vRpAOUtngYNGmTs9mZtDO3bt0e/fv2wZs0aY1l2djY2btyIu+66y6QbnTXat2+P7t27Y+3atcYyvV6P9evXIyEhAR4eHgCsv4btpXPnzhg8eLBxOSQkxOz9p1KpjINy6/V6ZGVlwdvbGx06dLD5datu27ZtePHFF/H444/j7rvvNpZXPB9AeffGzMxM3HjjjQBg8ZgPP/ywyfLgwYORlZVlfH8QERFRwzDxRERETULLli1Nlv38/KBWqxEcHGxWnpOTY1y+cOEC2rVrZzYjVadOnYzrK/4NDw83dtep0KFDB5PlM2fOQAiBOXPmICQkxOQxd+5cAOVjStlLVFSUWaLCz88P0dHRZmUAjOeekZGB4uJis/iB8nM3GAy4dOkSgMrnqLrq21YkZEaMGGF27ps3b673eVs6x4CAAJPXEQC++OIL3HDDDVCr1QgKCkJISAg2bNiAvLw8m485ePBgY1e6HTt2oHfv3ujduzcCAwOxY8cO5OfnIzk52SSxYksM99xzD3bt2mW8vtatWwetVmtMkJSVlSEtLc3kodfra4x3ypQp2LVrlzGpuX37dqSnp2PKlCnGOtZew/ZS/T0JmL9uBoMB7733Htq1aweVSoXg4GCEhITg0KFD9XrdKly+fBlTpkzBwIED8e6775qsy87OxpNPPokWLVrAw8MDISEhaNWqFQBYPGb18wgICAAAs+uPiIiI6oez2hERUZNgaVatmmbaEhbGcbGXigG3n3vuOYwdO9ZinbZt29rteDWdoyvPffXq1QgLCzNbX9+Z2Kw5l6+++gozZszApEmTMGvWLISGhkImk+HNN9/E2bNnbT7moEGDsHLlSpw7dw47duzA4MGDIZFIMGjQIOzYsQMREREwGAwmiSdbYpg6dSqefvpprFmzBi+99BK++uor9O7d25gE+vPPP80GDE9JSTEO6F3dlClT8OKLL2LdunV46qmn8L///Q9+fn4YN26czeduL9a8bgsXLsScOXNw77334vXXX0dgYCCkUimeeuqpGgevr0tZWRkmT54MlUqF//3vf2bX3e23344///wTs2bNQvfu3eHt7Q2DwYBx48ZZPKYr3ktERETNCRNPRETk1mJiYnDo0CEYDAaTVk8nTpwwrq/499dff0VhYaFJi5GTJ0+a7K+i25pCocCoUaMcHX69hYSEwNPT0yx+oPzcpVKpsdVUTEyMsTVTVdW3bdOmDQAgNDTU6ee+fv16tG7dGt99951J66iKVma2qkgobdmyBXv37sXs2bMBlA8kvnz5ckRERMDLywu9evWqVwyBgYGYOHEi1qxZg7vuugu7du0yGaw7Li4OW7ZsMdnGUjKvQqtWrdC3b1+sXbsWjz32GL777jtMmjQJKpXKWMfaa9iZ1q9fj+HDh+PTTz81Kc/NzTVrrWitJ554AgcPHsQff/yBFi1amKzLycnBr7/+ivnz5+PVV181llu6vomIiMg52NWOiIjc2oQJE5CWlmYyPo5Op8PSpUvh7e2NoUOHGuvpdDosX77cWE+v12Pp0qUm+wsNDcWwYcOwYsUKpKammh0vIyOj1niKi4tx4sQJZGZmNuS06iSTyTBmzBj8+OOPJrPNXbt2DV9//TUGDRoEX19fAOXn/tdff2HPnj3GehkZGSZjFAHA2LFj4evri4ULF0Kr1Zods65zv3jxojHhV5/zAUxbofz999/YvXt3vfbXqlUrREZG4r333oNWq8XAgQMBlCekzp49i/Xr1+PGG280aU1jawx33303jh07hlmzZkEmk5mM1RUQEIBRo0aZPNRqda0xT5kyBX/99Rc+++wzZGZmmnSzA6y/hoHyLmcnTpxoUHc3a8hkMrOWQ+vWrat1HLQKlmJctWoVVqxYgQ8//NBkTLKqxwPMWyvVNUMfEREROQ5bPBERkVt78MEHsWLFCsyYMQP79+9HbGws1q9fb2yB4uPjAwBISEjAwIEDMXv2bJw/fx6dO3fGd999Z/GL+YcffohBgwahW7dueOCBB9C6dWtcu3YNu3fvxuXLl5GcnFxjPHv27MHw4cMxd+5cqwcYr6833ngDW7ZswaBBg/DII49ALpdjxYoVKC0txaJFi4z1nn/+eaxevRrjxo3Dk08+CS8vL3z88cfG1mIVfH19sXz5ctx9993o2bMnpk6dipCQEFy8eBEbNmzAwIED8Z///KfGeO655x78/vvv9erCFB8fj++++w633HILJk6ciJSUFHz00Ufo3LkzCgsLbd4fUJ5k+uabb9CtWzfjuD49e/aEl5cXTp06hTvvvLNBMUycOBFBQUFYt24dxo8fj9DQ0HrFWeH222/Hc889h+eeew6BgYFmrc5suYa///57zJw5E6tWrcKMGTMaFFdt4uPj8dprr2HmzJkYMGAADh8+jDVr1pgMeF+T6jFmZmbikUceQefOnaFSqfDVV1+Z1L/lllvg6+uLIUOGYNGiRdBqtYiMjMTmzZuRkpLiqFMkIiKiOjDxREREbs3DwwPbt2/H7Nmz8cUXXyA/Px8dOnQw+8ItlUrx008/4amnnsJXX30FiUSCm266CYsXL0aPHj1M9tm5c2fs27cP8+fPx+eff46srCyEhoaiR48eJt17XK1Lly7YsWMHXnzxRbz55pswGAzo168fvvrqK5MZ8cLDw7Ft2zY8/vjjeOuttxAUFISHH34YERERJrMGAsCdd96JiIgIvPXWW3jnnXdQWlqKyMhIDB48GDNnznTYucyYMQNpaWlYsWIFNm3ahM6dO+Orr77CunXrsH379nrtsyLxNGjQIGOZXC5H//79sXXrVrOBxW2NQalUYsqUKVi2bJnJrGv1FRUVhQEDBmDXrl24//77oVAoTNbbcg07y0svvYSioiJ8/fXXWLt2LXr27IkNGzYYuzbaorCwEBqNBseOHbP4fKakpMDLywtff/01Hn/8cXz44YcQQmDMmDHYuHEjIiIi7HFKREREZCOJ4MiJRERERA7x9NNP49NPP0VaWho8PT2t2mbOnDl48803odPp7BLD+fPn0apVK4e3bnJn0dHRGDt2LD755BNXh0JERNTkcIwnIiIiIgfQaDT46quvcNttt1mddAKA1NTUeg+8Tfan1WqRlZXF14SIiKie2NWOiIiIyI7S09OxdetWrF+/HllZWXjyySet2u7cuXP4/vvvsW7dOsTHxzs4SrLGpk2b8M0336CkpAQjR450dThERERNEhNPRERERHZ07Ngx3HXXXQgNDcUHH3yA7t27W7XdH3/8gfnz52PYsGF49913HRskWeWtt97CmTNnsGDBAowePdrV4RARETVJHOOJiIiIiIiIiIgcgmM8ERERERERERGRQzDxREREREREREREDsHEExGRm5s3bx4kEomrwyBqcmJjYzFjxgyTstOnT2PMmDHw8/ODRCLBDz/84JLYGpNhw4Zh2LBhdt2nK+9bFcfOzMx0yfGJiIjcDRNPRERUo2XLluHzzz93dRgAgKtXr2LevHk4ePCgU453/vx5SCQS40MqlSIwMBDjx4/H7t27zepXfFmteHh6eqJly5ZISEjAqlWrUFpaarbNjBkzTLap+vjll1+M9Q4fPozJkycjJiYGarUakZGRGD16NJYuXeqQc9+6dStGjBgBPz8/+Pj4oFevXli7dq1dj1H9+ap4qNVqux7H3qZPn47Dhw9jwYIFWL16NXr37u3qkJqs4uJizJs3D9u3b3d1KPW2efNm3HfffejatStkMhliY2Mt1qt+P6n6+Oabb2rcv1arRefOnSGRSPDvf//bYp2zZ8/izjvvRGhoKDw8PNCuXTu8/PLLJnVWrlyJoUOHokWLFlCpVGjVqhVmzpyJ8+fP1/fUiYiIrMZZ7YiIqEbLli1DcHCwWasPV7h69Srmz5+P2NhYq2cJs4c77rgDEyZMgF6vx6lTp7Bs2TIMHz4ce/fuRbdu3czqL1++HN7e3igtLcWVK1ewadMm3HvvvViyZAmSkpIQHR1tUl+lUuGTTz4x209cXBwA4M8//8Tw4cPRsmVLPPDAAwgLC8OlS5fw119/4f3338fjjz9u1/NdtWoV7rvvPowePRoLFy6ETCbDyZMncenSJbsep0LF81VBJpM55Dj2UFJSgt27d+Pll1/GY4895upwmrzi4mLMnz8fAMxaTL3yyiuYPXu2C6Kyzddff421a9eiZ8+eiIiIqLN+xf2kqv79+9dYf+nSpbh48WKN6w8ePIhhw4YhMjISzz77LIKCgnDx4kWz9+uBAwfQqlUr3HTTTQgICEBKSgpWrlyJpKQkJCcnWxU7ERFRfTHxREREVIuePXti2rRpxuXBgwdj/PjxWL58OZYtW2ZWf/LkyQgODjYuv/rqq1izZg3uuece/N///R/++usvk/pyudxk/9UtWLAAfn5+2Lt3L/z9/U3Wpaen1/OsLDt//jweffRRPP7443j//fftuu+aVH++GrOMjAwAMHsdmpKioiJ4eXm5Oow6yeVyyOWN/2PqwoULsXLlSigUCsTHx+PIkSO11q9+P6lNeno6XnvtNbzwwgt49dVXzdYbDAbcfffd6NixI7Zt2wYPD48a92XpXjVp0iT07t0bX375ZZNI8hERUdPFrnZERG5k586d6NOnD9RqNdq0aYMVK1ZYrLdq1SqMGDECoaGhUKlU6Ny5M5YvX25SJzY2FkePHsXvv/9u7BJS0SohOzsbzz33HLp16wZvb2/4+vpi/PjxSE5ONjvW0qVL0aVLF3h6eiIgIAC9e/fG119/bVLnypUruPfee43dQLp06YLPPvvMuH779u3o06cPAGDmzJnGeCq6ARYXF+PEiRNWjckybNgwdO3aFfv378eAAQPg4eGBVq1a4aOPPqpzW6A88QSUd2+x1l133YX7778ff//9N7Zs2WL1dhXH6dKli8VkR2hoqFX7yMrKwt133w1fX1/4+/tj+vTpSE5ONnkOAeCjjz6CXq/Ha6+9BgAoLCyEEMLqWLdv3w6JRIL//e9/WLBgAaKioqBWqzFy5EicOXPG4jZCCOTn59t0HMC2a7AuQgi88cYbiIqKgqenJ4YPH46jR4+a1Jk3bx5iYmIAALNmzYJEIjF2qyooKMBTTz2F2NhYqFQqhIaGYvTo0fjnn3+sjuHzzz+HRCLBH3/8gYceeghBQUHw9fXFPffcg5ycHLP6GzduxODBg+Hl5QUfHx9MnDjRLOYZM2bA29sbZ8+exYQJE+Dj44O77roLQHnS4v3330e3bt2gVqsREhKCcePGYd++fcbtdTodXn/9dbRp0wYqlQqxsbF46aWXLHYbraqsrAyvvvoqevXqBT8/P3h5eWHw4MHYtm2bsc758+cREhICAJg/f77xPT1v3jzj8119jCdr44mNjUV8fDx27tyJvn37Qq1Wo3Xr1vjyyy/reBVM5ebmYsaMGfD394efnx9mzpyJ4uJikzoRERFQKBQ27beoqAhlZWV11ps9ezY6dOhQY6Jq8+bNOHLkCObOnQsPDw8UFxdDr9dbHUfF9Zubm2v1NkRERPXBxBMRkZs4fPgwxowZg/T0dMybNw8zZ87E3Llz8f3335vVXb58OWJiYvDSSy9h8eLFiI6OxiOPPIIPP/zQWGfJkiWIiopCx44dsXr1aqxevdo4bsi5c+fwww8/ID4+Hu+++y5mzZqFw4cPY+jQobh69apxHytXrsQTTzyBzp07Y8mSJZg/fz66d++Ov//+21jn2rVruPHGG7F161Y89thjeP/999G2bVvcd999WLJkCQCgU6dOxmTIgw8+aIxnyJAhAIA9e/agU6dO+M9//mPVc5WTk4MJEyagV69eWLRoEaKiovCvf/3LJNlVk4oxUQICAqw6VoW7774bQPmXxeoyMzNNHnl5ecZ1MTEx2L9/f50tKWpiMBiQkJCA//73v5g+fToWLFiA1NRUTJ8+3azu1q1b0bFjR/z888+IioqCj48PgoKCMGfOHBgMBquP+dZbb+H777/Hc889hxdffBF//fWXMeFRXevWrY1jSU2bNg3Xrl2z6hjWXoPWePXVVzFnzhzExcXhnXfeQevWrTFmzBgUFRUZ69x666147733AJR3l1q9erXx+nz44YexfPly3HbbbVi2bBmee+45eHh44Pjx4zbFAQCPPfYYjh8/jnnz5uGee+7BmjVrMGnSJJPE3OrVqzFx4kR4e3vj7bffxpw5c3Ds2DEMGjTIbMwenU6HsWPHIjQ0FP/+979x2223AQDuu+8+PPXUU4iOjsbbb7+N2bNnQ61Wm7TIu//++/Hqq6+iZ8+eeO+99zB06FC8+eabmDp1aq3nkJ+fj08++QTDhg3D22+/jXnz5iEjIwNjx441jtEWEhJiTHbfcsstxvf0rbfeWuN+bYnnzJkzmDx5MkaPHo3FixcjICAAM2bMMEvO1eb2229HQUEB3nzzTdx+++34/PPPjV0D62v+/Pnw9vaGWq1Gnz59LN4PgPJ72hdffIElS5bUOMj61q1bAZR31+3duze8vLzg6emJqVOnIjs72+I2WVlZSE9Px759+zBz5kwAwMiRIxt0TkRERHUSRETkFiZNmiTUarW4cOGCsezYsWNCJpOJ6rf74uJis+3Hjh0rWrdubVLWpUsXMXToULO6Go1G6PV6k7KUlBShUqnEa6+9Ziy7+eabRZcuXWqN+7777hPh4eEiMzPTpHzq1KnCz8/PGOvevXsFALFq1SqzfWzbtk0AEHPnzq31WEIIMXToUAFALF682FhWWloqunfvLkJDQ0VZWZnxfACI+fPni4yMDJGWliZ27Ngh+vTpIwCIdevWmex37ty5AoDIyMiweNycnBwBQNxyyy3GsunTpwsAZo+qz/nmzZuFTCYTMplM9O/fXzz//PNi06ZNxjjr8u233woAYsmSJcYyvV4vRowYYfZ8+vr6ioCAAKFSqcScOXPE+vXrxZ133ikAiNmzZ9d5rIrXoVOnTqK0tNRY/v777wsA4vDhw8ayJUuWiMcee0ysWbNGrF+/Xjz55JNCLpeLdu3aiby8vDqPZe01WJf09HShVCrFxIkThcFgMJa/9NJLAoCYPn26yf4BiHfeecdkH35+fuLRRx+1+piWrFq1SgAQvXr1MnltFy1aJACIH3/8UQghREFBgfD39xcPPPCAyfZpaWnCz8/PpLzi+qr+2v32228CgHjiiSfM4qh4Dg4ePCgAiPvvv99k/XPPPScAiN9++81YNnToUJNrVqfTmbz+QpRf/y1atBD33nuvsSwjI6PG923F+6mCLfHExMQIAOKPP/4wlqWnpwuVSiWeffZZs2PVdOyqsQohxC233CKCgoJq3G7ixIkiJibG4roLFy6IMWPGiOXLl4uffvpJLFmyRLRs2VJIpVKRlJRkUtdgMIi+ffuKO+64QwhR83V30003CQAiKChI3HXXXWL9+vVizpw5Qi6XiwEDBphczxVUKpXxPhMUFCQ++OCDOp8PIiKihmKLJyIiN6DX67Fp0yZMmjQJLVu2NJZ36tQJY8eONatfdSyQvLw8ZGZmYujQoTh37pxJa5uaqFQqSKVS47GzsrLg7e2NDh06mHQv8vf3x+XLl7F3716L+xFC4Ntvv0VCQgKEECatfsaOHYu8vDyruisNGzYMQghjN526yOVyPPTQQ8ZlpVKJhx56COnp6di/f79J3blz5yIkJARhYWEYPHgwjh8/jsWLF2Py5MlWHatCxQDaBQUFJuVqtRpbtmwxeSxevNi4fvTo0di9ezduuukmJCcnY9GiRRg7diwiIyPx008/1XncX375BQqFAg888ICxTCqV4tFHHzWrW1hYiJycHMyfPx+vvfYabrvtNqxZswbjxo3D+++/bxZ7TWbOnAmlUmlcruieeO7cOWPZk08+iaVLl+LOO+/EbbfdhiVLluCLL77A6dOnLY5HU52112Bdtm7dirKyMjz++OMmLUueeuopq/fh7++Pv//+2+aWVpY8+OCDJl23/vWvf0Eul+Pnn38GAGzZsgW5ubm44447TN4vMpkM/fr1M+nOVnUfVX377beQSCSYO3euWd2K56DieM8884zJ+meffRYAsGHDhhrPQSaTGV9/g8GA7Oxs6HQ69O7d26bXpipb4+ncubPxugPKW1h16NDB5Bqsy8MPP2yyPHjwYGRlZSE/P9+m2AGgZcuW2LRpEx5++GEkJCTgySefxIEDBxASEmI8hwqff/45Dh8+jLfffrvWfRYWFgIA+vTpg6+++gq33XYbXnvtNbz++uv4888/8euvv5pts3HjRvz8889YvHgxWrZsadKqj4iIyFGYeCIicgMZGRkoKSlBu3btzNZ16NDBrGzXrl0YNWoUvLy84O/vj5CQELz00ksAYFXiyWAw4L333kO7du2gUqkQHByMkJAQHDp0yGT7F154Ad7e3ujbty/atWuHRx99FLt27TKJOzc3Fx9//DFCQkJMHhXdQOw9gDZQPi5L9QGW27dvDwBmXZUefPBBbNmyBYmJiXj66adRUlJi0zgqFSq+JPr4+JiUy2QyjBo1yuTRq1cvkzp9+vTBd999h5ycHOzZswcvvvgiCgoKMHnyZBw7dgxA+ZhHaWlpxkfF63DhwgWEh4fD09PTZJ9t27Y1i7EiIXnHHXeYlN9xxx0oKSnBgQMHAJS/blWPVXFuFaomP4HKbomWxiqq6s4770RYWJixCxEAk+OkpaWhpKQEgPXXYF0uXLgAAGbvnZCQEKu7Uy5atAhHjhxBdHQ0+vbti3nz5tmU4Kiqehze3t4IDw83XpenT58GAIwYMcLsPbN582az94tcLkdUVJRJ2dmzZxEREYHAwMAa47hw4QKkUqnZdRIWFgZ/f3/j81aTL774AjfccAPUajWCgoIQEhKCDRs22PTaNCSe6tcgUH4dVlyDer3e7NqqPu5Sfa9jawUGBmLmzJk4efIkLl++DKC8m+KLL76IWbNmmc2AWV1N79c777wTQPmMmNUNHz4c48ePxzPPPIN169Zh/vz5VndRJiIiqi8mnoiImpmzZ89i5MiRyMzMxLvvvosNGzZgy5YtePrppwHAqrF8Fi5ciGeeeQZDhgzBV199hU2bNmHLli3o0qWLyfadOnXCyZMn8c0332DQoEH49ttvMWjQIGNLi4q606ZNM2v1U/EYOHCgA54F67Vr1w6jRo0yjiX09NNPY/bs2SaDMFujYowmSwkfaymVSvTp0wcLFy7E8uXLodVqsW7dOgDlYxCFh4cbH08++aTN+6+YUr1FixYm5RWDmFd84e7Tp4/Jsf7973+b1JfJZBb3L6wYQDw6OtpkfJqqxwkPD8fatWsBWH8NOsPtt9+Oc+fOYenSpYiIiMA777yDLl26YOPGjXY/VsW5rV692uL75ccffzSpX7VlWH3UNL5Qbb766ivMmDEDbdq0waeffopffvkFW7ZswYgRIxr82lgbT13X4KVLl8yureqJmoZcx9aqSC5VXPP//ve/UVZWhilTpuD8+fM4f/68MSmVk5OD8+fPGxNk1r5fa9KmTRv06NEDa9assdv5EBERWdL456klIqI6hYSEwMPDw9gaoqqTJ0+aLCcmJqK0tBQ//fSTyS/6lrro1PQlb/369Rg+fDg+/fRTk/Lc3FwEBweblHl5eWHKlCmYMmUKysrKcOutt2LBggV48cUXERISAh8fH+j1eowaNarWc6zPF+CaXL161Wxa+VOnTgGonOmpJi+//DJWrlyJV155Bb/88ovVx1y9ejUAWOz6WB+9e/cGAKSmpgIAFi9ebPJFs+JLaUxMDLZt24bi4mKTVk+WZpnr1asXTp8+jStXrqB169bG8oouZBWzkK1Zs8bY8giASd2GEELg/Pnz6NGjh7Gs+iyAXbp0AWDbNVibipnqTp8+bXIeGRkZNrVsCQ8PxyOPPIJHHnkE6enp6NmzJxYsWIDx48dbvY+KOIYPH25cLiwsRGpqKiZMmACgPFkAlCcX6nrP1KRNmzbYtGkTsrOza2z1FBMTA4PBgNOnT6NTp07G8mvXriE3N9f4vFmyfv16tG7dGt99953J+7Z61z5b3tMNiceSsLAws2srLi7Opn3YQ0XLuIr31sWLF5GTk2O8zqtauHAhFi5ciAMHDqB79+7o1asXVq5ciStXrpjUq/5+rU1JSUmdsxQSERE1FFs8ERG5AZlMhrFjx+KHH37AxYsXjeXHjx/Hpk2bzOoCpr/a5+XlYdWqVWb79fLysjjVtkwmM/vVf926dWZfgLKyskyWlUolOnfuDCEEtFotZDIZbrvtNnz77bcWZ23LyMgwiQWwPPV3cXExTpw4gczMTLN1luh0OqxYscK4XFZWhhUrViAkJMSsm1t1/v7+eOihh7Bp0ybjDF11+frrr/HJJ5+gf//+Ns8gtW3bNostLCrGvKnoStmrVy+T7nqdO3cGUJ7o0mq1WLlypXFbg8FgMoNhhSlTpgCASTLHYDBg1apVCAwMND43AwcONDlWfRJPVV/bCsuXL0dGRgbGjRtnLKveDTE8PByA9ddgXUaNGgWFQoGlS5ea7K9ixrq66PV6s+5joaGhiIiIqNcX+o8//hharda4vHz5cuh0OmMCa+zYsfD19cXChQtN6lWw9LxWd9ttt0EIYXGGtornoCLRVf15ePfddwEAEydOrHH/lu4xf//9N3bv3m1SryIRauk9XV1D4rFErVabXVu2zlRpC0uvy5UrV/DZZ5/hhhtuMF7XTzzxBL7//nuTR8W9asaMGfj+++/RqlUrAMDNN98MlUqFVatWmbQk++STTwCUjw8HlN/vLCVR9+zZg8OHDxuT2ERERI7CFk9ERG5i/vz5+OWXXzB48GA88sgj0Ol0WLp0Kbp06YJDhw4Z640ZMwZKpRIJCQl46KGHUFhYiJUrVyI0NNTYeqZCr169sHz5crzxxhto27YtQkNDMWLECMTHx+O1117DzJkzMWDAABw+fBhr1qwxS0CMGTMGYWFhGDhwIFq0aIHjx4/jP//5DyZOnGgc6+itt97Ctm3b0K9fPzzwwAPo3LkzsrOz8c8//2Dr1q3GLiht2rSBv78/PvroI/j4+MDLywv9+vVDq1atsGfPHgwfPhxz5861aoDxiIgIvP322zh//jzat2+PtWvX4uDBg/j4449NBnauyZNPPoklS5bgrbfewjfffGOybv369fD29kZZWRmuXLmCTZs2YdeuXYiLizN2i7PF448/juLiYtxyyy3o2LEjysrK8Oeff2Lt2rWIjY01joVVk0mTJqFv37549tlncebMGXTs2BE//fST8Xmt2urk5ptvxsiRI/Hmm28iMzMTcXFx+OGHH7Bz506sWLECKpXK5vhrEhMTgylTpqBbt25Qq9XYuXMnvvnmG3Tv3t1k4PeaWHsN1iUkJATPPfcc3nzzTcTHx2PChAk4cOAANm7caFXLqYKCAkRFRWHy5MmIi4uDt7c3tm7dir1795oMEm+tsrIyjBw5ErfffjtOnjyJZcuWYdCgQbjpppsAAL6+vli+fDnuvvtu9OzZE1OnTkVISAguXryIDRs2YODAgXWO2TN8+HDcfffd+OCDD3D69GmMGzcOBoMBO3bswPDhw/HYY48hLi4O06dPx8cff4zc3FwMHToUe/bswRdffIFJkyaZtMqqLj4+Ht999x1uueUWTJw4ESkpKfjoo4/QuXNnk/HAPDw80LlzZ6xduxbt27dHYGAgunbtiq5du5rtsyHxONKhQ4eMg/yfOXMGeXl5eOONN4wxJyQkAACef/55YzfniIgInD9/HitWrEBRURHef/994/569uyJnj17mhyjYnyvLl26YNKkScbysLAwvPzyy3j11Vcxbtw4TJo0CcnJyVi5ciXuuOMO9OnTB0B5q7no6GhMmTIFXbp0gZeXFw4fPoxVq1bBz88Pc+bMcdTTQ0REVM75E+kREZGj/P7776JXr15CqVSK1q1bi48++shsWnIhhPjpp5/EDTfcINRqtYiNjRVvv/22+OyzzwQAkZKSYqyXlpYmJk6cKHx8fAQA45TpGo1GPPvssyI8PFx4eHiIgQMHit27d5tNq75ixQoxZMgQERQUJFQqlWjTpo2YNWuWyMvLM4nn2rVr4tFHHxXR0dFCoVCIsLAwMXLkSPHxxx+b1Pvxxx9F586dhVwuFwDEqlWrhBBCbNu2rcZp2asbOnSo6NKli9i3b5/o37+/UKvVIiYmRvznP/8xqVfTFOYVZsyYIWQymThz5owQonIK9oqHWq0WUVFRIj4+Xnz22WdCo9GY7WP69OnCy8ur1ng3btwo7r33XtGxY0fh7e0tlEqlaNu2rXj88cfFtWvX6jxfIcqnrb/zzjuFj4+P8PPzEzNmzBC7du0SAMQ333xjUregoEA8+eSTIiwsTCiVStGtWzfx1VdfWXWcitdh3bp1JuUVz2XF6yWEEPfff7/o3Lmz8PHxEQqFQrRt21a88MILIj8/36pjWXsNWkOv14v58+cb9zVs2DBx5MgRERMTI6ZPn252HlWvidLSUjFr1iwRFxcnfHx8hJeXl4iLixPLli2zKYZVq1YJAOL3338XDz74oAgICBDe3t7irrvuEllZWWb1t23bJsaOHSv8/PyEWq0Wbdq0ETNmzBD79u0z1qnt+tLpdOKdd94RHTt2FEqlUoSEhIjx48eL/fv3G+totVoxf/580apVK6FQKER0dLR48cUXza7l6s+5wWAQCxcuFDExMUKlUokePXqIpKQkMX36dBETE2Oy7Z9//mm8Z1V9D1u6b1kbT0xMjJg4caLZOVt7bVQcOyMjw6S84jWqeo+sKLP0qHrtfP3112LIkCEiJCREyOVyERwcLG655RaT57smtd2LDAaDWLp0qWjfvr3xOXnllVdEWVmZsU5paal48sknxQ033CB8fX2FQqEQMTEx4r777jM5FyIiIkeRCGHHERKJiIgauWHDhiEzM9Ni177m5IcffsAtt9yCnTt3unwAdwI+//xzzJw5E3v37mXXJyIiInIrHOOJiIjIzVUdCBwoH5do6dKl8PX1NevWQ0RERERkTxzjiYiIyM09/vjjKCkpQf/+/VFaWorvvvsOf/75JxYuXAgPDw9Xh+cwGRkZ0Ov1Na5XKpU1zupmLyUlJWaDj1fn6BiIiIiIXImJJyIiIjc3YsQILF68GElJSdBoNGjbti2WLl2Kxx57zNWhOVSfPn1w4cKFGtcPHToU27dvd2gMa9eurXMA+G3btjk0BiIiIiJX4hhPRERE5JZ27dpl1s2wqoCAAPTq1cuhMaSmpuLo0aO11unVqxcCAgIcGgcRERGRqzDxREREREREREREDsHBxYmIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMgh5NZU8vLygkajgUwmQ2hoqKNjIiJye+np6dDr9VCr1SgqKnJ1OC7HvzNERPbFvzPm+LeGiMi+rP1bIxFCiLp2JpPJYDAY7BogEREBUqkUer3e1WG4HP/OEBE5Bv/OVOLfGiIix6jrb41VXe1kMpndAiIiokq8v5bj80BE5Bi8v1bic0FE5Bh13V+tSjyxKSoRkWPw/lqOzwMRkWPw/lqJzwURkWPUdX/l4OJEREREREREROQQVg0ubokVQ0M1KRqNxmRZrVa7KBLHcfdzdPfzk0gkJsvu9h4Emt9rSLVzt2vc3a9vwP3P0d3vw+7++gHuf478O2M7vo+bHnc/R55f0+fu51ifvzVs8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERERERERERGRQzDxREREREREREREDsHEExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTEblUmc6A30/nw2AQrg6FiIiIiBqhdF0xDpRmuDoMh9EYdPg9PxVCuOfnYSEEDuZnI71U4+pQHCa1pASHc/JcHUajJXd1AETU/GQUaPHzsVwkHsnF5hN5mNorCEPb+bo6LCIiIiJqBIQQOFKWhcSiFCQWncffpWn4LeIWV4dlV9e0xdiQewmJuRexJe8KHgjpiKG+4a4Oy240ej1+y0pDYvoVJGVcgUoqxYnBCdCVlbk6NLsQQuBATi6SrqQh8XIq9mfnYv/4Ea4Oq9Fi4omIHE4IgaOpJUg6Wp5s2n2+EBU/6MilErw0OsK1ARIRERGRS5UKPbYXX0ZicQqSis7jgq7AuG6YRySGeUa5MLqGE0LgUEk2knIvIjHnIvYUZaCifZNaIsPz4Te4ND57SCstwYb0K0hMv4ItWako1uuN61Z1uxFyqRQ6F8bXUCU6PX67lo7Ey2lIupKKKyWVLbhujgpHj0B/1wXXyDHxREQOUaYz4PczBUg8kouko7lIySq1WG/mjcGIDVI5OToiIiIicrV0XTF+Lr6AxKIUbC6+iEKhtVhvbkBfJ0dmHxqDDtvzU5GYexFJuZdwsazQYr2HQzshXOnp5OgaTgiB5IIcJF5PNu3Ny7JYr42nN6ZFtHJydPaRWlKCpCtpSLqShi2p6Sipkkyram63Tk6OrGlh4omI7KaiC13S0VxsOp6HglJDrfXZ2omIiIio+bDUha6uUY2aWmunii50SbkXsTnvCooMtbfxaWqtnSq60CVlXEFS+hVc0hTXuc0rbbpCLm0aw0sLIXAwJw+JV1KReDkV+7Jz69yGrZ3qxsQTEdWbEALH0kqQeMS8C501ekV7IvlKMZKvlP/BKtOa9vlWKkrsGa5Fwd5yDGzt4/DjEBERETVHFV3okorPI7EoxaQLnTX6qlrgx8JzxmWzz4s6pV3irE13VTBiFJbHIxVC4HBJNhItdKGzRj/vEOwpygCKypfLqo2BpCxx/Pm1UHjgRu/QGtfX1oWuLl4yOXzkCvx47RIAoKzMtFWbUqmoX9A2SgiNglQisbiuti501ugR4I8fL101Lpdpq52jwvHn2DsoAJGeHg4/Tn0x8URENrG2C501/r5QhEmfnLZjdLYb3s4Hvz3OprFERERE9aLVAsnJgKbyy3qOToPdpWnYVZKKvaXXUCx02N2jFQwy01YvYel5aHMxs9bd78JZ7KqynBIVhKth/mb1Bu47a1PYJWoF/una0qy8zYUMhGXkm5TNDuiFGK/KrmJlBj3+KcrEn4XXsKswHVtjApHvbdpVzqtYg+6nLtUZhw6n8Q52AAAy/b1xMtZ8gPG4UxfhXWzbZ+6/uraGXi4zKWuRlYe2l9LN6g7wDsWN7YcCcXGAQmHShS4p/Qr21NCFzhpFeh0mH9hR7+3tRTv2DpPEU2pJCTZcSUPilTRsTU23KZlW3bzDx+0RYoP8b1Bf/F9M420ZyMQTEdUps1CLn4/lIfFIjlVd6IiIiIioGdBqgX79gAMHTIoDAEy4/qjglfwOij1Nx/W86dcjWPHqWpsO+cyLk/Deveazh+28432b9nOyVSg6bn7FrHzWyl/x0No/a91WCeDG649nAAxb9hx+79XBpE77i9ew86FFNsX039F9cOcbD5qVr1z4Jfocv2DTvnx//QAF3qYtYOJ3HsInC7+scZu8bl3x8pcr8FPONau60DUlQggcyM61qQsd2Q8TT0Rk5mpBKaZ9V565L9MZcCGnDBmFOpRmO76pr7MVMYlGREREZLMvS4/gz90/4qNqSSdquvwOH8Ffv/+KS+1buzoUu/sl9RpWnD6PX6+lQ6N3v8//lwpt6x7obEw8EZGZEq0B287nmpRJJEDyCz2vd7HLwd8Ximwaz6mxupipxcXMMrQMdr+kGhEREZGjnDfk4UjxZVeHQXb2S9f++K5dDJIyrmBrZhpKDPXvgtaYjI8IQ0JUBIp1OmxNSzfOVJdq43hOjdU3p1LxTJe2rg6jRkw8EZHVboj0xA2Rnnh5bASu5ZfPYJd4JBebT+ShqMz2Xw6CvOSI8KscbE8YTDNZEqnlAQDtRgCnLmuRdKAAj4wOcuyxiIiIiNzc5+8+jBl97gJQ3rXpjDYXf2rKx3rSqMwHWP5pZFccbRdW6z6j5N5QSSrHKrocFYyuikDjsuT6uD3T179qU6watRLdlOaf/3565Db8+X+jTMru9emEoRZm1svUarC78BrCIzzhIXJNkjSnWrbAoBXP1xlHgEyJQHl5F8ScAF90VfubrJdIJFg0/zF4FtuWIGkT0MJsjKezowZjevt2JmXtT13Ayws/MS4Hq9R4sGU7PNiyHYr1OvyWlWYc6+lqqe0T/6ikUrT3qhyYXRhMvzNInDzbnadcjpuiInBTVAQMQuCf693vkq6k4Z96dr9r7+MNVZXxy5z9nSa3VIeDGfko1urhqZDVvYELMPFERPXSwleBmTeGYOaNIdBoDfj9TL5xdruLOWV17wBAqLccB57vCtn1m7FGY/oHVa1W2z3uqnaeLMLg188h8UA+E09EREREDXSpSywwaBAAQAKg3fXHdACv6Yqw4frMdluKL6FY6JAW6oe0UL9a9/laYD/MCexrXK7x86L5OOH1Y8N+ggEkXH+UGHT4Lf8qkq7PbnfFE9jVvV0dewB6eAbhpy6TjAk0i+fXzfqYbLZzJ1Al8VSVp0yO+NAoxIdGlY+RlJ+DxPTLSEy/gv352VbtXicEvu8xBG28ymeRdvbn/dpIJRL0DgpA76AAzL+hM64UlyDpSioSL6fZ1CXvkfat8WTHytZGzj7HuzYdxNdXUrH1UiZuat3CoceqLyaeiKjB1Aopxnbyx9hO/lg6WeDw1RIkHc1F4pHau+Qdv6bBugPZmNrLNUmfxAPlM5b8dqwIhRo9vNWN8xcCIiIiosaoyFOJf26IMC6XetX8BTtM7oX7fLvgPt8u0Bh02FZyGYlF55FYnILLusIat3s39yCe8IuDn0xVY53GwEMqx0T/lpjo3xLLYgQOFmchMfciknIvYW9RRo3bHbhe76aAGCdGazuJRIKefoHo6ReIue1uwFVNMTZkXEVi+uVau+TphcCCs0fw2Q39nRyx7SI9PfBQu9Z4qF1rFOt0+DUtw9gaqrYueW8dPYkH27aCh9z53yV0BgM2XiifGTIxJZ2JJyJqHiQSibFL3ktj6u6S99ovV/B/PQKNrZ6cKelAAQCgTCew5XAhbulT+y9uRERERFTp4A2R6LXtSePyNGUbq7ZTS+UY7xWL8V6x+FAMRXJZJpKKyltD7Sm9ZlI311CKD/KSTVo9NXYSiQQ9vILRwysYr0b2RGpZMTbkXkRi7kVsyb9ilqSZd+UfJPi3NLZ6agoi1J54ILotHohuW2eXvC+vpuDlNl2NrZ6aAk+5HAlR4UiICjd2yUu6kopEC13y0jSl+PhMikmrJ2fZlZqDnFItAGDDhQwYhIC0EV5HTDwRkUPV1SXPVa2ezqWX4diVUuNy4oECJp6IiIiInEwikaC7KgTdVSF4JbAP0q53yUsqOo/NxRdRLHRNptVTTcKVnrg/tCPuD+2IEoMO2/JTkZh7obxLnrbYta2eYmOBRYtMl21UV5e8ptTqyZKqXfLm1dAlz1WtnhJTKlvTpRaV4p/0fPRu0fi+0zDxREROU1OXvC0n83B7j8C6d2BHif/kmyxvOFgAg0FA6oKWV0RERERUrqYued8VncVM386uDq/BPKRyTPCPxgT/aGOXvKTcS9iYdwkJ/vYaqMoGUVHArFl2211NXfI2ZlzFVU0xAuHcwcQdoaYueYlXUnF7jPkg9I6UlJJuspyYks7EExFRhapd8lyhYnynCun5Ouw9V4J+bV0TDxERERGZqtolzx1V7ZLnrqp2yQPMB95u6qp2yXO207lFOJlbZFKWeD4d82+se1B7Z2v66UYiIhvlFevx+4kis/LqySgiIiIiIqLGKLFaaycAOJCRj8uFJRZquxYTT0TU7Gw+XAidhYk3Eq8PNk5EREREdWt/OgOrH/rG+Ag7ddnVIRE1G5YSTwCw4XzNsyi6CrvaEVGzU1PLpkMXNbiQWYaYYKWTIyIiIiJqekKyCjFt/QHjcsoDeS6Mhqj5yNFoseNqjsV1iSnpeKirC8YLqwVbPBFRs6I3CPx8sOaWTRvY6omIiIiImoudOwG5vPKxc6erIyIrbLqYAb0QFtf9eikLxVoL3TtciIknImpWdp8uRlZhzTdijvNERERERM2KXl/5oCahpm52AKDRG7D1UqYTo6kbE09E1KzUlVj67VgRCjX8o0tERERERI2PzmDAxgu1J5ZqS0y5AhNPRNSsJNXRla5MJ7DlcKGToiEiIiIiIrLertQc5JRqa62z4UIGDDV0xXMFJp6IqNk4l16GY1dK66zH2e2IiIiIiKgxSkype9a61KJS/JPeeIYQYeKJiJqNxH+su/luOFgAg6Hx/EJAREREREQEWN+NrjF1t2PiiYiaDWsHDk/P12HvuRIHR0NERERERGS9UzlFOJVbZFXdxPNMPBEROVVesR6/n7DuJg1wdjsiIiIiImpckmxIJh3IyMflwsbxYzoTT0TULGw+XAidDZPVcZwnIiIiIiJqTGztPrfhfN3jQTkDE09E1CzY2oLp0EUNLmSWOSgaIiIiIiIi6+VotNhxNcembRrLOE9MPBGR29MbBH4+aHsLpiS2eiIiIiIiokbgl4sZ0AvbJkD69VIWirU2dPtwECaeiMjt7T5djKzCyhvubX18ERkgN6t3ez8/hPtXlls7Cx4RERFRc5TcJQJ9tjxmfFzs1srVIRG5raqtl4LUCkzrEGFWx18lx7QOEZBKypc1egO2Xsp0Vog1YuKJiNxeRTe72/r4InlhW6x/MgaB3uaJpzsH+OPsux3w/t3hCPeXY9vxIhRqXP8LAREREVFjVOijwr6e0caHxsfT1SGRrdRqoE2byoda7eqIyAKdwYCNFzIQpFbgrQHtcX76MDzUNdqsnqdchtVj4nDsrsHGBFRj6G5n/s2LiMjNqORSJC9sixtaetRZ10MpxRNjg/HA8ECs3JaNw5c06N/OywlREhERERE5We/ewJkzro6C6nA8uwize7XGo91i4K2sO43TIcAbq8fE4ZU+bfDpscsQQkAikTghUsvqnXjSaDT2jMPlPDzq/kJKTUtJSeOYOtJRHPkeLC0tdfoxAfP3ob1ew5fi/QCYxi8MBrN6ZWVlxjoSAA8O9TbbjpzHlX8cncEd71GOeg83VrxGmx5+3qPq+D6uP51OZ1am1+ud/nnR3bnbvbi5vX6AfV7Ddt4KPNklEjDooNGUv/dKy8wnQhJCmLwHYzzkeK1XbI3f75yFXe2IiIiIiIiIiMgh2NWOiIiIiIiIbOabX4Jux9KMyx5do4BQFwZERI0SE09ERERERERks27H0rBz4kfG5fkbWzLxRERm6p14UrvZaPfV+1262/kB5uPUuNs5Vu+j727n56hr1CAEpNWeO5VKWKxb/ZhCCAjAbPv6cub7UCI172msVCrd7rppyoSwfB02Ve5+D7bE3c7R3T8ruPvfUaD5vYZUN/6tsY6lz4tyYf5VUiqVmh3T0rb2xNewgc6eBd59t3L5mWfKZ7dzEnd7/QDnvYYqpdKsTCKRNMq/bRzjiaiZu1ZYhlvWHsGB1AKrtxFC4NdzObj5myPQG9zvjwURERERVfq09BDmFO9AtsH6QZKLhRbvafbidc2fDoyMGiw1FVi2rPKRmurqiMgNMfFE1MyF+6hwKU+Dnh/vx6RvDteagKpIOA35/CBGrU6Gt1IGhYy3ESIiIiJ3NkQRhTc0uxGbu6LOBFRFwql17sd4pngbesvCnBgpETVGHOOJiJDQPhj7Uwvx48ks/HgyCwOjfc3qCABDPj+InRfzjGXx7YOcGCURERERuUJ7aSDaSv1xxpCLNzS78b5mP1rJ/OBTrd5RfRZa536Ma6IIAOABOUYoWjo/YCJqVNhUgYjMEki7LuVbrFc16SSTAOPbBjo0LiIiIiJyPYlEggRFW+NyAcpwSJ9hVu+yKDAmnQBglCIGHhKFU2IkosaLiSciQs9wb0T4mA9OV5tBLf0Q4MEPEkRERETNQYLS9gGnqyariKj5YuKJiCCRSBDfzrZucwntgx0UDRERERE1NoPkUfCTqGzaJr4eySoicj9MPBERACChg42JJxvrExEREVHTpZDIMF7Ryur6vWVhCJd6OzAiImoqmHgiIgDAyFYB8JBbd0toF+iB9kGeDo6IiIiIiBqTeIX1LZjq0zWPiNwTE09EBADwUMgwqnWAVXUTOJsdERERUbMzXtEaMkisqsvxnYioAhNPRGRUfXa7mrCbHREREVHzEyj1wEB5ZJ31IiXe6C4LdUJERNQUyF0dABE1HtYknvzVcgyM9nNCNERERETU2CQo2uIP3WUAwLUQH3wyrY9x3bUQHwDlg4pLJNa1jCIi98fEExEZRfio0CvcG/tTC2usM75tIBQyNpYkIiIiao4SlG0wq2Q7AOBMm2A88P5k8zrsZkdEVTDxREQmEtoH15p4srY7HhERERG5n/bSQLSV+uOMIdfieg/IMULR0rlBUf117Qps2WK6TGRnbLZARCZqG79JJilv8UREREREzZNEIqm1RdNoRSw8JAonRkQN4u8PjBpV+fD3d3VE5IaYeCIiEz3CvBHho7S4blBLPwR48IMEERERUXOWoGxT8zpFzeuIqHli4omITEgkEsS3s9zqKaF9sJOjISIiIqLGZpA8Cn4SlcV1E2tJShFR88TEExGZqam7XW3d8IiIiIioeVBIZBivaIUeyVdwZMBi4+OuwxqES71dHR4RNTIcXJyoCSjTG8zKtDoBmRSQSu0/Ve3IVgHwkEtRoqs8brtAD7QP8rT7sWpTphVQKjgVLzV9Oh1gMABS/txDRERuIl7RBpdKNqLLyXRj2UgdW8c3OUVFwNmzlctt2gBeXq6Lx82U6Q1QCQGJpHl/p+FHYHIcgwG4dAo4vKv8X4N58oRqdiqnCIv/ScHw7/7GR0cumq03GID+92fg/gU5+PH3EhSV2O/59VDIMKp1gElZggtms5u9KhPxc6/iow15uJypc/rxiRoiNxf45hvgrruA+HjAJZ83eB8mIiIHGa9oDRlM/7gNlEW5KBqqtwMHgLi4yseBA66OyK0UaQ2I+2gfHt1wCr+cyUKprnl+FmOLJ7K/tAvAFy8A6ZsAnypvrAIpEDoWmP42EBbjuvgaKZ3BgJ1Xc5B0PgOJKek4lVsEAAj1UGJDQm9ArzWpr1JKMDPeC/96Oxef/lQMlRIY0UuFhMFqxA9SI7pFw97eCe2DkHgqq3LZBd3snprkj7b3X8CGvcX414cZ6NFGhYR+nkjo64WebVUOae1F1BCnTwOJiUBSErBjR3lLJ6B82amJJ96HiYjI3uaNBSQyYO7PAIBAqQe6yUJMqrSTmf5wifkTAKEH5m1yVpREjUqAWo5bOgbjtT8uYNm+q/BSSDGmTSAS2gdhQrsgtPC2PKmTu2Hiiexr7dtA8gJAAcALQNVfQbz0QPHPwAc/A3EvA1NecFGQjUeORotfLpYnmjZeyEBuqXmrnhd6tYanQgZNtcQTAMyM98TCzwtw6ZoepWXAxt2l2Li7FI8sykP39grED1QjYbAavTspbE7STKzSwslfLcfAaD/bT7CBWoYqcN8YX3z0cz4A4MDZUhw4W4rXvs5BeKAME/t4IaGfF0Z194Cnmg04yfl0OmDXrvLEUmIicPKkeZ3evYEJE4DSUicFxfswERE5gkQGiF3lyaTryaeB8kjTKlV/ZZk/oby+ZKAzoyRqdJ66MQpL/r6M/FI9irQGfH8iE9+fyIQEQN9IHyS0D0ZChyB0C/Vy2y55TDyR/ax9Gzi6oPyqkkiA6u+ZisSHXJTXW4tm+aXnVE4RElPSkXg+HTuv5kAvRI11Qz2UeLhryxrXq5QSvDTDB/96O9ds3cFTWhw8pcUbqwoQFiTFxIHlLaFG91XBy6PuJE2Ejwq9wr2xP7UQ49sGQiFzTWLnxdsD8OnmfGir5eRSs/X4ZFM+PtmUD7VSgpFxHojv64X4fl6ICuatjRwnNxf45ZfyRNPGjUBOTu31581zYmsn3oeJiMhR5v5cmUy6nnyqnngyqpp0up6kImquAjwUeKpfFF7744JJuQDw95UC/H2lAK9sS0FLPxXi2wUhoUMQhsX6Qy2XuSZgB+C3M7KPtAvlv7DLUfnFpiZSCWAQ5fWHTnX77h5avQG7UnOQmJKOpPMZxi501qho7VSbqq2eapKWZcCnPxXb3CUvoX0w9qcWIt4F4ztVqN7qyRJNmcCGvcVmXfLi+3qhF7vkkR1UdKFLTCzvQqev+e1moqK1k1PwPkxERI5WLfkUPeJF8zpMOhGZqdrqqSYX80qxbN9Vky558e2DMNENuuQx8UT28cUL5d06rP1ZXyoBFAL4cjbw/H8dGpqjtbwpDZfTTW8gQqkDwguAqILyf1VWfkut5tmdJ/DsjhN1Vxxl/T5LAWwEsPEK8Mja64UWGkYYqRS46+U8TNMXWH8QO6ulUZhF7JJHDVXRha5ivCZLXeissW8fIDPmjlX2Cs+i9X1fwC1jYX0TbTe6DxMRkRNVST5JvqvWavbb5wG/o0w6UaOjeP136A02fqmwM1uOXlOXvPj2QbihRdPrksfEEzWcwVA+gK23jdsJANd+afJzjAtxPTHiUwpE5Zc/QorsN2ekk+4pNd0IQxVqpOukNt0oG5OauuRpdU31jMiutFogORnQaJAb0Rm/7Ak06ULngWL0xD+wZXLobATiODoblysSp11xBH7Isym8PegLLUx/4QpGBjqgeibMgIS+v9i07/Lg4Bb3YSIicrKK5JPfLmCIEvijrPxfJp2okRJCNNnvMzV1yWsV0nRaQTHxRA135cz1WZNszJBIJeXbXT0HRLV1SGiO8k92DnamZ0EAyLkhAwjJBdR6QOs+/XArtJT7IN3VQdhJ1S55UOsRHarCkG4eCPQpf91ahShcHCE5S2GRwOeri3H7m4MQevEgAGCa+nts0NyMqveyaFzCTgy2ad8/IQE34yez8qV4HMPwu037CsdVpCHcpGwUtuK/uNO0oocECPRBc7oPExGRi839GXh6ADD8KDBYBcglQF4X4D0mnahxKdMZ6q7UhFR0yYPUALmnHD3DfdAr3AdyqQR+qsaZ4mmcUVHTkpvRsO1zrjW5LzzbrmXiuX8Oly9UNGy47ANc8itv8eRlPgNdU+XpRoPaAUCHKAUS+nkhoa8XBnRWQy5rWs1UyT7yCwQ+f2U/Hss6aCwLVV3F3NnALxuBPXts7+LpUg39wasJ3oeJiKgRePob4OOu5UknnShfJmpk/jhb0GRbO1milEkwPNbf2PUuxl/t6pDqxMQTNZx/SMO2D2hhnzhcTSMH9kYCeyOAAE15AioyHwgucXVkzZpMCgzp6oGEfl6I7+uJdpFNp0kqOZYaGpPldrqzeGY2MG8ucO0asGEDsP9rAL+6Jj6blDVwe3e5DxMRkXOtergy6SSXlC+zmx01MolHcpvWD4oWhHgqMLF9EBLaB2F06wD4NNKWTTVpWtFS4xTZFiiQAl76umdSqsoggCIZENHacbE50dgb1fjwPvMvbxmaUmxLy8RvaRnYlZ6FEr31TT2f6tQGCVFhAICyMtNvlkpleQJFCODueTlIzbR+APOYcBlG9lFjRG8lenVUQlHbnaBMBtzqnFZPpaWlJssqVflgzAu+ycaqLdYPbh7gLcX43p5I6OeFcb084e/tXq22yDF2K/sa/9+iBXDvvcC9U6NRunsHDhwA/vyzfMDxa3X0Pc1GoPH/vXsD31T8+Ht4MVIKKsd4qngP12bnDUFmrZmkWaNwJWWHaaHBgIg9NwE+Bkia8X2YiIicqOrsdW+YznbH5BM1FkIIJB7JRajOGzuf6uyUQbktfacp0ekx6LMDyKtlVrvquoV6IaF9EBI6BKFPhC9kTXimbiaeqOGkUiB0LFBs4x8YCYAW49xmQFsvDwnaRJm/pdpAjhvbeuFFxKBEp8e2y1lIOp+BxJR0XC7UWNhTpcSrqXhnRFvIpVJoNKZ11eryJpX/21qM1PNy1PZ2lsmAQXFKJAxSI2GwGu1bNs6xjDQa0xuxWq1AVr4e63YW1rktu9BRQ2VLA8wLPT2hGjkIN44EbgTwtAAOHaqc7a6uLnn79pW3nhowANBEdjFZV/EetlmbEKCvhZamF8c1+/swERE5SdWkU0WSaS6TT9T4HEsrQUpWeSIov1igZ7Snw4+p0Zh+D1Gr1fjg78t1Jp2qdqGb2D4Qsf4ejgzTqZh4IvuY/jbwwc+AXFjX6skgAB2Ae95yeGiNiYdchgmxoZgQG4oPh3ZGcmYBElPSkZiSjr3p5rNdnc0rxpqTVzG9U5TF/RkMAvM/sdwSyN9HgvH91UgYpMa4/moE+DbNL5bvfp+LwhLzb/YVXeji+5a3bGIXOnIGiQSIiyt/vPJKZZe8xERg82aguNh8m/nzgU2bnBAc78NEROQMlpJOFZh8anqCgoDJk02X3UjSkVzj/xOP5KJntJfTYyjR6vHWzosW1zX1LnTWcs+zIucLiwHiXgaOLij/MlPblx7D9SRC9znl2zVTEokE3UN80T3EF3P6tkVaUSk2nC9PQm25lIViXXlG/PW9Z3FXhwiL+1j/WwmOpeiMy+2iZUgY7IGEQWoMjFNCIW/arX6y8vX44Kdc4zK70FFjY+ySdy+g0QDbtpW3hEpMBC5dKq+zeXN5N72ePR0cDO/DRETkaLUlnSow+dS0dOoErFvn6igcJvForvH/SUdzMXd8pNNjWPlPKlILK4dNcacudNZi4onsZ8oLwFoAyQsgFAIQMBlrRBgEJBKU/8LefQ5w+yxXRdpgOp15C5zc/IaNWBfmpcJ9XaJxX5doY5e8xJR0JJ3PwJqTVzGlVbBJfYNBYOHnhRjas/F3oauvd7/PRWSQ/PrA4F4YyC501Iip1cD48eWP//ynskteYiLw2mvADz84IYgq92Fcvw+bJKAMorx7nRvch4mIyMmsSTpVYPKJGoHMQi12p1QO2bHvYhGu5pUhws95PSVKtAa899dljG0TgPj2QYhvH+RWXeisxcQT2deUF4ChU/H7vbMxsO1GKAIrkzEiXwpJxHhgxiIgNNqFQTbcuUvmA4SnZlg/aHhdqnbJWyYE0opLzeqUlgG/fRiMQL+m2YXOGo/G+2HBdPdq7kvNg6UueXp9+XhrDnf9PowvZwPXfgF8qtybimTlYzq5wX2YiIicTOitSzpVMCafrB9Mmciefj6WZ2zkXWHD0Vw8MCDUaTHoDAKHHu7ttl3orNW8z54cIywGr+T/F1j6B3Z6DCufkakM2Pz0dox7foiro7OLo6f1gGkDJLsmnqqSSCQI91KbDS7uoZbAQ+3erX8igniLIvfQokV5VzynCYsBnv8vYDAAV88BOdeAgBbls9dxIHEiIqqPefUYsJAtnciFEo/kWChzbuLJRyWDupknnQAmnsihpECJAEquL0rc48uOEALHz5onnnLzBFLTDQgPdY/zJCI3IJUCUW3LH0RERETNRJnOgE3HzSdv2noyHyVlBngo+Z3NmfhsE9no2Bk9snMtj+e0YXuZxXIiIiIiIqJGJzkZ6N+/8pGc7OqI7OKPswUoKDXvkVKiNeDXU+YJKXIstngislHib9pa191/u9qJ0RBRfV2VhuNdr0dNlomIiIialYIC4K+/TJfdQOKR3BrXJR3NRXzXAOcFQ0w8Edkq8TctoLK8bssuLUo0wu3HXiJyBynyVnjW9y1Xh0FEREREdiSEqD3xdCQX4nYBiYTf2ZyFiSdymJPogDvwtXH5lvAOLozGPjKzDdh9QAfcaHl9iQbY9pcWE4Y5b4pOIiIiIiIiKnc8TYOULPNZwStcydPiwOVi9Iz2cmJUzRsTT+QwmQjBN7jDuDzB14XB2MnPv2shLA/vZJT4GxNPRERERERErmBpNjvzOrlMPDkRBxcnskHib3UPHp60TQtRV3aKiIiIiIiI7C7xaG7ddaxITpH9MPFEZKWyMoFNO2oeWLzC5TQDDh7TOyEiIiIiIiIiqpBZqMXulMI66+2/VIyreZyR3FmYeCKy0u97dCgosq5ubTPfEVHj0KdsHy5d62B89Cnb5+qQiIiIiKgBfj6WB4OVnU82WNEyiuyDiSdyGAXKEIZU40Oqa9oZ5aRt1seftL1pnytRc6BEGaIMV40PJfi+JSIiImrKkmqZza662ma+I/ti4okcpi/2IBURxkfQ2T2uDqnehBA2tWLae0iP1HSDAyMiIiIiIiKiCmU6A345nmt1/a0n81FSxu9szsDEE5EVjp3RI+WybTelDWz1RERERERE5BR/nC1AQan139lKtAb8eirPgRFRBSaeiKxQnzGbOM4TERERERGRc9Sn6xy72zkHE09EVkjaZppE8vORmNVRKiVQKSuXt/6pRYnGypHtiIiIiIiIqF6EECZJJKkEiPBTmNUL91VAViULknQ0F0LwO5ujMfFEVIfMbAN2H9ABAG4do8DBn3wxuI/crF5wgATnfvPHk9NVUCmB4hJg219s9URERERERI1Uv35AVlblo18/V0dUL8fTNEjJKoVUAkzvG4wTL9+AO3oFmdW75YYAnHrlBtx3YwhkUuBqnhYHLhe7IOLmhYknojps/EOLSaPKE07ffuiDuE7mSacKES2kWPKKlzEBtfVPJp6IiIiIiKiRUiiAwMDKh8K8lVBTsPF4rjHh9Pm01mgXqq6xbutgNT65s5UxAfXLcY7z5Gg1f4MmIgDArWOUuHuSyqZtKhJQRcVstklERERERORIDw8MhZdKZtM2FQmoolK9g6KiCvVOPGk0GnvG4XIeHh6uDsHpSkpKHLZvg0Fp1pxOr9c69bqx17FkUqD6rgwG85uTEMLsmJa2ra/meI1S8+bI+4Wm1HJSWKPRQAjzMdzsoTm+hyUSxzyXjYUj/442Bu7++gHu/xpS3fidpulz99fQ3e9TdvvOBkCjMe1totPpzOrp9Xrz72wWtm2I5vYaWoNd7YiIiIiIiIiIyCHY1Y6IiIiIiIioObp2DbLNm42L+jFjgBYtXBgQuSMmnoiIqFkyQIoiiafJMhEREVFzIjlzBooHHzQuG7ZuhWDiieys3okntbrmUeKbour9Lt3t/ADz/rP2OseVK4H4eCA8vLJMauH7m0ymMB5TCOC33wAPD2DAALuE4bDXcEvqNXjL5egfUjkdp1RqPnCdRCIxOWZKYRF2pmfh7tYt7RJHdUK438DljrpGG4vmMF6KPdnr9c/MEvj+Fx2m/58cSmX5a6BWGbBbeSO8w66ZHVOlKq9TUiLw6X+1uO8OBTw8Gv7aNYe/M9WvcXe7T7n7Pao6d3v9gOb3GlLd3P0a4Pu46XH65wWVqtqiCnDgMZ15fnK5ebpDJpM5/Zpxt2u0PvjzLjXY+fNA69bA008DqamV5Xnww3YMNT60nn4QAvj1V2DIEGDUKCAqymVhWy1AqcSAzb9j3G87sTsjq876KYVFeOCvf9D+p83I1dpvkDoiqp+gQGDRsjJ0GFyMT9ZoUVZW+4fwkhKBDz4pQ5sBxVjzvc4uSSciIiIiouaKXe2oweLjgYULgSVLgI8+Ah5+GMjLA46gG4Zju7Hew5eARUOAnTvLl+PigJaOaQxkVz0D/RGmVmFTajo2paZjbHgoMqXmb51SRRke+OsffH7uAnTXf12KjwxzdrhEVI1EIkH8KDmWrNTigVmlWPBBGR64S2Gx7tLPtHj3Yy1Sr5W/hx+babkeERERERFZhy2eqMH69gVCQsr/r9GUJ6COHDGv99FHlUknoDxh1RRIJRLER1b2I9yUmo79sqtm9bJ8c/HJ2fPGpFMXP1+08vZyWpxEVLOE0ZXdY89fEnj5rTKL9Wa9XmZMOgFA/CjzbrVERERERGQ9Jp6owWQyYOJE27dLSLB/LI6SEGV7y6UEtnYiajQG95PBz9e2bVpGStCtE/9MEhERERE1BLvakV0kJACff259/RYtgD59HBaO3Y0KC4VaJoVGb7B6m4So8LorEZFTKBQSjBsmx9qfdMayaP0l3FP8X+Pyl5534JIs2ricMFrOAeGJiIiIiBqIiSeyi9GjAaUSKLPce8XMxImWZ75rrDzlcoxsEYoNV9Osqh+sUqJfUKCDoyIiWySMkZkknlrqL+GNwteNy9tVg0wTT2PYzY6IiIiIqKGa0Fd/asx8fIBhw0zLOuEYfsRNxkcnHDOua0rd7CrYMlD4hIgwyKRsKUHUmIwbJrc64e3lCQzrz8QTEREREVFDMfFEdlM9mRSIbNyEROMjENkAyltGjRrlggAbKN6GcZ7YzY6o8QkKlGBgH+v+7I0ZKoNKxeQxEREREVFDMfFEdmNtK6YRIwBvb8fG4ghRnp7oEeBXZz2FVIIx4aFOiIiIbJUw2roe5tbWIyIiIiKi2jHxRHYTEwN061Z3vabYza6CNS2ZhoWGwFehcEI0RGQraxJKEgkwcRS72RERERER2QN/0iW7io8HDh+uu05TFR8ZhtcOn6izDhE1Th3aStAmVoKz50WNdfr1lCI0mL/LEBERUTMQEwMsXGi6TGRnTDyRXSUkAG++WfP6uDigZUvnxWNvvQIDEKZWIU1TWmMdju9E1HhJJBIkjJZjyUptjXXYzY6IiIiajeho4MUXXR0FuTn+pEt21bcvEBJS8/qm3M0OAKQSCeIja04sdfHzRStvLydGRES2Shhdeze6utYTEREREZH1mHgiu5LJgIkTa17flLvZVUioZXa7BHazI2r0BveTwc/X8rqWkRJ07cg/jURERERE9sJP12R3NbVqCgwA+vRxbiyOMCosFHJh+a3DbnZEjZ9CIcG4YZa70yWMlkMikTg5IiIiIiIi98XEE9nd6NGAUmle3r8/IHWDK85TLkdbQ5BZuVKrQL+gQBdERES2iq+hO13CGHazIyIiIiKyJzdIA1Bj4+MDDBtmXj5woNNDcZjOhlCzsrCcYMikbClB1BSMHy5H9berpxoY1p+JJyIiImpGdu0CVKrKx65dro6I3BCn7iGHSEgAvtlsWta7t3Nj+HOPHpu3GZAwVoaecRK7dp/prA/BdwrTsvCcWkZVJ6JGJShQAv8+7THtz5XGssihHaBSOTd5vPSbIqiUEsQPViEihEkvIiIicjIhgLIy02Un2phcgOQLJYjv4YsuUSoOeeCmmHgih0hIAL553LTM09O5MfTpIcXd/9Ji/iIdIsKA+LEyJIyVYcRgKTw9G3ZD84cHkOoNhBeWF+glCM01735HRI3X4PgIPH9wqnH5swSV02Po00WB/jOzAAC9OimQMFiF+MFq9OzIsaaIiIjI/Q1s54lpyy/hxf9dQ6sQBeJ7+CKhhw+GdvKCUs4OWu6CryQ5REwMUNalJzrgBDrgBL5+9QTQs6dTY1AoJHjlmfLc6tU04OMv9Ei4swzB7TVIuLMUH3+hw9XUBmT0T1ZJNJ33h0LPPC5RU5IwuvI9K5EAE0c5v8XRjd2UGDegPOG1/7gW8z4uRO+7MxE1IR0PLchD0g4NSjTO/eWRiIiIyFl8PWV4dnwwACAlQ4ulm7Mw5u3zCH74OCa/fwFf/JGDjHydi6OkhmLiiRxm1E2eOIUOOIUOGHRfB+c3eQIw7XYZWseathooKQGSNhnw0DNaRHbVoPcIDea9rcX+gwYIW5qWngqy/H8iahI6tJWgzfX7Q7+eUoQGu+ZP4twHvM3KrmYY8PH3xUh4OgdBI9OQ8HQ2Pv6uGFcz9C6IkIiIiMhxHhsdhEBv0x8ACzQGfLs3HzM+vowWjx7HwPln8dZP6ThySWPbdzZqFJh4IodJSCj/Ny4OaNnSNTFUbfVUk/3JAvMX6dB7ZCmiumrw0DNlSPxFj+LiOm5oqT5AwfXp+04y8UTU1EgkEmOrp6qtn5ytaqsnS0pKgaQdpXhoYR4ix6ej992ZmLeiAPuPa/nBi4iIiJq8qq2eLBEC+PN0MV783zV0e/E02jxzEk98eRVbDhegTGdwYqRUX+wbRA7Tty8QGGxAqUKL26Y7/nh6g+kXMJm0FACgtaFlZkWXvI+/0EOtBkYNlSJhrAwTR8sQGVFtvBUhKW/pFJ0H5Ho0NHwicjatFrf2zsZXXxRi/36B25/xh16mqHu7etIbTFsryaQlxv+nZ1vfkmn/cS32H9di/spCRIRIET9IjfjBKozsq4KnmuNCERERUf29vC4NJ/ZfcNj+9fpqn4dk5S2dCjXWJ5AquuQt3ZwFH7UUY7p5I6GHLyZ090GIL1McjRFfFXIYmQwYMAjYsz0V106etXq7q9JwpMhamZX30e2FUmit3o8BUuxW3GhWHq2/hJaGS3XvQAvkJAFfJgGvyNoiukcLJFwfoFwIQC606PdXCjQXdEgWWgCO+8JKRA7w998YfNNgZADAl8Aj0QtxyLNTjdXzpT447NnZrLxjyWkE6bNtOvQBj24olpl2P/bX5aKL5qRN+0ktbYGPv4/Fx98Xw0MFjOyrQsJgNW7xPoQQzypZd7W6vPmpgvcpIiIiqlnO7gO4eEqLfUFdzda1LriE8JIMm/Z31K8tclW+JmWeumL0yD5hVndgLfvJUvnjhF9rs/LY1BNIu1iIlRuATyRA10g1Brb3xIB2nog9mYOBV8s/o2lkKiQHt7MpdrIfJp7IcbKz8VjMLnyiy8e6wmlWb/au6nE86/W2Wfl3BXcgSly1ej9F8IR3YKZZ+T1la/BGyWtW7wcApnl9ijXJd+CfZB3mL9LBN6oE4UHp2Ln7LgDAYd+ueDdwKwAfm/ZLRI3Hsksv1bp+p1cfDO74o1n5gqtv4dbcjTYdq0vnbTjm0cGkrG/RQWw6c6dN+/kg5F482fINAJVd8pJ2lGLM4f9DSNllk7pl3bpDt+svePo4f/Y+IiIiahqW7V2I814RaDXpF7N1T55cgydOfm3T/sYOX47NEaYppdjCq9i5ZYZN+/kueiRuG/KehXgXYFDGAYvbPHb9UeFwWEf8b/QGm45L9sExnshxzp3D2Pdvsinp1BT4eAOxU6/Ad0blTatb/hGEdDD/QkpEjZha7eoIHEYuM+9ypzx8EDv+u9sF0RAREVGj5cafh6rrlnYCr0fZ1kqd7IOJJ3KcuDgUdezh6ijsIiRIgscfkGHzeiUyT6txz1Q52l1NM6mjKC1zUXREVC9xcUAP97hHSSTAgBsUePMxHxxZG4zIUMt/3mVlpU6OjIiIiBq1uDgcDe7i6iicR6NxdQTNErvakeMoFCjY8he+/+AfyHXWv8F9/cLx72DzS/P38+sg09ec3NHpqg1Up1Dg363lyM0D3lhcOdbJl8q7sF0+pNYYJBKgaycJBvaVYmA/Kd4d1QGSFkqTOrleXtacDhE1VgoF8Pff+GftXpw6WVhn9VIPX/y7pXl32rwrr+Gbwqfq3L7qPeremHaAd+W+/vinDH/81h2DOnxvXewAPNUStO8bjS9u8sP4gSqEBFSZhnjdOjy4+CLkRw9h2RHbuhYTERFR85FWIEH3PmvxcMw5DLw+hJJOocK/24eZ1fUc/iS+yZ5q0/4TWnbEGB9/47JWq4NC44mvBpZ/5pHLyz+/XMvTY92evBr3k6XyNyuTy4DPp76BKy0NGNjOE1FBSvMNDx0CHn3UppjJ/ph4IocKi1Ji2iLzAb7rZ0CtazXVstfq681GX3vHdEDyS7JoXJJFm23v4w2MHVE+i934UTKEBNc+O5RWLqt1PRE1AQoFek4bgJ4N2klvq2rVdI8yGAQ+TyxBrtwfu7z71bqPVpEyJAxWIX6QGkN7KaFU1HCf6tMHyZEtoLjEFk5ERERUs5/3FUMHFfaoumPpLPPvSKZCGny88s9DAQAiAVR+HvrXqivYdb7ubnABXjJMiPNBQk8fjO3mA3+vbrVv0K8f8H//V7ns71+/wKlBmHgit5abJ/Decl2N62NbSpAwtjzZNHSgFEolpyInIuf67jcNjpy1fJ+SSID+3RRIGKJGwmAVOreWQyLhfYqIiIjsI/HvIgDAnlOlSMvWISzQ+SmCi5ll+HR7To3rO0aokNDDBwk9fNG/nafFsSxrpFAAIQ1PmFHDMPFEbu2Dj3XIrdJiUyIB+veRliebxsnQuYOEX+KIyGUMBoH5K027+fl4STD2RhUSBqswYZAawf4cjpGIiIjsT1NmwOZ/io3LG/YW476xvk6P483EDGj1wrgslwFDOnghvocvEnr4oG0YZ+Rt6ph4IrdV0drJ1i50RETOUtHayeoudERERER2si25BMWllQmfxL+LnJ54qmjtZN6FjsOauBMmnshtXbgk8L9PlexCR0SNllIhwZG1wexCR0RERE6XuKfIZHnLgWJoygxQK53X2vpKjha/vtjK9i501KQw8URuK64ru6cQUeN201C1Q/cvIEGpVFFZwOQWERERARBCIGlPsUlZcanAtuQSjO/jvNm7+7dz8LHS04HNmyuXx4wBQkMde0wyw8QTERGRm/ozsBfUE44Yl//bzXxqZCIiImp+DqWU4VKG+eQmiXuKnJp4crhTp4C7765c3rGDiScXYJMQIiIiIiIiomakYja76pL2FEMIYXEdUX2xxRNRPeV7emBn5/bG5RJvN/plgIiIiIiI3FZNiadLGToknytD9zacSY7sh4knono63KolBv/7VePyrS2iXRgNERERERFR3dKyddhzqrTG9Ul7iph4IrtiVzsiIiIiIiKiZmLD3uJa19fUGoqovtjiiYiIyE1FlaRi2pWfjMue6fcB6Oy6gIiIiMjlkvbUnljac6oUadk6hAUyXUD2wSuJiIjITcWUXMGbJ941Lm9NGwMmnoiIiJovTZkBm/+pvcUTUN4q6r6xvk6IiJoDdrUjIiIiIiIiaga2JZeguLTuWevqahVFZAu2eCKqp44Xr2DBl+uMy9ufeRzoOcSFEREREREREdUs0cqE0uZ/iqEpM0CtZFsVajgmnojqKaigELf+uc+4vP/efBdGQ0REREREVDMhBJL21N3NDgCKSwW2JZdgfB8vB0dFzQHTl0RERERERERuLvlcGS5l6Kyub23rKKK6MPFERERERERE5OZsHbcpaU8xhKh7PCiiurCrHREREREREZGbS/zbtsTTpQwdDqWUIa61ykEROUHLlsDrr5suk9Mx8URERERERETkxtKyddhzqtTm7RL/Lmr6iadXXnF1FM0eu9oRERERERERubENeysHFe/XQYWNr4WjVZh5O5TPngrFIxP9oLy+ytZWUkSWMPFERERERERE5MYS/y4yJpx2vxuFcb29ILFQLzpEjg8fDcGZT2PwyEQ/JKeUIS3b+gHJiSxhVzsiIiIiIiIiN/bsrf4Y1EUNicRSuslcdIgCHz4agtm3+6OkjAOMU8PUO/Fk7QVL5ColJSUO27dWqzUrMwgDNBqNw45ZnTOP5SweHh4my458Danxc/e/M46+vg0Gg1mZTqfjfaoBmts9yt1eP6D5vYZUN3e8zqtyx/Or/j6mBhj6K+BpOtj26NGjgaw/nRZCc7gPu+P70FZs8UREROSmTnvFYkbcm8blCVGtXRgNERERkXNJdu+GMj7euFyWlATRv78LI2qemHgiIiJyU+mqYHwRfatxeURAkAujISIiInIygwGS4mKTZXI+Di5OREREREREREQOUe8WT0K41wBj1ccScbfzA8z7lqrVahdF4hjVX0N7nd/ponzEeHhBKZUZyxQKBQ60iUGX5W8Zy+I6dTA5phACxwrz0MXH3y5xVOdur58lzeEcqWbudh925D346IVSdIlRmZRJpea/LSkVCpPjFmkMyMjTI7aFwm6xVOVu7+Hq41Dw/Jq+5nCOVDt3uwaa4/vY3T4vOPN7aZt7z+NcmumMdVu2bMGoHp4OO6ajvrPVSKWqtqgCnPy+aA7vw7qwxRNRHU4U5qPt7z9hxcXTKDPojeXFajWOxUQZH6XXBzoUQmBD+hX03f0L1lw976Koiag5eWt9Nka9chk7jhbXXRnlCad3vstG7H0pyC3S170BEREREVE9cYwnojqMDA5DRlkpHj66BwvOHsHLbbqaJKAqCAAb0q9g3plD2JeXDQD4oFNvJ0dLRM1RQl9vTFmUil+TizEyzhNz7wgEAMgNWvjoioz1igsD8c532Vj0bQ4y8/WIDpYjrpWqpt0SERERETUYE09EdfCUyTEqKAxJGVdwSVOMh4/ugRTm07z/eO0yvr92ybgcolShrz8H8iUixxvb0xNyGaDTA78mF+PX5GJIpUD/3GTs/PMuY70hRWuwI6AyIR7fx8usyTsRERERkT2xqx2RFRJCI02WDTDva129bGJIJGQSvsWIyPH8vGQY2tV0PAZLk7YYqt26Evp6OzAqIiIiIiK2eCKyysTQSOCoaZl/QRH6njprXN7Tvg1yfbyMy9WTVUREjpTQ1wu/Jls3xhMAeKokGH6DhwMjIiIiIiJiiyciq0SqPdHTN9CkrMvFy9g0Z5Hx0eXiZeM6pUSK0cHhzg6TiJqx+D5edVeqYnR3T6iV/BhARERERI7FT5xEVrKlBdOwoBbwkTtmenIiIkvahCvRKVppdX12syMiIiIiZ2DiichKtiSe2M2OiFwhoa/1rZ4m2thCioiIiIioPph4IrJST99ARKisGw8lPoSJJyJyvoQ+1rVi6ttejbAADvNIREREbk6pBCIjKx9K61uHk/3wUyeRlSQSCSaGRmLlpTO11uvq7YdYT3ZhISLnu7GjGoE+UmQXWJjSrgpbx4MiIiIiapL69gUuX667HjkUWzwR2SDBipZMCaFRToiEiMicXCbBhF51J5Vs6ZJHRERERNQQTDwR2WBkcBjUUlmtdTi+ExG5Ul2DhkcHyxHXSuWkaIiIiIiouWPiicgGnjI5RgWF1bg+RKlCX/8gJ0ZERGRqbE9PyGvJj8f38YJEInFeQERERETUrDHxRGSj2lo0TQyJhEzCtxURuY6flwxDu3rWuL6uFlFERERERPbEwcWJbDQxNBI4anldPLvZEVEjEN/HC78mF6NA7o3d/t2N5ToPbwy/wbrZOYmIiIiavHPngP/8p3L5sceA1q1dF08zxcQTkY0i1Z7o6RtoVq6ABGOCw10QERGRqYS+Xnj6kwwc8u2IAYPWGstv7ucFtZKtMomIiKiZuHoVeO+9yuVbb2XiyQX46ZOoHix1t+vhFwgfucIF0RARmWoTrkSnaKVZObvZEREREZGzscUTUT0khEZidaA/PrhpjLGse4fOLoyIiBqrQo0ev58uxLA2SsikzhvUO6GvF45fKjMpm9jHy2nHJyIiIiICmHgie5k3FpDIgLk/W7/N/AmA0APzNjkuLgfp4RuIkthYPPnwPcaylN79XRgRETUmF7PLkHQoF4mH8rDtZAGm9QvEyHY1z4jpCPF9vLDo2xzjcp92KoQF8M8+ERERETkXP4GSfUhkgNhVnkyyJvk0f0J5fclAx8fmAFKJBPGhkVh56QwAoKu3H2I92YWFqLkyGAT2XihGYnIuEg/n4dDlEuM6uRR4aXw4AOHUmPp39ECgjxTZBQYA7GZHRERERK7BxBPZx9yfK5NJdSWfqiadbGkh1cgkhFQmnhJCo1wcDRE5W6FGj60nCpB4KBcbDufhWr7OYr3p/YPQOkQFjUbj1PjkMgnuj7qK3l8tBACM1nsCcQuATp2cGgcRERERNW9MPJH9WJN8cpOkEwCMDA6DWiqDxqC3ONg4Ebmf6l3oSnW1t2KqbO3kGmNjNBiRer07cyqAl55xWSxERERE1Dwx8UT2VVvyyY2STgDgKZNjVFAY/s7LRF//IFeHQ0QOUNGFriLZlFylC501ukR4YNfZQuw6WwitVmuyTqFw/CyYvoZShx+DiIiIiKg2TDyR/VlKPrlZ0gkAsHcvvr51GkoNesgUzwHr1gF9+rg6KiKyhVYLJCcDVbrBlZTpsfdCMXadLcT/Mv1wUJgnlgemHbRu/2nAin2ARqbE/hDzmS9b519GeHGmTSEfCWiDPJWPSZmntgQ9sk6a1b0h6zRutmnvRERERET2xcQTOUbVZNMrvoBc4l5JJwAoLYXP5SvwqbJMRE2IVgv06wccOGBS7AFgyPVHdr8ncDDuHrNNtyc+BLnQW32oM75RaDf1B7PyZw6twaPH1tkU9qgJH+LXqH4mZW3yL2PnT/fbtB8iIiIiImdg4okcZ+ZHEB93hUQuAXQCePAjV0dkN19lnsa2c3/g0yply64dxSMY5LKYiMh6GUVleGbBN1hdLenk9tRqV0dAREREjcQPc8JRqhU4cUGLjjHlQwC0j1K6OCpyR1JXB0Bu7L2plUknuQR4b6qrI7Kba9oSnNTkmZRdKbNt7Bcich2tQSAlLa/uiu6kRw8gLs7VURAREVEj0a2VCr3bq7F+cxkiAxXo3V4NX0+mCMj+2OKJHGP+BMDvKLBNA/xRBgxRAsOP1jzbHRGRiz0y4UksmXUrlPLyD1zFpXqM0AYhO90bSYfykF6gM9YdlrDCqn0GesoQ5a9AqUKF/hGeJuukUgl+978fR4fYNgqTPKwdBnp4mZSpo9vjkZCvLNaPDVbh+Ztjy5NOThjQnIiIiJqOEo3Alj2l2LBLg/tv9qp7g6amc2cgKcl0mZyOiSeyv+tjOxXltofXH/vKy/4oA3r2AvwszHZHRNQIHGrRBmLQIOB64skTwPjrj4rZ7RKTc5F0OA+70N2qfUYHKLDu9a5QKaTQVBnAHADUajWAjnY8g5523BcRERE1B9v2l6JYI5C4w00TT4GBwMSJro6i2WM7OrKvKrPXrU2YabrutkXlA4xXzHZHRNRESKUS9GvlhTcmReLgnM648GY3fHhHNMZ18YVSLqlxu0s5Wqz6M8uJkRIRERFZL3Fn+Q9jW/aUokQjXBwNuSsmnsh+qiSdMPdn7NJeMa8z92cmn4ioyWsZqMQjw0Kx8Yl2yFoch+//1Qb3DgxCqI95Q+KFG1NRqjW4IEoiIiKimgkhkHQ98VRSKvDbPs7STY7BrnZkH9WSTlcNBThpyLZcd+7PlfXZ7Y6IXORMYCTuT3jOZLk+vNUyTOruj0nd/Y1d8pIO5SLxUB6SL5cYWz3N6Odjr9CJiIiIGuzgKS0up+uNy0m7NJg4iDPgkv0x8UT2IfTGpBMAbCg7h8OdwzDsxwcBAGrI8UPXTjDexozJJ73l/REROdg1n0B82su+ff4ruuT1a+WF12+OxMXsMiQdysXBy8XQ9/GGTFpztzwiIiIiZ0rcYTr+ZNJODZY9LyCRuNHnleJi4NKlyuXoaMDTs+b65BBMPJF9zNtkspioPYN8Xw/8PqiNsWybZx7GI6iyEls6EZGbq+iSB8BscHEiIiIiV0raZfrZ5HK6HgdPadGjg9JFETnAP/8AgwdXLu/YAQwa5Lp4mimO8UR2VyK02Kq9YFaeqD3jgmiIiIiIiIioqtRMPfYe05qVV28FRWQPTDyR3f2qvYAS6MzKk7RnIYT7zJQgJBKUKuTGh3CjFqlEREREROS+NuyynGCqmOWOyJ7Y1Y7sLkl71mL5JUMBkvXp6C5v4eSIHOPPuLZQ71xuXL41INZ1wRCRzWR6PTy1lR+uihUcTJOIiIiah5paNu07rkVqph7hwTInR0TujIknsishBJLKyhNPXoWlaH8207juVJtgJHqcdZvEExE1bTdePoadq54wLg+a+QGA4a4LiIiIiMgJSjQCW/aU1rh+wy4N7r/Zy4kRkbtjVzuyqwP6a7giCgEA3Y9cxT8jPjA+uh+5isQyjvNERERERETkKr/tK0VJac1DoHCcJ7I3Jp7IrhJr6GZXYa8+DWmGQidFQ0RERERERFVVn82uui17SlGicZ+xecn1mHgiu7KmRdMG7TknREJERERERERVCSGQVMcA4iWlAr/tq7krHpGtOMYT2c1VQwH266/VWS+x7AzuU93ghIgcK+paNqZt/Mu4nDV1MtDOhQERERERERHV4uApLS6n6+usl7RLg4mDOPEK2QcTT2Q3G8qsa8m0RXsBGqGDWtK0L7+Y1Cy8ufx74/LLg4e4MBoiIiIiIqLaWTt+U9JODZY9LyCRSBwcETUH7GpHdpOotW7g8GJo8Zv2goOjISIiIiIioqoS6+hmV+Fyuh4HT2kdHA01F0w8kV2UCC222pBMqmsQciIiIiIiIrKfqxl67DtufTKJs9uRvTDxRHbxq/YCSqCzun6S9iyE4EwJREREREREzvDzn7YlkqxtHdWoBQYCCQmVj8BAV0fULDXtQXao0UiysQXTZUMBkvXp6C5v4aCIiIiIiIiIqIKtLZj2HdciNVOP8GCZgyJygs6dgZ9+cnUUzR5bPFGDCSGQVGZ71zl2tyMiIiIiInK8Eo3Alj2lNm+3YZcbtHoil2PiiRrsgP4arohCAIAEwJ3KTmgvDTCrN1oei47SyqaNiWXWDUZORERERERE9ffbvlKUlJYPdSKXAQ9O8kRogHk64L6bPNEyrLKFE8d5Intg4okaLFF71phwOup3H9Z4JyBE6mlWr588Akf87sXXXvHoKA3EXn0aUg2Fzg+YiAhAodIDeyM6GB+FSg9Xh0RERETkEIk7S4wJpzPftsCKFwPg7Skxqzd1tAdOr2+BFbP90TJMhi17SlGi4di81DAc44kazBsKHPW7D51kQSblmYFe+O+tccZlz2B/yCRS3KHqjNuVHfG/shM4qc9GuNTb2SETESE5vC36PviRq8MgIiIicrjIEBnOfNsCMeF1pwCUCgkevMULM+I98cWGYpy8qEX39konREnuqt6JJ43GvZvcueP5eXiY/ppfUlJil/0+KrkB0AIabeVzZjAYcLJ9KO5ceaex7FNllMnzegtaA3pAo3fMc+3I11CrM5/Bz2DQO/W6ccdrtDqJxPxXGGo+HHmNazRlNR5TyB3TGNhR9+DGjO9hauyaw99Sqp27XQPN8W+Nu72G1dnr/GbdpQSgg0ZT+T3G0izjZWVlqHrIu8fJABgc9jw7+vWTHDkCxTPPGJe1774L0bWrQ49Znbtfo9ZgiyciIiIiIiIicj95eZDu2GGyTM7HMZ6IiIiIiIiIiMgh2OKJqJ5OR7fAjDkzjMsiJtJ1wRARERERERE1QvVOPKnVanvG0ei4+/kBjj1HaZkUMJiWKRRKqFWOO2b1Puz2Oj+dMEAuMW0cqJDLkR7kiy/iBxrLbg0INjumpW3txR2vUUe9ho0Fx7uxjd3ewwYDZBKJyfOv1krQIeMi5v7+hbFs/tDpUKuHQFVljCchBAwCkEnt/9q52/VtiaWxI5qy6mM0uNtr6O7nBzSPcyTbuPs14I7n5+6fF6tz5PlZ+myqVCqd+pw6/FgqVbVFFeDka8bdr1FrsKsdOUzc4avYM3Kp8RGQfMLVIdXL11ln8cj5XbhUWmj1Nvn6Miy8ehAvXtrrwMiIyBoFpXqM/DIZv57LMUmEBBfn4Y4jvxkfwcWVff6FEEg8mYmRXyZD72bJEyIiIiIiZ2JXO3IY76JS9Dl42bj8S2GxC6Opv9G+kZh+7nd8knES94d0wIvhcTXWzdeX4T/XjmFx6mFk60vxXdtRToyUiCwJ8FBAABi1OhmDWvph3tBYdAz2tFhXoDzhNO/38/gntRCTO4dAKeNvNERERERE9cXEE1EdwpWe6O0VjH1FmViefhyfZJxEW5WvWb09RRlodXAtsvWlAAClRIrRfhz3iagxSGgfhO3nc7HzYh5GrU5G9zBveFmo1//TAziYVmiyHRERERER1R9/xiWyQrx/S+P/tcKA45pcyHU6BOQVGR9pxXnGpBMADPeNgLdM4Ypwiaia+GoJpKrJpZrKJQAmtAt0ZFhERERERG6PiSciKyRUSTxV6HckBdljnjI++h1JqXMbInKN9kGeaB/kYdM2/aN9EeypdFBERERERETNAxNPRFbo4RmESIXlMWFqEu8f7aBoiKg+bO02x252REREREQNx8QTkRUkEolJd7u63OARiBiVjwMjIiJbJbQPdmh9IiIiIiIyx8QTkZUSAqxPPNlSl4icY2BLX/irrZtTo5W/Gp1DbGvlSERERERE5jirHZGVRvhGwEMqQ4lBX2ddW1pHEZFzyKVSjG8biP8eSa+zbkL7IEgkEidERUREREQO07cvcPVq5XIQh1JwBbZ4IrKSh1SOUb6RddYLlavR1yvECRERka2sHbcpoQM/lBARERE1eUolEB5e+VBy4hhXYOKJyAbWzFQ30b8lpGwpQdQojWsbCFkdb08fpQxDYvydEg8RERERkbtj4onIBtZ0obMmOUVErhHgocDgOpJKY9sGQinjn0ciIiIiInvgGE9ENghXeqK3VzD2FWVaXK+USDHar+7ueETkOgntg7D9fC4OhrVFzwdXGMtPBUUb1xMRERERkX0w8UQO81fvlvBNmW9cXhZygwujsZ94/5Y1Jp6G+0bAW6ZwckREZIv49kF4dvNZFKk8cCCivck6qQSY0C7QRZERERERkV1lZABbt1YujxoFhHA8Xmdj4okcRi+XocBXZlwWcve43BL8W2LelX9qXEdEjVv7IE+0D/LAqawSs3X9o3wR7MlBJ4mIiIjcwsmTwJ13Vi7v2MHEkwtwEAsiG/XwDEKkwtPiunj/aCdHQ0T1UVN3uoT2wU6OhIiIiIjIvTHxRGQjiUSCeP+WKPBUY3fX1sZHeGALxKh8XB0eEVmhpgRTPMd3IiIiIiKyK/fo+0TNmhACxUIHWd1V7SYhoCVWtI/GgE9fNJa9HNHdiREQUUMMbOmLltCgVcoJY1lOx67oHGK5NSMREREREdUPE0/kMC2uFSB+83HjsnpSPyDGPvsuMejwa8klJBalYHPxJWyLvAVhcN64LCN8I+AhlaHEoDeWxXN8J6ImQy6V4l5ZBuZ+8bSx7P13voZEInFhVERERERkVwYD4CEBlADKri+T0zHxRA7TNiUTnzz1rXH5l243NyjxdFVXiKSi80gsSsGvJZdRInQAgAd8uyBW4QuNXtPQkK3mIZVjlG8kEnMvAgBC5Wr09eIgdURNyYBoP9Plln411KRGYd5YQCID5v5s/TbzJwBCD8zb5Li4iIiIqPFJuwB88QKQ9gvwfJXhUL6/Cdg9Dpj+NhBmp1YRVCcmnqjREkLgn9IMJBalIKn4PPaXppvVkUOKlwJ6uyC68hnsKhJPE/1bQsqWEkRNSr8oX5Pl7i28XRQJWUUiA8Su8mSSNcmn+RPK60sGOj42IiIiajzWvg0kLwAUAHwAoMr3NB8DUPwz8MHPQNzLwJQXXBRk88LEEzUqxQYtfiu5XJ5sKjqPq/qiWuvP9O2EWIVvrXUcpWrXugR2syNqcnxVpn8CFTLOt9Gozf25MplUV/KpatLJlhZSRERE1LStfRs4uqA80yGRmOScAADS6wVyUV5vLZh8cgImnsjlaupCVxcpJHjCLw6FhjIAgMagNVmvMzj2S6Tv6dPYPOcz5OvKkBCwEXj9DaBTJ4cek4ioWbMm+cSkExERUfOUdqG8pZMclQmmmkglgEGU1x86ld3uHIyJJ3I6a7rQWcMAgW6XvrZzdNYbePgsdm7efX1pP/DU07XWJyIiO6gt+cSkExERUfP1xQvl3eusHQJFKgEUAvhyNvD8fx0aWnPHxBM5TeGB/VhUlI0/S9KwL9wDV8IDzOoM3HfWpn1qVArs72beza31hQyEZ+TbtK8j7cOR52s6lbpncSl6HLtssf4NJ6/atH8iIrITS8knJp2IiIiaL4MBSN8E2DpkpwBw7Zfy7aUcdsFRmHgih7hH2QUSZa5J2eTn3jf+f9bzN+PfD4w02277tKWQ662f4vJMy2C0+/VVs/JnVm3Do2t2Wh8wgFGfP4pfB3YwKWtzMRM773i/hi2IqKkqKNPhu5OXML1K2RcnL+GuAQbI+aGjaaiSbBKv+EIilzDpREREZINHJ3shO1+gpETAw6O8lVBseBNNEVw5Uz5wuNmgTnWQSsq3u3oOiGrrkNCIiSdykAfV3QF/68ZqchtqtasjICIrFWh1WHnyokniaeXJi5gqBP8wNiUPfAKxrGN50kkngEc+cXVERERETcYzd/oAAJ5eUISXHvaEp0cTnqU7N6Nh2+dcY+LJgfizLjlOXBzQo4fFVY/6dcNs/17oogx0clAO0qNH+fkSEZHzvDO5MukklwDvTHZ1RERERE2KEAL/21iG33Zr667cmPmHNGz7gBb2iYMs4g+75DgKBfD330ByMqDRmKyKjY3Fm8FReBMDkKLNM85qN+qrJ6GDdV3tpJBgRfR4pLcaDADQVDmG7IWByHkgx6Zwv+naGcLf37QwtAg520fXup2vpw9k3XuUny8RETnH/AmA31Fgmwb4owwYogSGH615tjsiIiIyc+CYHlevCST+pkX8CKWrw6m/yLZAgRTw0tc9o11VBgEUyYCI1o6LjZh4IgdTKIDevWut0krhh8f94/C4fxzyb5+AzcUXkViUgp+LziPToKl126W+SiyTeQAANLIqN5h2naG2R9c3Xw9gqPlYVERE5ELXx3YqzesI1R97ysv+KAN69gL8LMx2R0RERBYl/lbe0ilpexmE8ITE2hnhGhupFAgdCxTb+PdfAqDFOA4s7mB8dqlR8ZUqMdm7Lb5oMRppre7DrsjJtXbJ+yT/KC5pC5wcJRG5gzTfAKwYPNb4SPM1n2mTGqEqs9dtnPAv03W3LSofYLxitjsiIiKqVeJvZQCAq9cE/jmqd3E0DTT9bUCL8lZM1jCI8vr3vOXIqAhMPFEjJpNIMcAjHG8GD8CRlnfhbMw9eD94CEZ5RENx/dLVwoA3c/a7OFIiaorOhkbg4WmPGR9nQyNcHRLVpUrSCXN/xi7t/7d399FN3fcdxz9XkmVZ2NgYbBmMbZ6SkARwyeOKm23QkCdbbbe1TZ+2ZE3Tna5rTnaatF170nVNu6c06bquZOvj1p2zhLU7XWcnLQQS8gDhhAAhgTwAdgCDgw3hIca2nu/+UCxblmxL4KtrSe/XOTrH997fvfpepOgqH/1+v3ssabNpmvGeToRPAABMqqc3pp17R8KmjqfyfJ6nuiap+WvxvycLn4a3v+e++H6wFMET8saikkrdVdWsJ+o/pJOL7tQv6m7Wn1Qs1a8Huuj1BACFbkzoNBALa2eoN6nJweiZ+B+ETwAATOqxLaGk5eHeT3nt1i9Ll39NisR/kDLHBFBmzJRMU4pIWnaf9NF77amzyBA8IS+NHpJ3ZMHtqnSW2l0SAMBKZjQROknS5tBhhcbcjGJraFQPqET4lOfDBgAAsMjw/E7Ddu6Nqqc3sxs9TWu3flm66xW90tmq8Bln0qbYO05pRqt09z5CpxxicnHkPafh0EzDrYAmnogcAJDHvrEhabE90JXSZGuoR7ePXsEE4wAApDUUMLVpW+rQuo6nQvrsx6bgJk12q2vSz+se0YMPxrS4rEt17l4dD/l04+2L9IMv0f8m1/gXBwAAeSVmmuoIpgZPr0VO6Xh0wIaKAADIL5u3hTWU5nf7vJ/nKYVDnUNLtPVsizqHlkgGEYgd6PEEAChKVxw+qP/6yXcSy5+44x4bq0E2doZ7dTw2oMVptj0W7NId3uU5rwkAgHwydpjdsE3bwhoKmCrzGDmuCIWMuA8AUJTKwkFd0nss8SgLB+0uCRlqD3aOvy0w/jYAABCfdLtjS/qJxIcC8d5QwFQieAIAAHmlI838TsOeCB1WwIzksBoAAPLL7lej6uk1x90+Xm8o4Hwx1A4AAOSNo9F+7Y70SZK6mqr1+W//QWJbV1O1Bs2Ingwe0S2eRXaVCADAtDZZsNSxJSTT9MowGG6HqUHwBAAA8sbo3k5v1VVq3Z+2pLYJdhE8AQAwjvYn0w+zG9bTa2r3q1FdcTlxAaYGQ+0AAEDemGh+p2EdgS6Z5vhDCAAAKFY9vTHt3BudtB3D7TCVCJ4AAEBeGIiFtTl4ZNJ23bF+7YmcyEFFAADkl46nJu7tNGyyXlFANgieAABAXtgcOqygJv+VVuLudgAApNPxVGY9mXbujaqnN2ZxNSgWBE8AACAvtI+5m50Ri8kdjCQeRmzkC3J7cPw73wEAUIyGAqY2bct8CF2mvaOAyRA8AQCAaS9mmuoYEyat2nFYwYVfSTxW7Tic2LYjfFzHowO5LhMAgGlr87awhgKZt8+0dxQwGYInAAAw7e0M9+p4LLsg6TF6PQEAkJDthOGbtoU1FOBmHbhwBE8AAGDay+Rudin7MM8TAACSJNM01bElu6FzQ4F4LyngQhE8AQCAaW90iOSSQ0ucVSltahxlKjdKEstPhA4rYEZyUR4AANParn1R9fSO9F6aX+dQ+YzUdksXJUcE2faSAtIheAIAFKWtSy6X8W/ticfWJZfbXRLGcTTar5ciJ+SSQ58pW679NZ/Wp73LUtqtKJmjQ7V36mvl16rcKNGgGdFTwW4bKgYAYHoZnq9pfp1D677h1cFNlaqtTo0Dvv/1Gdr+i5m6+ffiP+R0bAnJNBluhwtD8AQAAKa1DcFDicDpR1U3aKGrcty2sx1l+lbF+xIB1NMhgicAAF56LZIInD73SY9KS41x2177Hpce/3GFtv9ippqXurT71WgOK0UhctldAAAAwET+uOwy3eFdntU+wwFUyOTLMgAA6/+pXG73+GFTOsMBVChEjydcmPMOngKBLO7DmIcK/fwkyTCy++DB9FKI79GysrKk5aGhIZsqwXRg5Xs8EAyO85xBmc7cdAYuhs/gqXwNA0qeYyISTp27KRaNpX3Osfuer7GfUQDyXyF+nxqtEM+v2L4vTum1dMyh0g2hC4VCCgRSf7Sx6q1k5Xs0EnFpbOQRjUYUCOR2/sdC/O8wWwy1AwAAAAAAgCUYagcAKErzTr+tW198NrG8/qrrbKwGAAAAKEwETwCAorTw7eN66Jc/SSy/sPAiG6sBAAAACtN5B08ej2cq67Dd2LHBhXZ+UuGf49ixs5xf/in09yiyM1Wv/8lASP+xv1ufu2yBvC5n/NjjzDft8ZSq1BlvczYU1rp9h3X38oUqe3e/C1EM7+9cfk65IqlfYRxOh6XPWeivYTFcZwr9HIth7ripVmjvgUL/nJKK4xxHs/L8DCMgKXmeJ7fbLY+nxLLntOr1W79eamiQVq0aWedKk3Y4nS55PCMbXnhBOnhQ+sQnpqSMtAr9PZoJ5ngCABS0OR63fvx6txY+slkPvdylwcjEdzk7GwrrW7sOaOEjT+rx7r4pCZ1gjcGyEr186dzEI1hWandJAADABjNnSi0t0o03Stu2Td7+hRek1lbp2msl7h1iPYbaAQAKnr+xVg+83KUvbn9V/7DnoD59SUPadt/efVD/su+QTgfDif0wfe1eMV/Nm7+YWL7Vs8TGagAAgF1Wr5a8XmnjxvjjhhskZ5rfDvfvjwdOjz8eX3a7pbVrc1trMaLHEwCg4LU1+RJ/9w2F9PcvdaZtd/+uA4nQSZL8o/YDAADA9OTxJAdIGzdKv/lNartNm0ZCJ0las0YqL7e+vmJH8AQAKHirfLM0qzS7+QoWVXi1tIpvIgAAAPnA789+n7a2qa8DqQieAAAFz+Vw6JaG7IbN+Zt8TNQLAACQJ1pbs9+H4Ck3CJ4AAEUh22FzDLMDAADIH3V10jXXZN5+xQqpqcm6ejCCycUBAEXhxvk1chmGIqY5aduZJS5dV1edg6pwIS7qPKGvfn9zYnnPPZ+RrraxIAAAYCu/P37HukzbIjfo8QQAKApVpSW6bm5mYdJNDTVyO7lETne1J8/p9v9+MfGYefKM3SUBAAAbZTN0juApd/hWDQAoGv7GzIbPtWXYDgAAANNHc7PU0DB5u9pa6Wp6SecMwRMAoGhkMm+Tw5BuacxuInIAAADYzzAy6/XU2io5SENyhjmeAABFY0nlDC2tKtfrZ86ps2au/uyTf57Y1lkzV5K0ylet2R63XSUCAADgAvj90sMPT94GuUPwBAAoKm2NtXr9zDkdr6zWD3/35pTtfno7AQAA5K3VqyWvVxocTL/d7ZbWrs1tTcWOzmUAgKIy2XC7TIbjAQAAYHryeCYOltaskcrLc1cPCJ4AAEVmlW+WZpWWpN22eKZXS6v4JgIAAJDPJhpKxzC73CN4AgAUFZfDoVsa0g+na2v0yTCMHFcEAACAqdTaen7bYA2CJwBA0fE3+eSIReUNBhIPRyzKMDsAAIACUFcnXXNN6voVK6SmptzXU+wIngAARefG+TW6rusNDdz1kcTj+sMHdF1dtd2lAQAAYAq0taWuY5idPQieAABFp6q0RCtmz0xad61vltzO3F4Wv9P5mh7ofE2vn3tHpmnm9Llz4en+Hn2x+3lt6e9R2IzZXQ4AAMixc+dM/e9jUd15d0g9b+X2u066kIngyR4uuwsAAMAOLb7qMcuzcl7D++f4dMWzG/Sl117SEm+5/L56+X31el91jUoc+f/bUEt5ne44/Iwe6ntFVU63bprZIH9Vk26e2aBZrlK7ywMAABY4cjSmjg0xtW+I6qnnYgoGpY9+yKl5cw0FArmro7lZamiQurvjy7W10tVX5+75MYLgCQBQlFrqkoOm36nNffC0srJaH/TV69e9x3Rw8Jy+++Yb+u6bb6jSVaKbaufKX1uvm2vnqtqdnyGNy3DovrlX6PZDW3QmGtKjpzv16OlOOWXofeV18lc1yV/ZqIs9Ved1/Jcvm6v3/t9fJJaXXrZwiioHAACZisVM7dhlqmNjVO0botqzN7lnk2FI992T++jBMOLD7R5+OL7c2ioVwO96eYngCQBQlOaXlyUtV5aW2FLHX1+8TL/uPZa07mwkrPU9R7S+54ichqGWWXPk99WrzVevS2ZU5NWd9z5ZvUT3v7VLncF3EuuiMvX0ubf09Lm3dM/R7bqotFL+ykb5q5rUUl6nEiOzb4X9FR5tv2pBYrnJ453q8gEAQBoDA6ae2BLv1fTYE1H19o3f9iMfdGrZpfYkPqODJ4bZ2YfgCQAAG43u9ZRO1DT1zKkTeubUCd2bh0PyRvd6Gs+B4Fk91PdKYkjeze8OybuJIXkAAEwb3cdiav9tTB0bo3ry2fgQusnY1dtp2Jo1ktcrRSLS2rW2lVH0CJ4AAJB0976d2usKWXb8WCx5cm3HqMCoJzCU8XGyHZL36tBp3dW97fwLz0IsFk1adjickqRIFhOLn4mG9MjpTj0yhUPyAABA9mIxUy/uNtW+If0Qukx4PNLdXw0nHXM0hyOD9OoCeeukKy9yq7w8f3qMFxqCJwAAJIVe2qO3A4N6afGClG0XH+1Rzdl3UneawJ6FTTrnTR7ON3NgUMsPHUlpWy2pZZzj9M6q1MF5c1PWrzz4przBoI7qFT0s6YeGoeUVVWqpnqNVs2rUWOaVYRiKDZ5SoPs5SdLW5sXxnx5HmXvijBYdO5nVuXXVz9FbNVVJ64xYTKte7hp3n3TnN+hxa/fSxpT1Fx3uVe3pfklSRAf0Kz2rX0lqKJmhlhk+tVTUaZ561TL4piTpwKI56qupyOocAABAqkAgfhe6TIbQZWJoSNr8zEQ/QOXmrretrTl5GoyD4AkAAEnr/vVn2rVoga783t+mbLtv/a/0qS1bszre1Q/erxcvXpy0bvmhI3ruK9/M6jg/Xvv7uvOuz6as/8+H1uny7vTD80ZbJum5d/92bV+nqMuZtP3Dm3fpn7+zPquaPv+lj2ndR1cnrSuJRPXcZx7I6jgvL6lX86NfT1n/1Z/9Rrd3PD/hvisl3SZpwFuqL/z8LgWORrRwhSHlfo54AADy0kULnPKUGjJNU2fOSv3nTP3hbSGFh5yT75xnCJ7sRfAEAChOHo/dFWAKzBgM6qcffjfw2rFDmm9vPQAA5Ivf/nSkt/CJk6YefyLe02nDkzGdG7CxMAs0pnawRg5N7xlJAQCwSnOztHKl3VVgqqxcGX9NAQBA1mrmGLrt4y798t9LdfKARxt/6dYX7nRqQSPzIuHCGaZpTjpD2Pz583XsWHJ3/gx2yyuBQCBp2VOAv4QX+jlyfvmv0M/RMFIv3PX19Tp69KgN1Uwvtl1nwmHtffZpdZ2Kz3EUKSvT28suT2lW2dklz6lTWR361KVLFS4vH3mqSFju/n5Vv7FfkuRyjnQ6fuHMKW15uzftccab4+n6I8e0xluhllk1uqqyWl5X+k7MpyIBPdd/PH6sa69ImePJe7xPFYe6szq3/gUNGqyrTV4Zi2n28zuSVg2f4+loUD96+42U40w0x9P80wO60jtHLeU+vbfcJ1+Jd/yCPJ546FRSktV5ZKvQP6MK/fykwj9HrjMT4/9pCkOhn+PY/47tfo+apql9r5tq/21UHRtjen5HTNmUNGOG9OA3SzR8T5VwOJy0vcTia/ewOz7llMORmxBtur2GU+18rjUMtQMAFK+SEi1bc72WTdauackFP1Xii/LSFZJGvihHzZju3fK49tdNPjlR88wq+X31aqudp6tbZ8uR5sI/VrWkD0zUoOZSafmkh8lI4KbkOa2Gz/Heo9u1tTeabpckPleZ2iob5V98g66vqNcMZ26+jAIAgPQMw9CySw0tu9Shv/rL7IfkDQxI1bMMfeSD8XmjAoFI0naPh0iiGPAqAwBgo0ePHdH+gf6020odDq2Z7VObr15tvnlqLJuR4+ouXF94SD/o2zfu9veUzZa/qkn+ykZd6a3JKEwDAAD2GB6Sd9vHXQoGTT2zLab2DVG1b4jp0JH0PXv+5h/D+iO/I2c9jjD9EDwBAGCTqBnTNw/sTVrnK/WotXae/L56XT/Hp3JXfvf6eaB3j4bMkd5OpYZT76+YJ39Vk1orG9XgLp9gbwAAMF2Vlhpau9qptaud+t7fjT8kb9/rpv6nPZbo9YTiQ/AEAIBNhns7DQ+h89fW66qq6oLp9TPc26nOVaa2qia1VTYyhA4AgAI02ZC84V5PKE4ETwAA2KSmtFSH3/+BvBxCl4neyJCevsTPEDoAAIpMuiF5fSekqkq7K4MdCJ4AALDJDTWpd6srJMvLqu0uAQAA2Gx4SJ4kjbkpIYoEfd0AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCdf57mgYxlTWAQBAEq4zAACrca3BdMd7NP/xGtLjCQAAAAAAABYheAIAAAAAAIAlDNM0zckaud1uhcPhXNQDAEWlpKREoVDI7jJsx3UGAKzBdWYE1xoAsMZk15qMejxFo9EpKwgAMILP1zj+HQDAGny+juDfAgCsMdnna0aTi3s8HgUCATmdTtXW1k5JYQBQzPr6+hSNRuXxeOwuZVrgOgMAU4vrTCquNQAwtTK91mQ01A4AAAAAAADIFpOLAwAAAAAAwBIETwAAAAAAALAEwRMAAAAAAAAsQfAEAAAAAAAASxA8AQAAAAAAwBIETwAAAAAAALAEwRMAAAAAAAAs8f9hY9k8ZbeUZgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbVUlEQVR4nOzdd3xT5f4H8E92unfppGVvy0b23q2ichUVBdzXvVAcCKiI4g9F8YI4LiiicsHZslFAQARE9h5lt3Tvps14fn+Upk2Ttkmb0aaf9+uVF5znPOec70lOTpNvniERQggQERERERERERHZmdTVARARERERERERkXti4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIqAYXLlyARCLB8uXLbd5227ZtkEgk2LZtm93jcobly5dDIpHgwoULNm87e/ZsSCSSWusNGTIEnTt3rkN01ZNIJJg9e7ZxuT7n4QrWPneOcObMGYwaNQp+fn6QSCT4+eefnfL81ed95gyxsbGYOnWqq8MgIiJqlOSuDoCIiIiIGoYpU6YgOTkZc+fOhb+/P3r27IktW7a4OiwiIiJqxJh4IiIiImpAXn/9dcyYMcPpxy0uLsbu3bvx2muv4cknnzSW33fffZg0aRJUKpXTY2ooTp06BamUHQWIiIjqgoknIiIiogZELpdDLnf+R7T09HQAgL+/v0m5TCaDTCZzejwNSVNOuhEREdUXf7ohIqIGrXy8m9OnT2Py5Mnw8/NDSEgIZs6cCSEELl++jFtvvRW+vr4ICwvDggULzPaRlpaGBx98EM2aNYNarUZcXBy++uors3o5OTmYOnUq/Pz84O/vjylTpiAnJ8diXCdPnsTEiRMRGBgItVqNnj174tdff631fIqKinDy5ElkZGTUWrd8/KPDhw9j8ODB8PT0ROvWrbFmzRoAwPbt29GnTx94eHigXbt2FrtEHThwAGPHjoWvry+8vb0xfPhw/PXXX2b1jh07hmHDhsHDwwNRUVF4++23YTAYLMa1fv16DBw4EF5eXvDx8cH48eNx7NixWs+nJsePH8fQoUPh6emJyMhIzJ8/32R9aWkp3njjDfTo0QN+fn7w8vLCwIEDsXXrVpuP9fzzzyMoKAhCCGPZU089BYlEgo8//thYdv36dUgkEixZssTqGIQQiI2Nxa233mp2XI1GAz8/Pzz66KM1xld1jKfOnTtj6NChZvUMBgMiIyMxceJEY5mla/jgwYO1jp80e/ZsxMTEAACmT58OiUSC2NhYAJbHyIqNjUV8fDx27tyJ3r17Q61Wo2XLlvj6669N9puVlYUXX3wRXbp0gbe3N3x9fTF27FgcOnSoxuegOhKJpNpHeXyHDx/G1KlT0bJlS6jVaoSFheGBBx5AZmam2TlLJBKcPXsWU6dOhb+/P/z8/DBt2jQUFRWZ1OUYT0RERHXHxBMRETUKd911FwwGA95991306dMHb7/9NhYuXIiRI0ciMjIS7733Hlq3bo0XX3wRf/zxh3G74uJiDBkyBCtWrMC9996L999/H35+fpg6dSo++ugjYz0hBG699VasWLECkydPxttvv40rV65gypQpZrEcO3YMN998M06cOIEZM2ZgwYIF8PLywoQJE/DTTz/VeB579+5Fhw4d8Mknn1h13tnZ2YiPj0efPn0wf/58qFQqTJo0CatWrcKkSZMwbtw4vPvuuygsLMTEiRORn59vEufAgQNx6NAhvPTSS5g5cyaSk5MxZMgQ7Nmzx1gvNTUVQ4cOxcGDBzFjxgw8++yz+Prrr02en3IrVqzA+PHj4e3tjffeew8zZ87E8ePHMWDAgDoPPp2dnY0xY8YgLi4OCxYsQPv27fHyyy9j/fr1xjp5eXn44osvMGTIELz33nuYPXs20tPTMXr0aBw8eNCm4w0cOBBZWVkmybIdO3ZAKpVix44dJmUAMGjQIKtjkEgkmDx5MtavX4+srCyT4yYmJiIvLw+TJ0+2Kd677roLf/zxB1JTU03Kd+7ciWvXrmHSpEkAbLuGq7r99tvx4YcfAgDuvvturFixAgsXLqxxm7Nnz2LixIkYOXIkFixYgICAAEydOtXkeT1//jx+/vlnxMfH44MPPsD06dNx5MgRDB48GNeuXbPpeQDKrr+qj5iYGHh4eMDb2xsAsHnzZpw/fx7Tpk3DokWLMGnSJHz//fcYN26cSbKx3J133on8/HzMmzcPd955J5YvX445c+bYHBsRERFVQxARETVgs2bNEgDEI488YizT6XQiKipKSCQS8e677xrLs7OzhYeHh5gyZYqxbOHChQKA+Oabb4xlpaWlom/fvsLb21vk5eUJIYT4+eefBQAxf/58k+MMHDhQABDLli0zlg8fPlx06dJFaDQaY5nBYBD9+vUTbdq0MZZt3bpVABBbt241K5s1a1at5z548GABQHz77bfGspMnTwoAQiqVir/++stYvnHjRrM4J0yYIJRKpTh37pyx7Nq1a8LHx0cMGjTIWPbss88KAGLPnj3GsrS0NOHn5ycAiOTkZCGEEPn5+cLf3188/PDDJnGmpqYKPz8/k/Ly183ac/z666+NZSUlJSIsLEzccccdxjKdTidKSkpMts3OzhbNmjUTDzzwgEl51ed32bJlJueRlpYmAIjFixcLIYTIyckRUqlU/Otf/xLNmjUzbvf000+LwMBAYTAYbIrh1KlTAoBYsmSJSd1bbrlFxMbGGvdXnarPXfn+Fi1aZFLv8ccfF97e3qKoqEgIYds1bElycrIAIN5//32T8qrPnxBCxMTECADijz/+MJalpaUJlUolXnjhBWOZRqMRer3e7DgqlUq8+eabZseuLcaq5s+fb3b9lD8flX333Xdm8ZY/z1Wvn9tuu00EBQWZlMXExJjcV4iIiMh6bPFERESNwkMPPWT8v0wmQ8+ePSGEwIMPPmgs9/f3R7t27XD+/Hlj2bp16xAWFoa7777bWKZQKPD000+joKAA27dvN9aTy+X497//bXKcp556yiSOrKws/P7778ZWEhkZGcjIyEBmZiZGjx6NM2fO4OrVq9Wex5AhQyCEwOzZs606b29vb2OLFgBo164d/P390aFDB/Tp08dYXv7/8nPX6/XYtGkTJkyYgJYtWxrrhYeH45577sHOnTuRl5dnPPebb74ZvXv3NtYLCQnBvffeaxLL5s2bkZOTg7vvvtt43hkZGZDJZOjTp0+dur2Vn2PlVkBKpRK9e/c2eR1lMhmUSiWAsi5mWVlZ0Ol06NmzJ/755x+bjhcSEoL27dsbW8bt2rULMpkM06dPx/Xr13HmzBkAZS2eBgwYYOz2Zm0Mbdu2RZ8+fbBy5UpjWVZWFtavX497773XpBudNdq2bYuuXbti1apVxjK9Xo81a9YgISEBHh4eAKy/hu2lY8eOGDhwoHE5JCTE7P2nUqmMg3Lr9XpkZmbC29sb7dq1s/l1q2rr1q145ZVX8NRTT+G+++4zlpc/H0BZ98aMjAzcfPPNAGDxmI899pjJ8sCBA5GZmWl8fxAREVH9MPFERESNQvPmzU2W/fz8oFarERwcbFaenZ1tXL548SLatGljNiNVhw4djOvL/w0PDzd21ynXrl07k+WzZ89CCIGZM2ciJCTE5DFr1iwAZWNK2UtUVJRZosLPzw/R0dFmZQCM556eno6ioiKz+IGyczcYDLh8+TKAiueoqqrblidkhg0bZnbumzZtqvN5WzrHgIAAk9cRAL766ivcdNNNUKvVCAoKQkhICNauXYvc3Fybjzlw4EBjV7odO3agZ8+e6NmzJwIDA7Fjxw7k5eXh0KFDJokVW2K4//77sWvXLuP1tXr1ami1WmOCpLS0FKmpqSYPvV5fbbx33XUXdu3aZUxqbtu2DWlpabjrrruMday9hu2l6nsSMH/dDAYDPvzwQ7Rp0wYqlQrBwcEICQnB4cOH6/S6lbty5Qruuusu9O/fHx988IHJuqysLDzzzDNo1qwZPDw8EBISghYtWgCAxWNWPY+AgAAAMLv+iIiIqG44qx0RETUKlmbVqm6mLWFhHBd7KR9w+8UXX8To0aMt1mndurXdjlfdObry3FesWIGwsDCz9XWdic2ac/nmm28wdepUTJgwAdOnT0doaChkMhnmzZuHc+fO2XzMAQMG4PPPP8f58+exY8cODBw4EBKJBAMGDMCOHTsQEREBg8FgkniyJYZJkybhueeew8qVK/Hqq6/im2++Qc+ePY1JoD///NNswPDk5GTjgN5V3XXXXXjllVewevVqPPvss/jf//4HPz8/jBkzxuZztxdrXrd33nkHM2fOxAMPPIC33noLgYGBkEqlePbZZ6sdvL42paWlmDhxIlQqFf73v/+ZXXd33nkn/vzzT0yfPh1du3aFt7c3DAYDxowZY/GYrngvERERNSVMPBERkVuLiYnB4cOHYTAYTFo9nTx50ri+/N/ffvsNBQUFJi1GTp06ZbK/8m5rCoUCI0aMcHT4dRYSEgJPT0+z+IGyc5dKpcZWUzExMcbWTJVV3bZVq1YAgNDQUKef+5o1a9CyZUv8+OOPJq2jyluZ2ao8obR582bs27cPM2bMAFA2kPiSJUsQEREBLy8v9OjRo04xBAYGYvz48Vi5ciXuvfde7Nq1y2Sw7ri4OGzevNlkG0vJvHItWrRA7969sWrVKjz55JP48ccfMWHCBKhUKmMda69hZ1qzZg2GDh2KL7/80qQ8JyfHrLWitZ5++mkcPHgQf/zxB5o1a2ayLjs7G7/99hvmzJmDN954w1hu6fomIiIi52BXOyIicmvjxo1Damqqyfg4Op0OixYtgre3NwYPHmysp9PpsGTJEmM9vV6PRYsWmewvNDQUQ4YMwdKlS5GSkmJ2vPT09BrjKSoqwsmTJ5GRkVGf06qVTCbDqFGj8Msvv5jMNnf9+nV8++23GDBgAHx9fQGUnftff/2FvXv3Guulp6ebjFEEAKNHj4avry/eeecdaLVas2PWdu6XLl0yJvzqcj6AaSuUPXv2YPfu3XXaX4sWLRAZGYkPP/wQWq0W/fv3B1CWkDp37hzWrFmDm2++2aQ1ja0x3HfffTh+/DimT58OmUxmMlZXQEAARowYYfJQq9U1xnzXXXfhr7/+wn//+19kZGSYdLMDrL+GgbIuZydPnqxXdzdryGQys5ZDq1evrnEctHKWYly2bBmWLl2K//znPyZjklU+HmDeWqm2GfqIiIjIcdjiiYiI3NojjzyCpUuXYurUqdi/fz9iY2OxZs0aYwsUHx8fAEBCQgL69++PGTNm4MKFC+jYsSN+/PFHi1/M//Of/2DAgAHo0qULHn74YbRs2RLXr1/H7t27ceXKFRw6dKjaePbu3YuhQ4di1qxZVg8wXldvv/02Nm/ejAEDBuDxxx+HXC7H0qVLUVJSgvnz5xvrvfTSS1ixYgXGjBmDZ555Bl5eXvjss8+MrcXK+fr6YsmSJbjvvvvQvXt3TJo0CSEhIbh06RLWrl2L/v3745NPPqk2nvvvvx/bt2+vUxem+Ph4/Pjjj7jtttswfvx4JCcn49NPP0XHjh1RUFBg8/6AsiTT999/jy5duhjH9enevTu8vLxw+vRp3HPPPfWKYfz48QgKCsLq1asxduxYhIaG1inOcnfeeSdefPFFvPjiiwgMDDRrdWbLNfzTTz9h2rRpWLZsGaZOnVqvuGoSHx+PN998E9OmTUO/fv1w5MgRrFy50mTA++pUjTEjIwOPP/44OnbsCJVKhW+++cak/m233QZfX18MGjQI8+fPh1arRWRkJDZt2oTk5GRHnSIRERHVgoknIiJyax4eHti2bRtmzJiBr776Cnl5eWjXrp3ZF26pVIpff/0Vzz77LL755htIJBLccsstWLBgAbp162ayz44dO+Lvv//GnDlzsHz5cmRmZiI0NBTdunUz6d7jap06dcKOHTvwyiuvYN68eTAYDOjTpw+++eYbkxnxwsPDsXXrVjz11FN49913ERQUhMceewwREREmswYCwD333IOIiAi8++67eP/991FSUoLIyEgMHDgQ06ZNc9i5TJ06FampqVi6dCk2btyIjh074ptvvsHq1auxbdu2Ou2zPPE0YMAAY5lcLkffvn2xZcsWs4HFbY1BqVTirrvuwuLFi01mXaurqKgo9OvXD7t27cJDDz0EhUJhst6Wa9hZXn31VRQWFuLbb7/FqlWr0L17d6xdu9bYtdEWBQUF0Gg0OH78uMXnMzk5GV5eXvj222/x1FNP4T//+Q+EEBg1ahTWr1+PiIgIe5wSERER2UgiOHIiERERkUM899xz+PLLL5GamgpPT0+rtpk5cybmzZsHnU5nlxguXLiAFi1aOLx1kzuLjo7G6NGj8cUXX7g6FCIiokaHYzwREREROYBGo8E333yDO+64w+qkEwCkpKTUeeBtsj+tVovMzEy+JkRERHXErnZEREREdpSWloYtW7ZgzZo1yMzMxDPPPGPVdufPn8dPP/2E1atXIz4+3sFRkjU2btyI77//HsXFxRg+fLirwyEiImqUmHgiIiIisqPjx4/j3nvvRWhoKD7++GN07drVqu3++OMPzJkzB0OGDMEHH3zg2CDJKu+++y7Onj2LuXPnYuTIka4Oh4iIqFHiGE9EREREREREROQQHOOJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIjc3OzZsyGRSFwdBlGjExsbi6lTp5qUnTlzBqNGjYKfnx8kEgl+/vlnl8TWkAwZMgRDhgyx6z5ded8qP3ZGRoZLjk9ERORumHgiIqJqLV68GMuXL3d1GACAa9euYfbs2Th48KBTjnfhwgVIJBLjQyqVIjAwEGPHjsXu3bvN6pd/WS1/eHp6onnz5khISMCyZctQUlJits3UqVNNtqn82LBhg7HekSNHMHHiRMTExECtViMyMhIjR47EokWLHHLuW7ZswbBhw+Dn5wcfHx/06NEDq1atsusxqj5f5Q+1Wm3X49jblClTcOTIEcydOxcrVqxAz549XR1So1VUVITZs2dj27Ztrg6lTqreI6o+Hn74YWPdY8eO4V//+hdatmwJT09PBAcHY9CgQUhMTDTbb3X3hfbt25vVnTt3Lm655RY0a9YMEokEs2fPthhrbGxstXG2adPGbs8JERGRJZzVjoiIqrV48WIEBwebtfpwhWvXrmHOnDmIjY21epYwe7j77rsxbtw46PV6nD59GosXL8bQoUOxb98+dOnSxaz+kiVL4O3tjZKSEly9ehUbN27EAw88gIULFyIpKQnR0dEm9VUqFb744guz/cTFxQEA/vzzTwwdOhTNmzfHww8/jLCwMFy+fBl//fUXPvroIzz11FN2Pd9ly5bhwQcfxMiRI/HOO+9AJpPh1KlTuHz5sl2PU678+Sonk8kcchx7KC4uxu7du/Haa6/hySefdHU4jV5RURHmzJkDAGYtpl5//XXMmDHDBVFZLyQkBCtWrDAr37BhA1auXIlRo0YZyy5evIj8/HxMmTIFERERKCoqwg8//IBbbrkFS5cuxSOPPGKyD0v3BT8/P7Njvf766wgLC0O3bt2wcePGamNduHAhCgoKTMouXryI119/3SROIiIiR2DiiYiIqAbdu3fH5MmTjcsDBw7E2LFjsWTJEixevNis/sSJExEcHGxcfuONN7By5Urcf//9+Ne//oW//vrLpL5cLjfZf1Vz586Fn58f9u3bB39/f5N1aWlpdTwryy5cuIAnnngCTz31FD766CO77rs6VZ+vhiw9PR0AzF6HxqSwsBBeXl6uDqNWcrkccnnD/pjq5eVl8b27fPly+Pr6IiEhwVg2btw4jBs3zqTek08+iR49euCDDz4wSzzVdl8ol5ycjNjYWGRkZCAkJKTaehMmTDAre/vttwEA9957b63HISIiqg92tSMiciM7d+5Er169oFar0apVKyxdutRivWXLlmHYsGEIDQ2FSqVCx44dsWTJEpM6sbGxOHbsGLZv327sklHeKiErKwsvvvgiunTpAm9vb/j6+mLs2LE4dOiQ2bEWLVqETp06wdPTEwEBAejZsye+/fZbkzpXr17FAw88gGbNmkGlUqFTp07473//a1y/bds29OrVCwAwbdo0Yzzl3QCLiopw8uRJq8ZkGTJkCDp37oz9+/ejX79+8PDwQIsWLfDpp5/Wui1QlngCgHPnzllVHyj7YvfQQw9hz5492Lx5s9XblR+nU6dOFpMdoaGhVu0jMzMT9913H3x9feHv748pU6bg0KFDJs8hAHz66afQ6/V48803AQAFBQUQQlgd67Zt2yCRSPC///0Pc+fORVRUFNRqNYYPH46zZ89a3EYIgby8PJuOA9h2DdZGCIG3334bUVFR8PT0xNChQ3Hs2DGTOrNnz0ZMTAwAYPr06ZBIJIiNjQUA5Ofn49lnn0VsbCxUKhVCQ0MxcuRI/PPPP1bHsHz5ckgkEvzxxx949NFHERQUBF9fX9x///3Izs42q79+/XoMHDgQXl5e8PHxwfjx481injp1Kry9vXHu3DmMGzcOPj4+xiSDwWDARx99hC5dukCtViMkJARjxozB33//bdxep9PhrbfeQqtWraBSqRAbG4tXX33VYrfRykpLS/HGG2+gR48e8PPzg5eXFwYOHIitW7ca61y4cMGYKJkzZ47xPV3eVczSGE/WxhMbG4v4+Hjs3LkTvXv3hlqtRsuWLfH111/X8iqYysnJwdSpU+Hv7w8/Pz9MmzYNRUVFNW6TkpKCrVu34vbbb6+126hMJkN0dDRycnIsrtfr9cjLy6txH+XXYF18++23aNGiBfr161fnfRAREVmDiSciIjdx5MgRjBo1CmlpaZg9ezamTZuGWbNm4aeffjKru2TJEsTExODVV1/FggULEB0djccffxz/+c9/jHUWLlyIqKgotG/fHitWrMCKFSvw2muvAQDOnz+Pn3/+GfHx8fjggw8wffp0HDlyBIMHD8a1a9eM+/j888/x9NNPo2PHjli4cCHmzJmDrl27Ys+ePcY6169fx80334wtW7bgySefxEcffYTWrVvjwQcfxMKFCwEAHTp0MCZDHnnkEWM8gwYNAgDs3bsXHTp0wCeffGLVc5WdnY1x48ahR48emD9/PqKiovDvf//bJNlVnQsXLgAAAgICrDpWufvuuw8AsGnTJrN1GRkZJo/c3FzjupiYGOzfvx9Hjx616XjlDAYDEhIS8N1332HKlCmYO3cuUlJSMGXKFLO6W7ZsQfv27bFu3TpERUXBx8cHQUFBmDlzJgwGg9XHfPfdd/HTTz/hxRdfxCuvvIK//vqr2lYVLVu2NI4lNXnyZFy/ft2qY1h7DVrjjTfewMyZMxEXF4f3338fLVu2xKhRo1BYWGisc/vtt+PDDz8EUNb9csWKFcbr87HHHsOSJUtwxx13YPHixXjxxRfh4eGBEydO2BQHUNYK5sSJE5g9ezbuv/9+rFy5EhMmTDBJzK1YsQLjx4+Ht7c33nvvPcycORPHjx/HgAEDjNdnOZ1Oh9GjRyM0NBT/93//hzvuuAMA8OCDD+LZZ59FdHQ03nvvPcyYMQNqtdqkRd5DDz2EN954A927d8eHH36IwYMHY968eZg0aVKN55CXl4cvvvgCQ4YMwXvvvYfZs2cjPT0do0ePNo7RFhISYkx233bbbcb39O23317tfm2J5+zZs5g4cSJGjhyJBQsWICAgAFOnTjVLztXkzjvvRH5+PubNm4c777wTy5cvN3YNrM73338Pg8FQ7fVeWFiIjIwMnDt3Dh9++CHWr1+P4cOHm9UrKiqCr68v/Pz8EBgYiCeeeMKsq1x9HDhwACdOnMA999xjt30SERFVSxARkVuYMGGCUKvV4uLFi8ay48ePC5lMJqre7ouKisy2Hz16tGjZsqVJWadOncTgwYPN6mo0GqHX603KkpOThUqlEm+++aax7NZbbxWdOnWqMe4HH3xQhIeHi4yMDJPySZMmCT8/P2Os+/btEwDEsmXLzPaxdetWAUDMmjWrxmMJIcTgwYMFALFgwQJjWUlJiejatasIDQ0VpaWlxvMBIObMmSPS09NFamqq2LFjh+jVq5cAIFavXm2y31mzZgkAIj093eJxs7OzBQBx2223GcumTJkiAJg9Kj/nmzZtEjKZTMhkMtG3b1/x0ksviY0bNxrjrM0PP/wgAIiFCxcay/R6vRg2bJjZ8+nr6ysCAgKESqUSM2fOFGvWrBH33HOPACBmzJhR67HKX4cOHTqIkpISY/lHH30kAIgjR44YyxYuXCiefPJJsXLlSrFmzRrxzDPPCLlcLtq0aSNyc3NrPZa112Bt0tLShFKpFOPHjxcGg8FY/uqrrwoAYsqUKSb7ByDef/99k334+fmJJ554wupjWrJs2TIBQPTo0cPktZ0/f74AIH755RchhBD5+fnC399fPPzwwybbp6amCj8/P5Py8uur6mv3+++/CwDi6aefNouj/Dk4ePCgACAeeughk/UvvviiACB+//13Y9ngwYNNrlmdTmfy+gtRdv03a9ZMPPDAA8ay9PT0at+35e+ncrbEExMTIwCIP/74w1iWlpYmVCqVeOGFF8yOVd2xK8cqhBC33XabCAoKqnHbHj16iPDwcLNrs9yjjz5qfJ9LpVIxceJEkZWVZVJnxowZ4uWXXxarVq0S3333nfF17N+/v9BqtRb3W9NzackLL7wgAIjjx49bVZ+IiKg+2OKJiMgN6PV6bNy4ERMmTEDz5s2N5R06dMDo0aPN6nt4eBj/n5ubi4yMDAwePBjnz583aW1THZVKBalUajx2ZmYmvL290a5dO5PuRf7+/rhy5Qr27dtncT9CCPzwww9ISEiAEMKk1c/o0aORm5trVXelIUOGQAhR7YxOVcnlcjz66KPGZaVSiUcffRRpaWnYv3+/Sd1Zs2YhJCQEYWFhGDhwIE6cOIEFCxZg4sSJVh2rXPkA2vn5+SblarUamzdvNnksWLDAuH7kyJHYvXs3brnlFhw6dAjz58/H6NGjERkZiV9//bXW427YsAEKhcJkhi2pVIonnnjCrG5BQQGys7MxZ84cvPnmm7jjjjuwcuVKjBkzBh999JFZ7NWZNm0alEqlcbm8e+L58+eNZc888wwWLVqEe+65B3fccQcWLlyIr776CmfOnLE4dlZV1l6DtdmyZQtKS0vx1FNPmXTtevbZZ63eh7+/P/bs2WNzSytLHnnkESgUCuPyv//9b8jlcqxbtw4AsHnzZuTk5ODuu+82eb/IZDL06dPHpDtb5X1U9sMPP0AikWDWrFlmdcufg/LjPf/88ybrX3jhBQDA2rVrqz0HmUxmfP0NBgOysrKg0+nQs2dPm16bymyNp2PHjsbrDihrYdWuXTuTa7A2jz32mMnywIEDkZmZWW33t9OnT2P//v2YNGmS8dqs6tlnn8XmzZvx1VdfYezYsdDr9SgtLTWpM2/ePLz77ru48847MWnSJCxfvhxz587Frl27sGbNGqvjr47BYMD333+Pbt26oUOHDvXeHxERUW2YeCIicgPp6ekoLi62OC12u3btzMp27dqFESNGwMvLC/7+/ggJCcGrr74KAFYlngwGAz788EO0adMGKpUKwcHBCAkJweHDh022f/nll+Ht7Y3evXujTZs2eOKJJ7Br1y6TuHNycvDZZ58hJCTE5DFt2jQA9h9AGwAiIiLMBlhu27YtAJh1VXrkkUewefNmJCYm4rnnnkNxcTH0er3NxyzvJuPj42NSLpPJMGLECJNHjx49TOr06tULP/74I7Kzs7F371688soryM/Px8SJE3H8+HEAZWMepaamGh/lr8PFixcRHh4OT09Pk322bt3aLMbyhOTdd99tUn733XejuLgYBw4cAFD2ulU+VtUuQJWTn0BFt0RLYxVVds899yAsLAxbtmwxllU+TmpqKoqLiwFYfw3W5uLFiwBg9t4JCQmxujvl/PnzcfToUURHR6N3796YPXu2TQmOyqrG4e3tjfDwcON1eebMGQDAsGHDzN4zmzZtMnu/yOVyREVFmZSdO3cOERERCAwMrDaOixcvQiqVml0nYWFh8Pf3Nz5v1fnqq69w0003Qa1WIygoCCEhIVi7dq1Nr0194ql6DQJl12H5NajX682uraoJIFuv45UrVwKoebDu9u3bY8SIEbj//vuRlJSEgoICY+K9Js899xykUqnJe6Outm/fjqtXr3JQcSIicpqGPV0IERHZ3blz5zB8+HC0b98eH3zwAaKjo6FUKrFu3Tp8+OGHVo3l884772DmzJl44IEH8NZbbyEwMBBSqRTPPvusyfYdOnTAqVOnkJSUhA0bNuCHH37A4sWL8cYbb2DOnDnGupMnT7Y45hAA3HTTTfY58Tpq06YNRowYAQCIj4+HTCbDjBkzMHToUPTs2dPq/ZSP0WQp4WMtpVKJXr16oVevXmjbti2mTZuG1atXY9asWbj99tuxfft2Y90pU6aYDBxujYiICJw5cwbNmjUzKS8fxLz8C3evXr1MvujPmjXLpLWZTCazuP/avlwDQHR0NLKysozL4eHhJuuXLVuGqVOnWn0NOsOdd96JgQMH4qeffsKmTZvw/vvv47333sOPP/6IsWPH2vVY5ee2YsUKhIWFma2vOhNc5ZZhdVF1gG9rfPPNN5g6dSomTJiA6dOnIzQ0FDKZDPPmzbNpUP76xFPbNXj58mW0aNHCZN3WrVuNEyhYs4+qvv32W7Rr184scVyTiRMn4tFHH8Xp06ct/khQzsPDA0FBQSbvjbpauXIlpFKpWYKZiIjIUZh4IiJyAyEhIfDw8DC2hqjs1KlTJsuJiYkoKSnBr7/+avKLvqUuOtV9yVuzZg2GDh2KL7/80qQ8JycHwcHBJmVeXl646667cNddd6G0tBS333475s6di1deeQUhISHw8fGBXq83JneqU5cvwNW5du2a2bTyp0+fBlD7LFGvvfYaPv/8c7z++uvYsGGD1cdcsWIFAFjs+lgX5UmvlJQUAMCCBQtMWmJEREQAKBucfOvWrSgqKjJp9WRplrkePXrgzJkzuHr1Klq2bGksL+9CVj4L2cqVK40tjwCY1K0PIQQuXLiAbt26GcuqzgLYqVMnALZdgzUpn6nuzJkzJueRnp5eawutysLDw/H444/j8ccfR1paGrp37465c+fanHg6c+YMhg4dalwuKChASkoKxo0bBwBo1aoVgLJkYG3vmeq0atUKGzduRFZWVrWtnmJiYmAwGHDmzBmT7ljXr19HTk6O8XmzZM2aNWjZsiV+/PFHk/dt1a59tryn6xOPJWFhYWbXVlxcnE37qGzPnj04e/ascRIEa5W/j2prCZafn4+MjAzje7CuSkpK8MMPP2DIkCHGewQREZGjsasdEZEbkMlkGD16NH7++WdcunTJWH7ixAls3LjRrC5g+qt9bm4uli1bZrZfLy8vi1N9y2Qys1/9V69ejatXr5qUZWZmmiwrlUp07NgRQghotVrIZDLccccd+OGHHyzO2paenm4SCwCL8RQVFeHkyZPIyMgwW2eJTqfD0qVLjculpaVYunQpQkJCam2t4O/vj0cffRQbN240ztBVm2+//RZffPEF+vbta3EGq5ps3brVYguL8jFvyltJ9OjRw6S7XseOHQGUJbq0Wi0+//xz47YGg8FkBsNyd911FwCYJHMMBgOWLVuGwMBA43PTv39/k2PVJfFU+bUtt2TJEqSnp2PMmDHGsqrdEMtbQFl7DdZmxIgRUCgUWLRokcn+ymesq41erzdLGoSGhiIiIgIlJSU2xQIAn332GbRarXF5yZIl0Ol0xgTW6NGj4evri3feecekXjlLz2tVd9xxB4QQFmdoK38OyhNdVZ+HDz74AAAwfvz4avdv6R6zZ88e7N6926ReeSLU0nu6qvrEY4larTa7tmydqbKyb7/9FgCqnSXOUpdhrVaLr7/+Gh4eHsb3q0ajsTiW2ltvvQUhhMl7oy7WrVuHnJwcdrMjIiKnYosnIiI3MWfOHGzYsAEDBw7E448/Dp1Oh0WLFqFTp044fPiwsd6oUaOgVCqRkJCARx99FAUFBfj8888RGhpqbD1TrkePHliyZAnefvtttG7dGqGhoRg2bBji4+Px5ptvYtq0aejXrx+OHDmClStXmiUgRo0ahbCwMPTv3x/NmjXDiRMn8Mknn2D8+PHGsY7effddbN26FX369MHDDz+Mjh07IisrC//88w+2bNli7FrSqlUr+Pv749NPP4WPjw+8vLzQp08ftGjRAnv37sXQoUPNunxVJyIiAu+99x4uXLiAtm3bYtWqVTh48CA+++wzk4Gdq/PMM89g4cKFePfdd/H999+brFuzZg28vb1RWlqKq1evYuPGjdi1axfi4uKwevXqWvdd1VNPPYWioiLcdtttaN++PUpLS/Hnn39i1apViI2NNY6FVZ0JEyagd+/eeOGFF3D27Fm0b98ev/76q/F5rdzq5NZbb8Xw4cMxb948ZGRkIC4uDj///DN27tyJpUuXQqVS2Rx/dWJiYnDXXXehS5cuUKvV2LlzJ77//nt07drVZOD36lh7DdYmJCQEL774IubNm4f4+HiMGzcOBw4cwPr1661qOZWfn4+oqChMnDgRcXFx8Pb2xpYtW7Bv3z6TQeKtVVpaiuHDh+POO+/EqVOnsHjxYgwYMAC33HILAMDX1xdLlizBfffdh+7du2PSpEkICQnBpUuXsHbtWvTv3x+ffPJJjccYOnQo7rvvPnz88cc4c+YMxowZA4PBgB07dmDo0KF48sknERcXhylTpuCzzz5DTk4OBg8ejL179+Krr77ChAkTTFplVRUfH48ff/wRt912G8aPH4/k5GR8+umn6Nixo8l4YOUJl1WrVqFt27YIDAxE586d0blzZ7N91iceR9Pr9Vi1ahVuvvlmY4u0qh599FHk5eVh0KBBiIyMRGpqKlauXImTJ09iwYIFxskHUlNT0a1bN9x9991o3749AGDjxo1Yt24dxowZg1tvvdVkvytWrMDFixdRVFQEAPjjjz/w9ttvAwDuu+8+s5ZgK1euhEqlwh133GHX54CIiKhGzp5Gj4iIHGf79u2iR48eQqlUipYtW4pPP/3UbFpyIYT49ddfxU033STUarWIjY0V7733nvjvf/8rAIjk5GRjvdTUVDF+/Hjh4+MjABinTNdoNOKFF14Q4eHhwsPDQ/Tv31/s3r3bbFr1pUuXikGDBomgoCChUqlEq1atxPTp00Vubq5JPNevXxdPPPGEiI6OFgqFQoSFhYnhw4eLzz77zKTeL7/8Ijp27CjkcrkAIJYtWyaEEGLr1q1WTyU+ePBg0alTJ/H333+Lvn37CrVaLWJiYsQnn3xiUi85OVkAEO+//77F/UydOlXIZDJx9uxZIUTFFOzlD7VaLaKiokR8fLz473//KzQajdk+pkyZIry8vGqMd/369eKBBx4Q7du3F97e3kKpVIrWrVuLp556Sly/fr3W8xWibKr1e+65R/j4+Ag/Pz8xdepUsWvXLgFAfP/99yZ18/PzxTPPPCPCwsKEUqkUXbp0Ed98841Vxyl/HVavXm1SXv5clr9eQgjx0EMPiY4dOwofHx+hUChE69atxcsvvyzy8vKsOpa116A19Hq9mDNnjnFfQ4YMEUePHhUxMTFiypQpZudR+ZooKSkR06dPF3FxccLHx0d4eXmJuLg4sXjxYptiWLZsmQAgtm/fLh555BEREBAgvL29xb333isyMzPN6m/dulWMHj1a+Pn5CbVaLVq1aiWmTp0q/v77b2Odmq4vnU4n3n//fdG+fXuhVCpFSEiIGDt2rNi/f7+xjlarFXPmzBEtWrQQCoVCREdHi1deecXsWq76nBsMBvHOO++ImJgYoVKpRLdu3URSUpKYMmWKiImJMdn2zz//NN6zKr+HLd23rI0nJiZGjB8/3uycrb02yo+dnp5uUl7+GlW+RwohxIYNGwQA8fHHH1e7z++++06MGDFCNGvWTMjlchEQECBGjBghfvnlF5N62dnZYvLkyaJ169bC09NTqFQq0alTJ/HOO++I0tJSi+dU+b5T+bF161aTurm5uUKtVovbb7+91ueAiIjIniRCWDHSJxERkZsYMmQIMjIyLHbta0p+/vln3Hbbbdi5cyf69+/v6nCavOXLl2PatGnYt2+fTYPWExERETV0HOOJiIjIzVUeCBwo6xq0aNEi+Pr6onv37i6KioiIiIiaAo7xRERE5OaeeuopFBcXo2/fvigpKcGPP/6IP//8E++88w48PDxcHZ7DpKenQ6/XV7teqVRWO6ubvRQXF9c6Y5mjYyAiIiJyJSaeiIiI3NywYcOwYMECJCUlQaPRoHXr1li0aBGefPJJV4fmUL169cLFixerXT948GBs27bNoTGsWrWq1gHgt27d6tAYiIiIiFyJYzwRERGRW9q1a5dZN8PKAgIC0KNHD4fGkJKSgmPHjtVYp0ePHggICHBoHERERESuwsQTERERERERERE5BAcXJyIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIodg4omIiIiIiIiIiByCiSciIiIiIiIiInIIJp6IiIiIiIiIiMghmHgiIiIiIiIiIiKHYOKJiIiIiIiIiIgcgoknIiIiIiIiIiJyCCaeiIiIiIiIiIjIIZh4IiIiIiIiIiIih2DiiYiIiIiIiIiIHIKJJyIiIiIiIiIicggmnoiIiIiIiIiIyCGYeCIiIiIiIiIiIoeQW1PJy8sLGo0GMpkMoaGhjo6JiMjtpaWlQa/XQ61Wo7Cw0NXhuBz/zhAR2Rf/zpjj3xoiIvuy9m+NRAghatuZTCaDwWCwa4BERARIpVLo9XpXh+Fy/DtDROQY/DtTgX9riIgco7a/NVZ1tZPJZHYLiIiIKvD+WobPAxGRY/D+WoHPBRGRY9R2f7Uq8cSmqEREjsH7axk+D0REjsH7awU+F0REjlHb/ZWDixMRERERERERkUNYNbi4JVYMDdWoaDQak2W1Wu2iSBzH3c/R3c9PIpGYLLvbexBoeq8h1czdrnF3v74B9z9Hd78Pu/vrB7j/OfLvjO34Pm583P0ceX6Nn7ufY13+1rDFExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09EREREREREROQQTDwREREREREREZFDMPFEREREREREREQOwcQTERERERERERE5BBNPRERERERERETkEEw8ERERERERERGRQzDxREREREREREREDsHEExEREREREREROQQTT0RERERERERE5BBMPBERERERERERkUMw8URERERERERERA7BxBMRERERERERETkEE09E5FKlOgO2n8mDwSBcHQoRERERNUBpuiIcKEl3dRgOozHosD0vBUK45+dhIQQO5mUhrUTj6lAcJqW4GEeyc10dRoMld3UARNT0pOdrse54DhKP5mDTyVxM6hGEwW18XR0WERERETUAQggcLc1EYmEyEgsvYE9JKn6PuM3VYdnVdW0R1uZcRmLOJWzOvYqHQ9pjsG+4q8OyG41ej98zU5GYdhVJ6VehkkpxcmACdKWlrg7NLoQQOJCdg6SrqUi8koL9WTnYP3aYq8NqsJh4IiKHE0LgWEoxko6VJZt2XyhA+Q86cqkEr46McG2ARERERORSJUKPbUVXkFiUjKTCC7ioyzeuG+IRiSGeUS6Mrv6EEDhcnIWknEtIzL6EvYXpKG/fpJbI8FL4TS6Nzx5SS4qxNu0qEtOuYnNmCor0euO6ZV1uhlwqhc6F8dVXsU6P36+nIfFKKpKupuBqcUULrlujwtEt0N91wTVwTDwRkUOU6gzYfjYfiUdzkHQsB8mZJRbrTbs5GLFBKidHR0RERESulqYrwrqii0gsTMamoksoEFqL9WYF9HZyZPahMeiwLS8FiTmXkJRzGZdKCyzWeyy0A8KVnk6Orv6EEDiUn43EG8mmfbmZFuu18vTG5IgWTo7OPlKKi5F0NRVJV1OxOSUNxZWSaZXN6tLByZE1Lkw8EZHdlHehSzqWg40ncpFfYqixPls7ERERETUdlrrQ1TaqUWNr7VTehS4p5xI25V5FoaHmNj6NrbVTeRe6pPSrSEq7isuaolq3eb1VZ8iljWN4aSEEDmbnIvFqChKvpODvrJxat2Frp9ox8UREdSaEwPHUYiQeNe9CZ40e0Z44dLUIh66W/cEq1Zr2+VYqiu0ZrkXB3nL0b+nj8OMQERERNUXlXeiSii4gsTDZpAudNXqrmuGXgvPGZbPPizqlXeKsSVdVMGIUlscjFULgSHEWEi10obNGH+8Q7C1MBwrLlkurjIGkLHb8+TVTeOBm79Bq19fUha42XjI5fOQK/HL9MgCgtNS0VZtSqahb0DZKCI2CVCKxuK6mLnTW6Bbgj18uXzMul2qrnKPC8efYMygAkZ4eDj9OXTHxREQ2sbYLnTX2XCzEhC/O2DE62w1t44Pfn2LTWCIiIqI60WqBQ4cATcWX9WydBrtLUrGrOAX7Sq6jSOiwu1sLGGSmrV7C0nLR6lJGjbvfhXPYVWk5OSoI18L8zer1//ucTWEXqxX4p3Nzs/JWF9MRlp5nUjYjoAdivCq6ipUa9PinMAN/FlzHroI0bIkJRJ63aVc5ryINup6+XGscOpzB+9gBAMjw98apWPMBxuNOX4J3kW2fuf/q3BJ6ucykrFlmLlpfTjOr2887FDe3HQzExQEKhUkXuqS0q9hbTRc6axTqdZh4YEedt7cX7ei7TRJPKcXFWHs1FYlXU7ElJc2mZFpVs4+csEeI9fK/Ab3xr5iG2zKQiSciqlVGgRbrjuci8Wi2VV3oiIiIiKgJ0GqBPn2AAwdMigMAjLvxKOd16H0UeZqO63nLb0ex9I1VNh3y+Vcm4MMHzGcP23n3Rzbt51SLULTf9LpZ+fTPf8Ojq/6scVslgJtvPJ4HMGTxi9jeo51JnbaXrmPno/Ntium7kb1wz9uPmJV//s7X6HXiok378v3tY+R7m7aAid95GF+883W12+R26YzXvl6KX7OvW9WFrjERQuBAVo5NXejIfph4IiIz1/JLMPnHssx9qc6Ai9mlSC/QoSTL8U19na2QSTQiIiIim31dchR/7v4Fn1ZJOlHj5XfkKP7a/hsut23p6lDsbkPKdSw9cwG/XU+DRu9+n/8vF9jWPdDZmHgiIjPFWgO2XsgxKZNIgEMvd7/RxS4bey4W2jSeU0N1KUOLSxmlaB7sfkk1IiIiIke5YMjF0aIrrg6D7GxD5774sU0MktKvYktGKooNde+C1pCMjQhDQlQEinQ6bElNM85Ul2LjeE4N1fenU/B8p9auDqNaTDwRkdVuivTETZGeeG10BK7nlc1gl3g0B5tO5qKw1PZfDoK85IjwqxhsTxhMM1kSqeUBAO1GAKevaJF0IB+Pjwxy7LGIiIiI3NzyDx7D1F73Aijr2nRWm4M/NWVjPWlU5gMs/zq8M461Catxn1Fyb6gkFWMVXYkKRmdFoHFZcmPcnilr3rApVo1aiS5K889/vz5+B/781wiTsgd8OmCwhZn1MrQa7C64jvAIT3iIHJMkzenmzTBg6Uu1xhEgUyJQXtYFMTvAF53V/ibrJRIJ5s95Ep5FtiVIWgU0Mxvj6dyIgZjSto1JWdvTF/HaO18Yl4NVajzSvA0ead4GRXodfs9MNY71dK3E9ol/VFIp2npVDMwuDKbfGSROnu3OUy7HLVERuCUqAgYh8M+N7ndJV1PxTx2737X18Yaq0vhlzv5Ok1Oiw8H0PBRp9fBUyGrfwAWYeCKiOmnmq8C0m0Mw7eYQaLQGbD+bZ5zd7lJ2ae07ABDqLceBlzpDduNmrNGY/kFVq9V2j7uynacKMfCt80g8kMfEExEREVE9Xe4UCwwYAACQAGhz4zEFwJu6Qqy9MbPd5qLLKBI6pIb6ITXUr8Z9vhnYBzMDexuXq/28aD5OeN3YsJ9gAAk3HsUGHX7Pu4akG7PbXfUEdnVtU8segG6eQfi10wRjAs3i+XWxPiab7dwJVEo8VeYpkyM+NArxoVFlYyTlZSMx7QoS065if16WVbvXCYGfug1CK6+yWaSd/Xm/JlKJBD2DAtAzKABzbuqIq0XFSLqagsQrqTZ1yXu8bUs8076itZGzz/HejQfx7dUUbLmcgVtaNnPoseqKiSciqje1QorRHfwxuoM/Fk0UOHKtGEnHcpB4tOYueSeua7D6QBYm9XBN0ifxQNmMJb8fL0SBRg9vdcP8hYCIiIioISr0VOKfmyKMyyVe1X/BDpN74UHfTnjQtxM0Bh22Fl9BYuEFJBYl44quoNrtPsg5iKf94uAnU1VbpyHwkMox3r85xvs3x+IYgYNFmUjMuYSknMvYV5he7XYHbtS7JSDGidHaTiKRoLtfILr7BWJWm5twTVOEtenXkJh2pcYueXohMPfcUfz3pr5Ojth2kZ4eeLRNSzzapiWKdDr8lppubA1VU5e8d4+dwiOtW8BD7vzvEjqDAesvls0MmZicxsQTETUNEonE2CXv1VG1d8l7c8NV/KtboLHVkzMlHcgHAJTqBDYfKcBtvWr+xY2IiIiIKhy8KRI9tj5jXJ6sbGXVdmqpHGO9YjHWKxb/EYNxqDQDSYVlraH2llw3qZtjKMHHuYdMWj01dBKJBN28gtHNKxhvRHZHSmkR1uZcQmLOJWzOu2qWpJl99R8k+Dc3tnpqDCLUnng4ujUejm5da5e8r68l47VWnY2tnhoDT7kcCVHhSIgKN3bJS7qagkQLXfJSNSX47GyySasnZ9mVko3sEi0AYO3FdBiEgLQBXkdMPBGRQ9XWJc9VrZ7Op5Xi+NUS43LigXwmnoiIiIicTCKRoKsqBF1VIXg9sBdSb3TJSyq8gE1Fl1AkdI2m1VN1wpWeeCi0PR4KbY9igw5b81KQmHOxrEuetsi1rZ5iY4H5802XbVRbl7zG1OrJkspd8mZX0yXPVa2eEpMrWtOlFJbgn7Q89GzW8L7TMPFERE5TXZe8zadycWe3wNp3YEeJ/+SZLK89mA+DQUDqgpZXRERERFSmui55PxaewzTfjq4Or948pHKM84/GOP9oY5e8pJzLWJ97GQn+9hqoygZRUcD06XbbXXVd8tanX8M1TREC4dzBxB2hui55iVdTcGeM+SD0jpSUnGaynJicxsQTEVG5yl3yXKF8fKdyaXk67DtfjD6tXRMPEREREZmq3CXPHVXukueuKnfJA8wH3m7sKnfJc7YzOYU4lVNoUpZ4IQ1zbq59UHtna/zpRiIiG+UW6bH9ZKFZedVkFBERERERUUOUWKW1EwAcSM/DlYJiC7Vdi4knImpyNh0pgM7CxBuJNwYbJyIiIqLatT2TjhWPfm98hJ2+4uqQiJoMS4knAFh7ofpZFF2FXe2IqMmprmXT4UsaXMwoRUyw0skRERERETU+IZkFmLzmgHE5+eFcF0ZD1HRka7TYcS3b4rrE5DQ82tkF44XVgC2eiKhJ0RsE1h2svmXTWrZ6IiIiIqKmYudOQC6veOzc6eqIyAobL6VDL4TFdb9dzkSR1kL3Dhdi4omImpTdZ4qQWVD9jZjjPBERERFRk6LXVzyoUaiumx0AaPQGbLmc4cRoasfEExE1KbUlln4/XogCDf/oEhERERFRw6MzGLD+Ys2JpZoSU67AxBMRNSlJtXSlK9UJbD5S4KRoiIiIiIiIrLcrJRvZJdoa66y9mA5DNV3xXIGJJyJqMs6nleL41ZJa63F2OyIiIiIiaogSk2uftS6lsAT/pDWcIUSYeCKiJiPxH+tuvmsP5sNgaDi/EBAREREREQHWd6NrSN3tmHgioibD2oHD0/J02He+2MHREBERERERWe90diFO5xRaVTfxAhNPREROlVukx/aT1t2kAc5uR0REREREDUuSDcmkA+l5uFLQMH5MZ+KJiJqETUcKoLNhsjqO80RERERERA2Jrd3n1l6ofTwoZ2DiiYiaBFtbMB2+pMHFjFIHRUNERERERGS9bI0WO65l27RNQxnniYknInJ7eoPAuoO2t2BKYqsnIiIiIiJqADZcSode2DYB0m+XM1GktaHbh4Mw8UREbm/3mSJkFlTccO/o5YvIALlZvTv7+CHcv6Lc2lnwiIiIiJqiQ50i0Gvzk8bHpS4tXB0Skduq3HopSK3A5HYRZnX8VXJMbhcBqaRsWaM3YMvlDGeFWC0mnojI7ZV3s7ujly8OvdMaa56JQaC3eeLpnn7+OPdBO3x0XzjC/eXYeqIQBRrX/0JARERE1BAV+Kjwd/do40Pj4+nqkMhWajXQqlXFQ612dURkgc5gwPqL6QhSK/Buv7a4MGUIHu0cbVbPUy7DilFxOH7vQGMCqiF0tzP/5kVE5GZUcikOvdMaNzX3qLWuh1KKp0cH4+Ghgfh8axaOXNagbxsvJ0RJRERERORkPXsCZ8+6OgqqxYmsQszo0RJPdImBt7L2NE67AG+sGBWH13u1wpfHr0AIAYlE4oRILatz4kmj0dgzDpfz8Kj9Cyk1LsXFDWPqSEdx5HuwpKTE6ccEzN+H9noNX433A2AavzAYzOqVlpYa60gAPDLY22w7ch5X/nF0Bne8RznqPdxQ8RptfPh5j6ri+7judDqdWZler3f650V352734qb2+gH2eQ3beCvwTKdIwKCDRlP23ispNZ8ISQhh8h6M8ZDjzR6x1X6/cxZ2tSMiIiIiIiIiIodgVzsiIiIiIiKymW9eMbocTzUue3SOAkJdGBARNUhMPBEREREREZHNuhxPxc7xnxqX56xvzsQTEZmpc+JJ7Waj3Vftd+lu5weYj1PjbudYtY++u52fo65RgxCQVnnuVCphsW7VYwohIACz7evKme9DidS8p7FSqXS766YxE8LyddhYufs92BJ3O0d3/6zg7n9Hgab3GlLt+LfGOpY+L8qF+VdJqVRqdkxL29oTX8N6OncO+OCDiuXnny+b3c5J3O31A5z3GqqUSrMyiUTSIP+2cYwnoibuekEpblt1FAdS8q3eRgiB385n49bvj0JvcL8/FkRERERU4cuSw5hZtANZBusHSS4SWnyo2Ye3NH86MDKqt5QUYPHiikdKiqsjIjfExBNRExfuo8LlXA26f7YfE74/UmMCqjzhNGj5QYxYcQjeShkUMt5GiIiIiNzZIEUU3tbsRmzO0loTUOUJp5Y5n+H5oq3oKQtzYqRE1BBxjCciQkLbYOxPKcAvpzLxy6lM9I/2NasjAAxafhA7L+Uay+LbBjkxSiIiIiJyhbbSQLSW+uOsIQdva3bjI81+tJD5wadKvWP6TLTM+QzXRSEAwANyDFM0d37ARNSgsKkCEZklkHZdzrNYr3LSSSYBxrYOdGhcREREROR6EokECYrWxuV8lOKwPt2s3hWRb0w6AcAIRQw8JAqnxEhEDRcTT0SE7uHeiPAxH5yuJgOa+yHAgx8kiIiIiJqCBKXtA05XTlYRUdPFxBMRQSKRIL6Nbd3mEtoGOygaIiIiImpoBsij4CdR2bRNfB2SVUTkfph4IiIAQEI7GxNPNtYnIiIiosZLIZFhrKKF1fV7ysIQLvV2YERE1Fgw8UREAIDhLQLgIbfultAm0ANtgzwdHBERERERNSTxCutbMNWlax4RuScmnogIAOChkGFEywCr6iZwNjsiIiKiJmesoiVkkFhVl+M7EVE5Jp6IyKjq7HbVYTc7IiIioqYnUOqB/vLIWutFSrzRVRbqhIiIqDGQuzoAImo4rEk8+avl6B/t54RoiIiIiKihSVC0xh+6KwCA6yE++GJyL+O66yE+AMoGFZdIrGsZRUTuj4knIjKK8FGhR7g39qcUVFtnbOtAKGRsLElERETUFCUoW2F68TYAwNlWwXj4o4nmddjNjogqYeKJiEwktA2uMfFkbXc8IiIiInI/baWBaC31x1lDjsX1HpBjmKK5c4OiuuvcGdi82XSZyM7YbIGITNQ0fpNMUtbiiYiIiIiaJolEUmOLppGKWHhIFE6MiOrF3x8YMaLi4e/v6ojIDTHxREQmuoV5I8JHaXHdgOZ+CPDgBwkiIiKipixB2ar6dYrq1xFR08TEExGZkEgkiG9judVTQttgJ0dDRERERA3NAHkU/CQqi+vG15CUIqKmiYknIjJTXXe7mrrhEREREVHToJDIMFbRAt0OXcXRfguMj3uPaBAu9XZ1eETUwHBwcaJGoFRvMCvT6gRkUkAqtf9UtcNbBMBDLkWxruK4bQI90DbI0+7HqkmpVkCp4FS81PjpdIDBAEj5cw8REbmJeEUrXC5ej06n0oxlw3VsHd/oFBYC585VLLdqBXh5uS4eN1OqN0AlBCSSpv2dhh+ByXEMBuDyaeDIrrJ/DebJE6re6exCLPgnGUN/3INPj14yW28wAH0fSsdDc7Pxy/ZiFBbb7/n1UMgwomWASVmCC2azm7EsA/GzruHTtbm4kqFz+vGJ6iMnB/j+e+Dee4H4eMAlnzd4HyYiIgcZq2gJGUz/uPWXRbkoGqqzAweAuLiKx4EDro7IrRRqDYj79G88sfY0NpzNRImuaX4WY4snsr/Ui8BXLwNpGwGfSm+sfCkQOhqY8h4QFuO6+BooncGAndeykXQhHYnJaTidUwgACPVQYm1CT0CvNamvUkowLd4L/34vB1/+WgSVEhjWQ4WEgWrED1Ajuln93t4JbYOQeDqzYtkF3eyeneCP1g9dxNp9Rfj3f9LRrZUKCX08kdDbC91bqxzS2ouoPs6cARITgaQkYMeOspZOQNmyUxNPvA8TEZG9zR4NSGTArHUAgECpB7rIQkyqtJGZ/nCJOeMAoQdmb3RWlEQNSoBajtvaB+PNPy5i8d/X4KWQYlSrQCS0DcK4NkFo5m15Uid3w8QT2deq94BDcwEFAC8AlX8F8dIDReuAj9cBca8Bd73soiAbjmyNFhsulSWa1l9MR06Jeauel3u0hKdCBk2VxBMATIv3xDvL83H5uh4lpcD63SVYv7sEj8/PRde2CsT3VyNhoBo9OyhsTtKMr9TCyV8tR/9oP9tPsJ6ahyrw4ChffLouDwBw4FwJDpwrwZvfZiM8UIbxvbyQ0McLI7p6wFPNBpzkfDodsGtXWWIpMRE4dcq8Ts+ewLhxQEmJk4LifZiIiBxBIgPErrJk0o3kU395pGmVyr+yzBlXVl/S35lREjU4z94chYV7riCvRI9CrQE/nczATyczIAHQO9IHCW2DkdAuCF1Cvdy2Sx4TT2Q/q94Djs0tu6okEqDqe6Y88SEXZfVWoUl+6TmdXYjE5DQkXkjDzmvZ0AtRbd1QDyUe69y82vUqpQSvTvXBv9/LMVt38LQWB09r8fayfIQFSTG+f1lLqJG9VfDyqD1JE+GjQo9wb+xPKcDY1oFQyFyT2HnlzgB8uSkP2io5uZQsPb7YmIcvNuZBrZRgeJwH4nt7Ib6PF6KCeWsjx8nJATZsKEs0rV8PZGfXXH/2bCe2duJ9mIiIHGXWuopk0o3kU9XEk1HlpNONJBVRUxXgocCzfaLw5h8XTcoFgD1X87Hnaj5e35qM5n4qxLcJQkK7IAyJ9YdaLnNNwA7Ab2dkH6kXy35hl6Pii011pBLAIMrqD57k9t09tHoDdqVkIzE5DUkX0o1d6KxR3tqpJpVbPVUnNdOAL38tsrlLXkLbYOxPKUC8C8Z3Kle11ZMlmlKBtfuKzLrkxff2Qg92ySM7KO9Cl5hY1oVOX/3bzUR5ayen4H2YiIgcrUryKXrYK+Z1mHQiMlO51VN1LuWWYPHf10y65MW3DcJ4N+iSx8QT2cdXL5d167D2Z32pBFAI4OsZwEvfOTQ0R2t+SyqupJneQIRSB4TnA1H5Zf+qrPyWWsULO0/ihR0na684wvp9lgBYD2D9VeDxVTcKLTSMMFIpcO9ruZisz7f+IHZWQ6Mwi9glj+qrvAtd+XhNlrrQWePvvwGZMXessld4Fq3p/TJuGw3rm2i70X2YiIicqFLySfJjlVazP7wE+B1j0okaHMVb26E32Pilws5sOXp1XfLi2wbhpmaNr0seE09UfwZD2QC23jZuJwBc39Do5xgX4kZixKcEiMore4QU2m/OSCfdU6q7EYYq1EjTSW26UTYk1XXJ0+oa6xmRXWm1wKFDgEaDnIiO2LA30KQLnQeK0B3/wJbJobMQiBPoaFwuT5x2xlH4Idem8PaiN7Qw/YUrGOloh6qZMAMSem+wad9lwcEt7sNERORk5cknv13AICXwR2nZv0w6UQMlhGi032eq65LXIqTxtIJi4onq7+rZG7Mm2ZghkUrKtrt2Hohq7ZDQHOWfrGzsTMuEAJB9UzoQkgOo9YDWffrhlmsu90Gaq4Owk8pd8qDWIzpUhUFdPBDoU/a6tQhRuDhCcpaCQoHlK4pw57wBCL10EAAwWf0T1mpuReV7WTQuYycG2rTvX5GAW/GrWfkiPIUh2G7TvsJxDakINykbgS34DveYVvSQAIE+aEr3YSIicrFZ64Dn+gFDjwEDVYBcAuR2Aj5k0okallKdofZKjUh5lzxIDZB7ytE93Ac9wn0gl0rgp2qYKZ6GGRU1Ljnp9ds++3qj+8Kz9XoGXvznSNlCecOGKz7AZb+yFk9e5jPQNVaebjSoHQC0i1IgoY8XEnp7oV9HNeSyxtVMlewjL19g+ev78WTmQWNZqOoaZs0ANqwH9u61vYunS9X3B69GeB8mIqIG4Lnvgc86lyWddKJsmaiB+eNcfqNt7WSJUibB0Fh/Y9e7GH+1q0OqFRNPVH/+IfXbPqCZfeJwNY0c2BcJ7IsAAjRlCajIPCC42NWRNWkyKTCoswcS+nghvrcn2kQ2niap5FhqaEyW2+jO4fkZwOxZwPXrwNq1wP5vAfzmmvhsUlrP7d3lPkxERM617LGKpJNcUrbMbnbUwCQezWlcPyhaEOKpwPi2QUhoG4SRLQPg00BbNlWncUVLDVNkayBfCnjpa59JqTKDAAplQERLx8XmRKNvVuM/D5p/eUvXlGBragZ+T03HrrRMFOutb+r5bIdWSIgKAwCUlpp+s1QqyxIoQgD3zc5GSob1A5jHhMswvJcaw3oq0aO9Eoqa7gSlMuB257R6KikpMVlWqcoGY577fRaWbbZ+cPMAbynG9vREQh8vjOnhCX9v92q1RY6xW9nb+P9mzYAHHgAemBSNkt07cOAA8OefZQOOX6+l72kWAo3/79kT+L78x98jC5CcXzHGU/l7uCY7bwoya80kzRyBq8k7TAsNBkTsvQXwMUDShO/DRETkRJVnr3vbdLY7Jp+ooRBCIPFoDkJ13tj5bEenDMpt6TtNsU6PAf89gNwaZrWrqkuoFxLaBiGhXRB6RfhC1ohn6mbiiepPKgVCRwNFNv6BkQBoNsZtBrT18pCgVZT5W6oV5Li5tRdeQQyKdXpsvZKJpAvpSExOw5UCjYU9VUi8loL3h7WGXCqFRmNaV60ua1L5vy1FSLkgR01vZ5kMGBCnRMIANRIGqtG2ecMcy0ijMb0Rq9UKZObpsXpnQa3bsgsd1VeWNMC80NMTquEDcPNw4GYAzwng8OGK2e5q65L3999lraf69QM0kZ1M1pW/h23WKgTobaGl6aUxTf4+TERETlI56VSeZJrF5BM1PMdTi5GcWZYIyisS6B7t6fBjajSm30PUajU+3nOl1qRT5S5049sGItbfw5FhOhUTT2QfU94DPl4HyIV1rZ4MAtABuP9dh4fWkHjIZRgXG4pxsaH4z+COOJSRj8TkNCQmp2FfmvlsV+dyi7Dy1DVM6RBlcX8Gg8CcLyy3BPL3kWBsXzUSBqgxpq8aAb6N84vlBz/loKDY/Jt9eRe6+N5lLZvYhY6cQSIB4uLKHq+/XtElLzER2LQJKCoy32bOHGDjRicEx/swERE5g6WkUzkmnxqfoCBg4kTTZTeSdDTH+P/EoznoHu3l9BiKtXq8u/OSxXWNvQudtdzzrMj5wmKAuNeAY3PLvszU9KXHcCOJ0HVm2XZNlEQiQdcQX3QN8cXM3q2RWliCtRfKklCbL2eiSFeWEX9r3znc2y7C4j7W/F6M48k643KbaBkSBnogYYAa/eOUUMgbd6ufzDw9Pv41x7jMLnTU0Bi75D0AaDTA1q1lLaESE4HLl8vqbNpU1k2ve3cHB8P7MBEROVpNSadyTD41Lh06AKtXuzoKh0k8lmP8f9KxHMwaG+n0GD7/JwUpBRXDprhTFzprMfFE9nPXy8AqAIfmQigEIGAy1ogwCEgkKPuFvetM4M7proq03nQ68xY4OXn1G7EuzEuFBztF48FO0cYueYnJaUi6kI6Vp67hrhbBJvUNBoF3lhdgcPeG34Wurj74KQeRQfIbA4N7oT+70FEDplYDY8eWPT75pKJLXmIi8OabwM8/OyGISvdh3LgPmySgDKKse50b3IeJiMjJrEk6lWPyiRqAjAItdidXDNnx96VCXMstRYSf83pKFGsN+PCvKxjdKgDxbYMQ3zbIrbrQWYuJJ7Kvu14GBk/C9gdmoH/r9VAEViRjRJ4UkoixwNT5QGi0C4Osv/OXzQcIT0m3ftDw2lTukrdYCKQWlZjVKSkFfv9PMAL9GmcXOms8Ee+HuVPcq7kvNQ2WuuTp9WXjrTncjfswvp4BXN8A+FS6NxXKysZ0coP7MBEROZnQW5d0KmdMPlk/mDKRPa07nmts5F1u7bEcPNwv1Gkx6AwChx/r6bZd6KzVtM+eHCMsBq/nfQcs+gM7PYaUzchUCmx6bhvGvDTI1dHZxbEzesC0AZJdE0+VSSQShHupzQYX91BL4KF279Y/EUG8RZF7aNasrCue04TFAC99BxgMwLXzQPZ1IKBZ2ex1HEiciIjqYnYdBixkSydyocSj2RbKnJt48lHJoG7iSSeAiSdyKClQLIDiG4sS9/iyI4TAiXPmiaecXIGUNAPCQ93jPInIDUilQFTrsgcRERFRE1GqM2DjCfPJm7acykNxqQEeSn5ncyY+20Q2On5Wj6wcy+M5rd1WarGciIiIiIiowTl0COjbt+Jx6JCrI7KLP87lI7/EvEdKsdaA306bJ6TIsdjiichGib9ra1z30J1qJ0ZDRHV1TRqOD7yeMFkmIiIialLy84G//jJddgOJR3OqXZd0LAfxnQOcFwwx8URkq8TftYDK8rrNu7Qo1gi3H3uJyB0ky1vgBd93XR0GEREREdmREKLmxNPRHIg7BSQSfmdzFiaeyGFOoR3uxrfG5dvC27kwGvvIyDJg9wEdcLPl9cUaYOtfWowb4rwpOomIiIiIiKjMiVQNkjPNZwUvdzVXiwNXitA92suJUTVtTDyRw2QgBN/jbuPyOF8XBmMn67ZrISwP72SU+DsTT0RERERERK5gaTY78zo5TDw5EQcXJ7JB4u+1Dx6etFULUVt2ioiIiIiIiOwu8VhO7XWsSE6R/TDxRGSl0lKBjTuqH1i83JVUAw4e1zshIiIiIiIiIiqXUaDF7uSCWuvtv1yEa7mckdxZmHgistL2vTrkF1pXt6aZ74ioYehV+jcuX29nfPQq/dvVIRERERFRPaw7nguDlZ1P1lrRMorsg4knchgFShGGFONDqmvcGeWkrdbHn7StcZ8rUVOgRCmiDNeMDyX4viUiIiJqzJJqmM2uqppmviP7YuKJHKY39iIFEcZH0Lm9rg6pzoQQNrVi2ndYj5Q0gwMjIiIiIiIionKlOgM2nMixuv6WU3koLuV3Nmdg4onICsfP6pF8xbab0lq2eiIiIiIiInKKP87lI7/E+u9sxVoDfjud68CIqBwTT0RWqMuYTRzniYiIiIiIyDnq0nWO3e2cg4knIiskbTVNIvn5SMzqKJUSqJQVy1v+1KJYY+XIdkRERERERFQnQgiTJJJUAkT4KczqhfsqIKuUBUk6lgMh+J3N0Zh4IqpFRpYBuw/oAAC3j1Lg4K++GNhLblYvOECC87/745kpKqiUQFExsPUvtnoiIiIiIqIGqk8fIDOz4tGnj6sjqpMTqRokZ5ZAKgGm9A7Gydduwt09gszq3XZTAE6/fhMevDkEMilwLVeLA1eKXBBx08LEE1Et1v+hxYQRZQmnH/7jg7gO5kmnchHNpFj4upcxAbXlTyaeiIiIiIiogVIogMDAiofCvJVQY7D+RI4x4bR8cku0CVVXW7dlsBpf3NPCmIDacILjPDla9d+giQgAcPsoJe6boLJpm/IEVGERm20SERERERE50mP9Q+Glktm0TXkCqrBE76CoqFydE08ajcaecbich4eHq0NwuuLiYoft22BQmjWn0+u1Tr1u7HUsmRSouiuDwfzmJIQwO6albeuqKV6j1LQ58n6hKbGcFNZoNBDCfAw3e2iK72GJxDHPZUPhyL+jDYG7v36A+7+GVDt+p2n83P01dPf7lN2+swHQaEx7m+h0OrN6er3e/DubhW3ro6m9htZgVzsiIiIiIiIiInIIdrUjIiIiIiIiaoquX4ds0ybjon7UKKBZMxcGRO6IiSciImqSDJCiUOJpskxERETUlEjOnoXikUeMy4YtWyCYeCI7q3PiSa2ufpT4xqhqv0t3Oz/AvP+svc7x88+B+HggPLyiTGrh+5tMpjAeUwjg998BDw+gXz+7hOGw13BzynV4y+XoG1IxHadUaj5wnUQiMTlmckEhdqZl4r6Wze0SR1VCuN/A5Y66RhuKpjBeij3Z6/XPyBT4aYMOU/4lh1JZ9hqoVQbsVt4M77DrZsdUqcrqFBcLfPmdFg/erYCHR/1fu6bwd6bqNe5u9yl3v0dV5W6vH9D0XkOqnbtfA3wfNz5O/7ygUlVZVAEOPKYzz08uN093yGQyp18z7naN1gV/3qV6u3ABaNkSeO45ICWlojwXftiGwcaH1tMPQgC//QYMGgSMGAFERbksbKsFKJXot2k7xvy+E7vTM2utn1xQiIf/+gdtf92EHK39BqkjoroJCgTmLy5Fu4FF+GKlFqWlNX8ILy4W+PiLUrTqV4SVP+nsknQiIiIiImqq2NWO6i0+HnjnHWDhQuDTT4HHHgNyc4Gj6IKh2Gas99hlYP4gYOfOsuW4OKC5YxoD2VX3QH+EqVXYmJKGjSlpGB0eigyp+VunRFGKh//6B8vPX4Tuxq9L8ZFhzg6XiKqQSCSIHyHHws+1eHh6CeZ+XIqH71VYrLvov1p88JkWKdfL3sNPTrNcj4iIiIiIrMMWT1RvvXsDISFl/9doyhJQR4+a1/v004qkE1CWsGoMpBIJ4iMr+hFuTEnDftk1s3qZvjn44twFY9Kpk58vWnh7OS1OIqpewsiK7rEXLgu89m6pxXrT3yo1Jp0AIH6EebdaIiIiIiKyHhNPVG8yGTB+vO3bJSTYPxZHSYiyveVSAls7ETUYA/vI4Odr2zbNIyXo0oF/JomIiIiI6oNd7cguEhKA5cutr9+sGdCrl8PCsbsRYaFQy6TQ6A1Wb5MQFV57JSJyCoVCgjFD5Fj1q85YFq2/jPuLvjMuf+15Ny7Loo3LCSPlHBCeiIiIiKiemHgiuxg5ElAqgVLLvVfMjB9veea7hspTLsfwZqFYey3VqvrBKiX6BAU6OCoiskXCKJlJ4qm5/jLeLnjLuLxNNcA08TSK3eyIiIiIiOqrEX31p4bMxwcYMsS0rAOO4xfcYnx0wHHjusbUza6cLQOFj4sIg0zKlhJEDcmYIXKrE95ensCQvkw8ERERERHVFxNPZDdVk0mByMItSDQ+ApEFoKxl1IgRLgiwnuJtGOeJ3eyIGp6gQAn697Luz96owTKoVEweExERERHVFxNPZDfWtmIaNgzw9nZsLI4Q5emJbgF+tdZTSCUYFR7qhIiIyFYJI63rYW5tPSIiIiIiqhkTT2Q3MTFAly6112uM3ezKWdOSaUhoCHwVCidEQ0S2siahJJEA40ewmx0RERERkT3wJ12yq/h44MiR2us0VvGRYXjzyMla6xBRw9SutQStYiU4d0FUW6dPdylCg/m7DBERETUBMTHAO++YLhPZGRNPZFcJCcC8edWvj4sDmjd3Xjz21iMwAGFqFVI1JdXW4fhORA2XRCJBwkg5Fn6urbYOu9kRERFRkxEdDbzyiqujIDfHn3TJrnr3BkJCql/fmLvZAYBUIkF8ZPWJpU5+vmjh7eXEiIjIVgkja+5GV9t6IiIiIiKyHhNPZFcyGTB+fPXrG3M3u3IJNcxul8BudkQN3sA+Mvj5Wl7XPFKCzu35p5GIiIiIyF746ZrsrrpWTYEBQK9ezo3FEUaEhUIuLL912M2OqOFTKCQYM8Ryd7qEkXJIJBInR0RERERE5L6YeCK7GzkSUCrNy/v2BaRucMV5yuVobQgyK1dqFegTFOiCiIjIVvHVdKdLGMVudkRERERE9uQGaQBqaHx8gCFDzMv793d6KA7T0RBqVhaWHQyZlC0liBqDsUPlqPp29VQDQ/oy8URERERNyK5dgEpV8di1y9URkRvi1D3kEAkJwPebTMt69nRuDH/u1WPTVgMSRsvQPU5i1+4zHfUh+FFhWhaeXcOo6kTUoAQFSuDfqy0m//m5sSxycDuoVM5NHi/6vhAqpQTxA1WICGHSi4iIiJxMCKC01HTZidYfysehi8WI7+aLTlEqDnngpph4IodISAC+f8q0zNPTuTH06ibFff/WYs58HSLCgPjRMiSMlmHYQCk8Pet3Q/OHB5DiDYQXlBXoJQjNMe9+R0QN18D4CLx0cJJx+b8JKqfH0KuTAn2nZQIAenRQIGGgCvED1ejenmNNERERkfvr38YTk5dcxiv/u44WIQrEd/NFQjcfDO7gBaWcHbTcBV9JcoiYGKC0U3e0w0m0w0l8+8ZJoHt3p8agUEjw+vNludVrqcBnX+mRcE8pgttqkHBPCT77SodrKfXI6J+qlGi64A+FnnlcosYkYWTFe1YiAcaPcH6Lo5u7KDGmX1nCa/8JLWZ/VoCe92UgalwaHp2bi6QdGhRrnPvLIxEREZGz+HrK8MLYYABAcroWizZlYtR7FxD82AlM/OgivvojG+l5OhdHSfXFxBM5zIhbPHEa7XAa7TDgwXbOb/IEYPKdMrSMNW01UFwMJG004NHntYjsrEHPYRrMfk+L/QcNELY0LT0dZPn/RNQotGstQasb94c+3aUIDXbNn8RZD3ublV1LN+Czn4qQ8Fw2goanIuG5LHz2YxGupetdECERERGR4zw5MgiB3qY/AOZrDPhhXx6mfnYFzZ44gf5zzuHdX9Nw9LLGtu9s1CAw8UQOk5BQ9m9cHNC8uWtiqNzqqTr7DwnMma9Dz+EliOqswaPPlyJxgx5FRbXc0FJ8gPwb0/edYuKJqLGRSCTGVk+VWz85W+VWT5YUlwBJO0rw6Du5iBybhp73ZWD20nzsP6HlBy8iIiJq9Cq3erJECODPM0V45X/X0eWVM2j1/Ck8/fU1bD6Sj1KdwYmRUl2xbxA5TO/eQGCwASUKLe6Y4vjj6Q2mX8Bk0hIAgNaGlpnlXfI++0oPtRoYMViKhNEyjB8pQ2RElfFWhKSspVN0LpDjUd/wicjZtFrc3jML33xVgP37Be583h96maL27epIbzBtrSSTFhv/n5ZlfUum/Se02H9CizmfFyAiRIr4AWrED1RheG8VPNUcF4qIiIjq7rXVqTi5/6LD9q/XV/k8JCtr6VSgsT6BVN4lb9GmTPiopRjVxRsJ3XwxrqsPQnyZ4miI+KqQw8hkQL8BwN5tKbh+6pzV212ThiNZ1sKsvJduH5RCa/V+DJBit+Jms/Jo/WU0N1yufQdaIDsJ+DoJeF3WGtHdmiHhxgDlQgByoUWfv5KhuajDIaEF4LgvrETkAHv2YOAtA5EOAF8Dj0e/g8OeHaqtnif1wRHPjmbl7YvPIEifZdOhD3h0QZHMtPuxvy4HnTSnbNpPSkkzfPZTLD77qQgeKmB4bxUSBqpxm/dhhHhWyrqr1WXNTxW8TxEREVH1sncfwKXTWvwd1NlsXcv8ywgvTrdpf8f8WiNH5WtS5qkrQresk2Z1+9ewn0yVP076tTQrj005idRLBfh8LfCFBOgcqUb/tp7o18YTsaey0f9a2Wc0jUyFQ8FtbIqd7IeJJ3KcrCw8GbMLX+jysLpgstWbfaB6Ci94vWdW/mP+3YgS16zeTyE84R2YYVZ+f+lKvF38ptX7AYDJXl9i5aG78c8hHebM18E3qhjhQWnYufteAMAR3874IHALAB+b9ktEDcfiy6/WuH6nVy8MbP+LWfnca+/i9pz1Nh2rU8etOO7RzqSsd+FBbDx7j037+TjkATzT/G0AFV3yknaUYNSRfyGk9IpJ3dIuXaHb9Rc8fZw/ex8RERE1Dov3vYMLXhFoMWGD2bpnTq3E06e+tWl/o4cuwaYI05RSbME17Nw81ab9/Bg9HHcM+tBCvHMxIP2AxW2evPEodySsPf43cq1NxyX74BhP5Djnz2P0R7fYlHRqDHy8gdhJV+E7teKm1SXvKELamX8hJaIGTK12dQQOI5eZd7lTHjmIHd/tdkE0RERE1GC58eehqrqknsRbUba1Uif7YOKJHCcuDoXtu7k6CrsICZLgqYdl2LRGiYwzatw/SY4211JN6ihKSl0UHRHVSVwc0M097lESCdDvJgXmPemDo6uCERlq+c+7rLTEyZERERFRgxYXh2PBnVwdhfNoNK6OoEliVztyHIUC+Zv/wk8f/wO5zvo3uK9fOP4v2PzS3H5hNWT66pM7Ol2VgeoUCvxfSzlycoG3F1SMdfK18l5skw+qMQaJBOjcQYL+vaXo30eKD0a0g6SZ0qROjpeXNadDRA2VQgHs2YN/Vu3D6VMFtVYv8fDF/zU3706be/VNfF/wbK3bV75HPRDTBvCu2Ncf/5Tij9+7YkC7n6yLHYCnWoK2vaPx1S1+GNtfhZCAStMQr16NRxZcgvzYYSw+alvXYiIiImo6UvMl6NprFR6LOY/+N4ZQ0ilU+L+2YWZ1PYc+g++zJtm0/4Tm7THKx9+4rNXqoNB44pv+ZZ955PKyzy/Xc/VYvTe32v1kqvzNyuQyYPmkt3G1uQH923giKkhpvuHhw8ATT9gUM9kfE0/kUGFRSkyebz7Ad930q3Gtpkr2Wn2j2eib75sOSH5ZFo3Lsmiz7X28gdHDymaxGztChpDgmmeH0splNa4nokZAoUD3yf3QvV476WlVreruUQaDwPLEYuTI/bHLu0+N+2gRKUPCQBXiB6gxuIcSSkU196levXAoshkUl9nCiYiIiKq37u8i6KDCXlVXLJpu/h3JVEi9j1f2eSgAQCSAis9D/152Fbsu1N4NLsBLhnFxPkjo7oPRXXzg79Wl5g369AH+9a+KZX//ugVO9cLEE7m1nFyBD5foql0f21yChNFlyabB/aVQKjkVORE514+/a3D0nOX7lEQC9O2iQMIgNRIGqtCxpRwSCe9TREREZB+JewoBAHtPlyA1S4ewQOenCC5llOLLbdnVrm8foUJCNx8kdPNF3zaeFseyrJZCAYTUP2FG9cPEE7m1jz/TIadSi02JBOjbS1qWbBojQ8d2En6JIyKXMRgE5nxu2s3Px0uC0TerkDBQhXED1Aj253CMREREZH+aUgM2/VNkXF67rwgPjvZ1ehzzEtOh1QvjslwGDGrnhfhuvkjo5oPWYZyRt7Fj4oncVnlrJ1u70BEROUt5ayeru9ARERER2cnWQ8UoKqlI+CTuKXR64qm8tZN5FzoOa+JOmHgit3XxssD/vlSyCx0RNVhKhQRHVwWzCx0RERE5XeLeQpPlzQeKoCk1QK10Xmvrq9la/PZKC9u70FGjwsQTua24zuyeQkQN2y2D1Q7dv4AEJVJFRQGTW0RERARACIGkvUUmZUUlAlsPFWNsL+fN3t23jYOPlZYGbNpUsTxqFBAa6thjkhkmnoiIiNzUn4E9oB531Lj8XRfzqZGJiIio6TmcXIrL6eaTmyTuLXRq4snhTp8G7ruvYnnHDiaeXIBNQoiIiIiIiIiakPLZ7KpK2lsEIYTFdUR1xRZPRHWU5+mBnR3bGpeLvd3olwEiIiIiInJb1SWeLqfrcOh8Kbq24kxyZD9MPBHV0ZEWzTHw/94wLt/eLNqF0RAREREREdUuNUuHvadLql2ftLeQiSeyK3a1IyIiIiIiImoi1u4rqnF9da2hiOqKLZ6IiIjcVFRxCiZf/dW47Jn2IICOrguIiIiIXC5pb82Jpb2nS5CapUNYINMFZB+8koiIiNxUTPFVzDv5gXF5S+ooMPFERETUdGlKDdj0T80tnoCyVlEPjvZ1QkTUFLCrHREREREREVETsPVQMYpKap+1rrZWUUS2YIsnojpqf+kq5n692ri87fmngO6DXBgRERERERFR9RKtTCht+qcImlID1Eq2VaH6Y+KJqI6C8gtw+59/G5f3P5DnwmiIiIiIiIiqJ4RA0t7au9kBQFGJwNZDxRjby8vBUVFTwPQlERERERERkZs7dL4Ul9N1Vte3tnUUUW2YeCIiIiIiIiJyc7aO25S0twhC1D4eFFFt2NWOiIiIiIiIyM0l7rEt8XQ5XYfDyaWIa6lyUERO0Lw58NZbpsvkdEw8EREREREREbmx1Cwd9p4usXm7xD2FjT/x9Prrro6iyWNXOyIiIiIiIiI3tnZfxaDifdqpsP7NcLQIM2+H8t9nQ/H4eD8ob6yytZUUkSVMPBERERERERG5scQ9hcaE0+4PojCmpxckFupFh8jxnydCcPbLGDw+3g+HkkuRmmX9gORElrCrHREREREREZEbe+F2fwzopIZEYindZC46RIH/PBGCGXf6o7iUA4xT/dQ58WTtBUvkKsXFxQ7bt1arNSszCAM0Go3DjlmVM4/lLB4eHibLjnwNqeFz978zjr6+DQaDWZlOp+N9qh6a2j3K3V4/oOm9hlQ7d7zOK3PH86v6PqZ6GPwb4Gk62PbIkSOBzD+dFkJTuA+74/vQVmzxRERE5KbOeMViatw84/K4qJYujIaIiIjIuSS7d0MZH29cLk1Kgujb14URNU1MPBEREbmpNFUwvoq+3bg8LCDIhdEQEREROZnBAElRkckyOR8HFyciIiIiIiIiIoeoc4snIdxrgLGqY4m42/kB5n1L1Wq1iyJxjKqvob3O70xhHmI8vKCUyoxlCoUCB1rFoNOSd41lcR3amRxTCIHjBbno5ONvlziqcrfXz5KmcI5UPXe7DzvyHnzsYgk6xahMyqRS89+WlAqFyXELNQak5+oR20xht1gqc7f3cNVxKHh+jV9TOEeqmbtdA03xfexunxec+b201QMXcD7VdMa6zZs3Y0Q3T4cd01Hf2aqlUlVZVAFOfl80hfdhbdjiiagWJwvy0Hr7r1h66QxKDXpjeZFajeMxUcZHyY2BDoUQWJt2Fb13b8DKaxdcFDURNSXvrsnCiNevYMexotoroyzh9P6PWYh9MBk5hfraNyAiIiIiqiOO8URUi+HBYUgvLcFjx/Zi7rmjeK1VZ5MEVDkBYG3aVcw+exh/52YBAD7u0NPJ0RJRU5TQ2xt3zU/Bb4eKMDzOE7PuDgQAyA1a+OgKjfWKCgLx/o9ZmP9DNjLy9IgOliOuhaq63RIRERER1RsTT0S18JTJMSIoDEnpV3FZU4THju2FFObTvP9y/Qp+un7ZuByiVKG3PwfyJSLHG93dE3IZoNMDvx0qwm+HiiCVAn1zDmHnn/ca6w0qXIkdARUJ8fheXmZN3omIiIiI7Ild7YiskBAaabJsgHlf66pl40MiIZPwLUZEjufnJcPgzqbjMViatMVQ5daV0NvbgVEREREREbHFE5FVxodGAsdMy/zzC9H79Dnj8t62rZDj42VcrpqsIiJypITeXvjtkHVjPAGAp0qCoTd5ODAiIiIiIiK2eCKySqTaE919A03KOl26go0z5xsfnS5dMa5TSqQYGRzu7DCJqAmL7+VVe6VKRnb1hFrJjwFERERE5Fj8xElkJVtaMA0JagYfuWOmJycisqRVuBIdopVW12c3OyIiIiJyBiaeiKxkS+KJ3eyIyBUSelvf6mm8jS2kiIiIiIjqgoknIit19w1EhMq68VDiQ5h4IiLnS+hlXSum3m3VCAvgMI9ERETk5pRKIDKy4qG0vnU42Q8/dRJZSSKRYHxoJD6/fLbGep29/RDryS4sROR8N7dXI9BHiqx8C1PaVWLreFBEREREjVLv3sCVK7XXI4diiyciGyRY0ZIpITTKCZEQEZmTyyQY16P2pJItXfKIiIiIiOqDiSciGwwPDoNaKquxDsd3IiJXqm3Q8OhgOeJaqJwUDRERERE1dUw8EdnAUybHiKCwateHKFXo7R/kxIiIiEyN7u4JeQ358fheXpBIJM4LiIiIiIiaNCaeiGxUU4um8SGRkEn4tiIi1/HzkmFwZ89q19fWIoqIiIiIyJ44uDiRjcaHRgLHLK+LZzc7ImoA4nt54bdDRciXe2O3f1djuc7DG0Nvsm52TiIiIqJG7/x54JNPKpaffBJo2dJ18TRRTDwR2ShS7YnuvoFm5QpIMCo43AURERGZSujthee+SMdh3/boN2CVsfzWPl5QK9kqk4iIiJqIa9eADz+sWL79diaeXICfPonqwFJ3u25+gfCRK1wQDRGRqVbhSnSIVpqVs5sdERERETkbWzwR1UFCaCRWBPrj41tGGcu6tuvowoiIqKEq0Oix/UwBhrRSQiZ13qDeCb29cOJyqUnZ+F5eTjs+ERERERHAxBPZy+zRgEQGzFpn/TZzxgFCD8ze6Li4HKSbbyCKY2PxzGP3G8uSe/Z1YURE1JBcyipF0uEcJB7OxdZT+ZjcJxDD21Q/I6YjxPfywvwfso3LvdqoEBbAP/tERERE5Fz8BEr2IZEBYldZMsma5NOccWX1Jf0dH5sDSCUSxIdG4vPLZwEAnb39EOvJLixETZXBILDvYhESD+Ug8UguDl8pNq6TS4FXx4YDEE6NqW97DwT6SJGVbwDAbnZERERE5BpMPJF9zFpXkUyqLflUOelkSwupBiYhpCLxlBAa5eJoiMjZCjR6bDmZj8TDOVh7JBfX83QW603pG4SWISpoNBqnxieXSfBQ1DX0/OYdAMBIvScQNxfo0MGpcRARERFR08bEE9mPNcknN0k6AcDw4DCopTJoDHqLg40Tkfup2oWuRFdzK6aK1k6uMTpGg2EpN7ozpwB49XmXxUJERERETRMTT2RfNSWf3CjpBACeMjlGBIVhT24GevsHuTocInKA8i505cmmQ5W60FmjU4QHdp0rwK5zBdBqtSbrFArHz4Lpayhx+DGIiIiIiGrCxBPZn6Xkk5slnQAA+/bh29sno8Sgh0zxIrB6NdCrl6ujIiJbaLXAoUNApW5wxaV67LtYhF3nCvC/DD8cFOaJ5f6pB63bfyqw9G9AI1Nif4j5zJct864gvCjDppCPBrRCrsrHpMxTW4xumafM6t6UeQa32rR3IiIiIiL7YuKJHKNysul1X0Auca+kEwCUlMDnylX4VFomokZEqwX69AEOHDAp9gAw6MYjq8/TOBh3v9mm2xIfhVzorT7UWd8otJn0s1n584dX4onjq20Ke8S4/+C3qD4mZa3yrmDnrw/ZtB8iIiIiImdg4okcZ9qnEJ91hkQuAXQCeORTV0dkN99knMHW83/gy0pli68fw+MY4LKYiMh66YWleH7u91hRJenk9tRqV0dAREREDcTPM8NRohU4eVGL9jFlQwC0jVK6OCpyR1JXB0Bu7MNJFUknuQT4cJKrI7Kb69pinNLkmpRdLbVt7Bcich2tQSA5Nbf2iu6kWzcgLs7VURAREVED0aWFCj3bqrFmUykiAxXo2VYNX0+mCMj+2OKJHGPOOMDvGLBVA/xRCgxSAkOPVT/bHRGRiz0+7hksnH47lPKyD1xFJXoM0wYhK80bSYdzkZavM9YdkrDUqn0GesoQ5a9AiUKFvhGeJuukUgm2+z+EY4NsG4VJHtYG/T28TMrU0W3xeMg3FuvHBqvw0q2xZUknJwxoTkRERI1HsUZg894SrN2lwUO3etW+QWPTsSOQlGS6TE7HxBPZ342xnQpz2sLrj7/Lyv4oBbr3APwszHZHRNQAHG7WCmLAAOBG4skTwNgbj/LZ7RIP5SDpSC52oatV+4wOUGD1W52hUkihqTSAOQCo1WoA7e14Bt3tuC8iIiJqCrbuL0GRRiBxh5smngIDgfHjXR1Fk8d2dGRflWavW5UwzXTdHfPLBhgvn+2OiKiRkEol6NPCC29PiMTBmR1xcV4X/OfuaIzp5AulXFLtdpeztVj2Z6YTIyUiIiKyXuLOsh/GNu8tQbFGuDgacldMPJH9VEo6YdY67NJeNa8zax2TT0TU6DUPVOLxIaFY/3QbZC6Iw0//boUH+gch1Me8IfE761NQojW4IEoiIiKi6gkhkHQj8VRcIvD735ylmxyDXe3IPqokna4Z8nHKkGW57qx1FfXZ7Y6IXORsYCQeSnjRZLkuvNUyTOjqjwld/Y1d8pIO5yDxcC4OXSk2tnqa2sfHXqETERER1dvB01pcSdMbl5N2aTB+AGfAJftj4onsQ+iNSScAWFt6Hkc6hmHIL48AANSQ4+fOHWC8jRmTT3rL+yMicrDrPoH4sod9+/yXd8nr08ILb90aiUtZpUg6nIODV4qg7+UNmbT6bnlEREREzpS4w3T8yaSdGix+SUAicaPPK0VFwOXLFcvR0YCnZ/X1ySGYeCL7mL3RZDFRexZ5vh7YPqCVsWyrZy7GIqiiEls6EZGbK++SB8BscHEiIiIiV0raZfrZ5EqaHgdPa9GtndJFETnAP/8AAwdWLO/YAQwY4Lp4miiO8UR2Vyy02KK9aFaeqD3rgmiIiIiIiIiospQMPfYd15qVV20FRWQPTDyR3f2mvYhi6MzKk7TnIIT7zJQgJBKUKOTGh3CjFqlEREREROS+1u6ynGAqn+WOyJ7Y1Y7sLkl7zmL5ZUM+DunT0FXezMkROcafca2h3rnEuHx7QKzrgiEim8n0enhqKz5cFSk4mCYRERE1DdW1bPr7hBYpGXqEB8ucHBG5MyaeyK6EEEgqLUs8eRWUoO25DOO6062Ckehxzm0ST0TUuN185Th2LnvauDxg2scAhrouICIiIiInKNYIbN5bUu36tbs0eOhWLydGRO6OXe3Irg7or+OqKAAAdD16Df8M+9j46Hr0GhJLOc4TERERERGRq/z+dwmKS6ofAoXjPJG9MfFEdpVYTTe7cvv0qUg1FDgpGiIiIiIiIqqs6mx2VW3eW4JijfuMzUuux8QT2ZU1LZrWas87IRIiIiIiIiKqTAiBpFoGEC8uEfj97+q74hHZimM8kd1cM+Rjv/56rfUSS8/iQdVNTojIsaKuZ2Hy+r+My5mTJgJtXBgQERERERFRDQ6e1uJKmr7Wekm7NBg/gBOvkH0w8UR2s7bUupZMm7UXoRE6qCWN+/KLScnEvCU/GZdfGzjIhdEQERERERHVzNrxm5J2arD4JQGJROLgiKgpYFc7sptErXUDhxdBi9+1Fx0cDREREREREVWWWEs3u3JX0vQ4eFrr4GioqWDiieyiWGixxYZkUm2DkBMREREREZH9XEvX4+8T1ieTOLsd2QsTT2QXv2kvohg6q+snac9BCM6UQERERERE5Azr/rQtkWRt66gGLTAQSEioeAQGujqiJqlxD7JDDUaSjS2YrhjycUifhq7yZg6KiIiIiIiIiMrZ2oLp7xNapGToER4sc1BETtCxI/Drr66OosljiyeqNyEEkkpt7zrH7nZERERERESOV6wR2Ly3xObt1u5yg1ZP5HJMPFG9HdBfx1VRAACQALhH2QFtpQFm9UbKY9FeWtG0MbHUusHIiYiIiIiIqO5+/7sExSVlQ53IZcAjEzwRGmCeDnjwFk80D6to4cRxnsgemHiiekvUnjMmnI75PYiV3gkIkXqa1esjj8BRvwfwrVc82ksDsU+fihRDgfMDJiICUKD0wL6IdsZHgdLD1SEREREROUTizmJjwunsD82w9JUAeHtKzOpNGumBM2uaYekMfzQPk2Hz3hIUazg2L9UPx3iievOGAsf8HkQHWZBJeUagF767Pc647BnsD5lEirtVHXGnsj3+V3oSp/RZCJd6OztkIiIcCm+N3o986uowiIiIiBwuMkSGsz80Q0x47SkApUKCR27zwtR4T3y1tginLmnRta3SCVGSu6pz4kmjce8md+54fh4epr/mFxcX22W/T0huArSARlvxnBkMBpxqG4p7Pr/HWPalMsrkeb0NLQE9oNE75rl25Guo1ZnP4Gcw6J163bjjNVqVRGL+Kww1HY68xjWa0mqPKeSOaQzsqHtwQ8b3MDV0TeFvKdXM3a6Bpvi3xt1ew6rsdX7T71UC0EGjqfgeY2mW8dLSUlQ+5H1jZAAMDnueHf36SY4eheL5543L2g8+gOjc2aHHrMrdr1FrsMUTEREREREREbmf3FxId+wwWSbn4xhPRERERERERETkEGzxRFRHZ6KbYerMqcZlERPpumCIiIiIiIiIGqA6J57UarU942hw3P38AMeeo7RUChhMyxQKJdQqxx2zah92e52fThggl5g2DlTI5UgL8sVX8f2NZbcHBJsd09K29uKO16ijXsOGguPd2MZu72GDATKJxOT5V2slaJd+CbO2f2UsmzN4CtTqQVBVGuNJCAGDAGRS+7927nZ9W2Jp7IjGrOoYDe72Grr7+QFN4xzJNu5+Dbjj+bn758WqHHl+lj6bKpVKpz6nDj+WSlVlUQU4+Zpx92vUGuxqRw4Td+Qa9g5fZHwEHDrp6pDq5NvMc3j8wi5cLimweps8fSneuXYQr1ze58DIiMga+SV6DP/6EH47n22SCAkuysXdR383PoKLKvr8CyGQeCoDw78+BL2bJU+IiIiIiJyJXe3IYbwLS9Dr4BXj8oaCIhdGU3cjfSMx5fx2fJF+Cg+FtMMr4XHV1s3Tl+KT68exIOUIsvQl+LH1CCdGSkSWBHgoIACMWHEIA5r7YfbgWLQP9rRYV6As4TR7+wX8k1KAiR1DoJTxNxoiIiIiorpi4omoFuFKT/T0CsbfhRlYknYCX6SfQmuVr1m9vYXpaHFwFbL0JQAApUSKkX4c94moIUhoG4RtF3Kw81IuRqw4hK5h3vCyUK/vlwdwMLXAZDsiIiIiIqo7/oxLZIV4/+bG/2uFASc0OZDrdAjILTQ+UotyjUknABjqGwFvmcIV4RJRFfFVEkiVk0vVlUsAjGsT6MiwiIiIiIjcHhNPRFZIqJR4KtfnaDKyRj1rfPQ5mlzrNkTkGm2DPNE2yMOmbfpG+yLYU+mgiIiIiIiImgYmnois0M0zCJEKy2PCVCfeP9pB0RBRXdjabY7d7IiIiIiI6o+JJyIrSCQSk+52tbnJIxAxKh8HRkREtkpoG+zQ+kREREREZI6JJyIrJQRYn3iypS4ROUf/5r7wV1s3p0YLfzU6htjWypGIiIiIiMxxVjsiKw3zjYCHVIZig77Wura0jiIi55BLpRjbOhDfHU2rtW5C2yBIJBInREVEREREDtO7N3DtWsVyEIdScAW2eCKykodUjhG+kbXWC5Wr0dsrxAkREZGtrB23KaEdP5QQERERNXpKJRAeXvFQcuIYV2DiicgG1sxUN96/OaRsKUHUII1pHQhZLW9PH6UMg2L8nRIPEREREZG7Y+KJyAbWdKGzJjlFRK4R4KHAwFqSSqNbB0Ip459HIiIiIiJ74BhPRDYIV3qip1cw/i7MsLheKZFipF/t3fGIyHUS2gZh24UcHAxrje6PLDWWnw6KNq4nIiIiIiL7YOKJHOavns3hmzzHuLw45CYXRmM/8f7Nq008DfWNgLdM4eSIiMgW8W2D8MKmcyhUeeBARFuTdVIJMK5NoIsiIyIiIiK7Sk8HtmypWB4xAgjheLzOxsQTOYxeLkO+r8y4LOTucbkl+DfH7Kv/VLuOiBq2tkGeaBvkgdOZxWbr+kb5ItiTg04SERERuYVTp4B77qlY3rGDiScX4CAWRDbq5hmESIWnxXXx/tFOjoaI6qK67nQJbYOdHAkRERERkXtj4onIRhKJBPH+zZHvqcbuzi2Nj/DAZohR+bg6PCKyQnUJpniO70REREREZFfu0feJmjQhBIqEDrLaq9pNQkBzLG0bjX5fvmIsey2iqxMjIKL66N/cF82hQYvkk8ay7Pad0THEcmtGIiIiIiKqGyaeyGGaXc9H/KYTxmX1hD5AjH32XWzQ4bfiy0gsTMamosvYGnkbwuC8cVmG+UbAQypDsUFvLIvn+E5EjYZcKsUDsnTM+uo5Y9lH738LiUTiwqiIiIiIyK4MBsBDAigBlN5YJqdj4okcpnVyBr549gfj8oYut9Yr8XRNV4CkwgtILEzGb8VXUCx0AICHfTshVuELjV5T35Ct5iGVY4RvJBJzLgEAQuVq9PbiIHVEjUm/aD/T5eZ+1dSkBmH2aEAiA2ats36bOeMAoQdmb3RcXERERNTwpF4EvnoZSN0AvFRpOJSfbgF2jwGmvAeE2alVBNWKiSdqsIQQ+KckHYmFyUgquoD9JWlmdeSQ4tWAni6IrmwGu/LE03j/5pCypQRRo9InytdkuWszbxdFQlaRyACxqyyZZE3yac64svqS/o6PjYiIiBqOVe8Bh+YCCgA+AFDpe5qPAShaB3y8Doh7DbjrZRcF2bQw8UQNSpFBi9+Lr5Qlmwov4Jq+sMb603w7IFbhW2MdR6nctS6B3eyIGh1flemfQIWM8200aLPWVSSTaks+VU462dJCioiIiBq3Ve8Bx+aWZTokEpOcEwBAeqNALsrqrQKTT07AxBO5XHVd6GojhQRP+8WhwFAKANAYtCbrdQbHfon0PXMGm2b+F3m6UiQErAfeehvo0MGhxyQiatKsST4x6URERNQ0pV4sa+kkR0WCqTpSCWAQZfUHT2K3Owdj4omczpoudNYwQKDL5W/tHJ31+h85h52bdt9Y2g88+1yN9YmIyA5qSj4x6URERNR0ffVyWfc6a4dAkUoAhQC+ngG89J1DQ2vqmHgipyk4sB/zC7PwZ3Eq/g73wNXwALM6/f8+Z9M+NSoF9ncx7+bW8mI6wtPzbNrX0bbhyPU1nUrds6gE3Y5fsVj/plPXbNo/ERHZiaXkE5NORERETZfBAKRtBGwdslMAuL6hbHsph11wFCaeyCHuV3aCRJljUjbxxY+M/5/+0q34v4eHm223bfIiyPXWT3F5tnkw2vz2hln588u24omVO60PGMCI5U/gt/7tTMpaXcrAzrs/qmYLImqs8kt1+PHUZUypVPbVqcu4t58Bcn7oaBwqJZvE676QyCVMOhEREdngiYleyMoTKC4W8PAoayUUG95IUwRXz5YNHG42qFMtpJKy7a6dB6JaOyQ0YuKJHOQRdVfA37qxmtyGWu3qCIjISvlaHT4/dckk8fT5qUuYJAT/MDYmD38Bsbh9WdJJJ4DHv3B1RERERI3G8/f4AACem1uIVx/zhKdHI56lOye9fttnX2fiyYH4sy45Tlwc0K2bxVVP+HXBDP8e6KQMdHJQDtKtW9n5EhGR87w/sSLpJJcA7090dURERESNihAC/1tfit93a2uv3JD5h9Rv+4Bm9omDLOIPu+Q4CgWwZw9w6BCg0Zisio2NxbzgKMxDPyRrc42z2o345hnoYF1XOykkWBo9FmktBgIANJWOIXu5P7IfzrYp3O87d4Tw9zctDC1E9raRNW7n6+kDWdduZedLRETOMWcc4HcM2KoB/igFBimBoceqn+2OiIiIzBw4rse16wKJv2sRP0zp6nDqLrI1kC8FvPS1z2hXmUEAhTIgoqXjYiMmnsjBFAqgZ88aq7RQ+OEp/zg85R+HvDvHYVPRJSQWJmNd4QVkGDQ1brvIV4nFMg8AgEZW6QbTpiPU9uj65usBDDYfi4qIiFzoxthOJbntofpjb1nZH6VA9x6An4XZ7oiIiMiixN/LWjolbSuFEJ6QWDsjXEMjlQKho4EiG//+SwA0G8OBxR2Mzy41KL5SJSZ6t8ZXzUYitcWD2BU5scYueV/kHcNlbb6ToyQid5DqG4ClA0cbH6m+5jNtUgNUafa69eP+bbrujvllA4yXz3ZHRERENUr8vRQAcO26wD/H9C6Opp6mvAdoUdaKyRoGUVb//ncdGRWBiSdqwGQSKfp5hGNecD8cbX4vzsXcj4+CB2GERzQUNy5dLQyYl73fxZESUWN0LjQCj01+0vg4Fxrh6pCoNpWSTpi1Dru0V01WCyHKWjox+URERFSra9cN2H+0ItmUtLWRj/MUFgPEvVb2/9qST+Xru84s244cioknajRaKv6/vXsPb+q+7zj+OZJsy8I3DLYMxja3JCThUnJdcbMNGnKz1XZb2/S2JWua7um65smeJm3XPum6pt0tTbquK9l63brnWcLaPV1nJy0EEnKB8IQAIYFcADuAwcGGcImxrfvZH4ply5JtCXR0LOn9eh49D+ec3zn6HiR0xEe/3+9U666aFXqi8UM6ufBO/aLhZv1J5RL9erCbXk8AUOjGhU6D0ZB2BvsSmhyMnIn9gfAJAIApPbYlmLA80vspr936Zenyr0nh2A9S5rgAyoyakmlKYUlL75M+eq89dRYZgifkpbFD8o7Mv13VzjK7SwIAWMmMxEMnSdocPKzguJtRbA2O6QEVD5/yfNgAAAAWGZnfacTOvRH19qV3o6dp7dYvS3e9ole62hQ640zYFH3HKc1ok+7eR+iUQ0wujrznNByqMkrl1+QTkQMA8tg3NiQsdvi7k5psDfbq9rErmGAcAICUhv2mNm1LHlrX+VRQn/1YFm7SZLeGFv284RE9+GBUi8q71VDap+NBr268faF+8CX63+Qaf+MAACCvRE1TnYHk4Om18CkdjwzaUBEAAPll87aQhlP8bp/38zwlcahreLG2nm1V1/BiySACsQM9ngAARemKwwf1Xz/5Tnz5E3fcY2M1yMTOUJ+ORwe1KMW2xwLdusOzLOc1AQCQT8YPsxuxaVtIw35T5W4jxxWhkBH3AQCKUnkooEv6jsUf5aGA3SUhTR2Brom3+SfeBgAAYpNud25JPZH4sD/WGwrIJoInAACQVzpTzO804ongYfnNcA6rAQAgv+x+NaLePnPC7RP1hgLOF0PtAABA3jgaGdDucL8kqbulVp//9h/Et3W31GrIDOvJwBHd4l5oV4kAAExrUwVLnVuCMk2PDIPhdsgOgicAAJA3xvZ2equhWuv+tDW5TaCb4AkAgAl0PJl6mN2I3j5Tu1+N6IrLiQuQHQy1AwAAeWOy+Z1GdPq7ZZoTDyEAAKBY9fZFtXNvZMp2DLdDNhE8AQCAvDAYDWlz4MiU7XqiA9oTPpGDigAAyC+dT03e22nEVL2igEwQPAEAgLywOXhYAU39K63E3e0AAEil86n0ejLt3BtRb1/U4mpQLAieAABAXugYdzc7IxpVaSAcfxjR0S/IHYGJ73wHAEAxGvab2rQt/SF06faOAqZC8AQAAKa9qGmqc1yYtGrHYQUWfCX+WLXjcHzbjtBxHY8M5rpMAACmrc3bQhr2p98+3d5RwFQIngAAwLS3M9Sn49HMgqTH6PUEAEBcphOGb9oW0rCfm3XgwhE8AQCAaS+du9kl7cM8TwAASJJM01TnlsyGzg37Y72kgAtF8AQAAKa9sSGSSw4tdtYktalzlKvCKIkvPxE8LL8ZzkV5AABMa7v2RdTbN9p7aV6DQxUzktstWZgYEWTaSwpIheAJAFCUti6+XMa/dcQfWxdfbndJmMDRyIBeCp+QSw59pnyZ9td9Wp/2LE1qt7xktg7V36mvVVyrCqNEQ2ZYTwV6bKgYAIDpZWS+pnkNDq37hkcHN1WrvjY5Dvj+12do+y+qdPPvxX7I6dwSlGky3A4XhuAJAABMaxsCh+KB049qbtACV/WEbWc5yvWtyvfFA6ingwRPAAC89Fo4Hjh97pNulZUZE7a99j0uPf7jSm3/RZVWLHFp96uRHFaKQuSyuwAAAIDJ/HH5ZbrDsyyjfUYCqKDJl2UAANb/U4VKSycOm1IZCaCCQXo84cKcd/Dk92dwH8Y8VOjnJ0mGkdkHD6aXQnyPlpeXJywPDw/bVAmmAyvf4/5AYILnDMh05qYzcDF8BmfzNfQrcY6JcCh57qZoJJryOcfve77Gf0YByH+F+H1qrEI8v2L7vpjVa+m4Q6UaQhcMBuX3J/9oY9Vbycr3aDjs0vjIIxIJy+/P7fyPhfjvMFMMtQMAAAAAAIAlGGoHAChKc0+/rVtffDa+vP6q62ysBgAAAChMBE8AgKK04O3jeuiXP4kvv7DgIhurAQAAAArTeQdPbrc7m3XYbvzY4EI7P6nwz3H82FnOL/8U+nsUmcnW63/SH9R/7O/R5y6bL4/LGTv2BPNNu91lKnPG2pwNhrRu32HdvWyByt/d70IUw/s7l59TrnDyVxiH02Hpcxb6a1gM15lCP8dimDsu2wrtPVDon1NScZzjWFaen2H4JSXO81RaWiq3u8Sy57Tq9Vu/XmpqklatGl3nSpF2OJ0uud2jG154QTp4UPrEJ7JSRkqF/h5NB3M8AQAK2mx3qX78eo8WPLJZD73craHw5Hc5OxsM6Vu7DmjBI0/q8Z7+rIROsMZQeYlevnRO/BEoL7O7JAAAYIOqKqm1VbrxRmnbtqnbv/CC1NYmXXutxL1DrMdQOwBAwfM11+uBl7v1xe2v6h/2HNSnL2lK2e7buw/qX/Yd0ulAKL4fpq/dy+dpxeYvxpdvdS+2sRoAAGCX1aslj0fauDH2uOEGyZnit8P9+2OB0+OPx5ZLS6W1a3NbazGixxMAoOC1t3jjf+4fDurvX+pK2e7+XQfioZMk+cbsBwAAgOnJ7U4MkDZulH7zm+R2mzaNhk6StGaNVFFhfX3FjuAJAFDwVnlnamZZZvMVLKz0aEkN30QAAADygc+X+T7t7dmvA8kIngAABc/lcOiWpsyGzflavEzUCwAAkCfa2jLfh+ApNwieAABFIdNhcwyzAwAAyB8NDdI116TffvlyqaXFunowisnFAQBF4cZ5dXIZhsKmOWXbqhKXrmuozUFVuBAXdZ3QV7+/Ob68557PSFfbWBAAALCVzxe7Y126bZEb9HgCABSFmrISXTcnvTDppqY6lTq5RE539SfP6fb/fjH+qDp5xu6SAACAjTIZOkfwlDt8qwYAFA1fc3rD59rTbAcAAIDpY8UKqalp6nb19dLV9JLOGYInAEDRSGfeJoch3dKc2UTkAAAAsJ9hpNfrqa1NcpCG5AxzPAEAisbi6hlaUlOh18+cU1fdHP3ZJ/88vq2rbo4kaZW3VrPcpXaVCAAAgAvg80kPPzx1G+QOwRMAoKi0N9fr9TPndLy6Vj/83ZuTtvvo7QQAAJC3Vq+WPB5paCj19tJSae3a3NZU7OhcBgAoKlMNt0tnOB4AAACmJ7d78mBpzRqpoiJ39YDgCQBQZFZ5Z2pmWUnKbYuqPFpSwzcRAACAfDbZUDqG2eUewRMAoKi4HA7d0pR6OF17s1eGYeS4IgAAAGRTW9v5bYM1CJ4AAEXH1+KVIxqRJ+CPPxzRCMPsAAAACkBDg3TNNcnrly+XWlpyX0+xI3gCABSdG+fV6bruNzR410fij+sPH9B1DbV2lwYAAIAsaG9PXscwO3sQPAEAik5NWYmWz6pKWHetd6ZKnbm9LH6n6zU90PWaXj/3jkzTzOlz58LTA736Ys/z2jLQq5AZtbscAACQY+fOmfrfxyK68+6get/K7XedVCETwZM9XHYXAACAHVq9teOWZ+a8hvfP9uqKZzfoS6+9pMWeCvm8jfJ5G/W+2jqVOPL/t6HWigbdcfgZPdT/imqcpbqpqkm+mhbdXNWkma4yu8sDAAAWOHI0qs4NUXVsiOip56IKBKSPfsipuXMM+f25q2PFCqmpSerpiS3X10tXX52758cogicAQFFqbUgMmn6nPvfB08rqWn3Q26hf9x3TwaFz+u6bb+i7b76haleJbqqfI199o26un6Pa0vwMaVyGQ/fNuUK3H9qiM5GgHj3dpUdPd8kpQ++raJCvpkW+6mZd7K45r+O/fNkcvff//iK+vOSyBVmqHAAApCsaNbVjl6nOjRF1bIhoz97Enk2GId13T+6jB8OIDbd7+OHYclubVAC/6+UlgicAQFGaV1GesFxdVmJLHX998VL9uu9Ywrqz4ZDW9x7R+t4jchqGWmfOls/bqHZvoy6ZUZlXd977ZO1i3f/WLnUF3omvi8jU0+fe0tPn3tI9R7frorJq+aqb5atpUWtFg0qM9L4VDlS6tf2q+fHlFrcn2+UDAIAUBgdNPbEl1qvpsSci6uufuO1HPujU0kvtSXzGBk8Ms7MPwRMAADYa2+splYhp6plTJ/TMqRO6Nw+H5I3t9TSRA4Gzeqj/lfiQvJvfHZJ3E0PyAACYNnqORdXx26g6N0b05LOxIXRTsau304g1aySPRwqHpbVrbSuj6BE8AQAg6e59O7XXFbTs+NFo4uTajjGBUa9/OO3jZDok79Xh07qrZ9v5F56BaDSSsOxwOCVJ4QwmFj8TCeqR0116JItD8gAAQOaiUVMv7jbVsSH1ELp0uN3S3V8NJRxzLIcjjfTqAnkapCsvKlVFRf70GC80BE8AAEgKvrRHb/uH9NKi+UnbLj7aq7qz7yTvNIk9C1p0zpM4nK9qcEjLDh1JalsrqXWC4/TNrNbBuXOS1q88+KY8gYCO6hU9LOmHhqFllTVqrZ2tVTPr1FzukWEYig6dkr/nOUnS1hWLYj89jjHnxBktPHYyo3Prbpytt+pqEtYZ0ahWvdw94T6pzm/IXardS5qT1l90uE/1pwckSWEd0K/0rH4lqalkhlpneNVa2aC56lPr0JuSpAMLZ6u/rjKjcwAAAMn8/thd6NIZQpeO4WFp8zOT/QCVm7vetrXl5GkwAYInAAAkrfvXn2nXwvm68nt/m7TtvvW/0qe2bM3oeFc/eL9evHhRwrplh47oua98M6Pj/Hjt7+vOuz6btP4/H1qny3tSD88ba6mk5979s2v7OkVczoTtH968S//8nfUZ1fT5L31M6z66OmFdSTii5z7zQEbHeXlxo1Y8+vWk9V/92W90e+fzk+67UtJtkgY9ZfrCz++S/2hYC5YbUu7niAcAIC9dNN8pd5kh0zR15qw0cM7UH94WVGjYOfXOeYbgyV4ETwCA4uR2210BsmDGUEA//fC7gdeOHdI8e+sBACBf/Pano72FT5w09fgTsZ5OG56M6tygjYVZoDm5gzVyaHrPSAoAgFVWrJBWrrS7CmTLypWx1xQAAGSsbrah2z7u0i//vUwnD7i18Zel+sKdTs1vZl4kXDjDNM0pZwibN2+ejh1L7M6fxm55xe/3Jyy7C/CX8EI/R84v/xX6ORpG8oW7sbFRR48etaGa6cW260wopL3PPq3uU7E5jsLl5Xp76eVJzaq7uuU+dSqjQ5+6dIlCFRWjTxUOqXRgQLVv7JckuZyjnY5fOHNKW97uS3mcieZ4uv7IMa3xVKp1Zp2uqq6Vx5W6E/OpsF/PDRyPHevaK5LmePIc71floZ6Mzm1gfpOGGuoTV0ajmvX8joRVI+d4OhLQj95+I+k4k83xNO/0oK70zFZrhVfvrfDKW+KZuCC3OxY6lZRkdB6ZKvTPqEI/P6nwz5HrzOT4P01hKPRzHP/v2O73qGma2ve6qY7fRtS5Marnd0SVSUkzZkgPfrNEI/dUCYVCCdtLLL52j7jjU045HLkJ0abba5ht53OtYagdAKB4lZRo6ZrrtXSqdi2LL/ip4l+UlyyXNPpFOWJGde+Wx7W/YerJiVZU1cjnbVR7/Vxd3TZLjhQX/vFqJX1gsgZ1l0rLpjxMWvw3Jc5pNXKO9x7drq19kVS7JPC6ytVe3Szfoht0fWWjZjhz82UUAACkZhiGll5qaOmlDv3VX2Y+JG9wUKqdaegjH4zNG+X3hxO2u91EEsWAVxkAABs9euyI9g8OpNxW5nBozSyv2r2NavfOVXP5jBxXd+H6Q8P6Qf++Cbe/p3yWfDUt8lU360pPXVphGgAAsMfIkLzbPu5SIGDqmW1RdWyIqGNDVIeOpO7Z8zf/GNIf+Rw563GE6YfgCQAAm0TMqL55YG/COm+ZW231c+XzNur62V5VuPK7188DfXs0bI72dioznHp/5Vz5alrUVt2sptKKSfYGAADTVVmZobWrnVq72qnv/d3EQ/L2vW7qfzqi8V5PKD4ETwAA2GSkt9PIEDpffaOuqqktmF4/I72dGlzlaq9pUXt1M0PoAAAoQFMNyRvp9YTiRPAEAIBN6srKdPj9H8jLIXTp6AsP6+lLfAyhAwCgyKQaktd/Qqqptrsy2IHgCQAAm9xQl3y3ukKyrLzW7hIAAIDNRobkSdK4mxKiSNDXDQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJYgeAIAAAAAAIAlCJ4AAAAAAABgCYInAAAAAAAAWILgCQAAAAAAAJZwne+OhmFksw4AABJwnQEAWI1rDaY73qP5j9eQHk8AAAAAAACwCMETAAAAAAAALGGYpmlO1ai0tFShUCgX9QBAUSkpKVEwGLS7DNtxnQEAa3CdGcW1BgCsMdW1Jq0eT5FIJGsFAQBG8fkaw98DAFiDz9dR/F0AgDWm+nxNa3Jxt9stv98vp9Op+vr6rBQGAMWsv79fkUhEbrfb7lKmBa4zAJBdXGeSca0BgOxK91qT1lA7AAAAAAAAIFNMLg4AAAAAAABLEDwBAAAAAADAEgRPAAAAAAAAsATBEwAAAAAAACxB8AQAAAAAAABLEDwBAAAAAADAEgRPAAAAAAAAsMT/A0OHk40G0wDNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -277,12 +277,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "rollouts for ../examples/model.hallway-jvq.final.zanj on forkless-g7-n5-a_dfs-h10952\n" + "rollouts for ../examples/model.hallway-jvq.final.zanj on forkless-g7-n5-a_dfs-h9178\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACR4ElEQVR4nOzdd3hUZdrH8d9kUiaNBEJCQgtVekdAOoggJVZWWXUVXXfXtevay4K9vfaCZa2oa181FBEUFFFAERBFeicESEJ6nznvHzFDJpMyk8xkZsL3c11zwXnmOefc58zMSebOcz/HZBiGIQAAAAAAAMDDgnwdAAAAAAAAAJonEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAA1GHPnj0ymUx644033F53xYoVMplMWrFihcfjagpvvPGGTCaT9uzZ4/a6c+fOlclkqrff+PHj1bdv3wZEVzuTyaS5c+falxtzHL7g6rnzhu3bt2vy5MmKiYmRyWTSp59+2iTnrzGfs6bQqVMnzZ4929dhAAAQkIJ9HQAAAAD8wyWXXKLdu3frgQceUGxsrIYOHaply5b5OiwAABDASDwBAAD4kbvuuku33XZbk++3qKhIP/zwg+68805dffXV9va//OUvmjVrlsLCwpo8Jn+xdetWBQVRKAAAQEOQeAIAAPAjwcHBCg5u+l/Rjh49KkmKjY11aDebzTKbzU0ejz85kZNuAAA0Fn+6AQD4tcr5brZt26aLLrpIMTExio+P19133y3DMLR//36deeaZatGihRITE/X44487bePIkSP661//qjZt2shisWjAgAF68803nfplZ2dr9uzZiomJUWxsrC655BJlZ2fXGNeWLVs0c+ZMtWrVShaLRUOHDtXnn39e7/EUFhZqy5YtysjIqLdv5fxHv/zyi8aNG6eIiAh169ZNH330kSTpm2++0fDhwxUeHq4ePXrUWBK1fv16TZ06VS1atFBUVJROPfVUrV692qnfb7/9pokTJyo8PFzt27fX/fffL5vNVmNcixcv1pgxYxQZGano6GhNnz5dv/32W73HU5fNmzdrwoQJioiIULt27fToo486PF9aWqp///vfGjJkiGJiYhQZGakxY8Zo+fLlbu/rxhtvVFxcnAzDsLddc801MplMeuaZZ+xthw8flslk0rx581yOwTAMderUSWeeeabTfouLixUTE6N//OMfdcZXfY6nvn37asKECU79bDab2rVrp5kzZ9rbanoPb9iwod75k+bOnavk5GRJ0s033yyTyaROnTpJqnmOrE6dOmnGjBn67rvvNGzYMFksFnXp0kVvvfWWw3azsrJ00003qV+/foqKilKLFi00depUbdy4sc5zUBuTyVTrozK+X375RbNnz1aXLl1ksViUmJioyy67TJmZmU7HbDKZtGPHDs2ePVuxsbGKiYnRpZdeqsLCQoe+zPEEAEDDkXgCAASE888/XzabTQ8//LCGDx+u+++/X0899ZROO+00tWvXTo888oi6deumm266Sd9++619vaKiIo0fP17z58/XhRdeqMcee0wxMTGaPXu2nn76aXs/wzB05plnav78+brooot0//3368CBA7rkkkucYvntt980YsQI/f7777rtttv0+OOPKzIyUmeddZb+97//1Xkca9euVa9evfTcc8+5dNzHjh3TjBkzNHz4cD366KMKCwvTrFmz9P7772vWrFmaNm2aHn74YRUUFGjmzJnKy8tziHPMmDHauHGjbrnlFt19993avXu3xo8frzVr1tj7paena8KECdqwYYNuu+02XX/99Xrrrbcczk+l+fPna/r06YqKitIjjzyiu+++W5s3b9bo0aMbPPn0sWPHdPrpp2vAgAF6/PHH1bNnT916661avHixvU9ubq7+85//aPz48XrkkUc0d+5cHT16VFOmTNGGDRvc2t+YMWOUlZXlkCxbuXKlgoKCtHLlSoc2SRo7dqzLMZhMJl100UVavHixsrKyHPabmpqq3NxcXXTRRW7Fe/755+vbb79Venq6Q/t3332ntLQ0zZo1S5J77+HqzjnnHD355JOSpD//+c+aP3++nnrqqTrX2bFjh2bOnKnTTjtNjz/+uFq2bKnZs2c7nNddu3bp008/1YwZM/TEE0/o5ptv1qZNmzRu3DilpaW5dR6kivdf9UdycrLCw8MVFRUlSVq6dKl27dqlSy+9VM8++6xmzZql9957T9OmTXNINlY677zzlJeXp4ceekjnnXee3njjDd1zzz1uxwYAAGphAADgx+bMmWNIMv7+97/b28rLy4327dsbJpPJePjhh+3tx44dM8LDw41LLrnE3vbUU08Zkoy3337b3lZaWmqccsopRlRUlJGbm2sYhmF8+umnhiTj0UcfddjPmDFjDEnG66+/bm8/9dRTjX79+hnFxcX2NpvNZowcOdLo3r27vW358uWGJGP58uVObXPmzKn32MeNG2dIMt59911725YtWwxJRlBQkLF69Wp7+5IlS5ziPOuss4zQ0FBj586d9ra0tDQjOjraGDt2rL3t+uuvNyQZa9assbcdOXLEiImJMSQZu3fvNgzDMPLy8ozY2Fjjb3/7m0Oc6enpRkxMjEN75evm6jG+9dZb9raSkhIjMTHROPfcc+1t5eXlRklJicO6x44dM9q0aWNcdtllDu3Vz+/rr7/ucBxHjhwxJBkvvPCCYRiGkZ2dbQQFBRl/+tOfjDZt2tjXu/baa41WrVoZNpvNrRi2bt1qSDLmzZvn0PeMM84wOnXqZN9ebaqfu8rtPfvssw79rrzySiMqKsooLCw0DMO993BNdu/ebUgyHnvsMYf26ufPMAwjOTnZkGR8++239rYjR44YYWFhxr/+9S97W3FxsWG1Wp32ExYWZtx7771O+64vxuoeffRRp/dP5fmo6r///a9TvJXnufr75+yzzzbi4uIc2pKTkx2uKwAAwHWMeAIABITLL7/c/n+z2ayhQ4fKMAz99a9/tbfHxsaqR48e2rVrl71t0aJFSkxM1J///Gd7W0hIiK699lrl5+frm2++sfcLDg7WP//5T4f9XHPNNQ5xZGVl6euvv7aPksjIyFBGRoYyMzM1ZcoUbd++XQcPHqz1OMaPHy/DMDR37lyXjjsqKso+okWSevToodjYWPXq1UvDhw+3t1f+v/LYrVarvvzyS5111lnq0qWLvV9SUpIuuOACfffdd8rNzbUf+4gRIzRs2DB7v/j4eF144YUOsSxdulTZ2dn685//bD/ujIwMmc1mDR8+vEFlb5XHWHUUUGhoqIYNG+bwOprNZoWGhkqqKDHLyspSeXm5hg4dqp9//tmt/cXHx6tnz572kXGrVq2S2WzWzTffrMOHD2v79u2SKkY8jR492l725moMJ510koYPH6533nnH3paVlaXFixfrwgsvdCijc8VJJ52kgQMH6v3337e3Wa1WffTRR0pJSVF4eLgk19/DntK7d2+NGTPGvhwfH+/0+QsLC7NPym21WpWZmamoqCj16NHD7detuuXLl+v222/XNddco7/85S/29srzIVWUN2ZkZGjEiBGSVOM+r7jiCoflMWPGKDMz0/75AAAAjUPiCQAQEDp27OiwHBMTI4vFotatWzu1Hzt2zL68d+9ede/e3emOVL169bI/X/lvUlKSvVynUo8ePRyWd+zYIcMwdPfddys+Pt7hMWfOHEkVc0p5Svv27Z0SFTExMerQoYNTmyT7sR89elSFhYVO8UsVx26z2bR//35Jx89RddXXrUzITJw40enYv/zyywYfd03H2LJlS4fXUZLefPNN9e/fXxaLRXFxcYqPj9fChQuVk5Pj9j7HjBljL6VbuXKlhg4dqqFDh6pVq1ZauXKlcnNztXHjRofEijsxXHzxxVq1apX9/fXhhx+qrKzMniApLS1Venq6w8NqtdYa7/nnn69Vq1bZk5orVqzQkSNHdP7559v7uPoe9pTqn0nJ+XWz2Wx68skn1b17d4WFhal169aKj4/XL7/80qDXrdKBAwd0/vnna9SoUXriiSccnsvKytJ1112nNm3aKDw8XPHx8ercubMk1bjP6sfRsmVLSXJ6/wEAgIbhrnYAgIBQ0121arvTllHDPC6eUjnh9k033aQpU6bU2Kdbt24e219tx+jLY58/f74SExOdnm/ondhcOZa3335bs2fP1llnnaWbb75ZCQkJMpvNeuihh7Rz50639zl69Gi98sor2rVrl1auXKkxY8bIZDJp9OjRWrlypdq2bSubzeaQeHInhlmzZumGG27QO++8ozvuuENvv/22hg4dak8Cff/9904Thu/evds+oXd1559/vm6//XZ9+OGHuv766/XBBx8oJiZGp59+utvH7imuvG4PPvig7r77bl122WW677771KpVKwUFBen666+vdfL6+pSWlmrmzJkKCwvTBx984PS+O++88/T999/r5ptv1sCBAxUVFSWbzabTTz+9xn364rMEAMCJhMQTAKBZS05O1i+//CKbzeYw6mnLli325yv//eqrr5Sfn+8wYmTr1q0O26ssWwsJCdGkSZO8HX6DxcfHKyIiwil+qeLYg4KC7KOmkpOT7aOZqqq+bteuXSVJCQkJTX7sH330kbp06aJPPvnEYXRU5Sgzd1UmlJYuXaoff/xRt912m6SKicTnzZuntm3bKjIyUkOGDGlQDK1atdL06dP1zjvv6MILL9SqVascJuseMGCAli5d6rBOTcm8Sp07d9awYcP0/vvv6+qrr9Ynn3yis846S2FhYfY+rr6Hm9JHH32kCRMm6NVXX3Voz87Odhqt6Kprr71WGzZs0Lfffqs2bdo4PHfs2DF99dVXuueee/Tvf//b3l7T+xsAADQNSu0AAM3atGnTlJ6e7jA/Tnl5uZ599llFRUVp3Lhx9n7l5eWaN2+evZ/VatWzzz7rsL2EhASNHz9eL730kg4dOuS0v6NHj9YZT2FhobZs2aKMjIzGHFa9zGazJk+erM8++8zhbnOHDx/Wu+++q9GjR6tFixaSKo599erVWrt2rb3f0aNHHeYokqQpU6aoRYsWevDBB1VWVua0z/qOfd++ffaEX0OOR3IchbJmzRr98MMPDdpe586d1a5dOz355JMqKyvTqFGjJFUkpHbu3KmPPvpII0aMcBhN424Mf/nLX7R582bdfPPNMpvNDnN1tWzZUpMmTXJ4WCyWOmM+//zztXr1ar322mvKyMhwKLOTXH8PSxUlZ1u2bGlUuZsrzGaz08ihDz/8sM550CrVFOPrr7+ul156Sc8//7zDnGRV9yc5j1aq7w59AADAexjxBABo1v7+97/rpZde0uzZs7Vu3Tp16tRJH330kX0ESnR0tCQpJSVFo0aN0m233aY9e/aod+/e+uSTT2r8Yv78889r9OjR6tevn/72t7+pS5cuOnz4sH744QcdOHBAGzdurDWetWvXasKECZozZ47LE4w31P3336+lS5dq9OjRuvLKKxUcHKyXXnpJJSUlevTRR+39brnlFs2fP1+nn366rrvuOkVGRurll1+2jxar1KJFC82bN09/+ctfNHjwYM2aNUvx8fHat2+fFi5cqFGjRum5556rNZ6LL75Y33zzTYNKmGbMmKFPPvlEZ599tqZPn67du3frxRdfVO/evZWfn+/29qSKJNN7772nfv362ef1GTx4sCIjI7Vt2zZdcMEFjYph+vTpiouL04cffqipU6cqISGhQXFWOu+883TTTTfppptuUqtWrZxGnbnzHv7f//6nSy+9VK+//rpmz57dqLjqMmPGDN1777269NJLNXLkSG3atEnvvPOOw4T3takeY0ZGhq688kr17t1bYWFhevvttx36n3322WrRooXGjh2rRx99VGVlZWrXrp2+/PJL7d6921uHCAAA6kHiCQDQrIWHh2vFihW67bbb9Oabbyo3N1c9evRw+sIdFBSkzz//XNdff73efvttmUwmnXHGGXr88cc1aNAgh2327t1bP/30k+655x698cYbyszMVEJCggYNGuRQ3uNrffr00cqVK3X77bfroYceks1m0/Dhw/X222873BEvKSlJy5cv1zXXXKOHH35YcXFxuuKKK9S2bVuHuwZK0gUXXKC2bdvq4Ycf1mOPPaaSkhK1a9dOY8aM0aWXXuq1Y5k9e7bS09P10ksvacmSJerdu7fefvttffjhh1qxYkWDtlmZeBo9erS9LTg4WKeccoqWLVvmNLG4uzGEhobq/PPP1wsvvOBw17WGat++vUaOHKlVq1bp8ssvV0hIiMPz7ryHm8odd9yhgoICvfvuu3r//fc1ePBgLVy40F7a6I78/HwVFxdr8+bNNZ7P3bt3KzIyUu+++66uueYaPf/88zIMQ5MnT9bixYvVtm1bTxwSAABwk8lg5kQAAACvuOGGG/Tqq68qPT1dERERLq1z991366GHHlJ5eblHYtizZ486d+7s9dFNzVmHDh00ZcoU/ec///F1KAAABBzmeAIAAPCC4uJivf322zr33HNdTjpJ0qFDhxo88TY8r6ysTJmZmbwmAAA0EKV2AAAAHnTkyBEtW7ZMH330kTIzM3Xddde5tN6uXbv0v//9Tx9++KFmzJjh5SjhiiVLlui9995TUVGRTj31VF+HAwBAQCLxBAAA4EGbN2/WhRdeqISEBD3zzDMaOHCgS+t9++23uueeezR+/Hg98cQT3g0SLnn44Ye1Y8cOPfDAAzrttNN8HQ4AAAGJOZ4AAAAAAADgFczxBAAAAAAAAK8g8QQAAAAAAACvIPEEAPBLc+fOlclk8nUYfmX+/Pnq2bOnQkJCFBsb67HtdurUyaXJrE0mk+bOneux/cK3Zs+erU6dOjm05efn6/LLL1diYqJMJpOuv/76Ru8jKiqqUdsAAACBjcQTAKDZeeGFF/TGG2/4OgxJUlpamubOnasNGzY0ajtbtmzR7Nmz1bVrV73yyit6+eWXPRPgCaQymVnbY9WqVR7b14oVK2rdz+rVqz22H0978MEH9cYbb+if//yn5s+fr7/85S9Ntu/3339fF110kbp37y6TyaTx48fX2rekpES33nqr2rZtq/DwcA0fPlxLly516ldWVqZ77rlHXbp0UVhYmLp06aL7779f5eXlDv1cfb0KCwv1/PPPa/LkyUpKSlJ0dLQGDRqkefPmyWq1euxcAADQnHBXOwBAs/PCCy+odevWmj17tq9DUVpamu655x516tTJ5bub1WTFihWy2Wx6+umn1a1bN88FeAI555xzajx3d9xxh/Lz83XyySd7fJ/XXnut03b9+fX7+uuvNWLECM2ZM6fJ9z1v3jytW7dOJ598sjIzM+vsO3v2bH300Ue6/vrr1b17d73xxhuaNm2ali9frtGjR9v7XXTRRfrwww912WWXaejQoVq9erXuvvtu7du3r8bkbX2v165du3TNNdfo1FNP1Y033qgWLVpoyZIluvLKK7V69Wq9+eabjTwLAAA0PySeAAAIAEeOHJEkj5bYFRYWKiIiwmPb83f9+/dX//79Hdr279+vAwcO6PLLL1doaKjH9zlmzBjNnDnT49v1liNHjqh3794+2ff8+fPVrl07BQUFqW/fvrX2W7t2rd577z099thjuummmyRJF198sfr27atbbrlF33//vSTpxx9/1AcffKC7775b9957ryTpiiuuUOvWrfXEE0/o6quvdno/1Pd6JSYmatOmTerTp4+97R//+Icuu+wyvf7667r77rv9OrEIAIAvUGoHAPC57777TieffLIsFou6du2ql156qcZ+r7/+uiZOnKiEhASFhYWpd+/emjdvnkOfTp066bffftM333xjL5WpLNnJysrSTTfdpH79+ikqKkotWrTQ1KlTtXHjRqd9Pfvss+rTp48iIiLUsmVLDR06VO+++65Dn4MHD+qyyy5TmzZtFBYWpj59+ui1116zP79ixQr76IlLL73UHk9lGWBhYaG2bNmijIyMOs9Pp06d7CNQ4uPjneZaeuGFF9SnTx+FhYWpbdu2uuqqq5Sdne2wjfHjx6tv375at26dxo4dq4iICN1xxx217vPNN99UcHCwbr755jpjq+8cVKrvfObl5en6669Xp06dFBYWpoSEBJ122mn6+eef69y/JNlsNs2dO1dt27ZVRESEJkyYoM2bN6tTp071jnr773//K8MwdOGFF9a7H6linqurr75an376qfr27Ws/5i+++KLWdfLy8pxKu1zxf//3fxo5cqTi4uIUHh6uIUOG6KOPPnJ7O5Ls8VosFvXt21f/+9//HJ6vLDXbvXu3Fi5caH+v7tmzR5Jrn4e6HDx4UGeddZaioqIUHx+vm266yak0rUOHDgoKqv9X048++khms1l///vf7W0Wi0V//etf9cMPP2j//v2SpJUrV0qSZs2a5bD+rFmzZBiG3n///Rq3X9fr1bp1a4ekU6Wzzz5bkvT777/XGz8AACcaRjwBAHxq06ZNmjx5suLj4zV37lyVl5drzpw5atOmjVPfefPmqU+fPjrjjDMUHBys1NRUXXnllbLZbLrqqqskSU899ZSuueYaRUVF6c4775Qk+7Z27dqlTz/9VH/605/UuXNnHT58WC+99JLGjRunzZs3q23btpKkV155Rddee61mzpyp6667TsXFxfrll1+0Zs0aXXDBBZKkw4cPa8SIEfZERHx8vBYvXqy//vWvys3N1fXXX69evXrp3nvv1b///W/9/e9/15gxYyRJI0eOlFQxcmPChAmaM2dOnZN2P/XUU3rrrbf0v//9T/PmzVNUVJR9pMbcuXN1zz33aNKkSfrnP/+prVu3at68efrxxx+1atUqhYSE2LeTmZmpqVOnatasWbroootqPMeS9PLLL+uKK67QHXfcofvvv7/WuFw5B66ezyuuuEIfffSRrr76avXu3VuZmZn67rvv9Pvvv2vw4MG1xiBJt99+ux599FGlpKRoypQp2rhxo6ZMmaLi4uI615Okd955Rx06dNDYsWPr7Vvpu+++0yeffKIrr7xS0dHReuaZZ3Tuuedq3759iouLc+h76aWXKj8/X2azWWPGjNFjjz2moUOHurSfp59+WmeccYYuvPBClZaW6r333tOf/vQnLViwQNOnT3c53i+//FLnnnuuevfurYceekiZmZm69NJL1b59e3ufXr16af78+brhhhvUvn17/etf/5JUkeh05fWri9Vq1ZQpUzR8+HD93//9n5YtW6bHH39cXbt21T//+U+Xj6PS+vXrddJJJ6lFixYO7cOGDZMkbdiwQR06dFBJSYkkKTw83KFf5Si/devWOW27oa9Xenq6pIrEFAAAqMYAAMCHzjrrLMNisRh79+61t23evNkwm81G9R9ThYWFTutPmTLF6NKli0Nbnz59jHHjxjn1LS4uNqxWq0Pb7t27jbCwMOPee++1t5155plGnz596oz7r3/9q5GUlGRkZGQ4tM+aNcuIiYmxx/rjjz8akozXX3/daRvLly83JBlz5sypc1+GYRhz5swxJBlHjx61tx05csQIDQ01Jk+e7HBczz33nCHJeO211+xt48aNMyQZL774otO2k5OTjenTpxuGYRhPP/20YTKZjPvuu8+pX/VYXT0HrpzPmJgY46qrrqqzT03S09ON4OBg46yzznJonzt3riHJuOSSS2pd99dffzUkGbfccovL+5NkhIaGGjt27LC3bdy40ZBkPPvss/a2VatWGeeee67x6quvGp999pnx0EMPGXFxcYbFYjF+/vlnl/ZV/f1eWlpq9O3b15g4caLL8RqGYQwcONBISkoysrOz7W1ffvmlIclITk526Fv1vVDJldevNpdccokhyeHzZRiGMWjQIGPIkCG1rlfbZ7jyuZrOwW+//ebwHv/4448NScb8+fMd+r344ouGJKNv3772tsa8XiUlJUbv3r2Nzp07G2VlZXX2BQDgRESpHQDAZ6xWq5YsWaKzzjpLHTt2tLf36tVLU6ZMcepfdeRCTk6OMjIyNG7cOO3atUs5OTn17i8sLMxeymO1WpWZmamoqCj16NHDoaQrNjZWBw4c0I8//ljjdgzD0Mcff6yUlBQZhqGMjAz7Y8qUKcrJyXGpRGz8+PEyDKPO0U51WbZsmUpLS3X99dc7lCj97W9/U4sWLbRw4UKH/mFhYbr00ktr3d6jjz6q6667To888ojuuuuuOvftzjmo73xW9lmzZo3S0tJcOXS7r776SuXl5bryyisd2q+55pp6133nnXckyeUyu0qTJk1S165d7cv9+/dXixYttGvXLnvbyJEj9dFHH+myyy7TGWecodtuu02rV6+WyWTS7bff7tJ+qr7fjx07ppycHI0ZM8al91alQ4cOacOGDbrkkksUExNjbz/ttNNcnsvJldevPldccYXD8pgxYxzOlzuKiooUFhbm1G6xWOzPS9K0adOUnJysm266SZ988on27t2rDz74QHfeeaeCg4Pt/aTGvV5XX321Nm/erOeee07BwRQTAABQHYknAIDPHD16VEVFRerevbvTcz169HBqW7VqlSZNmqTIyEjFxsYqPj7ePk+RK4knm82mJ598Ut27d1dYWJhat26t+Ph4/fLLLw7r33rrrYqKitKwYcPUvXt3XXXVVVq1apVD3NnZ2Xr55ZcVHx/v8KhM7FROBu5Ne/fuleR8rkJDQ9WlSxf785XatWtX6wTa33zzjW699Vbdeuut9c7rJLl3Duo7n1JF0uvXX39Vhw4dNGzYMM2dO9chMZGfn6/09HT74+jRow7noPqEzq1atVLLli1rjd8wDL377rvq27ev0wTTOTk5DvvKyspyeL5qkrRSy5YtdezYsTrPWbdu3XTmmWdq+fLl9vmNsrKyHPZV9X24YMECjRgxQhaLRa1atVJ8fLzmzZvn0nu9UuX5cfUzVpP6Xr/S0lKHY0hPT3eYv8lisSg+Pt5hm66cr9qEh4fby+iqqiytrEzYWSwWLVy4UHFxcTr33HPVqVMnXXzxxfr3v/+tVq1aKSoqqs791PR6VffYY4/plVde0X333adp06Y16HgAAGjuSDwBAALCzp07deqppyojI0NPPPGEFi5cqKVLl+qGG26QVJFUqs+DDz6oG2+8UWPHjtXbb7+tJUuWaOnSperTp4/D+r169dLWrVv13nvvafTo0fr44481evRo+wTflX0vuugiLV26tMbHqFGjvHAWGqf6XDdV9enTRz169ND8+fO1e/fuerflzjmo73xK0nnnnaddu3bp2WefVdu2bfXYY4+pT58+Wrx4saSKibaTkpLsj+q3vHfXqlWrtHfv3hpHO1133XUO+zrnnHMcnjebzTVu0zCMevfboUMHlZaWqqCgQJJ0zjnnOOzruuuuk1QxMfYZZ5whi8WiF154QYsWLdLSpUt1wQUXuLQfT6rv9fv+++8djiEpKck+wbdU+/lqqKSkJB06dMipvbKtcq42qeJ9/euvv+rXX3/VypUrlZaWpr/97W/KyMjQSSedVO++qr9eVb3xxhu69dZbdcUVV9Q7QhAAgBMZ44EBAD4THx+v8PBwbd++3em5rVu3OiynpqaqpKREn3/+ucOIk+XLlzutazKZatzfRx99pAkTJujVV191aM/OznaaFDgyMlLnn3++zj//fJWWluqcc87RAw88oNtvv13x8fGKjo6W1WrVpEmT6jzG2mLxhOTkZEkV56pLly729tLSUu3evbve2Kpq3bq1PvroI40ePVqnnnqqvvvuO4cv8NW5cw6kus9nZYlUUlKSrrzySl155ZU6cuSIBg8erAceeEBTp07VxRdfrNGjR9u3V5lEqzwHO3bsUOfOne3PZ2Zm1jmi5p133pHJZKpxcuxbbrlFF110kX25rpFT7tq1a5csFot9tM3jjz/uEGflOf/4449lsVi0ZMkSh7Ky119/3a39VZ4fVz5jdanr9RswYICWLl3q0D8xMdGtON0xcOBALV++XLm5uQ4TjK9Zs8b+fFUmk8nhTnSLFi2SzWZz6X1b/fWq9Nlnn+nyyy/XOeeco+eff74RRwMAQPPHiCcAgM+YzWZNmTJFn376qfbt22dv//3337VkyRKnvpLjqJKcnJwav4hHRkYqOzu7xv1VHy3y4Ycf6uDBgw5tmZmZDsuhoaHq3bu3DMNQWVmZzGazzj33XH388cf69ddfnfZTWQZWGYukGuMpLCzUli1blJGR4fScKyZNmqTQ0FA988wzDsf16quvKicnx607n0lS+/bttWzZMhUVFem0005zOg9VuXMO6jufVqvVqXwsISFBbdu2tZdUdenSRZMmTbI/KkdTnXrqqQoODta8efMc1n/uuedqjb2srEwffvihRo8eXWPZXO/evR32NWTIkFq3VZuqx19p48aN+vzzzzV58mT7nFxDhgxx2FflvEtms1kmk8mhxGvPnj369NNP3YojKSlJAwcO1JtvvulwjpcuXarNmze7tI36Xr+WLVs6HMOkSZPsyURvmDlzpqxWq15++WV7W0lJiV5//XUNHz5cHTp0qHXdoqIi3X333UpKStKf//xne7urr5ckffvtt5o1a5bGjh2rd955x+E5AADgjBFPAACfuueee/TFF19ozJgxuvLKK1VeXq5nn31Wffr00S+//GLvN3nyZIWGhiolJUX/+Mc/lJ+fr1deeUUJCQlOZTdDhgzRvHnzdP/996tbt25KSEjQxIkTNWPGDN1777269NJLNXLkSG3atEnvvPOOw2ihyn0lJiZq1KhRatOmjX7//Xc999xzmj59uqKjoyVJDz/8sJYvX67hw4frb3/7m3r37q2srCz9/PPPWrZsmX1eoK5duyo2NlYvvviioqOjFRkZqeHDh6tz585au3atJkyYoDlz5jRogvH4+Hjdfvvtuueee3T66afrjDPO0NatW/XCCy/o5JNPdhi146pu3brpyy+/1Pjx4zVlyhR9/fXXTretr+TqOajvfGZnZ6t9+/aaOXOmBgwYoKioKC1btkw//vijHn/88TrjbdOmja677jo9/vjjOuOMM3T66adr48aNWrx4sVq3bl3jiLMlS5YoMzPT7UnF3XH++ecrPDxcI0eOVEJCgjZv3qyXX35ZERERevjhh+tdf/r06XriiSd0+umn64ILLtCRI0f0/PPPq1u3bg6fC1c89NBDmj59ukaPHq3LLrtMWVlZ9s9Yfn5+veu78nnwhG+//VbffvutpIpEUEFBge6//35J0tixYzV27FhJ0vDhw/WnP/1Jt99+u44cOaJu3brpzTff1J49e5xGM5533nlq27atevfurdzcXL322mvatWuXFi5c6BC7q6/X3r17dcYZZ8hkMmnmzJn68MMPHfbXv39/pznDAAA44fniVnoAAFT1zTffGEOGDDFCQ0ONLl26GC+++KIxZ84co/qPqc8//9zo37+/YbFYjE6dOhmPPPKI8dprrxmSjN27d9v7paenG9OnTzeio6MNSfbbshcXFxv/+te/jKSkJCM8PNwYNWqU8cMPPxjjxo1zuHX7Sy+9ZIwdO9aIi4szwsLCjK5duxo333yzkZOT4xDP4cOHjauuusro0KGDERISYiQmJhqnnnqq8fLLLzv0++yzz4zevXsbwcHBhiTj9ddfNwzDMJYvX25IMubMmVPvOao8H0ePHnV67rnnnjN69uxphISEGG3atDH++c9/GseOHXPoM27cOKNPnz41bjs5OdmYPn26Q9uaNWuM6OhoY+zYsUZhYaFhGEaNsbpyDuo7nyUlJcbNN99sDBgwwIiOjjYiIyONAQMGGC+88EK958UwDKO8vNy4++67jcTERCM8PNyYOHGi8fvvvxtxcXHGFVdc4dR/1qxZRkhIiJGZmenS9quSZFx11VVO7cnJycYll1xiX3766aeNYcOGGa1atTKCg4ONpKQk46KLLjK2b9/u8r5effVVo3v37kZYWJjRs2dP4/XXX6/xc+GKjz/+2OjVq5cRFhZm9O7d2/jkk0+MSy65xEhOTnY6jurvBVc/DzW55JJLjMjISKf2mo6jsq2mR/X3XVFRkXHTTTcZiYmJRlhYmHHyyScbX3zxhdN+HnnkEaNnz56GxWIxWrZsaZxxxhnG+vXrnfq5+npVfmZdjRMAABiGyTCaeIZKAAAAL8vOzlbLli11//3368477/R1OAAAACcsitIBAEBAKyoqcmp76qmnJEnjx49v2mAAAADggDmeAABAQHv//ff1xhtvaNq0aYqKitJ3332n//73v5o8ebJ9EvLmKCcnp8akW1XevLscAACAK0g8AQCAgNa/f38FBwfr0UcfVW5urn3C8cqJqZur6667Tm+++WadfZhRAQAA+BpzPAEAAASgzZs3Ky0trc4+kyZNaqJoAAAAakbiCQAAAAAAAF7B5OIAAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8AoSTwAAAAAAAPAKEk8AAAAAAADwChJPAAAAAAAA8IpgVzpFRkaquLhYZrNZCQkJ3o4JAJq9I0eOyGq1ymKxqKCgwNfh+Bw/ZwDAs/g544yfNQDgWa7+rDEZhmHUtzGz2SybzebRAAEAUlBQkKxWq6/D8Dl+zgCAd/Bz5jh+1gCAd9T3s8alUjuz2eyxgAAAx3F9rcB5AADv4Pp6HOcCALyjvuurS4knhqICgHdwfa3AeQAA7+D6ehznAgC8o77rq0tzPFXnQnWe3zGZTA7LgX4MgR6/FHjHUFxc7LBssVh8FEnDVT2GQIw/0N9DkvMxoGbN4bUN9GMI9PilwDuGQI9f4ueMP+DnjOuaw+sb6McQiPEH+neC5vAeCvSfNYH+HpLc/1nDXe0AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFSSeAAAAAAAA4BUkngB/YbNJ+7dJm1ZV/GuzeXwXL7xg1vLlQSor8/imAQAAgGav0FauBfn79G7OTl+H0nA9kqWLp0qhwb6OpEEOlRbptcM79WNepq9DaZBiq1VfZKTrjbQ9vg6lyQTmOw1oTtL3Sm/eKh1ZIkVXSTblBUkJU6RLHpESkz2yq4gIadq0ULVoYej006WUFGnqVCkuziObDyxzp0gmszRnkevr3DNNMqzS3CXeiwsAAAB+5UBpvhbk7lVq7l59nX9QxYZVSztM9XVYLiu0luur3DSlHtsnff6YFN9S+ni5VFru69BcYhiG1udnKTXjgBZkHNBPeZlKDLFo8+Bpvg7NZenFRVpw5KAWHEnT0qOHVGiz6tMBI30dVpMh8QT40vuPSBsfkEIkRUqS6fhzkVapcJH0zCJpwJ3S+bc2encXXmjVww+btXdvkD74QPrgAykoSBo1SpoxoyIR1bOnZDLVv62AZzJLxqqKZJIryad7plX0N43yfmwAAADwGZthaF3RUXuyaX1RhsPzEyKSNDqijY+ic83B0gItPLZfqcf2aVlOmooNa8UT8S2lsnLpLTf++OoDRdZyfXUsXQsyDmhB5gEdLCl0eP5f7Xoq3Oy/6QzDMLQh95gWHDmo1MMH9WNOlsPzQ1u01OQ4/34PeZL/vlJAc/f+I9JvD1R8Ck0mh5yTJCnoj4Zgo6Lf+2p08ikkRLrtNqv++c/jVbY2m7RyZcXj1lulrl0rElApKdKYMRXrNEtzFh1PJtWXfKqadHJnhBQAAAACQoG1TF/lH1Rq7h4tyN2n9PLCWvveETew6QJzkc0wtL4gU6nH9ik1e59+LqijDO3zldKRY00XnIsOlRRqQcYBpWYe0LKsQyqyWWvslxhi0V/bdGni6OpXbLXq68x0pR6uGNl0oLj299BdnXvJdEL8tb8CiSfAF9L3Vox0CtbxBFNtgkySzajoP25Wo8vuqo56qsnOndJTT1U8WrRQ8y7JcyX5RNIJAACgWaqphK4+/jTaqWoJ3cJj+5VWVnuiw86PRjvVVELnCn8a7eRQQpdxSIXW+t9DJ9poJ4nEE+Abb95aUV7napY7yCQjxNDGG2/Tq3H/bfBuy8srPvKtWkl799bfPzdXTiV5KSkVZXnNpiSvruQTSScAAIBmo74SOlcYkm44vNq+HOyFBMip0e10VkznGp+rtYTOVVm50kWn2xev2f1DY0KtUUxwiO7vMLTG54qs5fr6WHpFsqmGEjpX/FaYoxt2/SxJCg42NyrW2lzbvpe6R7RwajcMQxtzs5V65ECNJXSuCAsK0o3bNtqXvfEeGtWqtWa17eTx7TaUyTAMo75O7du318GDB+3LLqzid6oPYwv0Ywj0+KXAO4bi4mKHZYvF0rAN2WzSzXFSlNWtzI1hM1SeHaQJz36u6jek3KoeylC8Q1uISjVMa90KLUcx+lX9nNp7abNayfGi2q5tRSJq1ChpwAApuOr10mKpaPRwnZ5X30PVk0xeSjpVP4Z27drpwIEDHtt+oOLnjH/g54xvBXr8kuPPygb/nPSh5vAa8HOmdvys8Q9N/bOm0FamZXkVJXQLc/fpUB0ldP7ipvgBeqztKZIqztHPrpbQ+Ym2IRE6OOTP9mVXS+j8yYpBkzWuZaIk90ro/MXfO3bTS/2GeW377v6sYcQT0NQO7vjj7nXuDRcyBZkU0srQd+HjpSLHH9J/1rt6T392aItTpr7TGLf2sULjNEErnNof1m06Q6mOjWmSPvzjUQNj0CBp9WqZQkPdisFnqiSbjLtayBRsYqQTAABAgDAMQ5W/IVeW0C3M3auvCxowKsjHygybFhzbp9Rj+7TA1RI6P7M+L1OpGQeU6kYJnT/JLC3Vq/t2KvXIQZdL6PyJvyWlSTwBTS37aOPWD5VU5JFIvMq0fr1++fBn9b9whK9Dcd2cRceTTuWGdD9JJwAAgEDwVt4WzT68zKEtThYFmUySf30Hr5dJUrApSCGmIAUH6NwWlfGHmIJkUsC9BDKbpJAgk0JMJpkD8DXYV+hfyUoST0BTi42vv09dSj0ThrfsC26nMzu8pcKgcL3VpZevw3HPPdNkCjbJKDcqkk/13e0OAAAAfqu3pZW+7Hqmluen2e9Wt78s39dh1SvYFKTTY9vr9Nj2erbTKdpUeEyp2fu04Ng+rck/GhBJnH5RLdUvqqVu79RPR0qLtCjzoBZkHNCSrDTlW8t9HV69YkNCdWZCR13cvotKbVZ9k3lEC44cVOrhg9pdVODr8Oq1OitLx0pL1dJPqk9IPAFNrV03KS9IirTWf0e7KgybIVtOkF6YsUIyOc7x1K1lD90Q4djfbI3Ts+krHdqsf1zkN20K0tZtzne1y1FMjfu+TQ/rCfMtGjCgYk6nkSOl9u0d+5xxVbaycit+DKaFtNGR4ATZwiNq2Jqf+qPMbu/e1nqvxxTduvt7KamOu90BAADA71mCgjW1RUdNbdFRzxuGfinOVOofk4uvLTzi9vZOjWir3mGx9mVvTAw9JjLJ/n+TyaT+ka3UP7KV7mw3UIdLi7Qou2Jy8S9zDqrA5mYSJz1TWr7OvnjDDTd4Kmy7FmbHZEdCaLhmJ3XT7KRuKrFZ9c2xw0rN3K/UjAPaW+x+EufyNl0UHlRx3r01uXj7sEj7/0ODzDotPkmnxSfpqd5DtDk/R6mHDyr1yEH9cCzD7UTgmNjWGhgda1/29DFklZbqzV379EV6uv7csaNHt91QJJ6AphYUJCVMkQrdS2aYTJK53VRd8/RYF9cIlTTaoaW4uFilpVK/fmHa58IcU61aSdOmSTNm9NaUKVJsbO1918Zk6HB5IPz9pQZ/JJ3Kcnop+Y01ulXzKtqvP0WKIfkEAADQHJhMJg0Ib60B4a11V5shSi8r1KLcfUrN3aMv8w+o0IUkTrlsejTh+KTNTX0jhTah4bo04SRdmnCSim3l+iY3vWLi8WP7tK/UhSROXIz0wTIpveLGQU88/b6XI3YUFmTW5Li2mhzXVs90H6bfCrLtc0GtznVtNFe38Ghd17aHpKY//yaTSX2iY9UnOla3deujjNJiLTqSptTDB7Uk45Dyyut/DxVYy/VI9372Cbo9fQyPbd0qWQ8oNS3NbxJPzkMeAHjfJY9IZZJsLiZqbEZF/4sfbvSu337brH37ak869eol3Xyz9O230uHD0vz50vnn1510CmhV7l63Ysq1js+d+2jFBOPGH8knAAAANBuJIRG6LK6n/tf5dGX2ma1Fnafpyrg+6hASVes63xSma2VhehNGWTtLULCmxLbXc51Has+g87Wx39l6oMMQjYiKr/1PzCHB0sX+8XutyWRS3z/K8b4fOlXpo/+kN3qN0rnxHRVVx0iyJw5uUaGflOu1DrXo4vZd9OGQMco47Vx9OWyCru10kjqHR9a6zs952Vqc6b33UGpamiRpcXq6ymw2r+3HHSSeAF9ITJYG3Fnx//qST5XPD7y7Yr1GKC2VHnnE8SIeHCxNnCg9+aS0fbu0ebP06KPSmDEVzzVrVZJOmrNI39f0S8ScRSSfAAAAmrnKkrzn24/R3l4XasNJM3Vf4skaFpHg1PeBzA1NH2A9Kkvy7mg3UD/0PUOHBl+g17qM0dktkxUZVO2X+hmjpcRWvgm0Dgmh4bokqas+6jdeGWPO15IBk3R1+x5KtjgmcY6UleiVwzt9FGXtKkvynu4zVDsnnKFfx07TQz0GaFTLeAVVSwU+sOt3r9x5LrOkRKsyMiRJ2WVl9v/7WnP/Wgn4r/Nvld6XtPEBKcSouNVD1TmfbEbFLS3KVZF0Ou/mRu+ycrRTq1aGpk0zKSVFmjJFiql5aie3tbQe0ymFP9mXg3NOldTGMxv3tGpJpzLDqtVFhx26lBlWhUgVyafK/pTdAQAANGt1luTlHbCPehoTkejrUGtVtSSvxGbVitxDSj22T89v+E5KiqsY9fTo274Os1b1leQ9cXCL/tamq5q20M51dZbkHT1kH/U0rXVS/Rtzw+L0dFUd45R66JDGJzgnT5saiSfAl86/VRo3S3rrNunwF1J0lctEgVlqc7o0+1EpoYNHdldWJi1dWqIRIwxFRXn+Mt27ZKsW7r/QvvzrruXSOD9NPBlWe9JJkr4vTFeercyhy8aiDA2tXLAnn6xNGycAAAB8qrIk77K4nsouzNe3Rek6WO5ft6uvS1iQWVNi22tKbHs932WU1LWdNLyPFBoY6YDKkrzKsrz9edlacixdmwtzNTqy9rJIf1JZkndx+y7KLSzUd9kZOlhc5PH9LDh0yHE5LU2PDxjg8f24KzDeaUBzlpgs3fJfyWaT0nZJxw5LLdtIbbtUTETuQf/4B0kTu7lLHBZT8/Y4dVlVlH488SQx0gkAAOAEZwkK1uTI9vV39Gc7D1Y8AlR8iEUXJXTydRgNFhoUpImtPD8Kqcxm0xfpjlOHbMvP17a8PJ0UHe3x/bmDOZ4AfxEUJLXvJvUbVfGvh5NOqFtq/h6ntlWFh7xSew0AAAAAnrQyI0M5ZWVO7ZWTjfsS32wBnPC2lWRrW2m2U3taeaG2lB5r+oAAAAAAwA21JZhSq5Xf+QKJJwAnvNT83bU/V0MJHgAAAAD4C8Mwak08fZeRoWOlpU0ckSMSTwBOeAvy9tb6HIknAAAAAP5sa16edhYU1Pic1TCc5n5qaiSeAJzQjlmLtbKw9rrn74vSlVle3IQRAQAAAIDr6iun8/U8TySeAJzQvsjfJ6tqn0DcJkOL8msfEQUAAAAAvlRfYmlxerrKbLYmisZZsM/2DAB+oGop3Z52rXTzv85yWJakBfl79JfYHk0cGQAAAADULbOkRKsyMursk11WplUZGRqfkNBEUTki8QTghFVmWLU4f599+WBiS/3fZZOc+n2Rv0+lhlWhJnNThgcAAAAAdVqcni5XxjKlHjrks8QTpXYATljfF6Yr21ZSb79cW6lWFvi2LhoAAAAAqltQz/xO9n4+nOeJxBOAE5Y7d6xLzXe9LwAAAAB4W5nN5vId67bl52tbXp6XI6oZpXYAPCYtOFFPtPqHfXl8fJIPo6mfO8mk1Lw9erLNaJlMJu8FBAAAAAAuWpmRoZyyMpf7p6al6V89mn7uWhJPADxmd2gn/SvxPvvy9+1jfRdMPbaVZGtbabbL/XeV5er30mPqHdbKe0EBAAAAgIvqu5udU/9Dh3ySeKLUDsAJKTV/t1PbqHU7Vdb/Wvtj1LqdDs8vcKM0DwAAAAC8xTAMtxNP32Vk6FhpqZciql2DRjw1h1KTQD+GQI9fkoqLi30dglvCw8N9HYJHFRUVNWg9wzCUmW2odcv689YlpaUqLrbal8vKDBUUS7HRnnn/NuY99HmOc+JJkoKttd8T4rPcXbo2qneD9wnXNYdrXKAfQ6DHLwX+MQR6/A39OeNPAu13Fbgn0D9jUuAfQ0M/YxnWYsUFhTkcf1kN5UY2w+a0jwxrsVqbLQ3ar+T8nSDQr3WB/h5qDhr6Htqal6edBQVurWM1DH2+f7/Ob9euQftsKEY8AXCLyWTSn28p1p3PlOjoMVdu3FmRcHrr8zINnFmgvALDyxHW75i1RKuKKybhizAF64aYfvpzVFenfhPC2+pfMf0VaarI0a8uPqJMK19CAAAAfGlTWaZGHf5UC4v2yjBc+91yd3mu/pn1rW7PXu3l6ICmsfDwYfv/e0VFaf6QIQoLck7xPNe/v8a3bm1fXlRlvaZC4gmA28YNNeuJN0vVc0ZBnQmo8vKKhNOAcwv0j3uKFRVhUodE3192viw6oDCTWTfE9NPvHc/Tg3HDavzLV0xQqO6PO1m/dzxP/4rpr3CTWUsK9/sgYgAAAFQaFZaoneU5mpnx5fEEVC19KxNO/Q99oDcKtmqSpX2Txgp4y6LDh+0Jp5/Gj9fMtm1V0/i1Ua1aafEpp2jpyJEa37q1vjxyRGU21wYQeAqTiwNw27SxwXrg5VIVFktPvFmqF98vVWmZdHLRz/pk/6X2fpf8/XV9bQw+vt4Y/7jktDGH6/eO5ynB7Fr5ZLw5XPfHnazrYvvq19JjXo4OAAAAdQk1mTXJ0l6fFO3W+rIMzcz4UrGmUKd+G0oz1P/QByr/Iy1llkmTwzs0dbiAx5XbbLqqc2edmZSkIBfLJUfHxWnxKafou8xMHS0tVVtLw0tO3dWgb4GuDmf0J9VrVwP9GAI9fkmyNOEb3ROq194GWvyS42vQmPhPGWiobUKx0o5UZMoL/6g+CzVK1b78kL1fSUGpFHF8vbMnRchiCWnwfqtr6DGcbuni1BZsdr4cmoOCHPbRQRZ1iGzZoH3CPc3hGhfoxxDo8UuBdwyBHr/kuZ8z/qI5HANqF+ifMSkwj6HqnEuN+Yyd1aKbPik6PmdntuE8YXKBUe6wPCa8rZIiYhq8z5oE+nUiEN9Dgf77SvV5xxr6HvpzF+fvNDUJCwtz2MekJp7fSaLUDkADmEwmzRjn/FeluiS2DtLQvv4x4gkAAACBbWpksoJqLCyqXUpkZy9FA6AuJJ4ANIi7iafp40IVFMRdMwAAANB4rc3hOsWS6NY6JJ4A3yDxBKBBTh0RKkuY6/1TxruXqAIAAADq4k4iqUdIrLqHxnovGAC1IvEEoEEiwk2aNMK1ZFJYqFzuCwAAALjCncTTDEY7AT5D4glAg7k6imni8FBFRlBmBwAAAM/pFdpSXUJauNSXMjvAd0g8AWiw6S7O80SZHQAAADzNZDK5lFBqGRSmUeFJTRARgJqQeALQYO3amDW4d/13qnN3InJfKQ4L1o4Ore2PMktgxA0AAHCimhHZqd4+UyOTFWziqy/gK9zbHECjpIwP1c+by2t9fmDPYHVIMjdhRA23rm+yun8x1758dcuevgsGAAAA9Rob3k4tgkKVayuttQ9ldoBvkfYF0Cj1ldEFymgnAAAABJ5Qk1lTIjrW+rxZpjqfB+B9JJ4ANMrg3sFqm1D7pYT5nQAAAOBNdY1oGhPeVi3NliaMBkB1JJ4ANIrJZLKParIpSAWmCPujZUywhvalohcAAADeMzUyWUGq+Q7KlNkBvkfiCUCjVSaefogYpqhee+yPNmeMVlBQzb8EAAAAAJ7Q2hyuUyyJNT5H4gnwPYYiAGi0U0eEyhImFZc4tgdamV2XfUd145tf25czrm0lceddAAAAv5cS2Vmrig85tPUIiVX30FjfBATAjhFPABotItykSSMck0xhoXJq83dJR3N11Xsr7Y8WhzN9HRIAAECzk2kr1kFrvke3WdPIJkY7wd8YhqFfs/NkGIavQ2lSJJ4AeET10U0Th4cqMoIyOwBAA82dIt0zzb117plWsR4Av2IYhn4vy9SjeT9qUvan6nnsbQWZPPt7Yq/QluoS0sKhbQaJJ/gZk8mkZ7btUfcF3+jadb/pi0NHVVRu9XVYXkepHQCPmD7OMfEUaGV2AAA/YzJLxqqKZNKcRfX3v2daRX/TKO/HBqBeZYZVK0sOKrV4l1KLdmmnNcf+3NWW/koKivTo/kwmk2ZEdtYz2RslSS2DwjQqnDkT4H9u7dVF7+5N0ys79+uVnfsVEbxBkxLjldIhUdPbJSopovndhZHEEwCPaNfGrGmd0jXox3clSResD5dGzpY6dvRtYACAwDRn0fFkUn3Jp6pJJ1eSVAC8ItNapMXFe5RavEtfFO9RrlHq1Mcis26MGOiV/adEdrInnqZGJivYRIEP/E/X6EhdkNxW8/cclCQVllv1+YF0fX4gXZJ0clysUjokaka7RA1sFSOTh0cH+gKJJwAec26PdF226OGKhUclpUwk8QQAaDhXkk8knQCfMQxDW8qztKB4t1KLdmlVaZpsqnvumsstfTw+2qnS2PB2ahEUqlxbKfM7wa9Vjnqy1jDX04+Z2foxM1v/3rBF7SPCNaN9G6W0T9TEpHhZzGYfRNt4JJ4AeMzIQSG+DgEA0NzUlXwi6QQ0ubpK6FwxKiRJq8sqRnaEmTw/NcPQ8HitKDio0yOSPb5tnDh+y85Vblm5V7ZdUlJxK/CRrWO18uixOvseKCzSi9v26MVtexQRbNZpSfGa0T5RM9onKjE8cErySDwB8JgenQIzAw8A8HM1JZ9IOgFNprKEbkHxLn1RvFc5RkmDt/XnvCUejKxmQ8KTFGsO8/p+0HxduWajvvWzO1wXllv12f50fbbfsSQvpX2iBrT075I8Ek8APMafL3YAgABXNdl0Vwsp2ETSCfASwzC0tfyYfVSTKyV0/mSCpZ2vQwC8rqaSPJuffkxJPAHwiH+8nKbEX4/onipt+zJKFSgzPP0lpoemxZ/s0DY1miHaAOBX5iyScVcLmYJNUrkh3U/SCfCUB4t+0C/WozIMaZc1R1vLspRXVi7ZAm+C7rOju/o6BAS44nKrr0NwS2VJniUkWGPjY3VecjvFhVWUsrYND/dxdCSeAHjIZz/mqdvOAofEU26hzWfxuGtQeLwU1cGhrWdYSx9FAwCo0T3TZAo2ySg3KpJP9d3tDoDLvinbry/L9xxvMEv3RI5WtNWi1OJdWllyUOUKjN/twk18zUXDHcgv0v78Yl+H4bJOURFK+WPep3Ft4hTmhxOQ84kEAACA//ujzG7/vtZa3vtsXbx9mZRUx93uADRaQlC4rogYpBuiByvbVqwlxXuVWrxLi4p261gD53lqY6oy+sJL0zQEmwJvlBb8x8J9R3SspExtLN6aJ6yiHi6vzKpCq/sjq0ySTolvpRntK+Z36hMb7fdTnpB4AoA/lNtsXBQBwB/9kXSy5vRWh9dX62I9XtF+/SlSDMknoCnEBll0fkQPnR/RQ+WGTd+XpmlB0S6lFu/WlvIsl7fzfovTNTwkUZJksQTOXblw4kjdc1jFhSZ9P22kBrWO8fj2i4uLZRiGxn21Wj9muXZXyKjgYE1pm6CUDoma1q6N4r2WFPMOvmMBwB/WtG2rOXfdJUn6v/79NbBvXx9HBACoeve61VMv1ainzjv+3LmPSl896Hi3OwBeF2wK0tiw9hob1l6Paqx2lGcrtWiXSyV5Dxb+pM9iZjRhtIDrCsus+upghqSKBJQ3Ek+StDQ9o96kU2UJXUr7RI310xI6VzEGEQD+8GlBgb7q319f9e+vt7p3l2JjfR0SAJzYqiSdNGeRVhUecu4zZ1HF85XJJwBNrltwrG6IHqyv42fqaNt/6L1W03RhRE+1NDmPyviybL/WlKX7IEqgfssOHlWxtSJxmrr3sFf2YRiG7v9th1O7SdLI+FZ6cFBvbUqZqF1nn6ZnhvXXaW0TAjrpJDHiCQDsUg8dcvj/4wMG+H29NAA0W9WSToZh6PvCWr6szll0vD8jnwCfql6S90Np2h+joY6X5DHqCf4qdc/xZNNPR3OUVlCstpGeLQmtOtopKtisKW3bBGwJnatIPAGApO15edqal2df3pGfr615eerZooUPowKAE5hhtSedJOnn4qPKsDreZehoeaHiKxfsyafAugU20JwFm4I0Jqy9xlQpyfskb6sWle7Rz+VHNVId6t8I0ERshqGF+444tC3ad0SX9+rosX0YhqG39xzUP7t11PS2CRod30oxkREe276/IvEEwGO2RXXSRcMeti9f17mbD6Nxz4JDzuUbqYcOkXgCAF+Zu8RhMTVvj1OX74sO68yqDYx0Avxat+BYXRs+QNeGD5BhGL4OB3Dw89EcHSp0vFtj6t7DHk08SdKbI068qgoSTwA85qglTu8kp9iXr4pL8GE07klNS1NEcbG6Hj4+vHZZZKRu7tHDh1EBACotyN+j6sUO3xceckw8AQgYJ9oXb/i/muZ0WnrgqIrKrQoP9swcSyaT6YR87zO5OIATXnZpqVZmZGjQnj365eab7Y/ideuUVVrq6/AA4ISXVlagdcVHndp/KjqiQluZDyICADQ3NSWeispt+vqPu9yh4Ug8ATjhfZGervIahntbJS2uoQQPANC0FuTvqbG9xLDpq4IDTRsMAKDZOZBfpPUZuTU+5627251ISDwBOOHVNL9TpVQSTwDgczXN71RpQR3PAQDgiuqTile1YO8R5iRrJBJPADwm2Fam1iVZ9oepzP/LH8ptNi2qI7n0RXq6ymy2JowIAFBVoa1Mywr21/r8gvy9fCEAADRK6p7aRzUdLCjWhsyaR0PBNSSeAHjM8KxfdPTzMfZH1MYffR1Svb7PzNSxOhJkOWVlWplBXTcA+MpXBQdUbFhrfT6tvEA/1zD/EwAArigss+qreuZxqisxhfpxVzsAJ7TUtLR6+yxIS9PEhMC5Qx8ANCdVS+n2tGulm/91lsOyVFGKNySc6zQAwH3LDh5VsbXuCofUvYf176EnNVFEzQ+JJwAnNFfmcEo9dEiPDxhwQt76FAB8yTAMLcjfa18+mNhS/3fZJKd+qfl7NDdhWFOGBgBoJlwZzfTT0RylFRSrbaSlCSJqfii1A3DC2p6Xp615efX225Gf71I/AIBn/Vx8VGnlBS71O1iW3wQRAQCaE5th1DmxeFWLXOwHZySeAJyw6rqbXXXc3Q4Aml5dd7OrbmGVkVEAALji56M5OlRY4lLf1L3M89RQJJ4AnLBcmd+pIX0BAJ6Rmr/H9b5uJKkAAJDcSyYtPXBUReW13+wCtSPxBOCElF1a6tbd6lZlZCizxLW/hgAAGu9gWb5bd6tbVrBfhbba71IKAEB17iSeispt+rqeu9+hZiSeAJyQvkhPV7lhuNzf9sc6AICmUVPp3Kh1O1XW/1r7Y9S6nfbnig2rvio40JQhAgAC2IH8Iq3PyHVrHcrtGoa72gE4IdU0v1NmVJQ+HDHCYbmq1EOHdGFystdjAwDUXjoXXMctrxfk7VFKdGcvRQQAaE5cnVS8qgV7j8gwDO527aYGJZ6aw0kO9GMI9PilwD+GoqIiX4fQKMXFxQ1azzAM3fBWpi4dH60ByWF19i0rK7PvJyPPqqcX52jWyCj1aR/aoH1X19BjKLfZtKhK4qljeLhah4bqZ0nn3XijvX1QTIw6lZVpT2GhJOmLQ4eUV1iokCAGi3pboF8fpMA/hkCPXwr8Ywj0+Bt6jZakQlu5lhXsty93C2mhcFOwpJ0O/XqFxmq3OUJp1orrdGreHj1VVOSxc9eYY4D/C/TPmNTw9+gDZWs0PChRpwZ1tJ8Hm805qVtWVq5iVeyjyCjXq+W/qpOphWYEd2lwzOHh4Q1e1x8F+nUi0D8HjTn/n+06/n0gOsSs4fExWpaW5dAnMTxUnaPD9cORHEnSwYJirUk7qoFxLRq83+b2GXAF354AuMVkMqm03NCIuw/qvKfTtXFv3fMeZeRZdfcHWep54z699W2eerUNaaJIa7f62DEdKytTx/BwvdC/vzZNnKhRcXFO/Ya3bKlfJkzQiwMGqFNEhHLKy7UqK6uGLQIAPGl5UZqKDau6hbTQq/Fjtb79uRoc1tqp3+Cw1trc8Tw9FXeK2pojdMhaqPWlmT6IGAgsrWRRSslnmlDyoZZZ98qoY/qBIqNcz5VtUO+iN3Rz2bcaFJTQhJEC3lFYbtXyQ1mKDjHrtv6dtWXmaF3eo71TvwRLqL6aOlQLJw/SKQkxkqRF+5nnyV2U2gFw27RBEXr9mzylritU6rpCpQyJUGGJ81/JPlidr2eX7VNBScUvM+cOC1dQkO//qvJbXp5e6N9fF3booNB6Ri+FBAXpko4ddUH79nr3wAFtzsvT+NbOX34AAJ6zvSxHr8aP1XlRXRVsqvs6HWYy6x8xvTW7RQ+9mbdNv5Rk1pikAnDcNHNn3Vj2jdbY0pVS8pmGBSUqy3AeOfKZdYceLFujdFWMKhxkile7oCinfkCgWZeRq+v7JOuaPh3VKqzuP4ybTCZNbBunCUmttPxQlhYfIPHkrgYlnurKiPur6kMIA/0YAjH+6sMgLRaLjyJpmECPv7rGxD9tSKgsIUdUXFbxPkxdV/HLSG5wlL6LG2Tvt3BnsApij79Xzxoe26j9Vi9vbOi2ruvZ06kt2Gx2bgsOtu/DIukfJ53UoP3BfYF4jePnjO8F+msQ6PFLjsfQmOv9bYknO7WZa7pOm80O1+lrwwc59WmMQP9Zj7oF4mfMU7+P9pBF/critclacefItbaab6DylW2/w/IZYd09+rk4kV8DfxHor0FDz/9pnZJ0Wqckh7bQUOcElCkoyGEf07q007Qu7Rq0z9oE4mvgbokmI54AuC0iLEin9ovUwp/zHdo3xfbQmIlv17hOaLBJp/XnL2QAAAD+ICWkqz3x5PI6od28FA2A5ow5ngA0SMqQaLf6T+wboSiLf19y+u/Zo+/vvNP+aLdtm69DAgAA8Ap3k0htTVEabG7jpWgANGeMeALQINMHuzd6yd1ElS9EFxfrlO3b7curCwp8GA0AAID3DDMnKd4UoaNGoUv9p4d2Cfg7oAHwDf8efgDAb7WPC9Ggzq7XVLubqAIAAID3BJlMmh7SxeX+KSGU2QFoGBJPABosZYhryaT+yWFKjg/1cjQAAABwh6vldhYF69SQZC9HA6C5IvEEoMGql8/1zN2pj7+/zv7ombuzxn4AAADwvckhnRQq5ztGVjcpJFkRprpvOQ8AtWGOJwANNrizRUktg3XoWLkkKa40W+ccXGZ//omTLpbk+sgoAADqUhwWrB0dWtuXy8IYTQs0RpQpVBNCOmpJ2e46+6WEdG2iiAA0RySeADRYUJBJ0wdF6T9fZ9fap02MWSd3DW+6oAAAzda6vsnq/sVc+/KdrXv5LhigmUgJ6Vpv4ml6KIknAA1HqR2ARkkZWncZ3fTB0QoK4g4oAAAA/mhGPaOZBpvbqF0Q0yYAaDgSTwAaZVK/SFlCak8szaDMDgAAwG8lm2PUzxxf6/OU2QFoLBJPABolIixIp/aLrPG5ELNJp/Un8QQAAODP6kouuXrnOwCoDYknAI02Y3DNyaUhnS2KsnCZAQAA8Ge1JZeSTJEaZG7TxNEAaG6YXBxAo80YEq1//ifdqX1kjwgfRAMAaK667DuqG9/82r5cckMbKcGHAQHNxDBzkhJMETpiFDq0zwjtqiATc3UCaBwSTwAarX1ciAZ1tkgZju2jSDwBADwo6WiurnpvpX35lQsu9GE0QPMRZDJpekhXvV66yaE9JYQyOwCNR+IJgEekDInSVz86trWJ9ewl5pMtmfp4S6amd2upKV1j1c5i8ej213TrplavvWZf/kufPh7dPgAAQEPZDENrjUNapJ36XZl6Ryke3X5KqGPiyaJgnRqS7NF9AI21M7tQVyz7VVM6ttL0TnHq5eHvA/AOEk8APCJlSLS+8vY+urfUHSv26ZOtWQoySSM7xGhG9zil9IhTr9YRMjVyKHh5cLCORR2fr8oWEtLYkAEAQHM0d4pkMktzFrm+zj3TJMMqzV3i8ir5RqmW2XYr1bpdC607dFgFkqQXNVnBJs/Oo3laSCeFyqxSWSVJk0KSFWHidyH4l66xEWoVFqKbV+3Uzat2qnerSM3oEq+ULgk6JSlW5iBKQ/0RiScAHjG4s0VxUWav7iPEHKTbTmmnf36xSzZD+m5fjr7bl6PbvtqlLi0tSjkpTikntdaY5BiFmpnUHAAAeInJLBmrKpJJriSf7plW0d80qt6u+2w5WmDbrlTrdi237VXJH4mgSp0UowvUu6GR1yrKFKoJIR21pGy3JGlGHXe6A3zp9qEd9eGOIzIkbc4q0OasAj360x7FWUI0rXO8ZnSO15ROcYoJI3HqL0g8AfCIoCCTRp7k/TmdLuzbWg//cFB7c0oc2ncdK9bTaw7q6TUH1SLMrCldWynlpDhN6x6nuAh+6AAAAA+as+h4Mqm+5FPVpFMN/WyGoR+NNKVaK5JNvxhH6tz1bRquEJN3/tiXEtL1eOIplMQT/FPPlpH6U7cEfbDD8bOSWVym+b+naf7vaQoOMmlcu5ZK6ZKglC7x6hLL3LO+ROIJgMf0PXOE+mz6TOcMi9Z9sxKkTp08vo+qo55qk1ti1Yebj+rDzUe9UpIHAADgUvKplqRTvlGqpbZdWmDd4VBCVx9vjXaqNCOkq67WMg02t1G7oGiv7QdorKqjnmpSbjP01f4sfbU/S9d/s0W9WkUqhZI8nyHxBMBjJgxL0Pbkjno5ulBvL8uTtKneddxhGBU/Wspttf2IcVZbSd6Mk+I0NjnWoSQvITtbUzdssC9Ht2zpsdgBAEAzVFfyqVrSqb4SOldkqFD99Joqv22bij3/5TkqzKQUE6Od0HDpBSU65b01Xtt+5XeCIJNkdfFrwe9ZBfqdkjyfIfEEwGMiwoI0qEuo1hZlKzYrT32O7HFr/UPRrbSrVTun9qEHtyisvMyhrVMd2zFM0vcd+zm1t885oqS9h/XTBuknSZGhQRrWroVGdWihtuUZOnfNGr3w6qv2/k8OGeJW/AAA4ARUU/Lpj+Uc01A9dsctSi1+pd4SOlfkq0z5qvI7ket/i3NZnClcKaHdPL9hnDCshqE9uUW+DqNWtZXkhYb6OrLmi8QTAI+aNSpGa78+omEHf9eSt291a91nhp2t66Zd69T+4Qdz1SnnsMvbKTGHyHL3l07tF/2yVA999Z8a1zm9hrYuVe5wBwDwrYGW1oqPSHRo6xhMKRD8RJVkk3FXC5mCTVpp66ixt0+Uylf5Ojq3xJjCNMjcxtdhIIAVl7s/ms9XqpbkKcimqPBgJbcIV+eYcAWZTOoczdxQnkDiCYBHJbVsPpeVM7t08XUIAIA/XNOqv9Qm16FtSnRHH0UD1ODSF6WX+8oUbJJRbqj0r8/pH+YCLbDu0EHl+To6l4WYzApiPkw0wuIdWb4OwW0D4qM1o3O8UrrE6+TEGD4DHtZ8viECgCcNGiQNGODrKAAAQKB4cpYUY5LKDZmCTTr1mdt16pPfyzAMrTfSlWrdrgXWHfrJOOTrSAGvWrrb/xNPoWaTJnaIU0qXirmeOrYI93VIzRqJJwAeNaFTS3118QAF5yRrXYrzPEt1OTmhjb5K7uzUfnTAO8osLVXZH/M87cgq1os/1156Z9TwB4oeceGKnH2xNlxxjvomRCo4KMi5UyWLpSLpFMJEgwDgTwzDEH+Dhl+6Z5oU85u0vFj6tlQaGypN+E26Z5pMcxZpsClJg4OSNCdkrNKMPC207lCqdbuW2XarSOUu76avWusxTbAvh3phUpoIE7//oOHKrDat2JutgXGxevxU78wVVlpaqoJyqy5Yslmlbtx0KCEiVDM6x2tGl3id1jFOUaGkQ5oKZxqAR7WJClWbqFBJLaWBzkmkBul8qiSpuLhYkvTAx1u1KjmhzlXMJmlscqxmnBSnlJPi1D2O+mwACHSbOnTQjXfdJUl6b8QIte7b18cRATo+sbh1uHT3Lcfbv3lUMjvf7a6tKVp/Cx6kvwUPUpFRpq9se7TAWnG3uzTl17mrX5WhWIVpoKliDiaL2eKVQwIaatWBHOWWWPVreqGGJMQoxuL5lENxcbGeWL/fpaRT/9ZRSumSQAmdj5F4AhBQ1qcXaMGOYzU+19ISrKndWynlpDid3q2VYi38xQ4AmpNPCwv1Vf/+kqT/9eqlv8XG+jYgoDLpZBol3bfI8blJk5zvdldNuClEM8zdNcPcXfOqlOSlWrdrnZFe4y4f0A/6UGd54WCAxkvdniGpYtLuJbsydV5vz09UX1Bm1ZMb9tf4XNUSuumd45VMCZ1fIPEEIKA8uOqAw3KPuHClnNRaM06K06iOLeouoQMABLTUtDSH//+Nm0DAl6omnWpIKklyuNtdbcmnSiaTyaWSvAXaqQ3GYfuoJ8CfVCaeKv/vjcTTS7+mKaO4zL6cEBGq6X9MDE4JnX/iFQEQMNanF+iLXdka27GFpnVtqXP6tKGEDgBOEGlFRfrp2PERr8uOHFGR1apws9mHUeGE5UrSqZIbyaeqqpbkFRpl+tq2R5+WbtEi7WLUE/zS1swCbc8qsi8v2pmpcpvNo38YLigr11Mb9qtfXKSmJcfp7JOSKKELACSeAASMqNAg7btmiFr+UStusTCvAQCcKBYecrwTWJHVqq+PHNH0pCQfRYQTmmF1LelUyZ58sjZodxF/lORNMnWQYRjaoCMqN2wN2hbgLQu2ZzosZxWV64cDuRrTMdZj+8grtWrlzMFKjq74HsD3gcBA4glAwOjeihptADhRpaalKaK4WF0PH7+r6ZKkJBJP8I25S5zbCgqknTuPL3ftKkVGHl92NUlVD5PJpEGizA7+p2qZXdU2TyaeEiPDFGt2/U528A8kngAAAODXiqxWLTtyRIP37NF3//63vf3shx+WMWqUTJRYwB+sXy+NGXN8eeVKafRo38UDNKFjRWX6bn+OU/uCHRl69NRuPogI/oRZeAEAAODXvv5jPqfqjpaWan12dtMHBABwsHhnpqyG80ik3zMKtfNYoQ8igj8h8QQAAAC/VvVudu48BwBoGjWV2R1/LrPW53BiIPEEAAAAv2UYhhZUm1i8qrqeAwB4X5nVpi92ZdX6fF1JKZwYSDwBAADAb63PztbBoqJan//p2DGl1fE8AMC7Vh3IUXZxea3Pf7svWzl1PI/mj8QTAAAA/JYrI5oWMuoJAHymvhFN5TZDS3ZRbnciI/EEAAAAv+XKHE7M8wQAvuNKKR3ldic2Ek8AAADwS2lFRfrp2LF6+y2r5a53AADv2pZZqO1Z9Zc7L9qZqXKbrQkigj8i8QQAAAC/5GoJXZHVqq+PHPFyNACA6lwdyZRVVK4fDuR6ORr4KxJPAAAA8EvulNBRbgcATc+dEjrK7U5cJJ4AAADgd4qsVi1zYxTTgkOHZBiGFyMCAFR1rKhM3+3Pcbk/iacTF4knAAAA+J2v3Zy36WBRkdZnZ3svIACAg8U7M2V1I+G/JbNQO7IKvRgR/FWwrwMAAAAAqqupdC4zKkofjhjhsFzVgkOHNLhlS6/HBtQoLk6aOdNxGWjGFuzIbNA61w+L8EI08GcNSjyZTCZPx9HkAv0YAj1++B7vIfiz5vD+DPRjCPT4pcA/hkCPv7i4uMHrGobhlHiKNJu1pX17nXfjjfa2KLNZqjIq6rMDB3RLly4N3m91jTkG+D+Pv76dO0vz51ffiUd3ER4e7tHt+VqgX+eag4Z+DsqsNi3e4Vg6FxkSpIIyxzvXRYUEKb9K22dbj+iK/vEN2mclPgeBh1I7AAAA+JUNOTlK++PL0OT4eK0YPVoz27Z16ndl585aOGKETvljlNPPVdYDAHjPD2l5yi6pSPzP6NpKP1zUX5M7O484vXVEe31ydk8NbhMpSfruQK5ySsqbNFb4HoknAAAA+JVFhw/bE06fjRih4bWUz5lMJk2Mj9dXo0bZE1BfHD7cxNECwIln0c5j9oTTh2f11MA2UTX2M8mkqV1a6bsL++uTs3uqf3yEvtyd3bTBwueY4wkAAAB+5bLkZN3Zo4fL/SsTUBNat1Z6SYkXIwMASNJ1Q9sqKSrU5f4mU0UC6vTOLXW4sMyLkcEfNSjxFIi3qq1eNxnoxxDo8UuBdwyBHr/Ee8gfnAg13J7QHF7bQD+GQI9fCrxjCPT4JcdjsFgsDd5O5xrWNZvNTm3BwcFO++nswbk/GnMM8H+B+PoWFRU5LAfiMVSdUyjQ45cC7xiq/6xpaPw1XqeDnAuqQkKcr9OdGnmdrvo5CLTzLzW/n/euYMQTAAAAAkL/PXv04iuv2JfXPfSQ1LevDyMCqti4UbriiuPLL74oDRjgu3gAwE+QeAIAAEBAiC4u1inbt9uXfy0o8GE0QDV5edLq1Y7LAAAmFwcAAAAAAIB3kHgCAAAAAACAV5B4AgAAAAAAgFeQeAIAAAAAAIBXkHgCAAAAAACAV5B4AgAAAAAAgFeQeAIAAAAAAIBXkHgCAAAAAACAV5B4AgAAAAAAgFeQeAIAAAAAAIBXkHgCAAAAAACAVwT7OgAAAADAFWu6dVOr116zL1/dr58PowGqGT5cysw8vhwd7btYgGYsp7hcX+7MUZeWFo3qYvF1OHABiScAAAAEhPLgYB2LirIv20JCfBgNUE1IiNSqla+jAJqlHZlFSt2SpdQtmVq5N1exFrN+v7q/r8OCi0g8AQAAAAAAv1FuNfT9vlylbs3Ugq1Z2nK0yOH560ckKirU7KPo4C4STwAAAAAAwKeyi8r1xfYsLdiapcXbjimrqLzGfq0jgvWPoQlNHB0ag8QTAAAAAABoctVL6MptRr3rMNop8JB4AgAAQEBIyM7W1A0b7MuR8fG+Cwao7vBhafHi48tTp0pt2vguHsAPVS2hS92Spa0ZRfWvVE1aXqnmLD8gSQoO9k5K4/IhiercionLPYXEEwAAAAJC9/R0vfHCC/blV4YP92E0QDXbt0uXXnp8+fnnpf51TH6cnCx16ODcvmqVZNQ86sNUUuLYEBZW8Tj5ZOfOO3dKhw65EHgVffpILVs6thUUSOvXu7eduDipVy/n9l9+keno0ePLYWH1b2v48IqJ26s6ckTats29mDp2rHhU9/33ks3m8mZMhiGjpvO9a5eUluZeTL17O09IX1go/fyzZLFIAwY4H3sAqlpCt2jbMR2rpYTOVS/8eMRDkdVucrdYEk8eROIJAAAAADztqqvqfv7BB6Xbb3dunzhRKi2tcZUa0zTJydKePc7tTz8tPftsfVE6+uILacoUx7Y9e6QxY9zbztlnS5984tx+5ZUKW7XKvW0dOSJVH9345ZfSX/7i3nbuu0+66y7n9tNOq0j2uCi0bVuV7Nzp/MRzz0lPPuleTAsWSNOnO7bt33/8fA8aJK1ZE9DJp5fWHtKdi/e7VEKH5ovEEwAAAPzeC4MHy1ZQ4NA2u1Mn3wQD1MTC6Ah4wOHDx/+/fr20caM0dKjv4nHD/DN7640UyTAMrT2Qp0Xbjmnx9iyV28p8HZrbftyfr3GdY30dRrMR5OsAAAAAgPqEmc0KrzaXR0gQv8rCjwwYUDFCBWiM7dsdl4uLfRNHA1iCzYoMNSsqLFgTu7bU/03tot+uHapdN56sZ6Z30WldYxViNvk6TJd8tumYr0NoVhjxBAAAAACNFRJSURa1caNryYLk5Jrbv/661jmeSqrN8RRWOcdTTa67TjrvvPrjqKpPH+e2Tp2klSvd205cXM3tL7ygkipzPIW5MsdTbKxz2+TJ7sdU0/xOkrR0qVtzPJXW8tro6qulc85xL6bevZ3bapr3K8B1bmXRNae00zWntFNucbmW7sxW6pZMLdyapYxC9+d7mtW3lSzBFX94MJs9f3e7nw8U6Kf9BSous8kSwh84PIHEEwAAAAJCZmGpavk6C/iHkJDGl0WNGlXrU0b1hFZd5X1du1Y8GisyUho9uvHbkaT+/R2PoaHliQkJFQ9PGDnSre5Or0GlLl0qHo0VEdH4bfixFpZgnduntc7t01pWm6E1B/KUuiVTC7Zm6dfDrs21Nbx9lK4YWnHHSIsXSlxPfnKTiktLtGJHrk7vFevx7Z+ISN8BAAAgIPywP9fXIQAAPMQcZNLIji300OTO2nTNEJdL8h5bdUjF5a6PUnNHWk6pftpfMZ9g6mbK7TyFxBMAAAACwqr9Ob4OAQDgJZUleV9e2k8Zt4/Qh7N66pJBCWod4ViolZZXpjc2HK1lK42zsEqyKfW3YzJqK62EWyi1AwAAgN8rLrfqx7Q8hzbDMBQY09QCANzRwhKsmX3jNbNvfI0leY+tOqTZA+Pl6UK71M3Z9v/vzy7VL2mFGtAu0sN7OfGQeAIAAIDf+3p3torLHf/yvCOrSN19FA8AoGlUluRVluVtOZSjRTuytTG9UOO6eW5OrKJSm5ZtcxxZu2BzNoknD6DUDgAAAH4vdWumU9uqfZTeAcCJplPLMF15chsNbx/l0e1+vSNHRWWOc0el/sY8T55A4gkAAAB+zTAMLdheQ+KJycYBAB5SU5Jp7f58Hc4r9UE0zQuldgAAAPBrGw/n60BuiRTbRreferm9/YvyaB3KK1FSdJgPowMABDrDMLSgyvxOx9ulhZuzddnwhKYPqhkh8QQAAAC/VllmdyAmQQ+PudDhuYXbM3X54La+CAsAPK9VKyklxXEZXrf+YKEO5tQ8sin1t2MknhqJxBMAAAD8Wuo25zK7Sgu2kXgC0Iz07i19/rmvozjhLKhjLqel23JUXGaTJYSZihqKMwcAAAC/dSivRD+m5dX6/NJdx1Rcbm3CiAAAzU3q5toTTwWlNq3YwZyCjUHiCQAAAH5r0fasOp8vLLPp693ZTRMMAKDZScsp1U/7C+rsU1diCvUj8QQAAAC/lboto/4+W2svxQMAoC4LXUgqpf52TIZhNEE0zROJJwAAAPil4nKrlu46/oVg5L5NKr5vsv0xct8mSdKC7Zl8IQAANEhNd7Orbn92qTYdKvR+MM0UiScAAAD4pa93Z6uwzGZfNhlSmLXM/jD9kWs6kFuijYfzfRQlAHjQpk3S+PHHH5s2+Tig5q2o1Kal23Jc6pv6W7Z3g2nGSDwBAADAL7lTQke5HYBmISdH+uab448c15IiaJivd+SoqMofOOqSWsed71A3Ek8AAADwO4ZhaMF2NxJP20g8AQDc404yae3+fB3OK/ViNM0XiScAAAD4nY2H83Ugt8Tl/j+m5elQnuv9AQAnNsMwXJrf6Xh/aaEb/XEciScAAAD4nYaUzi3anuWFSAAAzdGGg4U6mOPeCKYFLtwBD86CG7KSyWTydBxNLtCPIdDjlwL/GIjf95rDMaBmzeG1DfRjCPT4pcA/hkCPv7i4uFHrf7b1qNvrfLrliC7s3bJR+62qsccA/xbonzH4h6KiIo9uz1RSorAqyyUlJTK8eC0K9M9BY87//za6/3Pmy605ys4rlCXEc2N4Av01cAUjngAAAOBXDuWXat2hAklSmNmkK4ckalrXWKd+p3WO0cX94mX+43f2r/fkqLjctUliAQAntoVbjk/cPvmkaN0yvo1Tn+6tw3TvlCTFRZglSQWlNn27m7uouovEEwAAAPzKFzuz7Qmnzf8YpMcndVJ8RIhTv4TIEL00rat++dtAXdwvXiXlNq3Yyx2gAAB1S8st088HizT5pGituKK7PpvdVYPbhTv1Cw8x6eZxbfT7zb3tCahFv+f6IOLA1qBSOwAAAMBb4iOCtfkfg9Q2OtSl/l1aWvTStK669ZR22p1NeRwAoG5H88u04oruGt4x0qX+0WFm3Tyuja4Y0VoLfucPHO5qUOLJMAxPx+F11esmA/0YAj1+KfCOIdDjl3gP+YMToYbbE5rDaxvoxxDo8UuBdwyBHr/keAwWi6XB25nZr61Tm9lsdmoLNpsd9tM7yaLeSQ3erZPGHAP8X6B/xqTAP4ZAjL/63G8ev06EhVVbDJO8eC0K9Negoed/eBfn9UJDnP/YYTIFOezDYpEuHeFasspVgfgauPudhlI7AAAAAAAAeAWldgAAAAgIJcEh2hNzfPLX8hr+Og0AAPwLiScAAAAEhJ/a9VTnG96zL9/Zs6MPowEAAK4g8QQAAAAAgD8YNkxKSzu+HBfnu1gADyHxBAAAAACAPwgNlZI8eJcEwA8wuTgAAAAAAAC8gsQTAAAAAAAAvIJSOwAAAASELlkHdd3qj+3L5V2vkdTFdwEBAIB6kXgCAABAQEjKy9K1a/9nX34lc5YPowEALzh6VFq27PjypElSfLzv4gE8gMQTAAAAAAD+YOtW6YILji+vXEniCQGPOZ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAACApmCzSfu3SZtWVfxrs/k6IgANYBjS3r0m72zcZpPCTVKMqeJfrhMOMvPLlVts9XUYcBOTiwMAAADelL5XevNW6cgSKbrKl8i8IClhinTJI1Jisu/iA1CvwkLpq6+kTz8N1uLFZt1wQ7muucaDCZDK60T6F9It0cfb/3eG9MPpXCf+YA6Sej2wTf3aWjStTwudM7i1OrcO83VYqAeJJwAAAMBb3n9E2viAFCIpUpKqjJKItEqFi6RnFkkD7pTOv9VHQQKoycGD0sKFUmqqtGyZVFwsScFKTDR0+eUeTDpVvU5ESw7XiWgb14kqYiOC9fdRrfTAkqP6eluBbvrfIfVOsiilX6xS+sdoROcomYO8NBoNDUbiCQAAAPCG9x+Rfnug4jduk8nhu6QkqfLLUbBR0e99nfBfKgFfstmkn3+WFiyoSDb9/HPN/W68sVzh4R7aKdcJt109rrWe+yZTOcUVI0g3HyrW5kPpeuTLdMVFBmta3xil9IvRlN4xahFu9nG0kEg8AQAAAJ6XvrdiBEOwjn9xrE2QSbIZFf3HzaKcBmhClSV0qakVCadDh+ru79HRTlwnGiQ23Kyrx8XpgSVHnZ7LLCjX/DWZmr8mUyFmk8Z1j1JKv1jN6BerLvGU5PkKiScAAADA0968taJsxuRiyUeQSQoxpLduk275r1dDA050Bw8eH9X01VeVJXSuOftsq3bvPv65DmtELqP9u7eqRYhkambXiTKrTdsOl3ht+yUlJZp4UpQeW5ahUqtRRxyGlm3J07Itebruw/2U5PkQiScAAADAk2y2ionEo9xcz5B0+IuK9YO4+TTgKa6W0Lli3rxgzZvnia/RNpVcs0Rq6eZqAXCdOJJXrr73/ebrMJxQkuc7JJ4AAAAQEH5L6KQpFz1iXx7TqbsPo6nDwR1/3L3Ozb+mB5kq1kvbJbXv5pXQgBOFuyV0Ta17+A6FtuI64Ss1leR1bB3i67CaLRJPAAAA8HuXDEzUiPYtlFc8SJYQk0LMJg1MdHdIURPJdp53xC3HDvOFEnDT96sNvf5WxWTTGRnS6jVSeppJKvfPUUEJoc33OpGeXe7rENxSWZInk6HoiGCd3jtGE3tGy2wyqVUEKRNP4CwCAADA741NjtXY5Fi99vUxJUUEa+qgaF+HVLvY+Mat37KNZ+IATiDbdxj6zxuO8/0MH2nobxcHKTVVWrq0YhSUvzhS2nyvE5+vz/F1CG7p3y5cM/rFKKVfrIZ1ilQQcz95HIknAAAABIzUdflKaunniad23aS8ICnSWv+dqqqyGVKBWWrbxXuxASeQ0FDpr3+teBQVScuXHy+9O3Cgods0ZHaYDqhhSYoDRjeVZQUpONYqUzO7Tiz7LV/BQRUjU72jIsFYVFb7xOJ1CQ02acJJ0X/c7S5GyXHc7c7bSDwBAAAgIBSX2rT0l3y1ijLr+b8mun4nqKYWFCQlTJEKF7m3nklSm9P9dsJgIJCFh0vTplU8XnhB2rixIgmVmir9+KPr27nqKqsefPB4KZnFYmlgREHSI83vOpFdYNXaXYXqmRSlTQ/08Mo+iouLtSezVP0e3KZym2vrJEQHa3rfGM3oF6vTerVQtIXJxJuSf75bAQAAgGpWrjuq5CPbFb1ri7YuXS8VFPg6pNpd8ohUporRCa6wGRX9L37Ym1EBkGQySQMHSnffLa1dK6WlSf/5j3TmmVJERN3rvvSSWUeOeCiQZnidWPJrrsqt0q8HirXnaKnX9vPosqP1Jp36twvXHacn6oebe+rQwwP02sWddc6gliSdfIDEEwAAAALCpk9/0G9fnqnfvjxTPacMkdav93VItUtMlgbcWfH/+r5UVj4/8O6K9QA0qaSkinK8Tz+tmJh84ULpiiuk9u2d+xYWmvTUUx4qHGqG14nU9bnH/7/BO3M97cks1fy1x5zaQ4NNmtK7hZ47v6P23N9PG+/qowfObK8RXaKYt8nHSDwBAADA7xmGoVVb/WhmYFecf6vU506pvCJ+o9oXS8NmSIYhlUvqe7d03s2+iROAXWVJ3rx50r59Ffnte++VTj75eB+Pjnqqcp2QYTgnoALoOlFuNbTolzz7ctUklCdVHe2UEB2sS0+J08d/76qMxwbqi2tO0lXjE5i3yc+QeAIAAIDf+2VviQ7nWh3asvIC4Jbd598qXbtJRwqmqzzb8Vdva3aQFDlduv43v/4yCZyoairJe+GFMk2caNMrr3iwXOuP64Qip1dMHF5VgTlgrhM/7CjQsYLj1+kVWwqUW2StYw337cks0YYDRbplUrxWXNeFEroAweTiAAAA8Hup6/Kc2n7YVqTpU30QjLsSk/Xr1P9qzqRv9V34eClUUql0QcwKfXBorK+jA+CipCTp0kutuvRSq6yezadUlM/d8l/JZpPSdknHDkst21Tcvc5PJxKvLnWD4winMquhL3/N08yTYz22jw4tQ/X9v7rZlymhCwyB8Q4GAADACW3Bz/lObQFXeqcgqciQcoyKf038Kg4EKrO3BtcEBUntu0n9RlX8GyBJJ6nm0roFGzxbbmcm0RSQAuddDAAAgBPS4exyrd1R5NS+dmeRiktdvJc2AMBrdhwu0ZZDJU7tCzfmyurqXfvQbJF4AgAAgF9b+HOejBq+txSXGVr+W0HTBwQAcFDbROIZeVat2Rloo1PhaSSeAAAA4NdS1zmX2VVaUMdzAICmsWBj7SV13rq7HQIHiScAAAD4reJSm778pfbkUuq6PBk1DYfyQ1vVQ3/Wu/bHrpAevg4JABotp9Cqb7fWcZ328DxPCDzc1Q4AAAB+a8XmQhWW1J5Y2p9Zrl/2lmhAJ0sTRtUwGYrXe/qzfbkzd/4G0Ax8sSlX5XXc5e+3g8XafbREnePDmi4o+BVGPAEAAMBvpf6UV3+fdfX3AQB4hyuldJ6+ux0CC4knAAAA+CXDMFxKKi34mXmeAMAXyq2GFv/iwh8ImOfphEapHQAAAPzSL3tLtD+z3L6cGRqrT9pNcliWpLU7inQ4u1xtYvnVFgCa0g87CpRVUEed3R9WbClQbpFVLcKpMT4R8dMZAAAAfqn6aKctLbrq3JFPO/UzDGnhz3m6bGLLpgqtQUJUqjhlHl824iSF+i4gAGgkVycOL7Ma+vLXPM08Oda7AcEvUWoHAAAAv+TO3E2p6/y/3G6Y1uqQ2tofA0rW+jokAGgUd0roKLc7cZF4AgAAgN85nF2utTuKXe7/5S/5Ki61eTEiAEBVOw6XaMuhEpf7L/olV1Zb7XcpRfNF4gkAAAB+Z+HP7t2prrDE0IrNhV6KBgBQnbt3qsvIs2rNTq7TJyISTwAAAPA7DSmdS/3JvWQVAKDhXJ3fyWEdyu1OSA2aXNxkMnk6jiYX6McQ6PFLgX8MxO97zeEYULPm8NoG+jEEevxS4B9DoMdfXOx6mZzTuqU2fbnxeOKpbUuzWoQHKWTzr3rh5/vs7c/MuFdfB3VTZn5Fid3nP+Xq/y6M9di5a+gxrF9v0ooVQfr7362KjKxoKy11/nuvYdgc9vH77ya9+65Z991X7tQXnhfonzEp8I+hoZ+xr5abtGev9JcLDIX+MT9/WZlJkuMd02w2w2EfP66Tvl5h0q3/ani5V3h4eIPX9UcNfQ1yiqz6dsvx63RyXIiCzdLOI2UO/YZ0smjH4VLlFP1xnV6frTlnNO5GEM3tNQj0z7ErGPEEAAAAv/LN78UqLDXUtqVZT10cp83/11HDu1nUojxfozPX2x8TOpRryxMddd95rRQXFaQDWVZt2l/q6/DVu7ehBx8MVq9eYXrySbMKCuru//vvJl18cYiGDAlVHoO2gHr16W3o6hvN6jvUrFffMKm0no/9j+uks88P0tjTgmXmvu4e8eWvBSq3VSSc5v2ljTbd11n924c59Tt7cJS2PNhFd6fEKSY8SJvTSrUnw/fXaTQtPnYAAADwK7/sK9FTF8dp9rgWCgup+y/BUZYg3TQjVldMaqEXl+Vq7Y4S9e/o/OWnKYWFSaeeatNnn5l1xx0hevLJYE2c6DzxeVFRRcLpo4+CZBgVxzl9OhOkA/VJbCMNHWzop59NuvpGsx55wtCggc6jmNIPVyScvlh6fLzFtMlMbu0Jvx8q1by/tNGFp8QoxFz3dTo2wqw7ZrTWlRNb6oWvj+n7HUXq1Dq0iSKFP2hQ4skwAu/DWn34WqAfQ6DHLwXeMQR6/BLvIX9wIgyl9YTm8NoG+jEEevxS4B1DoMcvOR6DxWJp8HbumpnodD7MZrNTv2Cz2b4fi0W6a2aEDMNo8LW2qKjIYbkxx3DWWdJnn1X8/+hRk95/36xR1fpk55i08MPjxxUVJU2eHKow3+bNThiB/hmTAv8YGvMZO3OGTT/9XJGo3X/ApP0HnD/3O3eZtHPX8fbOnaRBA8M8+vtYoL0G1Y+9oa/BA39q59J1OiQ4xL6PRIt078zIRl2nJcdrdWPeQ75SvbwxEI/B3dePUjsAAAD4lcZ8IfGXBP+0aZK7oUyeLJJOgItSprn/WU+ZZvKba0Sgaw7XaTQdEk8AAACAhyUkSCNGuLdOSop3YgGao/79pA7t3VunIckqAI1H4gkAAADwAncSSSZTxSgpAK4xmUyaMdX1RFJ0tDR2NIknwBdIPAEAAABeMGOG632HD68YJQXAde6MYJoyyaTQUBJPgC9wVzsAAADAC/r2lZKTpb17K5ZzFKMVGmd/Pkcx9v9TZge4b8I4kyIjpYKC+vtSZgf4DiOeAAAAAC8wmRwTSr+qnyZohf3xq/rZnyPxBLjPYjHptIn1J5SCgqRpU0g8Ab5C4gkAAADwElcSSsnJFaOjALjPlZFMpwyXWrcm8QT4CoknAAAAwEvGjZOiouruM2NGxegoAO5zZSRTyjS+9gK+xCcQAAAA8JKwMGnKlLr7UGYHNFxioknDhtbdh/mdAN8i8QQAAICAsKZVf8WfsdL+2N9tsK9Dckldd7eLipLGj2+yUIBmqa4RTZ07Sb16Nl0sAJyReAIAAEBAKA8KUUZYK/vDFhzi65BcMm1aRSldL23WZzrD/uilzZo8uWJUFICGq2tEU8o0k0zUsgI+FezrAAAAAIDmLCFBGjFCCvohS2co1d7+qG6pczQUANf07yd1aC/tP+D8HGV2gO8x4gkAAADwsprmcTJJmj69yUMBmh2TyaQZU50TTC1aSGNHk3gCfI3EEwAAAOBlNSWeeveuGA0FoPFqGtk0ZZJJoaEkngBfo9QOAAAAASG+OFOTD39vX47MmSHJc5mbvAJDX60p16Jvy3XOpBCdNcljm1afPlJiG0mHj7eNGuW57QMnugnjTIqMlAoKjrfVNAoKgS2n0KrUH/O1aH2hLhsfrUkDLb4OyS1Wq6Hvt5Ro0U9FsoSYdNf5Mb4OqUmQeAIAAEBAOCl/j95ee5t9+ZWpvSX1adQ296ZZlbq8VKkrSrTixzKVlkld2pv0wl2e/TJjMv2RaPrkeBuJJ8BzLBaTTpto0qephiQpKEiaNoXEU3OwM71UqevylLouT9/+XqhyqzSgY6hG9QiMpFNuoVVLfi5U6poCLVpXoMxcmyTppyfa+DiypkPiCQAAACcMq9XQ2k3lSl1RogXflGrTNqtTn9svD1NwsOe/sFZPPHXp4vFdACe0GVOPJ55OGS61bk3iKRCVWw39sK1QqevylbouT1sOljr1uePsln59t8Jd6WVKXZOv1LUF+va3IpWVOz5/zinh6tMx1DfB+QCJJwAAADRreQU2Lf2+TKkrSrTw21IdzTJq7dulvUmzpnrnV+SBAx2X/fg7ExCQpp9+/EOVMo3pjANJTqFVX2zI14J1+Vq0Pl9Z+c5/FKg0oGOoUgZHNGF09bNaDf2wpVgLfixQ6toCbd7nnCyr6o4/tWiiyPwDiScAAAA0OzWV0LnCW6OdJCn0xPnjNuATiYkmDRsqrf2p5snG4V92pJdqQbUSOlf4y2innAKrvlzvXEJXnxNttJNE4gkAAADNgCsldK544q1SPfNOxV+qTaZCT4aoQZm5esOjWwRQXcq0IGVk2tSrp68jQXWulNC54r5Pjun+T45JkkxB3klAvXpFWw3tGu7UXrWE7ptfi1xOllW1Zluphv0r3b7sjSTazFFRuvvPcR7fbkOReAIAAEBAitv9m755MlKr1pfpw9/baENhO6c+pxSuVZBc+yu0JJX+Fqofwwc7tXcu3aO25ek1rFG7zWE9dMzc0r4cXdiwZBgA182YatLRDJNfjIiBVFxm0/vf5yj1p3wt3lB3CZ2rft3fsISVOwpKKn5uVJbQpa4t0IIf6y+hc8XBTKsOZnr358GInuX1d2pCJJ4AAADg93q0DVVEJ8c7GJ3z1u3SW9I4SYXxt2lD/I1O6y3de54iDddHLh0ITlKHkzY6tV+d9apuzHrJrZind3hHi6JPc2jbF9xOHcsPurUdAPU7lG5oy3abDMPQwIHS8pVWxbQwafAA5npqKn3aWZSRV5HwOJxj1aFjZbrnwwzZygLvNdh1qEyvLk53q4TOn9j8LGQSTwAAAPB7t5zZWmrXWXrd15E03PbQLjqzw1tav/vUigZLYNwKHAgEXy63avbVjpO5jTklSN8uCPNRRCeeuWcn2v9vtRlas71IqevylLouX7/tL/FhZO7rkhSiCX0jNewki1LXFmjFpiKVltd+Ywp/s2m390eFuYPEEwAAAALDgAHSoEHS+vVOT6WMD9XPrUL19ZpSlfjX79t2R4ITFGvNrVgYNKjieACgGTIHmTSyR4RG9ojQQxe00e4jpVrwx9xOK34rUFkAVB53ahOiq1NidXVKrPIKbVq6oVCpa/O18MdCHc3x7wPYsLNUe9LL1CkxxNehSCLxBAAAgEAREiKtWSNt3CgVFzs8NbxjRy3qGKOCQkPLVpcqdUWpFqwo0WnJH7g1x9Pls6L0/tiKkUihVW5DF5F2nb7NPM+tcK9M7qW/tXC8Zba5uKcyQler9fjBFccDACeAzgmhumZqK10ztZVyC6368pcCpf6Up0Xr85WR514S56mL45TUsiKVEeql62if9o4j5aIjgnTOyCidMzKq4mYW247P+7Rpj3t/7Zg5Mlx/Gh1hXw4N8ewd7n7fV6o7XsnWgtVFuvos//g5Q+IJAAAAgSMkRBo6tNanIyNMOnNimM6cGCabLUo//Tq5Ign1Tak2bKl/stXOtmC9MqHiF3WLpeoXj15/PBorTNJwD2wHAAJTiwizZo5ooZkjWjSoJG9bepn+MSlGkmTxQcmy2WzSKb3CdUqvcD14SWvtOVymBWsLXC7J+35LqV65Ok6W0IoJ8D19DKt/zZIMk1J/KNTVZ7Wof4UmEHizfAEAAAAuCAoyaVj/EN13baTWf9xS+5a10gt3R2nqmFCF1fIH5v8uLtfO/X42KysANFOVJXkPXdBGvz7eVbue66ZnLk3Uaf0jFWKueZ1Xl+cp7Zj/3LWtsiRvyX3tlPFuF318R5JmT4pWfEzNB5CWZdUbX+V7LZ7UHypuqLFiY5HyCv3j5xmJJwAAAJwQOiSZ9c9Z4Vr0YowyV7XWp8+20F/PtahN3PHbrlut0sP/CaxJcAGguagsyfvyrmRlvNpDH97YXpeMi1Hr6ONJnJIyQ48vzPZdkHWoLMl7/fpEHXqrs75/rL3uOK+l+nVy/GvHY//LU3Gp5ycr35VWps17KybZLy2TvvypyOP7aAgSTwAAADjhVJbk/efeaKWtiNOa/8bq9stDNaBHEKOeAMAPVJbkvXFVO6W/cpJW3ddJt50Vpz7tQ/xu1FNNKkvyHri4tX55Llm7X+2kZ/8Rr9MGWpSR651RTwtWF9a57CvM8QQAAIATWmVJXv+TwvTvf4Zpf7pNBUWBc9tsAGjuqt4lb845MdpztEyFJYF1na4sybv8NIvyimz6bV+Zx/dRWWZXaeGaQlmthsxmUy1rNA0STwAAAEAVHRIpCgAAf9Yp3j/u1tZQ0eFBGtEjrP6ObsgtsOmbXxzv+Ho026a1W0p0Sp+mn4S9Kn6qAgAAAAAABLAlPxWprIbqw+qjoHyBxBMAAAAAAEAAqy3BlOoH8zyReAIAAAAAAAhQVquhRWtqTjD9urtMe9I9P5+UO0g8AQAAAAAABKjVv5coM7f2u7EuWF3UhNE4I/EEAAAAAAAQoOqbx8nX8zyReAIAAAAAAAhQ9SWWVmwsUl5h7SOivI3EEwAAAAAAQADalVamzXvrnsOptExaus535XYkngAAAAAAAALQAhfvWufLcjsSTwAAAAAAAAHI1YTSwjWFsloNL0dTMxJPAAAAAAAAASa3wKZvfil2qe/RbJvWbinxckQ1I/EEAAAAAAAQYJb8VKSyctf7+6rcjsQTAAAAAABAgFngZiLJ1fmgPI3EEwAAAAAAQACxWg0tWuteImnT7jLtPVz3HfC8IbghK5lMJk/H0eQC/RgCPX4p8I+B+H2vORwDatYcXttAP4ZAj18K/GMgfsC7msN7NNCPobjYtblpqtu81VBcK6lN/PHjLytznjTZZrM57MNqNfT9WmnMKZ47b4H+GgR6/M1BUVFRg9b7fnOpMnJs9uWQYNVYdhcaLJVWaf/k21z9MyWyQftsKEY8AQAAAAACRmmZ1GuEdNu9hg4frf8uXVarof9+YmjwBOl/i5ogQKAJLFpTkVQNCZb+Ni1Cv76SIEuoc78lD8fprgujFBNZkWRctLZhCd/GIPEEAAAAAAgYA/pIrVpKT79UJQGV4dzPapU94XTZNdK2ndK0SU0fL+ANy34usSecnrkqRh0TzDX2i4006c4LorXltQTddWGUftlVrrxCW419vaVBpXYAAAAAAPiCyWTStEmGXpkvFRVXJKBqsvqnikelqEhpzIimiRHwpnKroQ/ublVrsqkmsVFBuvOCaF11RqTKrF4MrgYNSjwZRv3DGf1N9drVQD+GQI9fCrxjCPT4Jd5D/oA6etc0h9c20I8h0OOXAu8YAj1+ifeQP+DnjOuaw+sb6MdgsVgavJ2zplv1yvxSt9aZMjFIMTFhDd6n5DwfT2OOwReqz6sVaPFLjscQ6PFLDT+Gk2qcpskkyfG6EBYWJkuVGrxEH5wySu0AAAAAAAFl4pggRUS4t07KFNdHhwDwHBJPAAAAAICAYrGYNGms619nTSZp2mkkngBfIPEEAAAAAAg4Kae7nkgaMTRI8a0pRQV8gcQTAAAAACDgTHdjBFPKFL76Ar7Cpw8AAAAAEHCSEk06eZBro5jcGR0FwLNIPAEAAAAAApIrCaVOHU3q05MyO8BXSDwBAAAAAALSjMn1J55SpgTJZCLxBPgKiScAAAAAQEAa2M+k9m3rTiqlTKHMDvAlEk8AAAAAgIBkMpk0Y3LtX2ujIqWxI/naC/gSn0AAAAAAQMCqa56nKRODFBZGmR3gSySeAAAAAAABa8LoIIWH1/wcZXaA75F4AgAAAAAErPBwk04b5/zV1mSSpp1G4gnwNRJPAAAAAICAVlO53SknBym+NWV2gK+ReAIAAAAABLTpNYxsqmvS8YawWg299ZFV+9IMj263KS1dZdXqjVZZrYF5DLsPWvXJ12XKLQjM+A3D0NtfFGt3mtXXoTQpEk8AAAAAgICWlGjSyYMcRzfVNel4Q5jNJv26zVCPcWUallKmuU+Ua/XP5bLZ/r+9u49to77jOP45+852mpb0uYWEPlCttDQNDGhLmzap0ySlxO4kYAgNtgEaCLYC05CQQKDBxrS1DDHGNsRWAaIDRoc6bWJiBVUaVbXBeCyDduvG4xIektCQ5uli+3z7w5QmkNRu8dV34f36L9bZ+f58p/spn3x/vwtOCDKpQop/fVBzGwZ0xc2D2rY9pZ7e4NQ/a2ZIt95rq2rtASWu6dPdj/TrzbbghDiGYeit9x2dclGXTr+kSzf9uk+7dg8GNggsFMETAAAAACDwEkM2Ep8zy9CiBcVfZve9y8OKRaV//svVxnuyWv6Vfh1/Rq8uu25Af3girV6fd+KcWR3WurqQOrqkLX90dN7VvZq6rEtrLzugX2yx9bbPQ5xw2NANl0WVzkg7/pHRNRt7dFJLp6rP69QNP+/R315O+T7E2XB+mSrKDe1929Edjwxo1ZUdmtHynr5x6379fke/DvRlS11i0RE8AQAAAAACb+gT7JJrQzKM4gdPM6cZuvxrw/+Mbu90df/WtM69YkBTanp09sV9+uUDKb3T5s8A4cYrrWE/p9LSk7syuvqH/ZoT71ZNsls33tGvv7+U9mWI89VGS/NnDz8Hr73u6Cf39av2ki7NbOzQN2/q1mNP2TrQ679zMHF8SBvOjw177cPurLb8pV8X3LRfU89+V41Xd+iuR3v0RlumRFUWl+G6bt4rqaqqSm1tbZ/8XMBbfOfTN52gjyHo9UvBG0PQ65e4hvzg02OorKxUa2triarxD+YZf+AeUVpBr1/iGvID5pnRMdf4g5f3Cdd1NatmUK3vunrysYia4sV/op1t23q/w9XCeFr2YP7jaxaGlGw0lWg0tfS0sEKh0m52btu2JOncDbae2Jk/lJk22VDLakuJeETNtZYmjC/9Zu22bet321O69PsDeY+1TGn1mREl6qJK1kc1t7L0Tzm0bVsf9Wa14MIudRfQIXfKXFOJ2piSK8u0vDqicHj0c1C27i3ZqeGfuee+Si2cHfncdQ91pHONWdTfDgAAAABACRiGoURzSPdvTeu5V9N6cW/xu0XS6dxStHmzDb22L39o8MrerF7Zm9KP7k5p+lRDLQ2mko2mmupMjS8fOUB4dndGf302XdS6D0pnct/JxOMKC5A69rt6YFtKD2xLKWJJq5eZSsYjSjZYmj1KiNPTl9WvtuYPhY5WOp3bVyti5bq1DntsRnrqmZSeeialazf1aNG8sJL1USXrolq22Bo1xHl4e7/+1+5Nt9HBczCvMqwX9+X/HXvezGjPm73a9NteTakI6ZzlMSVXxtS8LKaK8cFYxEbHU4DwX8TSCnr9EteQH/Cf6JExz/gD94jSCnr9EteQHzDPjI65xh+8vk/8+UlHF13br26fb5gdiUjx5WElGy0lGk3NrjoUINy+eUDXb/IuuCmW6vlhJeOWkg2WltaYn4Q4bR84qlrbWeLq8ps6ydA5tblOqOblER03JMSpv6pdO19OlbC6/MywVP/lqJIrc91QJ1WadDwBAAAAAOClhlUhTZpo+D54SqWk7U872v60ow0355bkJdaYSjaZCkqe+Oo+R6/uc/Tje21Nm2zonHpLyYaIqucHowuns8vVg4/bevBxW5Yp1Z8RyXVD1UdLXVpBMo604/lB7Xh+UN/9WbcWzjGVyfjz4iF4AgAAAACMCWVlhiZWSApYo9+/38iqcmZWVcdn1dfvz/DgcDr2u3ppj6OqmRmNLy/9PkpHKp2Rdu9Lq2pGSFUzQoEJ/4b6b2tGKxaPU9PSmBK1ZZoxORcATq0o/fkgeAIAAAAA4BibMc3IdTk1mmpcZap8XG750u2bnRJXVpiIJTWclVtql4hbmnVCLuBo+yAY9UvS4i+ZStZFlayPaMmiQ3s+3fXYgRJXVpipE0NqWZHb86lpaUzHlfuz24zgCQAAAAAwZjTXmZo/N/8T246Gk8197nO7s3qnLc/BIzht0cdPuVtj6cxTQyM+5e7kuWFdsK64e/Ic5GRzodAHna52vXDk39H0KYYScUuJ1RE11VojbpBeFjN0QbN3y9UcJytX0uM703k3F/+0iCXFl0SUrIuqZVVUc0bZID1+RlQzp3jTKeQ4uXPw8n8yer3tyM9B9UmmkivLlKiNadmiwz/lzi8IngAAAAAAY8bGG2OefbZt2+rrd7VgdWGBQTQqNazIdTUlGk2deEL+jpT1ayJav8ab4Mm2bUnSt28Z1K4XCnvPqQvCSsRz+zctWRweMSwbanJFSI9umvg5Kx2dbdt6+oWMtu0oLHWaNslQy6rc3k1NZ0U0oYCuoFu+VfF5yxyVbdtKpV0turiroOMtU1p9evSTsGnuCcGLcYJXMQAAAAAAJXLvQ1l1HiYzGG0JnV+81ZrVlj+NvhxutCV0fuG6rm7bbB/2mKFL6JZWW3nDsmPtwSdstbaPHl4OXULXvDRWUFjmZwRPAAAAAAAUoK/f1Z2/+WxoU8gSOr/YtDmtTGb4aweX0CXjETWuGHkJnV/sfNHRrpeGn4OhS+gSdVHN9llYNlQq7WrjQwOfeT2IS+gKRfAEAAAAAEABDnY7RSNSfLmh9c3RgpfQ+cHQbqeakw2tXxNVIl7YEjo/GNrtNH2SoZaPg6ZCl9D5wcFuJ8uU6k+ztL6uPLBL6Ao1dkcGAAAAAECROI6rjw642nqPqYYVhsrHGYrFvNmLySvP7M7qp9dbWlcf1qzjQ4rFvNsPywtvtDpaUWPqtu/EtOSUsMaNKyt1SUfEdV2992FWD98yQY1LLE0YF7xzcDQIngAAAAAAyCMcNvSD64L9J/SFLcGuf96Jpm69KrhBjWEYuvnS8lKXccwFoxcNAAAAAAAAgUPwBAAAAAAAAE8QPAEAAAAAAMATBE8AAAAAAADwBMETAAAAAAAAPEHwBAAAAAAAAE8QPAEAAAAAAMATBE8AAAAAAADwBMETAAAAAAAAPEHwBAAAAAAAAE8QPAEAAAAAAMATBE8AAAAAAADwBMETAAAAAAAAPEHwBAAAAAAAAE+YR/MmwzCKXccxF/QxBL1+KfhjoP7SGwtjwMjGwrkN+hiCXr8U/DFQf+mNhTFgdGPh/AZ9DEGvH0Bh6HgCAAAAAACAJwzXdd18B0UiEaXT6WNRDwB8oViWpVQqVeoySo55BgC8wTxzCHMNAHgj31xTUMeT4zhFKwgAcAj31xy+BwDwBvfXQ/guAMAb+e6vBe3xFIvFZNu2wuGwpk+fXpTCAOCLrL29XY7jKBaLlboUX2CeAYDiYp75LOYaACiuQueagpbaAQAAAAAAAEeKzcUBAAAAAADgCYInAAAAAAAAeILgCQAAAAAAAJ4geAIAAAAAAIAnCJ4AAAAAAADgCYInAAAAAAAAeILgCQAAAAAAAJ74P5hb+/v0SPUCAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRuUlEQVR4nOzdd3hUZdrH8d9kUiaNBEJCQgtN6R0B6SCClFhZYa3ourv2tmvXBXt7dW2Lq65rQV1dy6qhSFFQQAVFwIL0TgiQ3tvMef+IGTKZlJlkJjMTvp/rmgvOc55zzn2mnGTuPPdzTIZhGAIAAAAAAAA8LMjXAQAAAAAAAKBlIvEEAAAAAAAAryDxBAAAAAAAAK8g8QQAAAAAAACvIPEEAAAAAAAAryDxBAAAAAAAAK8g8QQAAAAAAACvIPEEAAAAAAAAryDxBAAAAAAAAK8g8QQAQD327dsnk8mk119/3e1tV69eLZPJpNWrV3s8rubw+uuvy2Qyad++fW5vO3/+fJlMpgb7TZgwQf369WtEdHUzmUyaP3++fbkp5+ELrj533rBz505NmTJFMTExMplM+vjjj5vl+WvK56w5dOnSRXPnzvV1GAAABKRgXwcAAAAA/3D55Zdr7969evjhhxUbG6thw4Zp5cqVvg4LAAAEMBJPAAAAfuTee+/VnXfe2ezHLS4u1jfffKN77rlH119/vb390ksv1Zw5cxQWFtbsMfmL7du3KyiIQgEAABqDxBMAAIAfCQ4OVnBw8/+Kdvz4cUlSbGysQ7vZbJbZbG72ePzJyZx0AwCgqfjTDQDAr1XNd7Njxw5dcskliomJUXx8vO677z4ZhqGDBw/qnHPOUatWrZSYmKinnnrKaR/Hjh3TH/7wB7Vr104Wi0UDBw7UG2+84dQvJydHc+fOVUxMjGJjY3X55ZcrJyen1ri2bdumWbNmqU2bNrJYLBo2bJg+/fTTBs+nqKhI27ZtU0ZGRoN9q+Y/+vHHHzV+/HhFRESoR48e+uCDDyRJX375pUaMGKHw8HD17Nmz1pKoTZs2adq0aWrVqpWioqJ0xhln6Ntvv3Xq98svv2jSpEkKDw9Xx44d9dBDD8lms9Ua19KlSzV27FhFRkYqOjpaM2bM0C+//NLg+dRn69atmjhxoiIiItShQwc98cQTDuvLysr0t7/9TUOHDlVMTIwiIyM1duxYrVq1yu1j3XrrrYqLi5NhGPa2G264QSaTSc8995y97ejRozKZTHrxxRddjsEwDHXp0kXnnHOO03FLSkoUExOjP//5z/XGV3OOp379+mnixIlO/Ww2mzp06KBZs2bZ22p7D2/evLnB+ZPmz5+v5ORkSdJtt90mk8mkLl26SKp9jqwuXbpo5syZWrt2rYYPHy6LxaJu3brpzTffdNhvVlaW/vrXv6p///6KiopSq1atNG3aNG3ZsqXe56AuJpOpzkdVfD/++KPmzp2rbt26yWKxKDExUVdeeaUyMzOdztlkMmnXrl2aO3euYmNjFRMToyuuuEJFRUUOfZnjCQCAxiPxBAAICLNnz5bNZtNjjz2mESNG6KGHHtIzzzyjM888Ux06dNDjjz+uHj166K9//au++uor+3bFxcWaMGGCFi5cqIsvvlhPPvmkYmJiNHfuXD377LP2foZh6JxzztHChQt1ySWX6KGHHtKhQ4d0+eWXO8Xyyy+/aOTIkfr1119155136qmnnlJkZKTOPfdc/e9//6v3PDZs2KDevXvrhRdecOm8s7OzNXPmTI0YMUJPPPGEwsLCNGfOHL333nuaM2eOpk+frscee0yFhYWaNWuW8vPzHeIcO3astmzZottvv1333Xef9u7dqwkTJmj9+vX2funp6Zo4caI2b96sO++8UzfffLPefPNNh+enysKFCzVjxgxFRUXp8ccf13333aetW7dqzJgxjZ58Ojs7W2eddZYGDhyop556Sr169dIdd9yhpUuX2vvk5eXpX//6lyZMmKDHH39c8+fP1/HjxzV16lRt3rzZreONHTtWWVlZDsmyNWvWKCgoSGvWrHFok6Rx48a5HIPJZNIll1yipUuXKisry+G4qampysvL0yWXXOJWvLNnz9ZXX32l9PR0h/a1a9cqLS1Nc+bMkeTee7im888/X3//+98lSb///e+1cOFCPfPMM/Vus2vXLs2aNUtnnnmmnnrqKbVu3Vpz5851eF737Nmjjz/+WDNnztTTTz+t2267TT/99JPGjx+vtLQ0t54HqfL9V/ORnJys8PBwRUVFSZJWrFihPXv26IorrtDzzz+vOXPm6N1339X06dMdko1VLrzwQuXn5+vRRx/VhRdeqNdff13333+/27EBAIA6GAAA+LF58+YZkow//elP9raKigqjY8eOhslkMh577DF7e3Z2thEeHm5cfvnl9rZnnnnGkGS89dZb9raysjLj9NNPN6Kiooy8vDzDMAzj448/NiQZTzzxhMNxxo4da0gyXnvtNXv7GWecYfTv398oKSmxt9lsNmPUqFHGKaecYm9btWqVIclYtWqVU9u8efMaPPfx48cbkox33nnH3rZt2zZDkhEUFGR8++239vZly5Y5xXnuuecaoaGhxu7du+1taWlpRnR0tDFu3Dh7280332xIMtavX29vO3bsmBETE2NIMvbu3WsYhmHk5+cbsbGxxh//+EeHONPT042YmBiH9qrXzdVzfPPNN+1tpaWlRmJionHBBRfY2yoqKozS0lKHbbOzs4127doZV155pUN7zef3tddecziPY8eOGZKMBQsWGIZhGDk5OUZQUJDxu9/9zmjXrp19uxtvvNFo06aNYbPZ3Iph+/bthiTjxRdfdOh79tlnG126dLHvry41n7uq/T3//PMO/a699lojKirKKCoqMgzDvfdwbfbu3WtIMp588kmH9prPn2EYRnJysiHJ+Oqrr+xtx44dM8LCwoy//OUv9raSkhLDarU6HScsLMx44IEHnI7dUIw1PfHEE07vn6rno7r//Oc/TvFWPc813z/nnXeeERcX59CWnJzscF0BAACuY8QTACAgXHXVVfb/m81mDRs2TIZh6A9/+IO9PTY2Vj179tSePXvsbUuWLFFiYqJ+//vf29tCQkJ04403qqCgQF9++aW9X3BwsK655hqH49xwww0OcWRlZemLL76wj5LIyMhQRkaGMjMzNXXqVO3cuVOHDx+u8zwmTJggwzA0f/58l847KirKPqJFknr27KnY2Fj17t1bI0aMsLdX/b/q3K1Wq5YvX65zzz1X3bp1s/dLSkrSRRddpLVr1yovL89+7iNHjtTw4cPt/eLj43XxxRc7xLJixQrl5OTo97//vf28MzIyZDabNWLEiEaVvVWdY/VRQKGhoRo+fLjD62g2mxUaGiqpssQsKytLFRUVGjZsmH744Qe3jhcfH69evXrZR8atW7dOZrNZt912m44ePaqdO3dKqhzxNGbMGHvZm6sxnHrqqRoxYoTefvtte1tWVpaWLl2qiy++2KGMzhWnnnqqBg0apPfee8/eZrVa9cEHHyglJUXh4eGSXH8Pe0qfPn00duxY+3J8fLzT5y8sLMw+KbfValVmZqaioqLUs2dPt1+3mlatWqW77rpLN9xwgy699FJ7e9XzIVWWN2ZkZGjkyJGSVOsxr776aoflsWPHKjMz0/75AAAATUPiCQAQEDp37uywHBMTI4vForZt2zq1Z2dn25f379+vU045xemOVL1797avr/o3KSnJXq5TpWfPng7Lu3btkmEYuu+++xQfH+/wmDdvnqTKOaU8pWPHjk6JipiYGHXq1MmpTZL93I8fP66ioiKn+KXKc7fZbDp48KCkE89RTTW3rUrITJo0yencly9f3ujzru0cW7du7fA6StIbb7yhAQMGyGKxKC4uTvHx8Vq8eLFyc3PdPubYsWPtpXRr1qzRsGHDNGzYMLVp00Zr1qxRXl6etmzZ4pBYcSeGyy67TOvWrbO/v95//32Vl5fbEyRlZWVKT093eFit1jrjnT17ttatW2dPaq5evVrHjh3T7Nmz7X1cfQ97Ss3PpOT8utlsNv3973/XKaecorCwMLVt21bx8fH68ccfG/W6VTl06JBmz56t0aNH6+mnn3ZYl5WVpZtuuknt2rVTeHi44uPj1bVrV0mq9Zg1z6N169aS5PT+AwAAjcNd7QAAAaG2u2rVdacto5Z5XDylasLtv/71r5o6dWqtfXr06OGx49V1jr4894ULFyoxMdFpfWPvxObKubz11luaO3euzj33XN12221KSEiQ2WzWo48+qt27d7t9zDFjxuiVV17Rnj17tGbNGo0dO1Ymk0ljxozRmjVr1L59e9lsNofEkzsxzJkzR7fccovefvtt3X333Xrrrbc0bNgwexLo66+/dpowfO/evfYJvWuaPXu27rrrLr3//vu6+eab9d///lcxMTE666yz3D53T3HldXvkkUd033336corr9SDDz6oNm3aKCgoSDfffHOdk9c3pKysTLNmzVJYWJj++9//Or3vLrzwQn399de67bbbNGjQIEVFRclms+mss86q9Zi++CwBAHAyIfEEAGjRkpOT9eOPP8pmszmMetq2bZt9fdW/n3/+uQoKChxGjGzfvt1hf1VlayEhIZo8ebK3w2+0+Ph4RUREOMUvVZ57UFCQfdRUcnKyfTRTdTW37d69uyQpISGh2c/9gw8+ULdu3fTRRx85jI6qGmXmrqqE0ooVK/Tdd9/pzjvvlFQ5kfiLL76o9u3bKzIyUkOHDm1UDG3atNGMGTP09ttv6+KLL9a6descJuseOHCgVqxY4bBNbcm8Kl27dtXw4cP13nvv6frrr9dHH32kc889V2FhYfY+rr6Hm9MHH3ygiRMn6tVXX3Voz8nJcRqt6Kobb7xRmzdv1ldffaV27do5rMvOztbnn3+u+++/X3/729/s7bW9vwEAQPOg1A4A0KJNnz5d6enpDvPjVFRU6Pnnn1dUVJTGjx9v71dRUaEXX3zR3s9qter555932F9CQoImTJigl156SUeOHHE63vHjx+uNp6ioSNu2bVNGRkZTTqtBZrNZU6ZM0SeffOJwt7mjR4/qnXfe0ZgxY9SqVStJlef+7bffasOGDfZ+x48fd5ijSJKmTp2qVq1a6ZFHHlF5ebnTMRs69wMHDtgTfo05H8lxFMr69ev1zTffNGp/Xbt2VYcOHfT3v/9d5eXlGj16tKTKhNTu3bv1wQcfaOTIkQ6jadyN4dJLL9XWrVt12223yWw2O8zV1bp1a02ePNnhYbFY6o159uzZ+vbbb/Xvf/9bGRkZDmV2kuvvYamy5Gzbtm1NKndzhdlsdho59P7779c7D1qV2mJ87bXX9NJLL+kf//iHw5xk1Y8nOY9WaugOfQAAwHsY8QQAaNH+9Kc/6aWXXtLcuXO1ceNGdenSRR988IF9BEp0dLQkKSUlRaNHj9add96pffv2qU+fPvroo49q/WL+j3/8Q2PGjFH//v31xz/+Ud26ddPRo0f1zTff6NChQ9qyZUud8WzYsEETJ07UvHnzXJ5gvLEeeughrVixQmPGjNG1116r4OBgvfTSSyotLdUTTzxh73f77bdr4cKFOuuss3TTTTcpMjJSL7/8sn20WJVWrVrpxRdf1KWXXqohQ4Zozpw5io+P14EDB7R48WKNHj1aL7zwQp3xXHbZZfryyy8bVcI0c+ZMffTRRzrvvPM0Y8YM7d27V//85z/Vp08fFRQUuL0/qTLJ9O6776p///72eX2GDBmiyMhI7dixQxdddFGTYpgxY4bi4uL0/vvva9q0aUpISGhUnFUuvPBC/fWvf9Vf//pXtWnTxmnUmTvv4f/973+64oor9Nprr2nu3LlNiqs+M2fO1AMPPKArrrhCo0aN0k8//aS3337bYcL7utSMMSMjQ9dee6369OmjsLAwvfXWWw79zzvvPLVq1Urjxo3TE088ofLycnXo0EHLly/X3r17vXWKAACgASSeAAAtWnh4uFavXq0777xTb7zxhvLy8tSzZ0+nL9xBQUH69NNPdfPNN+utt96SyWTS2WefraeeekqDBw922GefPn30/fff6/7779frr7+uzMxMJSQkaPDgwQ7lPb7Wt29frVmzRnfddZceffRR2Ww2jRgxQm+99ZbDHfGSkpK0atUq3XDDDXrssccUFxenq6++Wu3bt3e4a6AkXXTRRWrfvr0ee+wxPfnkkyotLVWHDh00duxYXXHFFV47l7lz5yo9PV0vvfSSli1bpj59+uitt97S+++/r9WrVzdqn1WJpzFjxtjbgoODdfrpp2vlypVOE4u7G0NoaKhmz56tBQsWONx1rbE6duyoUaNGad26dbrqqqsUEhLisN6d93Bzufvuu1VYWKh33nlH7733noYMGaLFixfbSxvdUVBQoJKSEm3durXW53Pv3r2KjIzUO++8oxtuuEH/+Mc/ZBiGpkyZoqVLl6p9+/aeOCUAAOAmk8HMiQAAAF5xyy236NVXX1V6eroiIiJc2ua+++7To48+qoqKCo/EsG/fPnXt2tXro5task6dOmnq1Kn617/+5etQAAAIOMzxBAAA4AUlJSV66623dMEFF7icdJKkI0eONHribXheeXm5MjMzeU0AAGgkSu0AAAA86NixY1q5cqU++OADZWZm6qabbnJpuz179uh///uf3n//fc2cOdPLUcIVy5Yt07vvvqvi4mKdccYZvg4HAICAROIJAADAg7Zu3aqLL75YCQkJeu655zRo0CCXtvvqq690//33a8KECXr66ae9GyRc8thjj2nXrl16+OGHdeaZZ/o6HAAAAhJzPAEAAAAAAMArmOMJAAAAAAAAXkHiCQAAAAAAAF5B4gkAEDDmz58vk8nk6zD8ysKFC9WrVy+FhIQoNjbWY/vt0qWLSxNcm0wmzZ8/32PHhW/NnTtXXbp0cWgrKCjQVVddpcTERJlMJt18881NPkZUVFST9gEAAAIHiScAwElhwYIFev31130dhiQpLS1N8+fP1+bNm5u0n23btmnu3Lnq3r27XnnlFb388sueCfAkUpXMrOuxbt06jx1r9erVdR7n22+/9dhxPO2RRx7R66+/rmuuuUYLFy7UpZde2mzHLigo0M0336yOHTsqLCxMvXv31osvvujU78iRI7rzzjs1ceJERUdHy2QyafXq1U799u3bV+/r/cc//tGh/86dOzVnzhx17NhRERER6tWrlx544AEVFRV565QBAGhxuKsdAOCksGDBArVt21Zz5871dShKS0vT/fffry5durh8x7ParF69WjabTc8++6x69OjhuQBPIueff36tz93dd9+tgoICnXbaaR4/5o033ui0X39+/b744guNHDlS8+bNa9bjWq1WTZ06Vd9//72uu+46nXLKKVq2bJmuvfZaZWdn6+6777b33b59ux5//HGdcsop6t+/v7755pta9xkfH6+FCxc6tX/22Wd6++23NWXKFHvbwYMHNXz4cMXExOj6669XmzZt9M0332jevHnauHGjPvnkE8+fNAAALRCJJwAAAtSxY8ckyaMldkVFRYqIiPDY/vzdgAEDNGDAAIe2gwcP6tChQ7rqqqsUGhrq8WOOHTtWs2bN8vh+veXYsWPq06dPsx/3o48+0tdff61XX31VV155pSTpmmuu0axZs/Tggw/qqquuUkJCgiRp6NChyszMVJs2bfTBBx/od7/7Xa37jIyM1CWXXOLU/vrrr6tVq1ZKSUmxty1cuFA5OTlau3at+vbtK0n605/+JJvNpjfffFPZ2dlq3bq1p08bAIAWh1I7AIBfWrt2rU477TRZLBZ1795dL730Uq39XnvtNU2aNEkJCQkKCwtTnz59nEpxunTpol9++UVffvmlvaRmwoQJkqSsrCz99a9/Vf/+/RUVFaVWrVpp2rRp2rJli9Oxnn/+efXt21cRERFq3bq1hg0bpnfeecehz+HDh3XllVeqXbt2CgsLU9++ffXvf//bvn716tX20S5XXHGFPZ6qMsCioiJt27ZNGRkZ9T4/Xbp0sY9AiY+Pd5pracGCBerbt6/CwsLUvn17XXfddcrJyXHYx4QJE9SvXz9t3LhR48aNU0REhMMokpreeOMNBQcH67bbbqs3toaegyoNPZ/5+fm6+eab1aVLF4WFhSkhIUFnnnmmfvjhh3qPL0k2m03z589X+/btFRERoYkTJ2rr1q3q0qVLg6Pe/vOf/8gwDF188cUNHkeqnOfq+uuv18cff6x+/frZz/mzzz6rc5v8/HxVVFS4tP/q/u///k+jRo1SXFycwsPDNXToUH3wwQdu70eSPV6LxaJ+/frpf//7n8P6qtLAvXv3avHixfb36r59+yS59nmoz+HDh3XuuecqKipK8fHx+utf/yqr1Wpfv2bNGknSnDlzHLabM2eOSkpKHEYcRUdHq02bNu4+BZIqy/RWrVql888/XxaLxd6el5cnSWrXrp1D/6SkJAUFBXklKQkAQEvEiCcAgN/56aefNGXKFMXHx2v+/PmqqKjQvHnznL4AStKLL76ovn376uyzz1ZwcLBSU1N17bXXymaz6brrrpMkPfPMM7rhhhsUFRWle+65R9KJL5N79uzRxx9/rN/97nfq2rWrjh49qpdeeknjx4/X1q1b1b59e0nSK6+8ohtvvFGzZs3STTfdpJKSEv34449av369LrroIknS0aNHNXLkSHsiIj4+XkuXLtUf/vAH5eXl6eabb1bv3r31wAMP6G9/+5v+9Kc/aezYsZKkUaNGSZI2bNigiRMnat68efVO2v3MM8/ozTff1P/+9z+9+OKLioqKso/cmT9/vu6//35NnjxZ11xzjbZv364XX3xR3333ndatW6eQkBD7fjIzMzVt2jTNmTNHl1xySa3PsSS9/PLLuvrqq3X33XfroYceqjMuV54DV5/Pq6++Wh988IGuv/569enTR5mZmVq7dq1+/fVXDRkypM4YJOmuu+7SE088oZSUFE2dOlVbtmzR1KlTVVJSUu92kvT222+rU6dOGjduXIN9q6xdu1YfffSRrr32WkVHR+u5557TBRdcoAMHDiguLs6h7xVXXKGCggKZzWaNHTtWTz75pIYNG+bScZ599lmdffbZuvjii1VWVqZ3331Xv/vd77Ro0SLNmDHD5XiXL1+uCy64QH369NGjjz6qzMxMXXHFFerYsaO9T+/evbVw4ULdcsst6tixo/7yl79Iqkx0uvL61aeqjG7EiBH6v//7P61cuVJPPfWUunfvrmuuuUaSVFpaKrPZ7JTgqRqRt3HjRqc5mRrj3Xfflc1mc0o0TpgwQY8//rj+8Ic/6P7771dcXJy+/vprvfjii7rxxhsVGRnZ5GMDAHBSMAAA8DPnnnuuYbFYjP3799vbtm7dapjNZqPmj66ioiKn7adOnWp069bNoa1v377G+PHjnfqWlJQYVqvVoW3v3r1GWFiY8cADD9jbzjnnHKNv3771xv2HP/zBSEpKMjIyMhza58yZY8TExNhj/e677wxJxmuvvea0j1WrVhmSjHnz5tV7LMMwjHnz5hmSjOPHj9vbjh07ZoSGhhpTpkxxOK8XXnjBkGT8+9//treNHz/ekGT885//dNp3cnKyMWPGDMMwDOPZZ581TCaT8eCDDzr1qxmrq8+BK89nTEyMcd1119Xbpzbp6elGcHCwce655zq0z58/35BkXH755XVu+/PPPxuSjNtvv93l40kyQkNDjV27dtnbtmzZYkgynn/+eXvbunXrjAsuuMB49dVXjU8++cR49NFHjbi4OMNisRg//PCDS8eq+X4vKysz+vXrZ0yaNMnleA3DMAYNGmQkJSUZOTk59rbly5cbkozk5GSHvtXfC1Vcef3qcvnllxuSHD5fhmEYgwcPNoYOHWpffuqppwxJxpo1axz63XnnnYYkY+bMmbXu//333zckGatWrXIpnqFDhxpJSUlO1wHDMIwHH3zQCA8PNyTZH/fcc49L+wUAAJUotQMA+BWr1aply5bp3HPPVefOne3tvXv31tSpU536h4eH2/+fm5urjIwMjR8/Xnv27FFubm6DxwsLC1NQUJD92JmZmYqKilLPnj0dSrpiY2N16NAhfffdd7XuxzAMffjhh0pJSZFhGMrIyLA/pk6dqtzcXJdKxCZMmCDDMOod7VSflStXqqysTDfffLP9vCTpj3/8o1q1aqXFixc79A8LC9MVV1xR5/6eeOIJ3XTTTXr88cd177331ntsd56Dhp7Pqj7r169XWlqaK6du9/nnn6uiokLXXnutQ/sNN9zQ4LZvv/22JLlcZldl8uTJ6t69u315wIABatWqlfbs2WNvGzVqlD744ANdeeWVOvvss3XnnXfq22+/lclk0l133eXScaq/37Ozs5Wbm6uxY8e69N6qcuTIEW3evFmXX365YmJi7O1nnnmmy3M5ufL6NeTqq692WB47dqzD83XRRRcpJiZGV155pVasWKF9+/bp5Zdf1oIFCyRJxcXFjT52lR07dmjjxo2aM2eOw+elSpcuXTRu3Di9/PLL+vDDD3XllVfqkUce0QsvvNDkYwMAcLKg1A4A4FeOHz+u4uJinXLKKU7revbsqSVLlji0rVu3TvPmzdM333zjdIvz3Nxchy/Wtam6K9yCBQu0d+9ehzlmqpdI3XHHHVq5cqWGDx+uHj16aMqUKbrooos0evRoe9w5OTl6+eWX9fLLL9d6rKrJwL1p//79kiqfq+pCQ0PVrVs3+/oqHTp0qHOumi+//FKLFy/WHXfc0eC8TpJ7z0FDz6dUmfS6/PLL1alTJw0dOlTTp0/XZZddpm7dukmSCgoKVFBQYO9vNpsVHx9vP8ead4pr06ZNvZNBG4ahd955R/369XOacDw3N9ch0REaGuowp1D1JGmV1q1bKzs7u87jVcV4zjnn6KOPPpLVapXZbFZWVpbKysrsfcLDw+3v40WLFumhhx7S5s2bVVpaau9jMpnqPU51Vc9PXZ8xV5JYDb1+ZWVlysrKctgmPj5eZrNZkmSxWBQfH++wvubzlZiYqE8//VSXXnqp/W5zrVq10vPPP6/LL79cUVFRLp9zXepLNL777rv605/+pB07dthLEM8//3zZbDbdcccd+v3vf+9URgkAAJwx4gkAELB2796tM844QxkZGXr66ae1ePFirVixQrfccoukyqRSQx555BHdeuutGjdunN566y0tW7ZMK1asUN++fR227927t7Zv3653331XY8aM0YcffqgxY8bYJ/iu6nvJJZdoxYoVtT6qJ1X8RfURNDX17dtXPXv21MKFC7V3794G9+XOc9DQ8ylJF154ofbs2aPnn39e7du315NPPqm+fftq6dKlkion2k5KSrI/qiZtb6x169Zp//79tSYhbrrpJodjnX/++Q7rqxIqNRmG0eBxO3XqpLKyMhUWFkqqTG5UP9ZNN90kqXKy7bPPPlsWi0ULFizQkiVLtGLFCl100UUuHceTGnr9vv76a4dzSEpK0sGDB+3b1/V81TRu3Djt2bNHmzZt0tq1a3X48GGNHDlSknTqqac2+Tzeeecd9ezZU0OHDnVat2DBAg0ePNhh3itJOvvss1VUVKRNmzY1+fgAAJwMGPEEAPAr8fHxCg8P186dO53Wbd++3WE5NTVVpaWl+vTTTx1GnKxatcpp27pGhHzwwQeaOHGiXn31VYf2nJwctW3b1qEtMjJSs2fP1uzZs1VWVqbzzz9fDz/8sO666y7Fx8crOjpaVqtVkydPrvcc3Rmd4q7k5GRJlc9V1cggqXIEyt69exuMrbq2bdvqgw8+0JgxY3TGGWdo7dq19snWa+POcyDV/3xW3V0sKSlJ1157ra699lodO3ZMQ4YM0cMPP6xp06bpsssu05gxY+z7q0qiVT0Hu3btUteuXe3rMzMz6x2B9Pbbb8tkMtU6Ofbtt9+uSy65xL5c38gpd+3Zs0cWi8U+guepp55yiLPqOf/www9lsVi0bNkyhYWF2de/9tprbh2v6vlx5TNWn/pev4EDB2rFihUO/RMTE92Ks4rZbNagQYPsyytXrpQkt97LtVm/fr127dqlBx54oNb1R48erfV1Li8vl6RG3ZUQAICTESOeAAB+xWw2a+rUqfr444914MABe/uvv/6qZcuWOfWVHEeV5Obm1vpFPDIyUjk5ObUer+Zokffff1+HDx92aMvMzHRYDg0NVZ8+fWQYhsrLy2U2m3XBBRfoww8/1M8//+x0nOPHjzvEIqnWeIqKirRt2zZlZGQ4rXPF5MmTFRoaqueee87hvF599VXl5ua6deczSerYsaNWrlyp4uJinXnmmU7PQ3XuPAcNPZ9Wq9Vpjq6EhAS1b9/eXmLWrVs3TZ482f6oGk11xhlnKDg4WC+++KLD9vXNy1NeXq73339fY8aMqbVsrk+fPg7Hqm2ETEOqn3+VLVu26NNPP9WUKVPscwwNHTrU4VhV8y6ZzWaZTCaHctB9+/bp448/diuOpKQkDRo0SG+88YbDc7xixQpt3brVpX009Pq1bt3a4RwmT55sTyY2xfHjx/X4449rwIABTU48vfPOO5JU5134Tj31VG3atEk7duxwaP/Pf/6joKAgp3JMAABQO0Y8AQD8zv3336/PPvtMY8eO1bXXXquKigo9//zz6tu3r3788Ud7vylTpig0NFQpKSn685//rIKCAr3yyitKSEjQkSNHHPY5dOhQvfjii3rooYfUo0cPJSQkaNKkSZo5c6YeeOABXXHFFRo1apR++uknvf322w6jhaqOlZiYqNGjR6tdu3b69ddf9cILL2jGjBmKjo6WJD322GNatWqVRowYoT/+8Y/q06ePsrKy9MMPP2jlypX2OW+6d++u2NhY/fOf/1R0dLQiIyM1YsQIde3aVRs2bNDEiRM1b968Rk0wHh8fr7vuukv333+/zjrrLJ199tnavn27FixYoNNOO81h1I6revTooeXLl2vChAmaOnWqvvjiC7Vq1arWvq4+Bw09nzk5OerYsaNmzZqlgQMHKioqSitXrtR3332np556qt5427Vrp5tuuklPPfWUzj77bJ111lnasmWLli5dqrZt29Y64mzZsmXKzMx0e1Jxd8yePVvh4eEaNWqUEhIStHXrVr388suKiIjQY4891uD2M2bM0NNPP62zzjpLF110kY4dO6Z//OMf6tGjh8PnwhWPPvqoZsyYoTFjxujKK69UVlaW/TNWfd6surjyefCE8ePH6/TTT1ePHj2Unp6ul19+WQUFBVq0aJHTZOAPPfSQJOmXX36RJC1cuFBr166VJKeJ8a1Wq9577z2NHDnSYVL46m677TYtXbpUY8eO1fXXX6+4uDgtWrRIS5cu1VVXXVXv6D8AAFCNL26lBwBAQ7788ktj6NChRmhoqNGtWzfjn//8pzFv3jyj5o+uTz/91BgwYIBhsViMLl26GI8//rjx73//25Bk7N27194vPT3dmDFjhhEdHW1IMsaPH28YhmGUlJQYf/nLX4ykpCQjPDzcGD16tPHNN98Y48ePt/cxDMN46aWXjHHjxhlxcXFGWFiY0b17d+O2224zcnNzHeI5evSocd111xmdOnUyQkJCjMTEROOMM84wXn75ZYd+n3zyidGnTx8jODjYkGS89tprhmEYxqpVqwxJxrx58xp8jqqej+PHjzute+GFF4xevXoZISEhRrt27YxrrrnGyM7Odugzfvx4o2/fvrXuOzk52ZgxY4ZD2/r1643o6Ghj3LhxRlFRkWEYRq2xuvIcNPR8lpaWGrfddpsxcOBAIzo62oiMjDQGDhxoLFiwoMHnxTAMo6KiwrjvvvuMxMREIzw83Jg0aZLx66+/GnFxccbVV1/t1H/OnDlGSEiIkZmZ6dL+q5NkXHfddU7tycnJxuWXX25ffvbZZ43hw4cbbdq0MYKDg42kpCTjkksuMXbu3OnysV599VXjlFNOMcLCwoxevXoZr732Wq2fC1d8+OGHRu/evY2wsDCjT58+xkcffWRcfvnlRnJystN51HwvuPp5qM3ll19uREZGOrXXdh633HKL0a1bNyMsLMyIj483LrroImP37t217ldSnY+aPvvsM0OS8dxzz9Ub6/r1641p06YZiYmJRkhIiHHqqacaDz/8sFFeXt7geQIAgEomw2jm2SgBAAB8ICcnR61bt9ZDDz2ke+65x9fhAAAAnBSY4wkAALQ4xcXFTm3PPPOMJGnChAnNGwwAAMBJjDmeAABAi/Pee+/p9ddf1/Tp0xUVFaW1a9fqP//5j6ZMmWKfhLwlys3NrTXpVl1j7y4HAADQGCSeAABAizNgwAAFBwfriSeeUF5enn3C8aoJqFuqm266SW+88Ua9fZhlAQAANCfmeAIAAGghtm7dqrS0tHr7TJ48uZmiAQAAIPEEAAAAAAAAL2FycQAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4BYknAAAAAAAAeAWJJwAAAAAAAHgFiScAAAAAAAB4RbArnSIjI1VSUiKz2ayEhARvxwQALd6xY8dktVplsVhUWFjo63B8jp8zAOBZ/Jxxxs8aAPAsV3/WmAzDMBramdlsls1m82iAAAApKChIVqvV12H4HD9nAMA7+DlzAj9rAMA7GvpZ41Kpndls9lhAAIATuL5W4nkAAO/g+noCzwUAeEdD11eXEk8MRQUA7+D6WonnAQC8g+vrCTwXAOAdDV1fXZrjqSYXqvP8jslkclgO9HMI9PilwDuHkpISh2WLxeKjSBqv+jkEYvyB/h6SnM8BtWsJr22gn0Ogxy8F3jkEevwSP2f8AT9nXNcSXt9AP4dAjD/QvxO0hPdQoP+sCfT3kOT+zxruagcAAAAAAACvIPEEAAAAAAAAryDxBAAAAAAAAK8g8QQAAAAAAACvIPEEAAAAAAAAryDxBAAAAAAAAK8g8QQAAAAAAACvIPEEAAAAAAAAryDxBAAAAAAAAK8g8QQAAAAAAACvIPEEAAAAAAAAryDxBAAAAAAAAK8g8QQAAAAAAACvIPEEAAAAAAAAryDxBPgLm006uEP6aV3lvzabxw+xYIFZq1YFqbzc47sGAAAAWrwiW4UWFRzQO7m7fR1K4/VMli6bJoUG+zqSRjlSVqx/H92t7/IzfR1Ko5RYrfosI12vp+3zdSjNJjDfaUBLkr5feuMO6dgyKbpasik/SEqYKl3+uJSY7JFDRURI06eHqlUrQ2edJaWkSNOmSXFxHtl9YJk/VTKZpXlLXN/m/umSYZXmL/NeXAAAAPArh8oKtChvv1Lz9uuLgsMqMaxa0Wmar8NyWZG1Qp/npSk1+4D06ZNSfGvpw1VSWYWvQ3OJYRjaVJCl1IxDWpRxSN/nZyoxxKKtQ6b7OjSXpZcUa9Gxw1p0LE0rjh9Rkc2qjweO8nVYzYbEE+BL7z0ubXlYCpEUKUmmE+sirVLREum5JdLAe6TZdzT5cBdfbNVjj5m1f3+Q/vtf6b//lYKCpNGjpZkzKxNRvXpJJlPD+wp4JrNkrKtMJrmSfLp/emV/02jvxwYAAACfsRmGNhYftyebNhVnOKyfGJGkMRHtfBSdaw6XFWpx9kGlZh/Qytw0lRjWyhXxraXyCulNN/746gPF1gp9np2uRRmHtCjzkA6XFjms/0uHXgo3+286wzAMbc7L1qJjh5V69LC+y81yWD+sVWtNifPv95An+e8rBbR07z0u/fJw5afQZHLIOUmSgn5rCDYq+72nJiefQkKkO++06pprTlTZ2mzSmjWVjzvukLp3r0xApaRIY8dWbtMizVtyIpnUUPKpetLJnRFSAAAACAiF1nJ9XnBYqXn7tCjvgNIriurse3fcoOYLzEU2w9CmwkylZh9Qas4B/VBYTxnap2ukY9nNF5yLjpQWaVHGIaVmHtLKrCMqtllr7ZcYYtEf2nVr5ugaVmK16ovMdKUerRzZdKik7vfQvV17y3RS/LW/EoknwBfS91eOdArWiQRTXYJMks2o7D9+TpPL7qqPeqrN7t3SM89UPlq1UssuyXMl+UTSCQAAoEWqrYSuIf402ql6Cd3i7INKK6870WHnR6Odaiuhc4U/jXZyKKHLOKIia8PvoZNttJNE4gnwjTfuqCyvczXLHWSSEWJoy6136tW4/zT6sBUVlR/5Nm2k/fsb7p+XJ6eSvJSUyrK8FlOSV1/yiaQTAABAi9FQCZ0rDEm3HP3WvhzshQTIGdEddG5M11rX1VlC56qsPOmSs+yLN+z9pimh1iomOEQPdRpW67pia4W+yE6vTDbVUkLnil+KcnXLnh8kScHB5ibFWpcbO/bWKRGtnNoNw9CWvBylHjtUawmdK8KCgnTrji32ZW+8h0a3aas57bt4fL+NZTIMw2ioU8eOHXX48GH7sgub+J2aw9gC/RwCPX4p8M6hpKTEYdlisTRuRzabdFucFGV1K3Nj2AxV5ARp4vOfquYNKberpzIU79AWojIN1wa3QstVjH5Wf6f23tqqNnK8qHZoX5mIGj1aGjhQCq5+vbRYKhs9XKfn1fdQzSSTl5JONc+hQ4cOOnTokMf2H6j4OeMf+DnjW4Eev+T4s7LRPyd9qCW8BvycqRs/a/xDc/+sKbKVa2V+ZQnd4rwDOlJPCZ2/+Gv8QD3Z/nRJlc/RD66W0PmJ9iEROjz09/ZlV0vo/MnqwVM0vnWiJPdK6PzFnzr30Ev9h3tt/+7+rGHEE9DcDu/67e517g0XMgWZFNLG0NrwCVKx4w/p3+sdvavfO7TFKVNrNdatY6zWeE3Uaqf2x3SnzlaqY2OapPd/e9TCGDxY+vZbmUJD3YrBZ6olm4x7W8kUbGKkEwAAQIAwDENVvyFXldAtztuvLwobMSrIx8oNmxZlH1Bq9gEtcrWEzs9sys9UasYhpbpRQudPMsvK9OqB3Uo9dtjlEjp/4m9JaRJPQHPLOd607UMlFXskEq8ybdqkH9//QQMuHunrUFw3b8mJpFOFIT1E0gkAACAQvJm/TXOPrnRoi5NFQSaT5F/fwRtkkhRsClKIKUjBATq3RVX8IaYgmRRwL4HMJikkyKQQk0nmAHwNDhT5V7KSxBPQ3GLjG+5TnzLPhOEtB4I76JxOb6ooKFxvduvt63Dcc/90mYJNMiqMyuRTQ3e7AwAAgN/qY2mj5d3P0aqCNPvd6g6WF/g6rAYFm4J0VmxHnRXbUc93OV0/FWUrNeeAFmUf0PqC4wGRxOkf1Vr9o1rrri79daysWEsyD2tRxiEty0pTgbXC1+E1KDYkVOckdNZlHbupzGbVl5nHtOjYYaUePay9xYW+Dq9B32ZlKbusTK39pPqExBPQ3Dr0kPKDpEhrw3e0q8awGbLlBmnBzNWSyXGOpx6te+qWCMf+Zmucnk9f49Bm/e0i/9NPQdq+w/mudrmKqfXYd+oxPW2+XQMHVs7pNGqU1LGjY5+zr8tRVl7lj8G0kHY6FpwgW3hELXvzU7+V2e3f31bv9pyqO/Z+LSXVc7c7AAAA+D1LULCmteqsaa066x+GoR9LMpX62+TiG4qOub2/MyLaq09YrH3ZGxNDj41Msv/fZDJpQGQbDYhso3s6DNLRsmItyamcXHx57mEV2txM4qRnSqs22hdvueUWT4Vt18rsmOxICA3X3KQempvUQ6U2q77MPqrUzINKzTik/SXuJ3GuatdN4UGVz7u3JhfvGBZp/39okFlnxifpzPgkPdNnqLYW5Cr16GGlHjusb7Iz3E4Ejo1tq0HRsfZlT59DVlmZ3thzQJ+lp+v3nTt7dN+NReIJaG5BQVLCVKnIvWSGySSZO0zTDc+Oc3GLUEljHFpKSkpUVib17x+mAy7MMdWmjTR9ujRzZh9NnSrFxtbdd0NMho5WBMLfX2rxW9KpPLe3kl9frzv0YmX7zadLMSSfAAAAWgKTyaSB4W01MLyt7m03VOnlRVqSd0Cpefu0vOCQilxI4lTIpicSTkza3Nw3UmgXGq4rEk7VFQmnqsRWoS/z0isnHs8+oANlLiRx4mKk/66U0itvHPT0s+95OWJHYUFmTYlrrylx7fXcKcP1S2GOfS6ob/NcG83VIzxaN7XvKan5n3+TyaS+0bHqGx2rO3v0VUZZiZYcS1Pq0cNalnFE+RUNv4cKrRV6/JT+9gm6PX0OT27fLlkPKTUtzW8ST85DHgB43+WPS+WSbC4mamxGZf/LHmvyod96y6wDB+pOOvXuLd12m/TVV9LRo9LChdLs2fUnnQJatbvXrZ56o+O6C56onGDc+C35BAAAgBYjMSRCV8b10v+6nqXMvnO1pOt0XRvXV51Courc5suidK0pSm/GKOtmCQrW1NiOeqHrKO0bPFtb+p+nhzsN1cio+Lr/xBwSLF3mH7/Xmkwm9futHO/rYdOUPuZ3er33aF0Q31lR9Ywke/rwNhX5Sble21CLLuvYTe8PHauMMy/Q8uETdWOXU9U1PLLObX7Iz9HSTO+9h1LT0iRJS9PTVW6zee047iDxBPhCYrI08J7K/zeUfKpaP+i+yu2aoKxMevxxx4t4cLA0aZL0979LO3dKW7dKTzwhjR1bua5Fq5Z00rwl+rq2XyLmLSH5BAAA0MJVleT9o+NY7e99sTafOksPJp6m4REJTn0fztzc/AE2oKok7+4Og/RNv7N1ZMhF+ne3sTqvdbIig2r8Uj9zjJTYxjeB1iMhNFyXJ3XXB/0nKGPsbC0bOFnXd+ypZItjEudYealeObrbR1HWraok79m+w7R74tn6edx0PdpzoEa3jldQjVTgw3t+9cqd5zJLS7UuI0OSlFNebv+/r7X0r5WA/5p9h/SepC0PSyFG5a0eqs/5ZDMqb2lRocqk04W3NfmQVaOd2rQxNH26SSkp0tSpUkztUzu5rbU1W6cXfW9fDs49Q1I7z+zc02okncoNq74tPurQpdywKkSqTD5V9afsDgAAoEWrtyQv/5B91NPYiERfh1qn6iV5pTarVucdUWr2Af1j81opKa5y1NMTb/k6zDo1VJL39OFt+mO77mreQjvX1VuSd/yIfdTT9LZJDe/MDUvT01V9jFPqkSOakOCcPG1uJJ4AX5p9hzR+jvTmndLRz6ToapeJQrPU7ixp7hNSQiePHK68XFqxolQjRxqKivL8ZbpP6XYtPnixffnnPauk8X6aeDKs9qSTJH1dlK58W7lDly3FGRpWtWBPPlmbN04AAAD4VFVJ3pVxvZRTVKCvitN1uMK/bldfn7Ags6bGdtTU2I76R7fRUvcO0oi+UmhgpAOqSvKqyvIO5udoWXa6thblaUxk3WWR/qSqJO+yjt2UV1SktTkZOlxS7PHjLDpyxHE5LU1PDRzo8eO4KzDeaUBLlpgs3f4fyWaT0vZI2Uel1u2k9t0qJyL3oD//maSJ3fxlDoup+fucuqwrTj+ReJIY6QQAAHCSswQFa0pkx4Y7+rPdhysfASo+xKJLErr4OoxGCw0K0qQ2nh+FVG6z6bN0x6lDdhQUaEd+vk6Njvb48dzBHE+AvwgKkjr2kPqPrvzXw0kn1C+1YJ9T27qiI16pvQYAAAAAT1qTkaHc8nKn9qrJxn2Jb7YATno7SnO0oyzHqT2tokjbyrKbPyAAAAAAcENdCabUGuV3vkDiCcBJL7Vgb93rainBAwAAAAB/YRhGnYmntRkZyi4ra+aIHJF4AnDSW5S/v851JJ4AAAAA+LPt+fnaXVhY6zqrYTjN/dTcSDwBOKllW0u0pqjuuuevi9OVWVHSjBEBAAAAgOsaKqfz9TxPJJ4AnNQ+Kzggq+qeQNwmQ0sK6h4RBQAAAAC+1FBiaWl6uspttmaKxlmwz44MAH6geindvg5tdNtfznVYlqRFBft0aWzPZo4MAAAAAOqXWVqqdRkZ9fbJKS/XuowMTUhIaKaoHJF4AnDSKjesWlpwwL58OLG1/u/KyU79Pis4oDLDqlCTuTnDAwAAAIB6LU1PlytjmVKPHPFZ4olSOwAnra+L0pVjK22wX56tTGsKfVsXDQAAAAA1LWpgfid7Px/O80TiCcBJy5071qUWuN4XAAAAALyt3GZz+Y51OwoKtCM/38sR1Y5SOwAekxacqKfb/Nm+PCE+yYfRNMydZFJq/j79vd0YmUwm7wUEAAAAAC5ak5Gh3PJyl/unpqXpLz2bf+5aEk8APGZvaBf9JfFB+/LXHWN9F0wDdpTmaEdZjsv995Tn6deybPUJa+O9oAAAAADARQ3dzc6p/5EjPkk8UWoH4KSUWrDXqW30xt0qH3Cj/TF6426H9YvcKM0DAAAAAG8xDMPtxNPajAxll5V5KaK6NWrEU0soNQn0cwj0+CWppKTE1yG4JTw83NcheFRxcXGjtjMMQ5k5htq2bjhvXVpWppISq325vNxQYYkUG+2Z929T3kOf5jonniQp2Fr3PSE+ydujG6P6NPqYcF1LuMYF+jkEevxS4J9DoMff2J8z/iTQfleBewL9MyYF/jk09jOWYS1RXFCYw/mX11JuZDNsTsfIsJaordnSqONKzt8JAv1aF+jvoZagse+h7fn52l1Y6NY2VsPQpwcPanaHDo06ZmMx4gmAW0wmk35/e4nuea5Ux7NduXFnZcLpzU/LNWhWofILDS9H2LBsa6nWlVROwhdhCtYtMf31+6juTv0mhrfXX2IGKNJUmaP/tuSYMq18CQEAAPCln8ozNfrox1pcvF+G4drvlnsr8nRN1le6K+dbL0cHNI/FR4/a/987KkoLhw5VWJBziueFAQM0oW1b+/KSats1FxJPANw2fphZT79Rpl4zC+tNQFVUVCacBl5QqD/fX6KoCJM6Jfr+srO8+JDCTGbdEtNfv3a+UI/EDa/1L18xQaF6KO40/dr5Qv0lZoDCTWYtKzrog4gBAABQZXRYonZX5GpWxvITCag6+lYlnAYc+a9eL9yuyZaOzRor4C1Ljh61J5y+nzBBs9q3V23j10a3aaOlp5+uFaNGaULbtlp+7JjKba4NIPAUJhcH4Lbp44L18MtlKiqRnn6jTP98r0xl5dJpxT/oo4NX2Ptd/qfX9IUx5MR2Y/3jktPOHK5fO1+oBLNr5ZPx5nA9FHeabortp5/Lsr0cHQAAAOoTajJrsqWjPireq03lGZqVsVyxplCnfpvLMjTgyH9V8VtayiyTpoR3au5wAY+rsNl0XdeuOicpSUEulkuOiYvT0tNP19rMTB0vK1N7S+NLTt3VqG+Brg5n9Cc1a1cD/RwCPX5JsjTjG90TatbeBlr8kuNr0JT4Tx9kqH1CidKOVWbKi36rPgs1ytSx4oi9X2lhmRRxYrvzJkfIYglp9HFrauw5nGXp5tQWbHa+HJqDghyO0UkWdYps3ahjwj0t4RoX6OcQ6PFLgXcOgR6/5LmfM/6iJZwD6hbonzEpMM+h+pxLTfmMnduqhz4qPjFnZ47hPGFyoVHhsDw2vL2SImIafczaBPp1IhDfQ4H++0rNecca+x76fTfn7zS1CQsLczjG5Gae30mi1A5AI5hMJs0c7/xXpfoktg3SsH7+MeIJAAAAgW1aZLKCai0sqltKZFcvRQOgPiSeADSKu4mnGeNDFRTEXTMAAADQdG3N4TrdkujWNiSeAN8g8QSgUc4YGSpLmOv9Uya4l6gCAAAA6uNOIqlnSKxOCY31XjAA6kTiCUCjRISbNHmka8mksFC53BcAAABwhTuJp5mMdgJ8hsQTgEZzdRTTpBGhioygzA4AAACe0zu0tbqFtHKpL2V2gO+QeALQaDNcnOeJMjsAAAB4mslkcimh1DooTKPDk5ohIgC1IfEEoNE6tDNrSJ+G71Tn7kTkvlISFqxdndraH+WWwIgbAADgZDUzskuDfaZFJivYxFdfwFe4tzmAJkmZEKoftlbUuX5Qr2B1SjI3Y0SNt7Ffsk75bL59+frWvXwXDAAAABo0LryDWgWFKs9WVmcfyuwA3yLtC6BJGiqjC5TRTgAAAAg8oSazpkZ0rnO9WaZ61wPwPhJPAJpkSJ9gtU+o+1LC/E4AAADwpvpGNI0Nb6/WZkszRgOgJhJPAJrEZDLZRzXZFKRCU4T90TomWMP6UdELAAAA75kWmawg1X4HZcrsAN8j8QSgyaoST99EDFdU7332R7uzxygoqPZfAgAAAABPaGsO1+mWxFrXkXgCfI+hCACa7IyRobKESSWlju2BVmbX7cBx3frGF/bljBvbSNx5FwAAwO+lRHbVupIjDm09Q2J1SmisbwICYMeIJwBNFhFu0uSRjkmmsFA5tfm7pON5uu7dNfZHq6OZvg4JAACgxcm0leiwtcCj+6xtZBOjneBvDMPQzzn5MgzD16E0KxJPADyi5uimSSNCFRlBmR0AoJHmT5Xun+7eNvdPr9wOgF8xDEO/lmfqifzvNDnnY/XKfktBJs/+ntg7tLW6hbRyaJtJ4gl+xmQy6bkd+3TKoi9148Zf9NmR4yqusPo6LK+j1A6AR8wY75h4CrQyOwCAnzGZJWNdZTJp3pKG+98/vbK/abT3YwPQoHLDqjWlh5VaskepxXu025prX3e9ZYCSgiI9ejyTyaSZkV31XM4WSVLroDCNDmfOBPifO3p30zv70/TK7oN6ZfdBRQRv1uTEeKV0StSMDolKimh5d2Ek8QTAIzq0M2t6l3QN/u4dSdJFm8KlUXOlzp19GxgAIDDNW3IimdRQ8ql60smVJBUAr8i0FmtpyT6lluzRZyX7lGeUOfWxyKxbIwZ55fgpkV3siadpkckKNlHgA//TPTpSFyW318J9hyVJRRVWfXooXZ8eSpcknRYXq5ROiZrZIVGD2sTI5OHRgb5A4gmAx1zQM11XLnmscuEJSSmTSDwBABrPleQTSSfAZwzD0LaKLC0q2avU4j1aV5Ymm+qfu+YqS1+Pj3aqMi68g1oFhSrPVsb8TvBrVaOerLXM9fRdZo6+y8zR3zZvU8eIcM3s2E4pHRM1KSleFrPZB9E2HYknAB4zanCIr0MAALQ09SWfSDoBza6+EjpXjA5J0rfllSM7wkyen5phWHi8Vhce1lkRyR7fN04ev+TkKa+8wiv7Li2tvBX4qLaxWnM8u96+h4qK9c8d+/TPHfsUEWzWmUnxmtkxUTM7JioxPHBK8kg8AfCYnl0CMwMPAPBztSWfSDoBzaaqhG5RyR59VrJfuUZpo/f1+/xlHoysdkPDkxRrDvP6cdByXbt+i77ysztcF1VY9cnBdH1y0LEkL6Vjoga29u+SPBJPADzGny92AIAAVz3ZdG8rKdhE0gnwEsMwtL0i2z6qyZUSOn8y0dLB1yEAXldbSZ7NTz+mJJ4AeMSfX05T4s/HdH+1tgMZZQqUGZ4ujemp6fGnObRNi2aINgD4lXlLZNzbSqZgk1RhSA+RdAI85ZHib/Sj9bgMQ9pjzdX28izll1dItsCboPu86O6+DgEBrqTC6usQ3FJVkmcJCda4+FhdmNxBcWGVpaztw8N9HB2JJwAe8sl3+eqxu9Ah8ZRXZPNZPO4aHB4vRXVyaOsV1tpH0QAAanX/dJmCTTIqjMrkU0N3uwPgsi/LD2p5xb4TDWbp/sgxirZalFqyR2tKD6tCgfG7XbiJr7lovEMFxTpYUOLrMFzWJSpCKb/N+zS+XZzC/HACcj6RAAAA8H+/ldkdPNBWq/qcp8t2rpSS6rnbHYAmSwgK19URg3VL9BDl2Eq0rGS/Ukv2aEnxXmU3cp6ndqZqoy+8NE1DsCnwRmnBfyw+cEzZpeVqZ/HWPGGV9XD55VYVWd0fWWWSdHp8G83sWDm/U9/YaL+f8oTEEwD8psJm46IIAP7ot6STNbePOr32rS7TU5XtN58uxZB8AppDbJBFsyN6anZET1UYNn1dlqZFxXuUWrJX2yqyXN7Pe63O0oiQREmSxRI4d+XCySN131GVFJn09fRRGtw2xuP7LykpkWEYGv/5t/ouy7W7QkYFB2tq+wSldErU9A7tFO+1pJh38B0LAH6zvn17zbv3XknS/w0YoEH9+vk4IgBA9bvXfTvtCo1+5sIT6y54Qvr8Ece73QHwumBTkMaFddS4sI56QuO0qyJHqcV7XCrJe6Toe30SM7MZowVcV1Ru1eeHMyRVJqC8kXiSpBXpGQ0mnapK6FI6Jmqcn5bQuYoxiADwm48LC/X5gAH6fMAAvXnKKVJsrK9DAoCTW7Wkk+Yt0bqiI8595i2pXF+VfALQ7HoEx+qW6CH6In6Wjrf/s95tM10XR/RSa5PzqIzl5Qe1vjzdB1ECDVt5+LhKrJWJ09T9R71yDMMw9NAvu5zaTZJGxbfRI4P76KeUSdpz3pl6bvgAndk+IaCTThIjngDALvXIEYf/PzVwoN/XSwNAi1Uj6WQYhr4uquPL6rwlJ/oz8gnwqZoled+Upf02GupESR6jnuCvUvedSDZ9fzxXaYUlah/p2ZLQ6qOdooLNmtq+XcCW0LmKxBMASNqZn6/t+fn25V0FBdqen69erVr5MCoAOIkZVnvSSZJ+KDmuDKvjXYaOVxQpvmrBnnwKrFtgAy1ZsClIY8M6amy1kryP8rdrSdk+/VBxXKPUqeGdAM3EZhhafOCYQ9uSA8d0Ve/OHjuGYRh6a99hXdOjs2a0T9CY+DaKiYzw2P79FYknAB6zI6qLLhn+mH35pq49fBiNexYdcS7fSD1yhMQTAPjK/GUOi6n5+5y6fF18VOdUb2CkE+DXegTH6sbwgboxfKAMw/B1OICDH47n6kiR490aU/cf9WjiSZLeGHnyVVWQeALgMcctcXo7OcW+fF1cgg+jcU9qWpoiSkrU/eiJ4bUrIyN1W8+ePowKAFBlUcE+1Sx2+LroiGPiCUDAONm+eMP/1Tan04pDx1VcYVV4sGfmWDKZTCfle5/JxQGc9HLKyrQmI0OD9+3Tj7fdZn+UbNyorLIyX4cHACe9tPJCbSw57tT+ffExFdnKfRARAKClqS3xVFxh0xe/3eUOjUfiCcBJ77P0dFXUMtzbKmlpLSV4AIDmtahgX63tpYZNnxceat5gAAAtzqGCYm3KyKt1nbfubncyIfEE4KRX2/xOVVJJPAGAz9U2v1OVRfWsAwDAFTUnFa9u0f5jzEnWRCSeAHhMsK1cbUuz7A9Tuf+XP1TYbFpST3Lps/R0ldtszRgRAKC6Ilu5VhYerHP9ooL9fCEAADRJ6r66RzUdLizR5szaR0PBNSSeAHjMiKwfdfzTsfZH1JbvfB1Sg77OzFR2PQmy3PJyrcmgrhsAfOXzwkMqMax1rk+rKNQPtcz/BACAK4rKrfq8gXmc6ktMoWHc1Q7ASS01La3BPovS0jQpIXDu0AcALUn1Urp9Hdrotr+c67AsVZbiDQ3nOg0AcN/Kw8dVYq2/wiF1/1H9bdipzRRRy0PiCcBJzZU5nFKPHNFTAweelLc+BQBfMgxDiwr225cPJ7bW/1052alfasE+zU8Y3pyhAQBaCFdGM31/PFdphSVqH2lphohaHkrtAJy0dubna3t+foP9dhUUuNQPAOBZP5QcV1pFoUv9DpcXNENEAICWxGYY9U4sXt0SF/vBGYknACet+u5mVxN3twOA5lff3exqWlxtZBQAAK744XiujhSVutQ3dT/zPDUWiScAJy1X5ndqTF8AgGekFuxzva8bSSoAACT3kkkrDh1XcUXdN7tA3Ug8ATgp5ZSVuXW3unUZGcosde2vIQCApjtcXuDW3epWFh5Uka3uu5QCAFCTO4mn4gqbvmjg7neoHYknACelz9LTVWEYLve3/bYNAKB51FY6N3rjbpUPuNH+GL1xt31diWHV54WHmjNEAEAAO1RQrE0ZeW5tQ7ld43BXOwAnpdrmd8qMitL7I0c6LFeXeuSILk5O9npsAIC6S+eC67nl9aL8fUqJ7uqliAAALYmrk4pXt2j/MRmGwd2u3dSoxFNLeJID/RwCPX4p8M+huLjY1yE0SUlJSaO2MwxDt7yZqSsmRGtgcli9fcvLy+3Hyci36tmluZozKkp9O4Y26tg1NfYcKmw2LamWeOocHq62oaH6QdKFt95qbx8cE6Mu5eXaV1QkSfrsyBHlFxUpJIjBot4W6NcHKfDPIdDjlwL/HAI9/sZeoyWpyFahlYUH7cs9Qlop3BQsabdDv96hsdprjlCatfI6nZq/T88UF3vsuWvKOcD/BfpnTGr8e/Th8vUaEZSoM4I6258Hm805qVteXqESVR6j2KjQqxU/q4uplWYGd2t0zOHh4Y3e1h8F+nUi0D8HTXn+P9lz4vtAdIhZI+JjtDIty6FPYnioukaH65tjuZKkw4UlWp92XIPiWjX6uC3tM+AKvj0BcIvJZFJZhaGR9x3Whc+ma8v++uc9ysi36r7/ZqnXrQf05lf56t0+pJkirdu32dnKLi9X5/BwLRgwQD9NmqTRcXFO/Ua0bq0fJ07UPwcOVJeICOVWVGhdVlYtewQAeNKq4jSVGFb1CGmlV+PHaVPHCzQkrK1TvyFhbbW184V6Ju50tTdH6Ii1SJvKMn0QMRBY2siilNJPNLH0fa207pdRz/QDxUaFXijfrD7Fr+u28q80OCihGSMFvKOowqpVR7IUHWLWnQO6atusMbqqZ0enfgmWUH0+bZgWTxms0xNiJElLDjLPk7sotQPgtumDI/Tal/lK3Vik1I1FShkaoaJS57+S/ffbAj2/8oAKSyt/mblgeLiCgnz/V5Vf8vO1YMAAXdypk0IbGL0UEhSkyzt31kUdO+qdQ4e0NT9fE9o6f/kBAHjOzvJcvRo/ThdGdVewqf7rdJjJrD/H9NHcVj31Rv4O/ViaWWuSCsAJ081ddWv5l1pvS1dK6ScaHpSoLMN55Mgn1l16pHy90lU5qnCwKV4dgqKc+gGBZmNGnm7um6wb+nZWm7D6/zBuMpk0qX2cJia10aojWVp6iMSTuxqVeKovI+6vag4hDPRzCMT4aw6DtFgsPoqkcQI9/pqaEv/0oaGyhBxTSXnl+zB1Y+UvI3nBUVobN9jeb/HuYBXGnnivnjsitknHrVne2Nh93dSrl1NbsNns3BYcbD+GRdKfTz21UceD+wLxGsfPGd8L9Ncg0OOXHM+hKdf7OxNPc2oz13adNpsdrtM3hg926tMUgf6zHvULxM+Yp34f7SmL+pfH6ydr5Z0jN9hqv4HK57aDDstnh53i0c/Fyfwa+ItAfw0a+/yf2SVJZ3ZJcmgLDXVOQJmCghyOMb1bB03v1qFRx6xLIL4G7pZoMuIJgNsiwoJ0Rv9ILf6hwKH9p9ieGjvprVq3CQ026cwB/IUMAADAH6SEdLcnnlzeJrSHl6IB0JIxxxOARkkZGu1W/0n9IhRl8e9LzoB9+/T1PffYHx127PB1SAAAAF7hbhKpvSlKQ8ztvBQNgJaMEU8AGmXGEPdGL7mbqPKF6JISnb5zp33528JCH0YDAADgPcPNSYo3Rei4UeRS/xmh3QL+DmgAfMO/hx8A8Fsd40I0uKvrNdXuJqoAAADgPUEmk2aEdHO5f0oIZXYAGofEE4BGSxnqWjJpQHKYkuNDvRwNAAAA3OFquZ1FwTojJNnL0QBoqUg8AWi0muVzvfJ268Ovb7I/euXtrrUfAAAAfG9KSBeFyvmOkTVNDklWhKn+W84DQF2Y4wlAow3palFS62Adya6QJMWV5ej8wyvt658+9TJJro+MAgCgPiVhwdrVqa19uTyM0bRAU0SZQjUxpLOWle+tt19KSPdmighAS0TiCUCjBQWZNGNwlP71RU6dfdrFmHVa9/DmCwoA0GJt7JesUz6bb1++p21v3wUDtBApId0bTDzNCCXxBKDxKLUD0CQpw+ovo5sxJFpBQdwBBQAAwB/NbGA00xBzO3UIYtoEAI1H4glAk0zuHylLSN2JpZmU2QEAAPitZHOM+pvj61xPmR2ApiLxBKBJIsKCdEb/yFrXhZhNOnMAiScAAAB/Vl9yydU73wFAXUg8AWiymUNqTy4N7WpRlIXLDAAAgD+rK7mUZIrUYHO7Zo4GQEvD5OIAmmzm0Ghd8690p/ZRPSN8EA0AoKXqduC4bn3jC/ty6S3tpAQfBgS0EMPNSUowReiYUeTQPjO0u4JMzNUJoGlIPAFoso5xIRrc1SJlOLaPJvEEAPCgpON5uu7dNfblVy662IfRAC1HkMmkGSHd9VrZTw7tKSGU2QFoOhJPADwiZWiUPv/Osa1drGcvMR9ty9SH2zI1o0drTe0eqw4Wi0f3v75HD7X597/ty5f27evR/QMAADSWzTC0wTiiJdqtX5Wpt5Xi0f2nhDomniwK1hkhyR49BtBUu3OKdPXKnzW1cxvN6BKn3h7+PgDvIPEEwCNShkbrc28f45TWunv1AX20PUtBJmlUpxjNPCVOKT3j1LtthExNHApeERys7KgT81XZQkKaGjIAAGiJ5k+VTGZp3hLXt7l/umRYpfnLXN6kwCjTSttepVp3arF1l46qUJL0T01RsMmz82ieGdJFoTKrTFZJ0uSQZEWY+F0I/qV7bITahIXotnW7ddu63erTJlIzu8UrpVuCTk+KlTmI0lB/ROIJgEcM6WpRXJTZq8cIMQfpztM76JrP9shmSGsP5GrtgVzd+fkedWttUcqpcUo5ta3GJsco1Myk5gAAwEtMZslYV5lMciX5dP/0yv6m0Q12PWDL1SLbTqVad2qVbb9Kf0sEVemiGF2kPo2NvE5RplBNDOmsZeV7JUkz67nTHeBLdw3rrPd3HZMhaWtWobZmFeqJ7/cpzhKi6V3jNbNrvKZ2iVNMGIlTf0HiCYBHBAWZNOpU78/pdHG/tnrsm8Pan1vq0L4nu0TPrj+sZ9cfVqsws6Z2b6OUU+M0/ZQ4xUXwQwcAAHjQvCUnkkkNJZ+qJ51q6WczDH1npCnVWpls+tE4Vu+h79QIhZi888e+lJDuJxJPoSSe4J96tY7U73ok6L+7HD8rmSXlWvhrmhb+mqbgIJPGd2itlG4JSukWr26xzD3rSySeAHhMv3NGqu9Pn+j84dF6cE6C1KWLx49RfdRTXfJKrXp/63G9v/W4V0ryAAAAXEo+1ZF0KjDKtMK2R4usuxxK6BrirdFOVWaGdNf1Wqkh5nbqEBTtteMATVV91FNtKmyGPj+Ypc8PZunmL7epd5tIpVCS5zMkngB4zMThCdqZ3FkvRxfprZX5kn5qcBt3GEblj5YKW10/YpzVVZI389Q4jUuOdSjJS8jJ0bTNm+3L0a1beyx2AADQAtWXfKqRdGqohM4VGSpSf/1bVd+2TSWe//IcFWZSionRTmi89MJSnf7ueq/tv+o7QZBJsrr4teDXrEL9Skmez5B4AuAxEWFBGtwtVBuKcxSbla++x/a5tf2R6Dba06aDU/uww9sUVlHu0Nalnv0YJunrzv2d2jvmHlPS/qP6frP0vaTI0CAN79BKozu1UvuKDF2wfr0WvPqqvf/fhw51K34AAHASqi359NtyrmmYnrz7dqWWvNJgCZ0rClSuAlX7ncj1v8W5LM4UrpTQHp7fMU4aVsPQvrxiX4dRp7pK8kJDfR1Zy0XiCYBHzRkdow1fHNPww79q2Vt3uLXtc8PP003Tb3Rqf/+/89Ul96jL+yk1h8hy33Kn9kt+XKFHP/9XrducVUtbt2p3uAMA+NYgS1vFRyQ6tHUOphQIfqJassm4t5VMwSatsXXWuLsmSRXrfB2dW2JMYRpsbufrMBDASircH83nK9VL8hRkU1R4sJJbhatrTLiCTCZ1jWZuKE8g8QTAo5Jat5zLyjnduvk6BADAb25oM0Bql+fQNjW6s4+iAWpxxT+ll/vJFGySUWGo7A8v6M/mQi2y7tJh5fs6OpeFmMwKYj5MNMHSXVm+DsFtA+OjNbNrvFK6xeu0xBg+Ax7Wcr4hAoAnDR4sDRzo6ygAAECg+PscKcYkVRgyBZt0xnN36Yy/fy3DMLTJSFeqdacWWXfpe+OIryMFvGrFXv9PPIWaTZrUKU4p3SrneurcKtzXIbVoJJ4AeNTELq31+WUDFZybrI0pzvMs1ee0hHb6PLmrU/vxgW8rs6xM5b/N87Qrq0T//KHu0jujlj9Q9IwLV+Tcy7T56vPVLyFSwUFBzp2qWCyVSacQJhoEAH9iGIb4GzT80v3TpZhfpFUl0ldl0rhQaeIv0v3TZZq3RENMSRoSlKR5IeOUZuRrsXWXUq07tdK2V8WqcPkw/dRWT2qifTnUC5PSRJj4/QeNV261afX+HA2Ki9VTZ3hnrrCysjIVVlh10bKtKnPjpkMJEaGa2TVeM7vF68zOcYoKJR3SXHimAXhUu6hQtYsKldRaGuScRGqUrmdIkkpKSiRJD3+4XeuSE+rdxGySxiXHauapcUo5NU6nxFGfDQCB7qdOnXTrvfdKkt4dOVJt+/XzcUSATkwsbh0h3Xf7ifYvn5DMzne7a2+K1h+DB+uPwYNVbJTrc9s+LbJW3u0uTQX1HupnZShWYRpkqpyDyWK2eOWUgMZadyhXeaVW/ZxepKEJMYqxeD7lUFJSoqc3HXQp6TSgbZRSuiVQQudjJJ4ABJRN6YVatCu71nWtLcGadkobpZwap7N6tFGshb/YAUBL8nFRkT4fMECS9L/evfXH2FjfBgRUJZ1Mo6UHlziumzzZ+W53NYSbQjTTfIpmmk/Ri9VK8lKtO7XRSK/1kA/rG72vc71wMkDTpe7MkFQ5afeyPZm6sI/nJ6ovLLfq75sP1rquegndjK7xSqaEzi+QeAIQUB5Zd8hhuWdcuFJObauZp8ZpdOdW9ZfQAQACWmpamsP//8hNIOBL1ZNOtSSVJDnc7a6u5FMVk8nkUkneIu3WZuOofdQT4E+qEk9V//dG4umln9OUUVJuX06ICNWM3yYGp4TOP/GKAAgYm9IL9dmeHI3r3ErTu7fW+X3bUUIHACeJtOJifZ99YsTrymPHVGy1Ktxs9mFUOGm5knSq4kbyqbrqJXlFRrm+sO3Tx2XbtER7GPUEv7Q9s1A7s4rty0t2Z6rCZvPoH4YLyyv0zOaD6h8XqenJcTrv1CRK6AIAiScAASMqNEgHbhiq1r/VilsszGsAACeLxUcc7wRWbLXqi2PHNCMpyUcR4aRmWF1LOlWxJ5+sjTpcxG8leZNNnWQYhjbrmCoMW6P2BXjLop2ZDstZxRX65lCexnaO9dgx8susWjNriJKjK78H8H0gMJB4AhAwTmlDjTYAnKxS09IUUVKi7kdP3NV0WVISiSf4xvxlzm2FhdLu3SeWu3eXIiNPLLuapGqAyWTSYFFmB/9TvcyuepsnE0+JkWGKNbt+Jzv4BxJPAAAA8GvFVqtWHjumIfv2ae3f/mZvP++xx2SMHi0TJRbwB5s2SWPHnlhes0YaM8Z38QDNKLu4XGsP5jq1L9qVoSfO6OGDiOBPmIUXAAAAfu2L3+Zzqul4WZk25eQ0f0AAAAdLd2fKajiPRPo1o0i7s4t8EBH8CYknAAAA+LXqd7NzZx0AoHnUVmZ3Yl1mnetwciDxBAAAAL9lGIYW1ZhYvLr61gEAvK/catNne7LqXF9fUgonBxJPAAAA8FubcnJ0uLi4zvXfZ2crrZ71AADvWncoVzklFXWu/+pAjnLrWY+Wj8QTAAAA/JYrI5oWM+oJAHymoRFNFTZDy/ZQbncyI/EEAAAAv+XKHE7M8wQAvuNKKR3ldic3Ek8AAADwS2nFxfo+O7vBfivruOsdAMC7dmQWaWdWw+XOS3ZnqsJma4aI4I9IPAEAAMAvuVpCV2y16otjx7wcDQCgJldHMmUVV+ibQ3lejgb+isQTAAAA/JI7JXSU2wFA83OnhI5yu5MXiScAAAD4nWKrVSvdGMW06MgRGYbhxYgAANVlF5dr7cFcl/uTeDp5kXgCAACA3/nCzXmbDhcXa1NOjvcCAgA4WLo7U1Y3Ev7bMou0K6vIixHBXwX7OgAAAACgptpK5zKjovT+yJEOy9UtOnJEQ1q39npsQK3i4qRZsxyXgRZs0a7MRm1z8/AIL0QDf9aoxJPJZPJ0HM0u0M8h0OOH7/Eegj9rCe/PQD+HQI9fCvxzCPT4S0pKGr2tYRhOiadIs1nbOnbUhbfeam+LMpulaqOiPjl0SLd369bo49bUlHOA//P469u1q7RwYc2DePQQ4eHhHt2frwX6da4laOznoNxq09JdjqVzkSFBKix3vHNdVEiQCqq1fbL9mK4eEN+oY1bhcxB4KLUDAACAX9mcm6u0374MTYmP1+oxYzSrfXunftd27arFI0fq9N9GOf1QbTsAgPd8k5avnNLKxP/M7m30zSUDNKWr84jTO0Z21Efn9dKQdpGSpLWH8pRbWtGsscL3SDwBAADAryw5etSecPpk5EiNqKN8zmQyaVJ8vD4fPdqegPrs6NFmjhYATj5LdmfbE07vn9tLg9pF1drPJJOmdWujtRcP0Efn9dKA+Agt35vTvMHC55jjCQAAAH7lyuRk3dOzp8v9qxJQE9u2VXppqRcjAwBI0k3D2ispKtTl/iZTZQLqrK6tdbSo3IuRwR81KvEUiLeqrVk3GejnEOjxS4F3DoEev8R7yB+cDDXcntASXttAP4dAj18KvHMI9Pglx3OwWCyN3k/XWrY1m81ObcHBwU7H6erBuT+acg7wf4H4+hYXFzssB+I5VJ9TKNDjlwLvHGr+rGls/LVep4OcC6pCQpyv012aeJ2u/jkItOdfank/713BiCcAAAAEhAH79umfr7xiX9746KNSv34+jAioZssW6eqrTyz/85/SwIG+iwcA/ASJJwAAAASE6JISnb5zp33558JCH0YD1JCfL337reMyAIDJxQEAAAAAAOAdJJ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFSSeAAAAAAAA4BUkngAAAAAAAOAVJJ4AAAAAAADgFcG+DgAAAABwxfoePdTm3/+2L1/fv78PowFqGDFCysw8sRwd7btYgBYst6RCy3fnqltri0Z3s/g6HLiAxBMAAAACQkVwsLKjouzLtpAQH0YD1BASIrVp4+sogBZpV2axUrdlKXVbptbsz1Osxaxfrx/g67DgIhJPAAAAAADAb1RYDX19IE+p2zO1aHuWth0vdlh/88hERYWafRQd3EXiCQAAAAAA+FROcYU+25mlRduztHRHtrKKK2rt1zYiWH8eltDM0aEpSDwBAAAAAIBmV7OErsJmNLgNo50CD4knAAAABISEnBxN27zZvhwZH++7YICajh6Vli49sTxtmtSune/iAfxQ9RK61G1Z2p5R3PBGNaTll2neqkOSpOBg76Q0rhqaqK5tmLjcU0g8AQAAICCckp6u1xcssC+/MmKED6MBati5U7riihPL//iHNKCeyY+Tk6VOnZzb162TjNpHfZhKSx0bwsIqH6ed5tx5927pyBEXAq+mb1+pdWvHtsJCadMm9/YTFyf17u3c/uOPMh0/fmI5LKzhfY0YUTlxe3XHjkk7drgXU+fOlY+avv5astlc3o3JMGTU9nzv2SOlpbkXU58+zhPSFxVJP/wgWSzSwIHO5x6AqpfQLdmRrew6SuhcteC7Yx6KrG5TesSSePIgEk8AAAAA4GnXXVf/+kceke66y7l90iSprKzWTWpN0yQnS/v2Obc/+6z0/PMNRenos8+kqVMd2/btk8aOdW8/550nffSRc/u11yps3Tr39nXsmFRzdOPy5dKll7q3nwcflO6917n9zDMrkz0uCm3fXqW7dzuveOEF6e9/dy+mRYukGTMc2w4ePPF8Dx4srV8f0MmnlzYc0T1LD7pUQoeWi8QTAAAA/N6CIUNkKyx0aJvbpYtvggFqY2F0BDzg6NET/9+0SdqyRRo2zHfxuGHhOX30eopkGIY2HMrXkh3ZWrozSxW2cl+H5rbvDhZofNdYX4fRYgT5OgAAAACgIWFms8JrzOUREsSvsvAjAwdWjlABmmLnTsflkhLfxNEIlmCzIkPNigoL1qTurfV/07rplxuHac+tp+m5Gd10ZvdYhZhNvg7TJZ/8lO3rEFoURjwBAAAAQFOFhFSWRW3Z4lqyIDm59vYvvqhzjqfSGnM8hVXN8VSbm26SLryw4Tiq69vXua1LF2nNGvf2ExdXe/uCBSqtNsdTmCtzPMXGOrdNmeJ+TLXN7yRJK1a4NcdTWR2vja6/Xjr/fPdi6tPHua22eb8CXNc2Ft1wegfdcHoH5ZVUaMXuHKVuy9Ti7VnKKHJ/vqc5/drIElz5hwez2fN3t/vhUKG+P1ioknKbLCH8gcMTSDwBAAAgIGQWlamOr7OAfwgJaXpZ1OjRda4yaia06ivv69698tFUkZHSmDFN348kDRjgeA6NLU9MSKh8eMKoUW51d3oNqnTrVvloqoiIpu/Dj7WyBOuCvm11Qd+2stoMrT+Ur9RtmVq0PUs/H3Vtrq0RHaN09bDKO0ZavFDietrff1JJWalW78rTWb1jPb7/kxHpOwAAAASEbw7m+ToEAICHmINMGtW5lR6d0lU/3TDU5ZK8J9cdUUmF66PU3JGWW6bvD1bOJ5i6lXI7TyHxBAAAgICw7mCur0MAAHhJVUne8iv6K+OukXp/Ti9dPjhBbSMcC7XS8sv1+ubjdeylaRZXSzal/pIto67SSriFUjsAAAD4vZIKq75Ly3doMwxDgTFNLQDAHa0swZrVL16z+sXXWpL35LojmjsoXp4utEvdmmP//8GcMv2YVqSBHSI9fJSTD4knAAAA+L0v9uaopMLxL8+7sop1io/iAQA0j6qSvKqyvG1HcrVkV462pBdpfA/PzYlVXGbTyh2OI2sXbc0h8eQBlNoBAADA76Vuz3RqW3eA0jsAONl0aR2ma09rpxEdozy63y925aq43HHuqNRfmOfJE0g8AQAAwK8ZhqFFO2tJPDHZOADAQ2pLMm04WKCj+WU+iKZlodQOAAAAfm3L0QIdyiuVYtvprjOusrd/VhGtI/mlSooO82F0AIBAZxiGFlWb3+lEu7R4a46uHJHQ/EG1ICSeAAAA4NeqyuwOxSTosbEXO6xbvDNTVw1p74uwAMDz2rSRUlIcl+F1mw4X6XBu7SObUn/JJvHURCSeAAAA4NdSdziX2VVZtIPEE4AWpE8f6dNPfR3FSWdRPXM5rdiRq5JymywhzFTUWDxzAAAA8FtH8kv1XVp+netX7MlWSYW1GSMCALQ0qVvrTjwVltm0ehdzCjYFiScAAAD4rSU7s+pdX1Ru0xd7c5onGABAi5OWW6bvDxbW26e+xBQaRuIJAAAAfit1R0bDfbbXXYoHAEB9FruQVEr9JVuGYTRDNC0TiScAAAD4pZIKq1bsOfGFYNSBn1Ty4BT7Y9SBnyRJi3Zm8oUAANAotd3NrqaDOWX66UiR94NpoUg8AQAAwC99sTdHReU2+7LJkMKs5faH6bdc06G8Um05WuCjKAHAg376SZow4cTjp598HFDLVlxm04oduS71Tf0lx7vBtGAkngAAAOCX3Cmho9wOQIuQmyt9+eWJR65rSRE0zhe7clVc7Q8c9Umt5853qB+JJwAAAPgdwzC0aKcbiacdJJ4AAO5xJ5m04WCBjuaXeTGalovEEwAAAPzOlqMFOpRX6nL/79LydSTf9f4AgJObYRguze90or+02I3+OIHEEwAAAPxOY0rnluzM8kIkAICWaPPhIh3OdW8E0yIX7oAHZ8GN2chkMnk6jmYX6OcQ6PFLgX8OxO97LeEcULuW8NoG+jkEevxS4J9DoMdfUlLSpO0/2X7c7W0+3nZMF/dp3aTjVtfUc4B/C/TPGPxDcXGxR/dnKi1VWLXl0tJSGV68FgX656Apz///trj/c2b59lzl5BfJEuK5MTyB/hq4ghFPAAAA8CtHCsq08UihJCnMbNK1QxM1vXusU78zu8bosv7xMv/2O/sX+3JVUuHaJLEAgJPb4m0nJm6fcmq0bp/QzqnPKW3D9MDUJMVFmCVJhWU2fbWXu6i6i8QTAAAA/Mpnu3PsCaetfx6spyZ3UXxEiFO/hMgQvTS9u3784yBd1j9epRU2rd7PHaAAAPVLyyvXD4eLNeXUaK2++hR9Mre7hnQId+oXHmLSbePb6dfb+tgTUEt+zfNBxIGtUaV2AAAAgLfERwRr658Hq310qEv9u7W26KXp3XXH6R20N4fyOABA/Y4XlGv11adoROdIl/pHh5l12/h2unpkWy36lT9wuKtRiSfDMDwdh9fVrJsM9HMI9PilwDuHQI9f4j3kD06GGm5PaAmvbaCfQ6DHLwXeOQR6/JLjOVgslkbvZ1b/9k5tZrPZqS3YbHY4Tp8ki/okNfqwTppyDvB/gf4ZkwL/HAIx/ppzv3n8OhEWVmMxTPLitSjQX4PGPv8jujlvFxri/McOkynI4RgWi3TFSNeSVa4KxNfA3e80lNoBAAAAAADAKyi1AwAAQEAoDQ7RvpgTk79W1PLXaQAA4F9IPAEAACAgfN+hl7re8q59+Z5enX0YDQAAcAWJJwAAAAAA/MHw4VJa2onluDjfxQJ4CIknAAAAAAD8QWiolOTBuyQAfoDJxQEAAAAAAOAVJJ4AAAAAAADgFZTaAQAAICB0yzqsm7790L5c0f0GSd18FxAAAGgQiScAAAAEhKT8LN244X/25Vcy5/gwGgDwguPHpZUrTyxPnizFx/suHsADSDwBAAAAAOAPtm+XLrroxPKaNSSeEPCY4wkAAAAAAABeQeIJAAAAAAAAXkHiCQAAAAAAAF5B4gkAAABoDjabdHCH9NO6yn9tNl9HBKARDEPav9/knZ3bbFK4SYoxVf7LdcJBZkGF8kqsvg4DbmJycQAAAMCb0vdLb9whHVsmRVf7EpkfJCVMlS5/XEpM9l18ABpUVCR9/rn08cfBWrrUrFtuqdANN3gwAVJ1nUj/TLo9+kT7/86WvjmL68RvzEFS74d3qH97i6b3baXzh7RV17Zhvg4LDSDxBAAAAHjLe49LWx6WQiRFSlK1URKRVqloifTcEmngPdLsO3wUJIDaHD4sLV4spaZKK1dKJSWSFKzERENXXeXBpFP160S05HCdiLZxnagmNiJYfxrdRg8vO64vdhTqr/87oj5JFqX0j1XKgBiN7Bolc5CXRqOh0Ug8AQAAAN7w3uPSLw9X/sZtMjl8l5QkVX05CjYq+72nk/5LJeBLNpv0ww/SokWVyaYffqi93623Vig83EMH5TrhtuvHt9ULX2Yqt6RyBOnWIyXaeiRdjy9PV1xksKb3i1FK/xhN7ROjVuFmH0cLicQTAAAA4Hnp+ytHMATrxBfHugSZJJtR2X/8HMppgGZUVUKXmlqZcDpypP7+Hh3txHWiUWLDzbp+fJweXnbcaV1mYYUWrs/UwvWZCjGbNP6UKKX0j9XM/rHqFk9Jnq+QeAIAAAA87Y07KstmTC6WfASZpBBDevNO6fb/eDU04GR3+PCJUU2ff15VQuea886zau/eE5/rsCbkMjq+c4dahUimFnadKLfatONoqdf2X1paqkmnRunJlRkqsxr1xGFo5bZ8rdyWr5veP0hJng+ReAIAAAA8yWarnEg8ys3tDElHP6vcPoibTwOe4moJnStefDFYL77oia/RNpXesExq7eZmAXCdOJZfoX4P/uLrMJxQkuc7JJ4AAAAQEH5J6KKplzxuXx7b5RQfRlOPw7t+u3udm39NDzJVbpe2R+rYwyuhAScLd0vomtsp4bsU2obrhK/UVpLXuW2Ir8NqsUg8AQAAwO9dPihRIzu2Un7JYFlCTAoxmzQo0d0hRc0kx3neEbdkH+ULJeCmr7819NqblZNNZ2RI366X0tNMUoV/jgpKCG2514n0nApfh+CWqpI8mQxFRwTrrD4xmtQrWmaTSW0iSJl4As8iAAAA/N645FiNS47Vv7/IVlJEsKYNjvZ1SHWLjW/a9q3beSYO4CSyc5ehf73uON/PiFGG/nhZkFJTpRUrKkdB+YtjZS33OvHpplxfh+CWAR3CNbN/jFL6x2p4l0gFMfeTx5F4AgAAQMBI3VigpNZ+nnjq0EPKD5IirQ3fqao6myEVmqX23bwXG3ASCQ2V/vCHykdxsbRq1YnSu0OHGrtPQ2aH6YAal6Q4ZPRQeVaQgmOtMrWw68TKXwoUHFQ5MtU7KhOMxeV1Tyxen9BgkyaeGv3b3e5ilBzH3e68jcQTAAAAAkJJmU0rfixQmyiz/vGHRNfvBNXcgoKkhKlS0RL3tjNJaneW304YDASy8HBp+vTKx4IF0pYtlUmo1FTpu+9c389111n1yCMnSsksFksjIwqSHm9514mcQqs27ClSr6Qo/fRwT68co6SkRPsyy9T/kR2qsLm2TUJ0sGb0i9HM/rE6s3crRVuYTLw5+ee7FQAAAKhhzcbjSj62U9F7tmn7ik1SYaGvQ6rb5Y9L5aocneAKm1HZ/7LHvBkVAEkmkzRokHTffdKGDVJamvSvf0nnnCNFRNS/7UsvmXXsmIcCaYHXiWU/56nCKv18qET7jpd57ThPrDzeYNJpQIdw3X1Wor65rZeOPDZQ/76sq84f3Jqkkw+QeAIAAEBA+Onjb/TL8nP0y/Jz1GvqUGnTJl+HVLfEZGngPZX/b+hLZdX6QfdVbgegWSUlVZbjffxx5cTkixdLV18tdezo3LeoyKRnnvFQ4VALvE6kbso78f/N3pnraV9mmRZuyHZqDw02aWqfVnphdmfte6i/ttzbVw+f01Eju0Uxb5OPkXgCAACA3zMMQ+u2+9HMwK6YfYfU9x6pojJ+o8YXS8NmSIYhVUjqd5904W2+iROAXVVJ3osvSgcOVOa3H3hAOu20E308Ouqp2nVChuGcgAqg60SF1dCSH/Pty9WTUJ5UfbRTQnSwrjg9Th/+qbsynhykz244VddNSGDeJj9D4gkAAAB+78f9pTqaZ3Voy8oPgFt2z75DuvEnHSucoYocx1+9rTlBUuQM6eZf/PrLJHCyqq0kb8GCck2aZNMrr3iwXOu364QiZ1ROHF5doTlgrhPf7CpUduGJ6/TqbYXKK7bWs4X79mWWavOhYt0+OV6rb+pGCV2AYHJxAAAA+L3UjflObd/sKNaMaT4Ixl2Jyfp52n80b/JXWhs+QQqVVCZdFLNa/z0yztfRAXBRUpJ0xRVWXXGFVVbP5lMqy+du/49ks0lpe6Tso1LrdpV3r/PTicRrSt3sOMKp3Gpo+c/5mnVarMeO0al1qL7+Sw/7MiV0gSEw3sEAAAA4qS36ocCpLeBK7xQkFRtSrlH5r4lfxYFAZfbW4JqgIKljD6n/6Mp/AyTpJNVeWrdos2fL7cwkmgJS4LyLAQAAcFI6mlOhDbuKndo37C5WSZmL99IGAHjNrqOl2nak1Kl98ZY8WV29ax9aLBJPAAAA8GuLf8iXUcv3lpJyQ6t+KWz+gAAADuqaSDwj36r1uwNtdCo8jcQTAAAA/FrqRucyuyqL6lkHAGgei7bUXVLnrbvbIXCQeAIAAIDfKimzafmPdSeXUjfmy6htOJQf2q6e+r3esT/2hPT0dUgA0GS5RVZ9tb2e67SH53lC4OGudgAAAPBbq7cWqai07sTSwcwK/bi/VAO7WJoxqsbJULze1e/ty1258zeAFuCzn/JUUc9d/n45XKK9x0vVNT6s+YKCX2HEEwAAAPxW6vf5DffZ2HAfAIB3uFJK5+m72yGwkHgCAACAXzIMw6Wk0qIfmOcJAHyhwmpo6Y8u/IGAeZ5OapTaAQAAwC/9uL9UBzMr7MuZobH6qMNkh2VJ2rCrWEdzKtQull9tAaA5fbOrUFmF9dTZ/Wb1tkLlFVvVKpwa45MRP50BAADgl2qOdtrWqrsuGPWsUz/DkBb/kK8rJ7VurtAaJURlilPmiWUjTlKo7wICgCZydeLwcquh5T/na9Zpsd4NCH6JUjsAAAD4JXfmbkrd6P/ldsO1QUfU3v4YWLrB1yEBQJO4U0JHud3Ji8QTAAAA/M7RnApt2FXicv/lPxaopMzmxYgAANXtOlqqbUdKXe6/5Mc8WW1136UULReJJwAAAPidxT+4d6e6olJDq7cWeSkaAEBN7t6pLiPfqvW7uU6fjEg8AQAAwO80pnQu9Xv3klUAgMZzdX4nh20otzspNWpycZPJ5Ok4ml2gn0Ogxy8F/jkQv++1hHNA7VrCaxvo5xDo8UuBfw6BHn9Jietlck7bltm0fMuJxFP71ma1Cg9SyNafteCHB+3tz818QF8E9VBmQWWJ3aff5+n/Lo712HPX2HPYtMmk1auD9Kc/WRUZWdlWVub8917DsDkc49dfTXrnHbMefLDCqS88L9A/Y1Lgn0NjP2OfrzJp337p0osMhf42P395uUmS4x3TbDbD4RjfbZS+WG3SHX9pfLlXeHh4o7f1R419DXKLrfpq24nrdHJciILN0u5j5Q79hnaxaNfRMuUW/3ad3pSjeWc37UYQLe01CPTPsSsY8QQAAAC/8uWvJSoqM9S+tVnPXBanrf/XWSN6WNSqokBjMjfZHxM7VWjb05314IVtFBcVpENZVv10sMzX4atPH0OPPBKs3r3D9Pe/m1VYWH//X3816bLLQjR0aKjyGbQFNKhvH0PX32pWv2Fmvfq6SWUNfOy/2yidNztI484Mlpn7unvE8p8LVWGrTDi9eGk7/fRgVw3oGObU77whUdr2SDfdlxKnmPAgbU0r074M31+n0bz42AEAAMCv/HigVM9cFqe541spLKT+vwRHWYL015mxunpyK/1zZZ427CrVgM7OX36aU1iYdMYZNn3yiVl33x2iv/89WJMmOU98XlxcmXD64IMgGUblec6YwQTpQEMS20nDhhj6/geTrr/VrMefNjR4kPMopvSjlQmnz1acGG8xfQqTW3vCr0fK9OKl7XTx6TEKMdd/nY6NMOvumW117aTWWvBFtr7eVawubUObKVL4g0Ylngwj8D6sNYevBfo5BHr8UuCdQ6DHL/Ee8gcnw1BaT2gJr22gn0Ogxy8F3jkEevyS4zlYLJZG7+feWYlOz4fZbHbqF2w2249jsUj3zoqQYRiNvtYWFxc7LDflHM49V/rkk8r/Hz9u0nvvmTW6Rp+cXJMWv3/ivKKipClTQhXm27zZSSPQP2NS4J9DUz5j58y06fsfKhO1Bw+ZdPCQ8+d+9x6Tdu850d61izR4UJhHfx8LtNeg5rk39jV4+HcdXLpOhwSH2I+RaJEemBXZpOu05Hitbsp7yFdqljcG4jm4+/pRagcAAAC/0pQvJP6S4J8+XXI3lClTRNIJcFHKdPc/6ynTTX5zjQh0LeE6jeZD4gkAAADwsIQEaeRI97ZJSfFOLEBLNKC/1Kmje9s0JlkFoOlIPAEAAABe4E4iyWSqHCUFwDUmk0kzp7meSIqOlsaNIfEE+AKJJwAAAMALZs50ve+IEZWjpAC4zp0RTFMnmxQaSuIJ8AXuagcAAAB4Qb9+UnKytH9/5XKuYrRa4+3rcxVj/z9ldoD7Jo43KTJSKixsuC9ldoDvMOIJAAAA8AKTyTGh9LP6a6JW2x8/q799HYknwH0Wi0lnTmo4oRQUJE2fSuIJ8BUSTwAAAICXuJJQSk6uHB0FwH2ujGQ6fYTUti2JJ8BXSDwBAAAAXjJ+vBQVVX+fmTMrR0cBcJ8rI5lSpvO1F/AlPoEAAACAl4SFSVOn1t+HMjug8RITTRo+rP4+zO8E+BaJJwAAAASE9W0GKP7sNfbHwR5DfB2SS+q7u11UlDRhQrOFArRI9Y1o6tpF6t2r+WIB4IzEEwAAAAJCRVCIMsLa2B+24BBfh+SS6dMrS+l6a6s+0dn2R29t1ZQplaOiADRefSOaUqabZKKWFfCpYF8HAAAAALRkCQnSyJFS0DdZOlup9vYndHu9o6EAuGZAf6lTR+ngIed1lNkBvseIJwAAAMDLapvHySRpxoxmDwVocUwmk2ZOc04wtWoljRtD4gnwNRJPAAAAgJfVlnjq06dyNBSApqttZNPUySaFhpJ4AnyNUjsAAAAEhPiSTE05+rV9OTJ3piTPZW7yCw19vr5CS76q0PmTQ3TuZI/tWn37SontJB090TZ6tOf2D5zsJo43KTJSKiw80VbbKCgEttwiq1K/K9CSTUW6ckK0Jg+y+Dokt1ithr7eVqol3xfLEmLSvbNjfB1SsyDxBAAAgIBwasE+vbXhTvvyK9P6SOrbpH3uT7MqdVWZUleXavV35Sorl7p1NGnBvZ79MmMy/ZZo+uhEG4knwHMsFpPOnGTSx6mGJCkoSJo+lcRTS7A7vUypG/OVujFfX/1apAqrNLBzqEb3DIykU16RVct+KFLq+kIt2ViozDybJOn7p9v5OLLmQ+IJAAAAJw2r1dCGnyqUurpUi74s0087rE597roqTMHBnv/CWjPx1K2bxw8BnNRmTjuReDp9hNS2LYmnQFRhNfTNjiKlbixQ6sZ8bTtc5tTn7vNa+/XdCveklyt1fYFSNxTqq1+KVV7huP7808PVt3Oob4LzARJPAAAAaNHyC21a8XW5UleXavFXZTqeZdTZt1tHk+ZM886vyIMGOS778XcmICDNOOvEhyplOtMZB5LcIqs+21ygRRsLtGRTgbIKnP8oUGVg51ClDIloxugaZrUa+mZbiRZ9V6jUDYXaesA5WVbd3b9r1UyR+QcSTwAAAGhxaiuhc4W3RjtJUujJ88dtwCcSE00aPkza8H3tk43Dv+xKL9OiGiV0rvCX0U65hVYt3+RcQteQk220k0TiCQAAAC2AKyV0rnj6zTI993blX6pNpiJPhqjBmXl63aN7BFBTyvQgZWTa1LuXryNBTa6U0LniwY+y9dBH2ZIkU5B3ElCvXt1ew7qHO7VXL6H78udil5Nl1a3fUabhf0m3L3sjiTZrdJTu+32cx/fbWCSeAAAAEJDi9v6iL/8eqXWbyvX+r+20uaiDU5/TizYoSK79FVqSyn4J1XfhQ5zau5btU/uK9Fq2qNvWsJ7KNre2L0cXNS4ZBsB1M6eZdDzD5BcjYiCVlNv03te5Sv2+QEs3119C56qfDzYuYeWOwtLKnxtVJXSpGwq16LuGS+hccTjTqsOZ3v15MLJXRcOdmhGJJwAAAPi9nu1DFdHF8Q5G5795l/SmNF5SUfyd2hx/q9N2K/ZfqEjD9ZFLh4KT1OnULU7t12e9qluzXnIr5hmd3taS6DMd2g4Ed1DnisNu7QdAw46kG9q20ybDMDRokLRqjVUxrUwaMpC5nppL3w4WZeRXJjyO5lp1JLtc97+fIVt54L0Ge46U69Wl6W6V0PkTm5+FTOIJAAAAfu/2c9pKHbpKr/k6ksbbGdpN53R6U5v2nlHZYAmMW4EDgWD5KqvmXu84mdvY04P01aIwH0V08pl/XqL9/1abofU7i5W6MV+pGwv0y8FSH0bmvm5JIZrYL1LDT7UodUOhVv9UrLKKum9M4W9+2uv9UWHuIPEEAACAwDBwoDR4sLRpk9OqlAmh+qFNqL5YX6ZS//p92+5YcIJirXmVC4MHV54PALRA5iCTRvWM0KieEXr0onbae6xMi36b22n1L4UqD4DK4y7tQnR9SqyuT4lVfpFNKzYXKXVDgRZ/V6Tjuf59Apt3l2lferm6JIb4OhRJJJ4AAAAQKEJCpPXrpS1bpJISh1UjOnfWks4xKiwytPLbMqWuLtOi1aU6M/m/bs3xdNWcKL03rnIkUmi129BFpN2krzIvdCvca5N764+tHG+ZbS7ppYzQb9V2wpDK8wGAk0DXhFDdMK2NbpjWRnlFVi3/sVCp3+dryaYCZeS7l8R55rI4JbWuTGWEeuk62rej40i56IggnT8qSuePiqq8mcWOE/M+/bTPvb92zBoVrt+NibAvh4Z49g53vx4o092v5GjRt8W6/lz/+DlD4gkAAACBIyREGjasztWRESadMylM50wKk80Wpe9/nlKZhPqyTJu3NTzZaldbsF6ZWPmLusVS/YtH798eTRUmaYQH9gMAgalVhFmzRrbSrJGtGlWStyO9XH+eHCNJsvigZNlsNun03uE6vXe4Hrm8rfYdLdeiDYUul+R9va1Mr1wfJ0to5QT4nj6Hb3/OkgyTUr8p0vXntmp4g2YQeLN8AQAAAC4ICjJp+IAQPXhjpDZ92FoHVrbRgvuiNG1sqMLq+APzf5ZWaPdBP5uVFQBaqKqSvEcvaqefn+quPS/00HNXJOrMAZEKMde+zaur8pWW7T93basqyVv2YAdlvNNNH96dpLmToxUfU/sJpGVZ9frnBV6LJ/WbyhtqrN5SrPwi//h5RuIJAAAAJ4VOSWZdMydcS/4Zo8x1bfXx8630hwssahd34rbrVqv02L8CaxJcAGgpqkrylt+brIxXe+r9Wzvq8vExaht9IolTWm7oqcU5vguyHlUlea/dnKgjb3bV10921N0Xtlb/Lo5/7Xjyf/kqKfP8ZOV70sq1dX/lJPtl5dLy74s9fozGIPEEAACAk05VSd6/HohW2uo4rf9PrO66KlQDewYx6gkA/EBVSd7r13VQ+iunat2DXXTnuXHq2zHE70Y91aaqJO/hy9rqxxeStffVLnr+z/E6c5BFGXneGfW06Nuiepd9hTmeAAAAcFKrKskbcGqY/nZNmA6m21RYHDi3zQaAlq76XfLmnR+jfcfLVVQaWNfpqpK8q860KL/Ypl8OlHv8GFVldlUWry+S1WrIbDbVsUXzIPEEAAAAVNMpkaIAAPBnXeL9425tjRUdHqSRPcMa7uiGvEKbvvzR8Y6vx3Ns2rCtVKf3bf5J2KvjpyoAAAAAAEAAW/Z9scprqT6sOQrKF0g8AQAAAAAABLC6EkypfjDPE4knAAAAAACAAGW1GlqyvvYE0897y7Uv3fPzSbmDxBMAAAAAAECA+vbXUmXm1X031kXfFjdjNM5IPAEAAAAAAASohuZx8vU8TySeAAAAAAAAAlRDiaXVW4qVX1T3iChvI/EEAAAAAAAQgPaklWvr/vrncCorl1Zs9F25HYknAAAAAACAALTIxbvW+bLcjsQTAAAAAABAAHI1obR4fZGsVsPL0dSOxBMAAAAAAECAySu06csfS1zqezzHpg3bSr0cUe1IPAEAAAAAAASYZd8Xq7zC9f6+Krcj8QQAAAAAABBgFrmZSHJ1PihPI/EEAAAAAAAQQKxWQ0s2uJdI+mlvufYfrf8OeN4Q3JiNTCaTp+NodoF+DoEevxT450D8vtcSzgG1awmvbaCfQ6DHLwX+ORA/4F0t4T0a6OdQUuLa3DQ1bd1uKK6N1C7+xPmXlztPmmyz2RyOYbUa+nqDNPZ0zz1vgf4aBHr8LUFxcXGjtvt6a5kycm325ZBg1Vp2FxoslVVr/+irPF2TEtmoYzYWI54AAAAAAAGjrFzqPVK68wFDR483fJcuq9XQfz4yNGSi9L8lzRAg0AyWrK9MqoYES3+cHqGfX0mQJdS537LH4nTvxVGKiaxMMi7Z0LiEb1OQeAIAAAAABIyBfaU2raVnX6qWgMpw7me1yp5wuvIGacduafrk5o8X8IaVP5TaE07PXRejzgnmWvvFRpp0z0XR2vbvBN17cZR+3FOh/CJbrX29pVGldgAAAAAA+ILJZNL0yYZeWSgVl1QmoGrz7feVjypRkdLYkc0TI+BNFVZD/72vTZ3JptrERgXpnouidd3ZkSq3ejG4WjQq8WQYDQ9n9Dc1a1cD/RwCPX4p8M4h0OOXeA/5A+roXdMSXttAP4dAj18KvHMI9Pgl3kP+gJ8zrmsJr2+gn4PFYmn0fs6dYdUrC8vc2mbqpCDFxIQ1+piS83w8TTkHX6g5r1agxS85nkOgxy81/hxOrXWaJpMkx+tCWFiYLNVq8BJ98JRRagcAAAAACCiTxgYpIsK9bVKmuj46BIDnkHgCAAAAAAQUi8WkyeNc/zprMknTzyTxBPgCiScAAAAAQMBJOcv1RNLIYUGKb0spKuALJJ4AAAAAAAFnhhsjmFKm8tUX8BU+fQAAAACAgJOUaNJpg10bxeTO6CgAnkXiCQAAAAAQkFxJKHXpbFLfXpTZAb5C4gkAAAAAEJBmTmk48ZQyNUgmE4knwFdIPAEAAAAAAtKg/iZ1bF9/UillKmV2gC+ReAIAAAAABCSTyaSZU+r+WhsVKY0bxddewJf4BAIAAAAAAlZ98zxNnRSksDDK7ABfIvEEAAAAAAhYE8cEKTy89nWU2QG+R+IJAAAAABCwwsNNOnO881dbk0mafiaJJ8DXSDwBAAAAAAJabeV2p58WpPi2lNkBvkbiCQAAAAAQ0GbUMrKpvknHG8NqNfTmB1YdSDM8ut/mtGKdVd9uscpqDcxz2HvYqo++KFdeYWDGbxiG3vqsRHvTrL4OpVmReAIAAAAABLSkRJNOG+w4uqm+Sccbw2w26ecdhnqOL9fw/2/v7oOjqO84jn/2bvfuQsDwDJrIg0wRJESrAkIg4UISxNzRGbWOU22rTnW0Re3UGWd0dIqtnRasba1tHVtGHalaqUOnHTsWHWYqw7RYFcUqtLQ+NvEhiUTIA5u729v+cSIJJtyBt9xufL/+y83e5fu73dnf5JPv77fJtNb+JKMdOzPKZoMTgoyrkOJf7dfMhoO65vZ+bd6SUndPcOqfNjWkO+63VbXygBI39Orex/r0ZltwQhzDMPTW+47OuKxLZ1/Rpdt+3avtu/oDGwQWiuAJAAAAABB4iQEbic+YZmjenOIvs/vO1WHFotI//+Vq3X1ZLf5Sn04+p0dX3XRQf3gqrR6fd+KcWx3WqrqQOrqkjX90dNH1PZq4qEsrrzqgX2y09bbPQ5xw2NAtV0WVzkhb/5HRDeu6dVpLp6ov6tQtP+/W315O+T7EWXNxmSrKDe1529Hdjx3Usms7NKXlPX3tjn36/dY+HejNlrrEoiN4AgAAAAAE3sAn2CVXhmQYxQ+epk4ydPVXBv8Z3d7p6sFNaV14zUFNqOnW+Zf36pcPpfROmz8DhFuvtQb9nEpLT2/P6Prv92lGfL9qkvt16919+vtLaV+GOF9utDR7+uBz8Nrrjn70QJ9qr+jS1MYOff22/XriGVsHevx3DsaODmnNxbFBr324P6uNf+nTJbft08Tz31Xj9R265/FuvdGWKVGVxWW4rpv3SqqqqlJbW9snPxfwFt858qYT9DEEvX4peGMIev0S15AfHDmGyspKtba2lqga/2Ce8QfuEaUV9PolriE/YJ4ZHnONP3h5n3BdV9Nq+tX6rqunn4ioKV78J9rZtq33O1zNjadl9+c/vmZuSMlGU4lGUwvPCisUKu1m57ZtS5IuXGPrqW35Q5lJ4w21LLeUiEfUXGtpzOjSb9Zu27Z+tyWlK797MO+xliktPzeiRF1UyfqoZlaW/imHtm3ro56s5lzapf0FdMidMdNUojam5NIyLa6OKBwe/hyUrXpLdmrwZ+5+oFJzp0c+c90DHetcYxb1twMAAAAAUAKGYSjRHNKDm9J6/tW0du4pfrdIOp1bijZruqHX9uYPDV7Zk9Ure1L6wb0pTZ5oqKXBVLLRVFOdqdHlQwcIz+3K6K/PpYta9yHpTO47GXtSYQFSxz5XD21O6aHNKUUsafkiU8l4RMkGS9OHCXG6e7P61ab8odDxSqdz+2pFrFy31lGPzUjP7EjpmR0p3bi+W/NmhZWsjypZF9Wi+dawIc6jW/r0v3Zvuo0OnYNZlWHt3Jv/d+x+M6Pdb/Zo/W97NKEipAsWx5RcGlPzopgqRgdjERsdTwHCfxFLK+j1S1xDfsB/oofGPOMP3CNKK+j1S1xDfsA8MzzmGn/w+j7x56cdXXZjn/b7fMPsSESKLw4r2Wgp0WhqetXhAOGuDQd183rvgptiqZ4dVjJuKdlgaWGN+UmI0/aBo6qVnSWuLr+J4wxdUJvrhGpeHNFJA0Kc+uvate3lVAmry88MS/VfjCq5NNcNdVqlSccTAAAAAABealgW0rixhu+Dp1RK2vKsoy3POlpze25JXmKFqWSTqaDkia/udfTqXkc/vN/WpPGGLqi3lGyIqHp2MLpwOrtcPfykrYeftGWZUv05kVw3VH201KUVJONIW1/o19YX+vXtn+3X3BmmMhl/XjwETwAAAACAEaGszNDYCkkBa/T79xtZVU7NqurkrHr7/BkeHE3HPlcv7XZUNTWj0eWl30fpWKUz0q69aVVNCalqSigw4d9A/23NaMn8UWpaGFOitkxTxucCwIkVpT8fBE8AAAAAAJxgUyYZuS6nRlONy0yVj8otX7prg1PiygoTsaSG83JL7RJxS9NOyQUcbR8Eo35Jmv8FU8m6qJL1ES2Yd3jPp3ueOFDiygozcWxILUtyez41LYzppHJ/dpsRPAEAAAAARozmOlOzZ+Z/YtvxcLK5z31+V1bvtOU5eAhnzfv4KXcrLJ17ZmjIp9ydPjOsS1YVd0+eQ5xsLhT6oNPV9heP/TuaPMFQIm4psTyiplpryA3Sy2KGLmn2brma42TlSnpyWzrv5uJHilhSfEFEybqoWpZFNWOYDdLj50Q1dYI3nUKOkzsHL/8no9fbjv0cVJ9mKrm0TInamBbNO/pT7vyC4AkAAAAAMGKsuzXm2Wfbtq3ePldzlhcWGESjUsOSXFdTotHUqafk70hZvSKi1Su8CZ5s25YkfXNtv7a/WNh7zpwTViKe279pwfzwkGHZQOMrQnp8/djPWOnwbNvWsy9mtHlrYanTpHGGWpbl9m5qOi+iMQV0Ba39RsVnLXNYtm0rlXY17/Kugo63TGn52dFPwqaZpwQvxglexQAAAAAAlMj9j2TVeZTMYLgldH7xVmtWG/80/HK44ZbQ+YXrurpzg33UYwYuoVtYbeUNy060h5+y1do+fHg5cAld88JYQWGZnxE8AQAAAABQgN4+Vz/9zadDm0KW0PnF+g1pZTKDXzu0hC4Zj6hxydBL6Pxi205H218afA4GLqFL1EU13Wdh2UCptKt1jxz81OtBXEJXKIInAAAAAAAKcKjbKRqR4osNrW6OFryEzg8GdjvVnG5o9YqoEvHCltD5wcBup8njDLV8HDQVuoTODw51O1mmVH+WpdV15YFdQleokTsyAAAAAACKxHFcfXTA1ab7TDUsMVQ+ylAs5s1eTF7ZsSurH99saVV9WNNODikW824/LC+80epoSY2pO78V04Izwho1qqzUJR0T13X13odZPbp2jBoXWBozKnjn4HgQPAEAAAAAkEc4bOh7NwX7T+hLW4Jd/6xTTd1xXXCDGsMwdPuV5aUu44QLRi8aAAAAAAAAAofgCQAAAAAAAJ4geAIAAAAAAIAnCJ4AAAAAAADgCYInAAAAAAAAeILgCQAAAAAAAJ4geAIAAAAAAIAnCJ4AAAAAAADgCYInAAAAAAAAeILgCQAAAAAAAJ4geAIAAAAAAIAnCJ4AAAAAAADgCYInAAAAAAAAeILgCQAAAAAAAJ4wj+dNhmEUu44TLuhjCHr9UvDHQP2lNxLGgKGNhHMb9DEEvX4p+GOg/tIbCWPA8EbC+Q36GIJeP4DC0PEEAAAAAAAATxiu67r5DopEIkqn0yeiHgD4XLEsS6lUqtRllBzzDAB4g3nmMOYaAPBGvrmmoI4nx3GKVhAA4DDurzl8DwDgDe6vh/FdAIA38t1fC9rjKRaLybZthcNhTZ48uSiFAcDnWXt7uxzHUSwWK3UpvsA8AwDFxTzzacw1AFBchc41BS21AwAAAAAAAI4Vm4sDAAAAAADAEwRPAAAAAAAA8ATBEwAAAAAAADxB8AQAAAAAAABPEDwBAAAAAADAEwRPAAAAAAAA8ATBEwAAAAAAADzxfyStwR15/ZvZAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -294,12 +294,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "rollouts for ../examples/model.hallway-jvq.final.zanj on RDFS-g7-n8-a_dfs-h29762\n" + "rollouts for ../examples/model.hallway-jvq.final.zanj on RDFS-g7-n8-a_dfs-h93753\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxMUlEQVR4nOzddXyT1/4H8M+TpEna1Eu90BZ3H+4wtJ1vMAW23e3+ducud2Oud3Lnzowpd9YCY8Bwd3coUnePn98fXUPTpG3SJk3Sft6vV16Qk/Pk+aZ5kjz55nzPkYQQAkRERERERERERC4m83QARERERERERETUNjHxREREREREREREbsHEExERERERERERuQUTT0RERERERERE5BZMPBERERERERERkVsw8URERERERERERG7BxBMREREREREREbkFE09EREREREREROQWTDwREREREREREZFbMPFERETUiIyMDEiShC+++MLpbdesWQNJkrBmzRqXx9UavvjiC0iShIyMDKe3ffrppyFJUpP9JkyYgL59+zYjuoZJkoSnn37acr0lj8MTHP3bucPx48cxdepUhISEQJIk/Prrr63y92vJ66w1JCUlYd68eZ4Og4iIyCcpPB0AEREREXmHuXPn4vTp03jhhRcQGhqKoUOHYuXKlZ4Oi4iIiHwYE09EREREXuTf//43Hn300Vbfb3V1NTZv3ownnngCd955p6X9xhtvxJw5c6BSqVo9Jm9x9OhRyGQsFCAiImoOJp6IiIiIvIhCoYBC0fqnaPn5+QCA0NBQq3a5XA65XN7q8XiT9px0IyIiain+dENERF6tdr6bY8eO4YYbbkBISAgiIyPx5JNPQgiBc+fO4dJLL0VwcDBiYmLw+uuv29xHXl4ebrnlFkRHR0OtVmPAgAH48ssvbfqVlJRg3rx5CAkJQWhoKObOnYuSkhK7cR05cgRXXXUVwsPDoVarMXToUPz+++9NPp6qqiocOXIEBQUFTfatnf9o3759GD9+PAICAtC1a1csXrwYALB27VoMHz4c/v7+6NGjh92SqN27d2PGjBkIDg5GYGAgJk+ejC1bttj0O3jwICZNmgR/f38kJCTg+eefh9lsthvXsmXLMHbsWGg0GgQFBWHWrFk4ePBgk4+nMYcOHcLEiRMREBCA+Ph4vPrqq1a36/V6PPXUUxgyZAhCQkKg0WgwduxYrF692ul93X///YiIiIAQwtJ21113QZIkvP3225a23NxcSJKEDz74wOEYhBBISkrCpZdearNfrVaLkJAQ3H777Y3GV3+Op759+2LixIk2/cxmM+Lj43HVVVdZ2uwdw3v27Gly/qSnn34aiYmJAICHHnoIkiQhKSkJgP05spKSkpCSkoINGzZg2LBhUKvV6Ny5M7766iur+y0qKsKDDz6Ifv36ITAwEMHBwZgxYwb27t3b6N+gIZIkNXipjW/fvn2YN28eOnfuDLVajZiYGNx8880oLCy0ecySJOHEiROYN28eQkNDERISgvnz56OqqsqqL+d4IiIiaj4mnoiIyCfMnj0bZrMZL7/8MoYPH47nn38eb731Fi6++GLEx8fjlVdeQdeuXfHggw9i3bp1lu2qq6sxYcIEfP3117j++uvx2muvISQkBPPmzcN///tfSz8hBC699FJ8/fXXuOGGG/D888/j/PnzmDt3rk0sBw8exIgRI3D48GE8+uijeP3116HRaHDZZZfhl19+afRxbNu2Db169cK7777r0OMuLi5GSkoKhg8fjldffRUqlQpz5szBDz/8gDlz5mDmzJl4+eWXUVlZiauuugrl5eVWcY4dOxZ79+7Fww8/jCeffBKnT5/GhAkTsHXrVku/nJwcTJw4EXv27MGjjz6Ke++9F1999ZXV36fW119/jVmzZiEwMBCvvPIKnnzySRw6dAhjxoxp9uTTxcXFmD59OgYMGIDXX38dPXv2xCOPPIJly5ZZ+pSVleHTTz/FhAkT8Morr+Dpp59Gfn4+pk2bhj179ji1v7Fjx6KoqMgqWbZ+/XrIZDKsX7/eqg0Axo0b53AMkiThhhtuwLJly1BUVGS137S0NJSVleGGG25wKt7Zs2dj3bp1yMnJsWrfsGEDsrKyMGfOHADOHcP1XXHFFXjzzTcBANdeey2+/vprvPXWW41uc+LECVx11VW4+OKL8frrryMsLAzz5s2z+rueOnUKv/76K1JSUvDGG2/goYcewv79+zF+/HhkZWU59XcAao6/+pfExET4+/sjMDAQALBixQqcOnUK8+fPxzvvvIM5c+bg+++/x8yZM62SjbWuueYalJeX46WXXsI111yDL774As8884zTsREREVEDBBERkRdbsGCBACBuu+02S5vRaBQJCQlCkiTx8ssvW9qLi4uFv7+/mDt3rqXtrbfeEgDEN998Y2nT6/Vi5MiRIjAwUJSVlQkhhPj1118FAPHqq69a7Wfs2LECgFi4cKGlffLkyaJfv35Cq9Va2sxmsxg1apTo1q2bpW316tUCgFi9erVN24IFC5p87OPHjxcAxLfffmtpO3LkiAAgZDKZ2LJli6V9+fLlNnFedtllQqlUipMnT1rasrKyRFBQkBg3bpyl7d577xUAxNatWy1teXl5IiQkRAAQp0+fFkIIUV5eLkJDQ8U//vEPqzhzcnJESEiIVXvt8+boY/zqq68sbTqdTsTExIgrr7zS0mY0GoVOp7Patri4WERHR4ubb77Zqr3+33fhwoVWjyMvL08AEO+//74QQoiSkhIhk8nE1VdfLaKjoy3b3X333SI8PFyYzWanYjh69KgAID744AOrvpdccolISkqy3F9D6v/tau/vnXfesep3xx13iMDAQFFVVSWEcO4Ytuf06dMCgHjttdes2uv//YQQIjExUQAQ69ats7Tl5eUJlUolHnjgAUubVqsVJpPJZj8qlUo8++yzNvtuKsb6Xn31VZvjp/bvUdd3331nE2/t37n+8XP55ZeLiIgIq7bExESr9xUiIiJyHEc8ERGRT7j11lst/5fL5Rg6dCiEELjlllss7aGhoejRowdOnTplaVu6dCliYmJw7bXXWtr8/Pxw9913o6KiAmvXrrX0UygU+L//+z+r/dx1111WcRQVFeGvv/6yjJIoKChAQUEBCgsLMW3aNBw/fhyZmZkNPo4JEyZACIGnn37aoccdGBhoGdECAD169EBoaCh69eqF4cOHW9pr/1/72E0mE/78809cdtll6Ny5s6VfbGwsrrvuOmzYsAFlZWWWxz5ixAgMGzbM0i8yMhLXX3+9VSwrVqxASUkJrr32WsvjLigogFwux/Dhw5tV9lb7GOuOAlIqlRg2bJjV8yiXy6FUKgHUlJgVFRXBaDRi6NCh2LVrl1P7i4yMRM+ePS0j4zZu3Ai5XI6HHnoIubm5OH78OICaEU9jxoyxlL05GkP37t0xfPhwLFq0yNJWVFSEZcuW4frrr7cqo3NE9+7dMXDgQPzwww+WNpPJhMWLFyM1NRX+/v4AHD+GXaV3794YO3as5XpkZKTN60+lUlkm5TaZTCgsLERgYCB69Ojh9PNW3+rVq/HYY4/hrrvuwo033mhpr/17ADXljQUFBRgxYgQA2N3nP//5T6vrY8eORWFhoeX1QURERC3DxBMREfmETp06WV0PCQmBWq1Ghw4dbNqLi4st18+cOYNu3brZrEjVq1cvy+21/8bGxlrKdWr16NHD6vqJEycghMCTTz6JyMhIq8uCBQsA1Mwp5SoJCQk2iYqQkBB07NjRpg2A5bHn5+ejqqrKJn6g5rGbzWacO3cOwIW/UX31t61NyEyaNMnmsf/555/Nftz2HmNYWJjV8wgAX375Jfr37w+1Wo2IiAhERkZiyZIlKC0tdXqfY8eOtZTSrV+/HkOHDsXQoUMRHh6O9evXo6ysDHv37rVKrDgTw0033YSNGzdajq+ffvoJBoPBkiDR6/XIycmxuphMpgbjnT17NjZu3GhJaq5ZswZ5eXmYPXu2pY+jx7Cr1H9NArbPm9lsxptvvolu3bpBpVKhQ4cOiIyMxL59+5r1vNU6f/48Zs+ejdGjR+ONN96wuq2oqAj33HMPoqOj4e/vj8jISCQnJwOA3X3WfxxhYWEAYHP8ERERUfNwVTsiIvIJ9lbVamilLWFnHhdXqZ1w+8EHH8S0adPs9unatavL9tfQY/TkY//6668RExNjc3tzV2Jz5LF88803mDdvHi677DI89NBDiIqKglwux0svvYSTJ086vc8xY8bgk08+walTp7B+/XqMHTsWkiRhzJgxWL9+PeLi4mA2m60ST87EMGfOHNx3331YtGgRHn/8cXzzzTcYOnSoJQm0adMmmwnDT58+bZnQu77Zs2fjsccew08//YR7770XP/74I0JCQjB9+nSnH7urOPK8vfjii3jyySdx880347nnnkN4eDhkMhnuvffeBievb4per8dVV10FlUqFH3/80ea4u+aaa7Bp0yY89NBDGDhwIAIDA2E2mzF9+nS7+/TEa4mIiKg9YeKJiIjatMTEROzbtw9ms9lq1NORI0cst9f+u2rVKlRUVFiNGDl69KjV/dWWrfn5+WHKlCnuDr/ZIiMjERAQYBM/UPPYZTKZZdRUYmKiZTRTXfW37dKlCwAgKiqq1R/74sWL0blzZ/z8889Wo6NqR5k5qzahtGLFCmzfvh2PPvoogJqJxD/44APExcVBo9FgyJAhzYohPDwcs2bNwqJFi3D99ddj48aNVpN1DxgwACtWrLDaxl4yr1ZycjKGDRuGH374AXfeeSd+/vlnXHbZZVCpVJY+jh7DrWnx4sWYOHEiPvvsM6v2kpISm9GKjrr77ruxZ88erFu3DtHR0Va3FRcXY9WqVXjmmWfw1FNPWdrtHd9ERETUOlhqR0REbdrMmTORk5NjNT+O0WjEO++8g8DAQIwfP97Sz2g04oMPPrD0M5lMeOedd6zuLyoqChMmTMBHH32E7Oxsm/3l5+c3Gk9VVRWOHDmCgoKCljysJsnlckydOhW//fab1Wpzubm5+PbbbzFmzBgEBwcDqHnsW7ZswbZt2yz98vPzreYoAoBp06YhODgYL774IgwGg80+m3rsZ8+etST8mvN4AOtRKFu3bsXmzZubdX/JycmIj4/Hm2++CYPBgNGjRwOoSUidPHkSixcvxogRI6xG0zgbw4033ohDhw7hoYceglwut5qrKywsDFOmTLG6qNXqRmOePXs2tmzZgs8//xwFBQVWZXaA48cwUFNyduTIkRaVuzlCLpfbjBz66aefGp0HrZa9GBcuXIiPPvoI7733ntWcZHX3B9iOVmpqhT4iIiJyH454IiKiNu22227DRx99hHnz5mHnzp1ISkrC4sWLLSNQgoKCAACpqakYPXo0Hn30UWRkZKB37974+eef7X4xf++99zBmzBj069cP//jHP9C5c2fk5uZi8+bNOH/+PPbu3dtgPNu2bcPEiROxYMEChycYb67nn38eK1aswJgxY3DHHXdAoVDgo48+gk6nw6uvvmrp9/DDD+Prr7/G9OnTcc8990Cj0eDjjz+2jBarFRwcjA8++AA33ngjBg8ejDlz5iAyMhJnz57FkiVLMHr0aLz77rsNxnPTTTdh7dq1zSphSklJwc8//4zLL78cs2bNwunTp/Hhhx+id+/eqKiocPr+gJok0/fff49+/fpZ5vUZPHgwNBoNjh07huuuu65FMcyaNQsRERH46aefMGPGDERFRTUrzlrXXHMNHnzwQTz44IMIDw+3GXXmzDH8yy+/YP78+Vi4cCHmzZvXorgak5KSgmeffRbz58/HqFGjsH//fixatMhqwvuG1I+xoKAAd9xxB3r37g2VSoVvvvnGqv/ll1+O4OBgjBs3Dq+++ioMBgPi4+Px559/4vTp0+56iERERNQEJp6IiKhN8/f3x5o1a/Doo4/iyy+/RFlZGXr06GHzhVsmk+H333/Hvffei2+++QaSJOGSSy7B66+/jkGDBlndZ+/evbFjxw4888wz+OKLL1BYWIioqCgMGjTIqrzH0/r06YP169fjsccew0svvQSz2Yzhw4fjm2++sVoRLzY2FqtXr8Zdd92Fl19+GREREfjnP/+JuLg4q1UDAeC6665DXFwcXn75Zbz22mvQ6XSIj4/H2LFjMX/+fLc9lnnz5iEnJwcfffQRli9fjt69e+Obb77BTz/9hDVr1jTrPmsTT2PGjLG0KRQKjBw5EitXrrSZWNzZGJRKJWbPno3333/fatW15kpISMCoUaOwceNG3HrrrfDz87O63ZljuLU8/vjjqKysxLfffosffvgBgwcPxpIlSyyljc6oqKiAVqvFoUOH7P49T58+DY1Gg2+//RZ33XUX3nvvPQghMHXqVCxbtgxxcXGueEhERETkJElw5kQiIiIit7jvvvvw2WefIScnBwEBAQ5t8+STT+Kll16C0Wh0SQwZGRlITk52++imtqxjx46YNm0aPv30U0+HQkRE5HM4xxMRERGRG2i1WnzzzTe48sorHU46AUB2dnazJ94m1zMYDCgsLORzQkRE1EwstSMiIiJyoby8PKxcuRKLFy9GYWEh7rnnHoe2O3XqFH755Rf89NNPSElJcXOU5Ijly5fj+++/R3V1NSZPnuzpcIiIiHwSE09ERERELnTo0CFcf/31iIqKwttvv42BAwc6tN26devwzDPPYMKECXjjjTfcGyQ55OWXX8aJEyfwwgsv4OKLL/Z0OERERD6JczwREREREREREZFbcI4nIiIiIiIiIiJyCyaeiIiIiIiIiIjILZh4IiIin/b0009DkiRPh0HkFb744gtIkoSMjAyr9tdeew2dO3eGXC53eM6ppvaxY8eOFt0PERERtQ9MPBERUbv1/vvv44svvvB0GACArKwsPP3009izZ0+L7mfevHmQJMlyUalU6N69O5566ilotVqb/nX7KhQKhIeHY8iQIbjnnntw6NAhm/4ZGRlW29S9jBgxwtJPr9fjv//9LwYNGoTg4GCEhoaiT58+uO2223DkyJEWPca61qxZ02A8kiThhRdecNm+AKC0tBQPP/wwunXrBn9/fyQmJuKWW27B2bNnXbofV/rzzz/x8MMPY/To0Vi4cCFefPHFVtmv2WzGF198gUsuuQQdO3aERqNB37598fzzz9s9FnNzczF//nxERUXB398fgwcPxk8//WTTLykpqcHnu1u3bnbv9/bbb0d8fDzUajWSkpJwyy23WPX5+eefMXv2bHTu3BkBAQHo0aMHHnjgAZSUlLjs70FERNRecVU7IiJqt95//3106NAB8+bN83QoyMrKwjPPPIOkpKQWj0hRqVT49NNPAdQkSn777Tc899xzOHnyJBYtWmTT/+KLL8ZNN90EIQRKS0uxd+9efPnll3j//ffxyiuv4P7777fZ5tprr8XMmTOt2iIjIy3/v/LKK7Fs2TJce+21+Mc//gGDwYAjR44gPT0do0aNQs+ePVv0GGv16tULX3/9tU37119/jT///BNTp051yX6AmkTKxRdfjEOHDuGOO+5A9+7dceLECbz//vtYvnw5Dh8+jKCgIJftz1X++usvyGQyfPbZZ1Aqla2236qqKsyfPx8jRozAP//5T0RFRWHz5s1YsGABVq1ahb/++ssyWrGsrAxjxoxBbm4u7rnnHsTExODHH3/ENddcg0WLFuG6666z3O9bb72FiooKq32dOXMG//73v22e73PnzmH06NEAgH/+85+Ij49HVlYWtm3bZtXvtttuQ1xcHG644QZ06tQJ+/fvx7vvvoulS5di165d8Pf3d8efiIiIqH0QREREPmzBggWiuR9nffr0EePHj3dtQM20fft2AUAsXLiwRfczd+5codForNrMZrMYMWKEkCRJ5OTkWN0GQPzrX/+yuZ+CggIxcuRIAUAsWbLE0n769GkBQLz22msNxrBt2zYBQLzwwgs2txmNRlFQUODsw3Ja165dRbdu3Vx6nxs3bhQAxLvvvmvV/vnnnwsA4ueff3bp/ppj4cKFAoA4ffq0pW3+/Pk2x4Qr9rF9+/ZG++l0OrFx40ab9meeeUYAECtWrLC0vfrqqwKAWLVqlaXNZDKJiy66SMTExAidTtfovp577jkBwGZ/M2bMEMnJyU0ec6tXr7Zp+/LLLwUA8cknnzS6LRERETWOpXZEROQzNmzYgIsuughqtRpdunTBRx99ZLffwoULMWnSJERFRUGlUqF379744IMPrPokJSXh4MGDWLt2raVMZ8KECQCAoqIiPPjgg+jXrx8CAwMRHByMGTNmYO/evTb7euedd9CnTx8EBAQgLCwMQ4cOxbfffmvVJzMzEzfffDOio6OhUqnQp08ffP7555bb16xZg4suuggAMH/+fEs8tWWAVVVVOHLkCAoKCpr1d5MkCWPGjIEQAqdOnXJom4iICHz//fdQKBROl6udPHkSACwjTeqSy+WIiIhw6H5++ukn9O7dG2q1Gn379sUvv/yCefPmISkpqdHttm3bhhMnTuD66693aD8TJkxA3759cejQIUycOBEBAQGIj4/Hq6++atWvrKwMABAdHW3VHhsbCwAOjYr57bffMGvWLMTFxUGlUqFLly547rnnYDKZHIq1roMHD2LSpEnw9/dHQkICnn/+eZjNZqs+kiRh4cKFqKystDmuVqxYgTFjxiA0NBSBgYHo0aMHHn/8cYf3r9PpcP/99yMyMhIajQaXX3458vPzLbcrlUqMGjXKZrvLL78cAHD48GFL2/r16xEZGYlJkyZZ2mQyGa655hrk5ORg7dq1jcby7bffIjk52Wp/R44cwbJly/DQQw8hIiICWq0WBoPB7va1r/2m4iQiIiLnsdSOiIh8wv79+zF16lRERkbi6aefhtFoxIIFC2ySAADwwQcfoE+fPrjkkkugUCiQlpaGO+64A2azGf/6178A1JTr3HXXXQgMDMQTTzwB4EJC4dSpU/j1119x9dVXIzk5Gbm5ufjoo48wfvx4HDp0CHFxcQCATz75BHfffTeuuuoq3HPPPdBqtdi3bx+2bt1qKQ3Kzc3FiBEjIEkS7rzzTkRGRmLZsmW45ZZbUFZWhnvvvRe9evXCs88+i6eeegq33XYbxo4dCwCWL9Hbtm3DxIkTsWDBAjz99NPN+vvVTjYdFhbm8DadOnXC+PHjsXr1apSVlSE4ONhyW1VVlU0iLCQkBH5+fkhMTAQALFq0CKNHj4ZC4fzpxpIlSzB79mz069cPL730EoqLi3HLLbcgPj6+yW1rywkdTTwBQHFxMaZPn44rrrgC11xzDRYvXoxHHnkE/fr1w4wZMwAAQ4cOhUajwZNPPonw8HD06NEDJ06cwMMPP4yLLroIU6ZMaXI/X3zxBQIDA3H//fcjMDAQf/31F5566imUlZXhtddeczjenJwcTJw4EUajEY8++ig0Gg0+/vhjm+TX119/jY8//hjbtm2zlF+OGjUKBw8eREpKCvr3749nn30WKpUKJ06cwMaNGx2O4a677kJYWBgWLFiAjIwMvPXWW7jzzjvxww8/NBk7AHTo0MHSptPp7CbuAgICAAA7d+7ExRdfbPf+du/ejcOHD1tex7VWrlwJoOZ1PXnyZPz111+Qy+W4+OKL8cEHHzSZwLQXJxERETWDp4dcEREROeKyyy4TarVanDlzxtJ26NAhIZfLbUrtqqqqbLafNm2a6Ny5s1VbQ6V2Wq1WmEwmq7bTp08LlUolnn32WUvbpZdeKvr06dNo3LfccouIjY21KfWZM2eOCAkJscTaWKnd6tWrBQCxYMGCRvclxIVSu/z8fJGfny9OnDgh/vOf/whJkkTfvn2F2Wy26o8GSu1q3XPPPQKA2Lt3rxDiQqmdvUttuZLZbBbjx48XAER0dLS49tprxXvvvWf13DWlX79+IiEhQZSXl1va1qxZIwCIxMTEBrczGo0iOjpaDBs2zOF91cb61VdfWdp0Op2IiYkRV155pVXf9PR0ERsba/W4p02bZhVnY+wdm7fffrsICAgQWq3W4ZjvvfdeAUBs3brV0paXlydCQkJsSu3slV+++eabAoDIz893eJ+1akvtpkyZYnU83XfffUIul4uSkpJGt58yZYoIDg4WxcXFlra77rpLyGQykZGRYdV3zpw5AoC48847G7y/Bx54QAAQhw4dsmq/++67BQAREREhpk+fLn744Qfx2muvicDAQNGlSxdRWVnZaJy33HKLkMvl4tixY432IyIiosax1I6IiLyeyWTC8uXLcdlll6FTp06W9l69emHatGk2/euOnCgtLUVBQQHGjx+PU6dOobS0tMn9qVQqyGQyy74LCwstpUi7du2y9AsNDcX58+exfft2u/cjhMD//vc/pKamQgiBgoICy2XatGkoLS21ur+GTJgwAUIIh0c7VVZWIjIyEpGRkejatSsefPBBjB49Gr/99ptlMmdHBQYGAgDKy8ut2m+77TasWLHC6jJgwAAANeVdy5cvx/PPP4+wsDB89913+Ne//oXExETMnj27yZXCsrKysH//ftx0002W/QPA+PHj0a9fv0a3XbVqFXJzc50a7VT7OG+44QbLdaVSiWHDhtmUJkZGRmLQoEF44YUX8Ouvv+Lpp5/G+vXrMX/+fIf2U/fYLC8vR0FBAcaOHWspp3TU0qVLMWLECAwbNswqNkcfd2hoKICa0r/65XmOuu2226yOp7Fjx8JkMuHMmTMNbvPiiy9i5cqVePnlly0xAMCtt94KuVyOa665Bps2bcLJkyfx0ksv4ZdffgEAVFdX270/s9mM77//HoMGDUKvXr2sbqudgDwmJgZLlizBNddcgwcffBCffPIJTp48aVMSW9e3336Lzz77DA888IDdlfKIiIjIcUw8ERGR18vPz0d1dbXdL4A9evSwadu4cSOmTJkCjUaD0NBQREZGWuaucSTxZDab8eabb6Jbt25QqVTo0KEDIiMjsW/fPqvtH3nkEQQGBmLYsGHo1q0b/vWvf1mVKuXn56OkpAQff/yxJRFUe6lNVOTl5Tn992iKWq22JIMWLlyIXr16IS8vr1krc9V+ea+/Wlu3bt0wZcoUq0vdMj6VSoUnnngChw8fRlZWFr777juMGDECP/74I+68804AgF6vR05OjtWlbuKia9euNvHYa6tr0aJFkMvlmD17tlV7dXW1zb7qSkhIsEnKhYWFobi42HL91KlTmDhxIm6++WY8/vjjuPTSS7FgwQK8//77WLx4MZYtW2b5m9XdT915jw4ePIjLL78cISEhCA4ORmRkpCXh5cixWevMmTMOvx7smT17NkaPHo1bb70V0dHRmDNnDn788UerJFT9v1f95E/dJDBwoYyz7t+srh9++AH//ve/ccstt+D//u//rG7r378/vv32W5w8eRKjR49G165d8fbbb+Ott94CAKsEZF1r165FZmam3YRb7fF+zTXXWBLJAHD11VdDoVBg06ZNdu9z/fr1uOWWWzBt2jSn5zcjIiIiW0w8ERFRm3Ly5ElMnjwZBQUFeOONN7BkyRKsWLEC9913HwA4NLrjxRdfxP33349x48bhm2++wfLly7FixQr06dPHavtevXrh6NGj+P777zFmzBj873//w5gxY7BgwQKrfd1www02o4NqL/Ym4G4puVxuSQbNmzcPq1atQk5ODm6//Xan7+vAgQOQy+VITk5udjyxsbGYM2cO1q1bh27duuHHH3+E0WjEpk2bEBsba3U5d+5cs/dTXV2NX375BVOmTLGZ++uHH36w2Vddcrnc7n0KISz//+KLL6DVapGSkmLV55JLLgEAS9LxP//5j9V+aieOLykpwfjx47F37148++yzSEtLw4oVK/DKK68AcOzYdBV/f3+sW7cOK1euxI033oh9+/Zh9uzZuPjiiy0Tndf/e9Wfu8mRv1mtFStW4KabbsKsWbPw4Ycf2t3uqquuQlZWFrZt24bNmzfjzJkz6Ny5MwCge/fudrdZtGgRZDIZrr32Wpvbaudiq38s1E5wby9BtnfvXlxyySXo27cvFi9e3Kz5yYiIiMgaP02JiMjrRUZGwt/fH8ePH7e57ejRo1bX09LSoNPp8Pvvv1uNyFi9erXNtg2VnS1evBgTJ07EZ599ZtVeUlJiM9GwRqPB7NmzMXv2bOj1elxxxRV44YUX8NhjjyEyMhJBQUEwmUxNTjztbAmcM2JjY3HffffhmWeewZYtWzBixAiHtjt79izWrl2LkSNH2ox4ag4/Pz/0798fx48fR0FBAQYMGIAVK1ZY9YmJiYFSqQQAnDhxwuY+7LXV+v3331FeXm539Mu0adNs9uWs3NxcCCFsVqCrXSnNaDQCAG666SaMGTPGcnvtyJs1a9agsLAQP//8M8aNG2e5/fTp007HkpiY6NDroTEymQyTJ0/G5MmT8cYbb+DFF1/EE088gdWrV2PKlCk2f68+ffo4HScAbN26FZdffjmGDh2KH3/8sdFkjlKptCTqgAsThNt7/eh0Ovzvf//DhAkTLEmmuoYMGQKgZlXJuvR6PQoKChAZGWnVfvLkSUyfPh1RUVFYunRpg6OsiIiIyDkc8URERF5PLpdj2rRp+PXXX3H27FlL++HDh7F8+XKbvoD1qIvS0lIsXLjQ5n41Go3d+YbkcrnNqI2ffvrJ5gtsYWGh1XWlUonevXtDCAGDwQC5XI4rr7wS//vf/3DgwAGb/dQtwdJoNABgN57a+X/qryLnjLvuugsBAQF4+eWXHepfVFSEa6+9FiaTyWa1sKYcP37c6nmqVVJSgs2bNyMsLAyRkZEICwuzKddTq9WIi4tD37598dVXX1lK/YCasqr9+/c3uN9vv/0WAQEBuPzyy21ui42NtdmXs7p37w4hBH788Uer9u+++w4AMGjQIABA586drfZTO6rN3rGp1+vx/vvvOx3LzJkzsWXLFmzbts3Slp+fb1nRrylFRUU2bQMHDgRQk9ABYPP3qj9KzBGHDx/GrFmzkJSUhPT0dKfKPY8fP44PP/wQKSkpdkc8LV26FCUlJQ3OazVhwgRERUVh0aJF0Gq1lvYvvvgCJpPJapW8nJwcTJ06FTKZDMuXL7dJShEREVHzccQTERH5hGeeeQZ//PEHxo4dizvuuANGoxHvvPMO+vTpg3379ln6TZ06FUqlEqmpqbj99ttRUVGBTz75BFFRUcjOzra6zyFDhuCDDz7A888/j65duyIqKgqTJk1CSkoKnn32WcyfPx+jRo3C/v37sWjRIkvZT919xcTEYPTo0YiOjsbhw4fx7rvvYtasWZYRQi+//DJWr16N4cOH4x//+Ad69+6NoqIi7Nq1CytXrrQkALp06YLQ0FB8+OGHCAoKgkajwfDhw5GcnIxt27Zh4sSJWLBggcMTjNcXERGB+fPn4/3338fhw4etJmI+duwYvvnmGwghUFZWhr179+Knn35CRUUF3njjDUyfPt2pfe3duxfXXXcdZsyYgbFjxyI8PByZmZn48ssvkZWVhbfeeqvBMq1aL774Ii699FKMHj0a8+fPR3FxMd5991307dvXKhlVq6ioCMuWLcOVV17ptpEq8+bNw3/+8x/cfvvt2L17N/r06YNdu3bh008/RZ8+fewmvOoaNWoUwsLCMHfuXNx9992QJAlff/213dK0pjz88MP4+uuvMX36dNxzzz3QaDT4+OOPkZiYaPV6aMizzz6LdevWYdasWUhMTEReXh7ef/99JCQkWI3Waony8nJMmzYNxcXFeOihh7BkyRKr27t06YKRI0darvfu3RtXX301OnXqhNOnT+ODDz5AeHh4g6V5ixYtgkqlwpVXXmn3dpVKhddeew1z587FuHHjcOONN+Ls2bP473//i7Fjx+KKK66w9J0+fTpOnTqFhx9+GBs2bMCGDRsst0VHR1slqYiIiMhJHllLj4iIqBnWrl0rhgwZIpRKpejcubP48MMPxYIFC0T9j7Pff/9d9O/fX6jVapGUlCReeeUV8fnnn9ssM5+TkyNmzZolgoKCBAAxfvx4IYQQWq1WPPDAAyI2Nlb4+/uL0aNHi82bN4vx48db+gghxEcffSTGjRsnIiIihEqlEl26dBEPPfSQKC0ttYonNzdX/Otf/xIdO3YUfn5+IiYmRkyePFl8/PHHVv1+++030bt3b6FQKAQAsXDhQiGEEKtXrxYAxIIFC5r8G82dO1doNBq7t508eVLI5XIxd+5cSxsAy0Umk4nQ0FAxaNAgcc8994iDBw/a3Mfp06cFAPHaa681GENubq54+eWXxfjx40VsbKxQKBQiLCxMTJo0SSxevLjJx1Dr+++/Fz179hQqlUr07dtX/P777+LKK68UPXv2tOn74YcfCgDi999/d/j+a40fP1706dPHpn3u3LkiMTHRqu38+fPi5ptvFsnJyUKpVIrY2Fjxj3/8Q+Tn5zu0r40bN4oRI0YIf39/ERcXJx5++GGxfPlyAUCsXr3aqbj37dsnxo8fL9RqtYiPjxfPPfec+Oyzz2yOc3vHxKpVq8Sll14q4uLihFKpFHFxceLaa68Vx44da3K/CxcuFADE9u3brdprj9Pax1F7rDR0qXscCiHEnDlzRMeOHS3x/POf/xS5ubl2YygtLRVqtVpcccUVTcb73XffiQEDBgiVSiWio6PFnXfeKcrKyqz6NBZn3dc8EREROU8Sohk/sxERERF5wMCBAxEZGdni+ZqIiIiIqHVwjiciIiLyOgaDwTJZd601a9Zg7969mDBhgmeCIiIiIiKnccQTEREReZ2MjAxMmTIFN9xwA+Li4nDkyBF8+OGHCAkJwYEDBxAREeHpEN2iuroapaWljfYJDw+3rPxHRERE5O04uTgRERF5nbCwMAwZMgSffvop8vPzodFoMGvWLLz88sttNukEAD/88APmz5/faJ/Vq1dz1BcRERH5DI54IiIiIvIS2dnZOHjwYKN9hgwZgrCwsFaKiIiIiKhlmHgiIiIiIiIiIiK34OTiRERERERERETkFkw8ERERERERERGRWzDxREREREREREREbsHEExERERERERERuQUTT0RERERERERE5BZMPBERERERERERkVsw8URERERERERERG7BxBMREREREREREbkFE09EREREREREROQWTDwREREREREREZFbMPFERERERERERERuwcQTERERERERERG5BRNPRERERERERETkFkw8ERERERERERGRWzDxREREREREREREbsHEExERERERERERuQUTT0RERERERERE5BZMPBERERERERERkVsw8URERERERERERG7BxBMREREREREREbkFE09EREREREREROQWTDwREREREREREZFbMPFERERERERERERuwcQTERERERERERG5BRNPRERERERERETkFkw8ERERERERERGRWzDxREREREREREREbsHEExERERERERERuQUTT0RERERERERE5BYKRzppNBpotVrI5XJERUW5OyYiojYvLy8PJpMJarUalZWVng7H4/g5Q0TkWvycscXPGiIi13L0s0YSQoim7kwul8NsNrs0QCIiAmQyGUwmk6fD8Dh+zhARuQc/Zy7gZw0RkXs09VnjUKmdXC53WUBERHQB319r8O9AROQefH+9gH8LIiL3aOr91aHEE4eiEhG5B99fa/DvQETkHnx/vYB/CyIi92jq/dWhOZ7qc6A6z+totVqr62q12kORNF/dx+CL8UuSZHXd144jHkOe1xaeg/qvA7LP194fgLZ3fPI5aH2+Hj/AzxlvwM8Zx/F9zjP4PuFZvh4/4PvHkK9/Lwac/6zhqnZEREREREREROQWTDwREREREREREZFbMPFERERERERERERuwcQTERERERERERG5BRNPRERERERERETkFkw8ERERERERERGRWzDxREREREREREREbsHEExERERERERERuQUTT0RERERERERE5BZMPBERERERERERkVsw8URERERERERERG7BxBMREREREREREbkFE09EREREREREROQWTDwREREREREREZFbtKvEU3apAQs3F2NbRpWnQ2kWrU5g+WYDvkjXeToUIiKyo8pkRHpBFr7NOePpUIg8YmnJebyWewDP5u5BmUnv6XCI2hyzWWDbSS1eSy+G0SQ8HU6znCs04uOVZdh3xje/01TpzEjfUYVv11V6OpRmEUJg10k9XvtfGbR63zyGsotM+PyPKmw/ys8ZX6HwdADuJITAnnPVSNtXgt/2FGPXOS2igxQ49FQ3T4fmsJwCE5Zs0CFtvRYrtupQpQV+fjXQ02EREdHfzldXIT3/PH7POYfVxXnQms1YMWicp8MiajVasxFryrORVnIWvxafRpaxGpJZwuaKIqSEdURqWCd09w/xdJhEPqtCa8KKfZVI21mOJbvKkVdmwgOzQqGQS54OzSFms8COk1qk7ShH2o4K7M3QISlSgX3/SfB0aA47X2BA+vZKpG2vxF97q6A1CKx4JsrTYTmsSmvGqj3VSNtaifRtFcguMuO26Rqolb5xDAkhsPuEHmmbq5C+pQo7jukREybDoU995zlo79pc4qlab8ZfR8uRtq8E6ftKkVlisLr9/skRCFB670AvIQT2HjMibb0W6et12HbQOv7BPeWYPrLNPW1ERD7DLAR2lRUhLS8TaXnnsbus2Or2CaGRGBMa6aHoiFpHrqEKS0rPIa3kDFaUZaLSbLTcJgEQJmBNWTbWlGXjwTPb0F0dgtSwjkgJ64QxwdFQSN57LkbkDc4W6JG2sxzpuyrw14FK6I0XRqZoVBLumR7queAcUKk1Y8XeSqTvLMeSnRXIKTFZ3f7oZaHwU3hv0sNsFth5Uof07RVI21aJ3aesR2dN7KfCmF5qD0XnmMwCI5Zsq0Ta1kqs3FNtNbrJTwE8eGWQB6NrWrXOjFW7tUjfUpNsyiywPoYeuCoQ/irvPYbIWpvIYGSXGpC+rwTp+0ux4lAZqg32hwxGBylw6+jwVo6uaVqdwF/bdUjfoEP6ei3O5Zob7Pvvm/0hSXyBERG1piqTESsLcpCWdx5L8rOQratusO8Tyb1aMTKi1iGEwL7qIqSVnEF66Tlsq8xDQwUaKUEd8UdxNgziwvnMMW0pXs8uxevZBxAqV2JGaAJSwzthemgCwhSq1nkQRF7MbBbYfrIaaTvLkbazHPvONlyG9s8pIYgMlrdidI45V2BA+o4KpO0ox18HqqBr4DtZUqQC143xvgqOSq0Zq/ZWIW17BdK3VyKn2NRg38ev8r5RnGazwO6TOqRtrUTa1irsOtHwMTR/igYdO3hfKiC70Ij0LVVI21KNlbuqUa2zfwzFhMlwy/SAVo6OWsL7jjYH1C2hS9tXih1nHJuzyZtGO1mX0OlRpW26vpajnYiIWk9tCV16XiZWFeZCa274BLQWRztRW1K3hC699CzO6iua3EYGCc/FDEKMLACfFBy326fEpMd3hafwXeEpyCFhbHAMS/KoXbIqodtdjrzSpj9nvGm0U90SuvSdFdhz2rE5m7xptJNVCd2+KofmPPKm0U51S+iWbK9EVmHTx5A3jXayV0LnCI528j0+k8VoqoTOEYeydbhvcTYAQCF3z68Ed02KQvdo2zeipkroHKFWSrj/rZpf2RVy90zGN7K/EtdN93fLfRMReYNXMvfivN72BwshBPL1WpyursTp6goU6Ou8zzo4IOM4inHR/mUAAEnmnhOiBHUAugS46YTxvmst/73r9Gb37MONjEaj1XWFwmdOcwB4R/xVZiMy9OXI0JfhnKESBjQ8CtselSTDDWfWodJsAmRNb2sCsKYiE2sqMvHguS0IVaiQpApEsioIscoA2HsZKSU5Xu84wqm4iLzF2QI90ndWIG1XOVYfrGxwVFBDooLlePG3Ist1hdz17xNRIXI8eaX9uXMqtWas3FeJtB32S+gcseOkDnvO1CQY3PWd7OHLItCxg59Ne1MldI4QArjvc/c+B5MHBOCyEfZHhTVWQueIqBA53vil3HLdHfGHaGR4fm6E3duqdWb8tVuLtAZK6Bxx8IwB931YCgBQyN0zyfvdlwejW4LtMUTN49VnZDlZJdj+6wZsPFGBHWeqoP27tjnp74s9haoQHAlLtmnvV3gcJ35z7qDcGtUXRpn1nyiyugjdS882uE2F6Ah0qhn2p9ML7D6iR9rZaHy9P9KmhG5kxXbInDih029W4sN9g2zak3VnEGfIcfh+AOCQujuKFWFWbf7mKiQcPwZ0iAQGDAD8+EIjorbnh8LT2F1Z2HgnCQ4nm+rKRAUyjU33a4n9+kKgzE13fvVky3/fzTnkpp2Qd/n7C4sMgCRqjv0W5EyrhQkH9CU1V5rxfbJE6LBHq8MebcOvUY1MwcQT+QxnSugccTrfiA9XuutDoEafaAlPJp4FtFoAQG6JEZuOVGPj0Sq8V9YLWqP1m0RsdR46V55z+P4P/wic0nREtn+95JYQGF24y6lYq+T+2B3W26b9/5ILAFUJAECrN2PHcS02HqnG5iNaFJTVJDoCAIyus83+4B4o87P+YSfQWIEBpUes2gxrgf2NxJSvCsexwM427QNLD0FjdKxSp+e4IMAYBowcCSGTYdeJCyV0WQfOoUt1zffRIQ7dG3DaPwFZ6hgAQGahCR8urflePLp4h4P3UKNapsaukL427V0qzyBGn2+53iFYBnSJs1wvKDVi00EdNh7UYccxHXQGgf2BPVCmCLa6H42xEgMrmj7/OP7jhf8X+IXjqKaLTZ8B5YcQaHLu+/+W4EEw/f39/6pxAUw8uZBXJJ7Mouakp24JXfr+UlTvPoCDi2cj1Yn7+jlpIq6c+ppN+/sbXsaY3L1OxRV54woU+FsnZ6ae34JvVj/V8Ea/X/ivCsAIAOlxD+Nc7L02XVccnwONueF5Quo77xeLjv132rTfmbcQ9+d97PD9AMCsrl9hacgUq7aO+iw88ulM4FMAgwYBW7cy+UREbYIQwjIfjd6Bkjmitklc+FdCTaJJBsDH5o70zcW/qa0TQuDvrzSo0Jqw8sDfE2vvqkBeme987ijMBvzw/fXAOxe+/EcDuPzvyzuX7gHkSqttLs9aiff2Pu/Ufu7u/xje6XqjVZtcmLBh3Y0NbGHfwaAu6Htxmk170DuvAb99BQBQAxjz96UxY0YtwsaIoVZtPStOYcOm652K6Zv4VNw4+D827Z/teQKDyxz8UWcTgJeBu149hZ/3wqqE7ra8VfjoUCPfR+24v8djeDP5Zpv2DVuvtdO7YUcDktFz3J827Q+d/gS3n//BunHFhf92AHDJ35daEwZ/i7Vh1j8idK86jQ07ZzsV03fRKbiu79s27Z8cfgwXlTeWIrQVPH4vymU1yUfBDxuX8orE07WrduHHU9lWbZ00EQjyrfMgnxdtKLhwZfduYO9eYOjQhjcgIvIRX+ecwtxDGwEIQG2s+bJN1N74G21HM+n5YiByhaIKEzr832Gb9thA3/oRd0DJUfTJ9/0Rr7I28tbmp5Cg8L555NuFzQd1mDCQU9C4ite+JO8YH4l1D3b3dBguMbKfH5Ljvf8do5vulHXD38NriYjaDP6gQWTNJAEGqeZfM3xiOBFfxuRLDr/RFTtf6oynr4rE0M7eMSF1Y9Smxid3DvCRCZ1Vfl77Ndcpb9wWiYwvErH3/Y54/qZwjOip8rVBqj4rbZPjlUnUNK8Y8QQAoZUVGJZxzHJd1TMW4UN6AuvXAwD0RjP2nqvGxpMV2HiyAtll9ifRKFTZXw3ljjGP4roeMqj/XkFBLm/6zWhu184wK6x/pQgcmoJ3JtjWEde6bGAoOoZbTwwyq1MnzOwYicOnjUhbV7OS3eb9Blzc7Xun5njq3cMfd42pue+6k8BVFd6Bd0qvcPh+AGBQTA/0CNBYtcXu6AyccepuiIh8iyQAswSYgDhVAGZHJ1luEgIoMOhwqqocp6oqkKNzPvneUR2ACL+aEgSZG35urTQacbSiHJdGx6OzxvVLUb/55puW/993330uv393Mxqty1kUPvYzsbvjf7t0L0z1Mks3RXZDhPzCl+HqvycXP6UvR4ahHHrh3OTi/pIcPZQhqDAZcULn/Dw0EQoVOquD0VkdhBg/f8jsfMNSSr71vFL7JkHC4M7+GNzZHwuujkJWkQFLdpcjbWcFVu6vQLWTE0N3jlJg1qAL5/CuXoQg+VgwsLpOw3vvAf37W65mDemN1YcurGR3vtCIX+KmYG9ID4f3celFAQiOScRdocHWE1sLgXd6/uZUvHqVP+5LDLdpN/Z5CLjrFpt2IQROZhuw8XA1Nh7W4tC5C3Nu7Q+2fQxHAjtjzKhFVm1Du6qQFHXhfUheb4L0iqAI3BcTanNfqwe9jY06x+Z4GpSswpg+AYBaDUmS0D9Zhf7JKjxxbTjyD8/DkmXDsPFQNbYf0zl0DJ32T7D8P6GDHJePrBnJ81avXyFXOH6+YvDzx32Jtt+3C0ffh3fKLpQkalQy3DzN/vdyvUFgz0kdLirqgoy9CpzJvfC9/lhAMsYM+cHudnWlDldD5Vfz+aANicR9McE2fdYOextbdM7N8XRbcjQ0FYVQLV+Ks3+ZoPsgDKrLLwFiYpy6H7IlCdF09WJCQgIyMzMt1x3YxCmzV+5E5p8rseG1Ry1t33z+HW6YP8dufyEEDmZpLXNBbT5V6VAN5ouXRuO+SR0AAGq1Z39xKCgxY+kGLdI36PDHZh3KK5t+AAO7y7HpsyBIkuSW+L+/cwPmvDf2QsP69cCYpqqhHSfVO3l09XHkbtp6I8A8fQw1R93H4OvxA775GOq/DuLj43H+/HkPReM93P0581X2Scw9tAFQ/D23jVHCmOBorB86vcFtcnXVWJKXhbT88/izIBtVpqbn6BgXGonlg8YBcM/x+dSR/Xju2EHcltgFHw24yOX3X/f49LX3aMD33yPcHb//vk+gFdbH8cEe16C32vZLG1AzH9r6ihyklZxFWukZnNKV2+1XlwRgZ9dUvJt3FJ8Xnmiyv58kw4TgGKSGdUJKWCckqz27xLevH0MAP2ca487PmsJyo91Su9KPeyM4wH6ytFpvxl8HKpG2sxzpu8qRWdT06hQBSgmHX++EqOCahI3Lj9ENG4Cxjn0fEEJgb4YOaTvKkbajAttPOPaDzfu3dsD8iTWvdU+/xnKKjVi6oxJp2yvw5+4qVOmaPibG91HhjwXRluuefAxavRlr91cjbWsV0rZW4mxe08eQnwLY/14MEqPcdAw5QQiBgxkGpG2uQtqWKmw5rHPoe/3LtwThnstrfoDz5GuguXz9ezHg/GeN14x4coYkSegb74++8f54bEYs8ssNWHqgDGn7SrD8YBkqdPZ/nXtzVQFuGx0OjcrzQy87hMpwU0oAbkoJgN4gsG6XHmnrtUhbr8PpTPtfbvYcM2HJRgNSxijt3t5SGzcC9lN9RERtRO1npNT0B3y0yh83d+yCmzt2gdZkwpqiXKTlnUdaXibOae3/YrmuJB/rivMxLizShUFfkJZT84UpPTcLQgibD30iV1LK5JgcHI/JwfF4U4zAEW2JJQm1qSIPZjt1eQLAv3N248/ibNs7/FsHhRqzwjoiJawjpobEI1jhnvMaIm/nr5Rh1uAgzBocBCEEdp/WWpJQO07ZT+JU6QXeWlaKF2fbX6q+NUmShIHJagxMVuPJqyORXWzAkp0VSN9RgRX7KhtM4rzyWwmuHxsIpcLzn2ExYQrcfHEIbr44BFq9Gav3VyN9ewXStlXiXIH9JM7agzqsP6TF2N6eT0yrlTJMG6LBtCEavPN/HbA/Q4/0rZVI21qJrUftJ3EMRuA//yvHO/8XZntjK5MkCX2TleibrMRj14Uir9iEZdurkLa5Cst3VKOi2v4x9Mb/KvGPGRoEqF1/DOUWGxHddDdykk8mnuqLDPLD3JERmDsyAjqDGeuOVyBtXwnS9pUio/BCnXJ+hQkfbyyyjHryFko/CVOGqzBluApvPSBsSvLMdfJoL3yuxazRrp+ksLgY2LfP5XdLROQ9ZA383wFquRzTI+MwPTIO7/YW2FdegrS880jPy8S20kKrr98vZBx2S+LpXHUl9pSVAACytNXYVVqMIaH2R6oQuZokSejlH4Ze/mF4OHYACo1aLCs9h7SSs/ij7BzKTAZL36UV5/H3snmWtr7+YUgJ64jU8E4YHhgJueT5HwGJvIkkOV6S99HKUtw7I8Qy6slbxIb54dYpYbh1ShiqdWasPlBlVZJX60y+EYvWV1hGPXkLtVKGGUM0mDFEg3dvF9iXoUfatgqkba/EtmPWicAXfirFHws8n3iqq25J3uNzwpFbbMTS7TUjof7cVYVK7YVj6Mu/KvHglUGWUU/eIipMjrlTgzB3ahB0eoG1+6qRtrkaaVuqrEry8krM+GRZpWXUkytt2q/H5XWuCyE4t6ALeNeR5gIqPxku7h2Mi3sH47+za0ry0veX4rc9RdiaUW0Z9eStI6clSULvzn7o3dkPj8wLREGJGcs21oyE+mOT1jLq6aoprp1hf9kywOTcNA5ERL6l7ignqWYum2bdjSRhQHAYBgSH4d9d+1lK8n7NOYu/inMto56mxnZ0UeA10nOyrK6n5WQy8UQeE6FQ44aIbrghopulJC+95Cx+Lj6Ns4ZKSHJgSmCc15TQEfmauHA//GNyOP4xOdyqJC9tZxmyik1eM+qpIf4qGWYOCcTMIYF4305JXu2oJy/9SlbzWZ+swoBkFf49O8KmJM+bRj01JDpMgflTgzF/ajB0eoE1+6uQtrUKv2+pwLl8k9eMemqISilh6tAATB0agLfvDLcpyasd9eTq7/UbD2itEk9HzxnQ07W7aJfaXOKprrolefdOCEV+hRHLD1XgYLYW40ICPB2eQzqEynDjrADcOCsAZeXV2LDHiPN5rs8QpaXZtgnBlWOIqG2oMBls3tAKTTr7nZ1UW5J3XWQ8tCYT1pXkI0vv+pVQ0nPrJZ5ys/B0z34u3w+Rs+qW5I1XRuKEoRwVwoj74wcgWM4yOqKWqluS9+YNYdhzRo+1h6thNLlhXpiAAKBfP+vrLVS/JO90dgWW763G0SwDLuruG8vV1y3JKymrxrpDWmQWNT33o7dQKSVLSd5r8wNx8KwRK3ZrodULrx2QUVf9krxzuZVYvkOHQ2cNGBPqumOostqMXcetV3bcdEDHxJMLtOnEU32RgQrcMCzU02E0m9JPwqSLXF9mZzDUjHjqW6/97Fkg0eV7IyJqfXsri20ST0Um51eta4paLsfUCNevfFJpNGJVQa5V267SYmRWVyHe3zd+SKH2YXrohZWT1Ew6EbmcJEkYlKTCoCRV052bY/Bgt8+/ERumwLwJvjsKUq2UMHWgbyTM7JEkCX0T/dA30fXfK1tLZIgcN0x2/fnPyp1a6A3WbRsP6HCzy/fU/rDAnrBxI1Baar+diKgt2FNZaNNWZjag2OCaUU/utjI/Bzqz7WjXJfVGQRERERFR86Rtsh2xfvSsEVkNTDRPjmPiieyW2QFMPBFR26A3m7C/qtjubX8UZ9pt9zZpDSSYGmonIiIiIseZzQLpm+2vWpxuJyFFzmHiiSyJpyKE43ekWi5r94ej0HaQABGRT1lfmotqs/15GNIKz7VyNM4zC2Ezv1Otlfm5qDLyVzgiIiKilthxVI/cIvtzKdsbCUXOaVdzPJGto0eB48dr/n8YvXEpfr9wowD++AO4/nrPxEZE5ArpRecbvG1ZcSYMZjP8ZN77O8zOkiLk6uzPR6U1m7CqIBepMfGtHBURERFR29HYqKaVO7Wo0poRoPbe80Vvx79cO9dQmZ2jtxMReTMhRKOjmkqMemwsy23wdm/QVDldWq5vlAsSEZEPOHYMmDfvwuXYMQ8HRNQ60jbZL7MDAK1e4K9drl+Upj1h4qmdayqx9McfNaveERH5oiPVpTipLW+0T1phwyOivEFaTuOJpfScLJiFG5bUJiKi9icvD/jyywuXvDxPR0TkdufyjNhzovEvvSy3axmvKbXLDgnH2xNTLNdVHSI9GE37UFTU9ATipaXA+vXApEmtExMRkSs5ModTetE5vN7lolaIxnnnqiuxp6yk0T7ZOi12lxZjSGh46wRFRERE1IbULbPLUCfgoeTHrK4DQPrmagghIElSq8fXFnhN4ulUZCzumXO75frLHRM9GE378McfgMn+fLtW0tKYeCIi3+RI4ulYdRmOVZWie0BIK0TknPQcx1atS8vJZOKJiIiIqBnqltllqmLxn4632/TJKjBh1zE9hvRQtWZobQZL7dqx+mV2fbEfqzHBcumL/ZZ+rOIgIl9TaNBiU1m+Q33TirxzdbuGVrOrr6l5oIiIiIjIVmW1GX/tdmz+pvTNLLdrLiae2imDAVi2zLotBKWYgLWWSwhKAQAnT9asfkdE5EuWFWXCDMey5o6MjGptlUYjVhU4NvH5rtJiZFY3PCkmEREREdlauVMLnd6xvpznqfmYeGqnNmyomb/JUVzdjoh8jTOjmDaU5qHYoHNjNM5bmZ8DndnscH9HR0cRERERUQ1nkkk7j+qRVWB0YzRtFxNP7ZSziSQmnojIl+jNJvxR1PhqcHWZILCs2PH+rcHZ8jmW2xERERE5zmwWSN/s3IjxdI56ahavSTwNzTiG04/fYrnEHNzn6ZDatPR05/pv3AgUFronFiIiV1tfmosyU+PL4taX7kXldmYhnB7BtCo/F1VG/gpHRERE5IgdR/XILbIeXT66dDsM67pYLqNLt1vdznK75mnWqnZarWOTb9lToNWjg1pp1WYymaEyGpBUmGdpW1tdbbUfIQQKdQabbR3l7+/fvIC9VHV18w/4Y8ckHD/u3Gz8ZjPw++96XHut42UfTWnJceQJPIY8r/5z4IuPgRzTos8Zgw6/5mU4vd2yovM4XVaMWGXzXuuuPD53lBYjV+fc30BrNmFZ1jnMiopt9n7ragvLBfvae4SrjiGjMKPcbECYvOnPep1ODy0uHGs6swk6YUKwnOdbgO8dQ+Sc5n7WVOlqZhDUqC78hq/V2V8qWqvTQimTW65XaM2QywB/ZfN+/3f3uZCk06HuO4dOp4Nw8Tl7W3ufIM9qyWvg13UVdtsVaHjp95U7q1FUUo0AtevOk3zte3FztPqIp9cPnMGN6/bjUIn9J7k+IQTWZBfh4uU7sTKryM3RtQ9Lllx42nv1MuPrr/VQq20n4L3vXiMmTrzwolu6VG7Th4jI2+yvKMbHuScAADJIuC4iCSkh8Tb9NJICr3YahGg/NQCgxGTAbce3tmqsDVman2P5/4CgECzqf5Hdfh/3GYSRoeF2t6P2Sw4JKef+xHMFu1FscmzuMp3ZhE9KjmBgxi8wOjgpP1F7pZBLGP7MWby1vBiVOsd+lK3QmvH6siKMeu4s/OS+n9gnaguWbq35jJQk4MpxKiyYq7Hpkxgtw1t3BiGuQ813aK0eWLPHwdnIyaLVE0/TEyKwOCMXQ3/f0mgCSghYEk4zVuzClvxSTI2PaOVo26alS+WWhNOOHXpcdZUZ9n7Y7tvXjKVLDVixQoeJE01YsUIGg3OVK0REra6DUgW9MANmoLtfMC4P7YjIv5NLdckkCamh8bhYEwuZSQIEIPeSLwNL83MwICgEPw4cjs0jJuCSBkYxTYiIxKqLxmLpkNEYGRqOpQW5MAsmDdo7SZIwKiAaLxbuRc9TixtNQOlETcKp7+mfcXfuFiQoNAh3YKQUUXumVEjo31GFx34qQO9HMxpNQFXoBF5fVoRej2bg3/8rxOAkNRRe8llD1J6dyzNh3ykjrhynwvYPI/DNE6HolWhbEOYnl3B7agAOLexgSUDVJqzIcc0qtWuJUVGhCPFToNRgxOKMXPwvIxdBfnL0q9fvh9PZ+GPFLsv1kVEhCFf5tW6wbZDJBPzrX0ZccokZMgfTjmPGCCxdasCGDRLy8oB424EDRERewwiBqYFx+LMkB0eqynH1kY0IkMtsfmqpNBnRb9cyGIUAIEFmljC7Q6JHYq5LazLhiS49kRIZc6HcrZFkkiRJmBgRiQnhHbCmqABFBj06KJk4aO9maTri3eJDKDMb8GLhXrxbfAg6YVs6MOPccpSYL/xyOzOwY2uGSeSzZg3Q4JedFcgrN+GxnwrwyhL7lRlDnjqDkqoLSamZA2xHVBBR6yutNGP7hxHok+RYSkSlrElAzZvmjz+2M/HkrGYlntRq21+OHd4WwIxOUfj+ZM2kqQJAmcH2RKjcaN12aVJsi/Zbv/azJfflKXXn22hJ/HPmONZPqVRa7WfKlGbv0i5few54DHmftvAYyL6WPLcj1XG4Ua/FnyUXys6qzCabxJNZCKvRQWNDozE/oWez91tfcx+DGsDVmmSrNqPZ/i/papXKaj8z4luWNKj7PueLr6/681L54mOoqyXxT1Z1QkiWEqV/J5XKzPaHLNdNOgHAFeFdXXa+5Yt//7Z2DFHjWvL8XnqRArctzIX574+Rusmluuq2K+TAJUPCoVa7bvoKlx+jF10EbNpkuarq0wdw4+tA+OAo3frz8fja+4Svxw+45jvN0F622yn97LyOJclqH2o1MHuya+cp88XnwFkeWdUuNTG6VbYhIqL2aUaHOMjgXClDaocEN0VD1Pr8JDmmBzuXiOymDEEPdah7AiJqYzoEKTCyW4BT24ztoUGoxsvnTA0OBkaOvHAJDvZ0RETUBngk8TQ9IRJyJ1bL6RocgO4hHJZKRESOifBTY1RIpFPbpEayxIjaltRg50pHU5zsT9TepQ5yLimTMjDITZEQEXk3jySewtVKjI4Jc7h/amJ0m1jWmYiIWk9qpOMjmLoHBKN7AH/VpbZlRlAnp0b+pYYw8UTkjNTBziWSUgfzc4aI2iePJJ4AILWT46VzLLNrHdswDLHIslyq+w3zdEhERM3mTOlcCsvsqA0KV6gxWhPjUN8QmRJjHOxLRDV6xamQHOnY4kc9YlXoFsOFH4ioffJc4snBZFKIUoExMeFujoYAwAAlchBruQg/padDIiJqtp4BIeji79iv0ZzfidoqR8vtZgR3gp/k5XPPEHkZSZIcLrdLHeQjZXZlZcDmzRcuZWWejoiI2gCPJZ56hAaimwPzNs3oGAU/mcfCJCIiHyVJkkMJpVCFEqNDolohIqLW52jiydn5oIiohqPlcz5TZrdvHzBq1IXLvn2ejoiI2gCPZnRSOl040ReQoFMoLBfx95wEdfsQERE5w5ESuhkRcfyBg9qsHqpQdFU2/oVXDgnTgzi5PlFzjOsZgGD/xj9DwjRyjHJyBTwi8gytTIUT6kTLRa9giawrKDy589TEaLy5/zQAYFPX3lC/94vV7XJJwoyOTDwREVHzjA2NQrDcD2VmfYN9UjvwCze1XZIkITU4CW8WNDxqYbQmBuEKdStGRdR2KBUyTOsXhJ+2lTbYZ8aAQCjkXCiJyBfsDOqPbsPWWq4P6ODYPG7UOI/+xDsmJhwhyoZzX6NjwhCu5jxDraUD8jEH31ku8qJ8T4dERNQiSpkc0yPiGrxdLkmN3k7UFqQ0UUbHMjuilklpYv4mR+eBIiJqqzyaePKTyRod0eTMynfUcj1wFN/hOstFlXHU0yEREbVYYyOaxoREIcyPQ6ipbRsbGIMQWcM/5KUGJ7VeMERt0MyBQZA1MKBJIQem9/eRicWJiNzE45NaNLa6naMr3xERETVkRoc4NFTgwNXsqD3wk+SYHmw/AdtNGYIe6tDWDYiojekQpMDIBuZwGttDg1ANV4wkovbN44mn6QmRkEu2Xwm6BgeguwOr3hERETUmwk+NrgH2yxxSIzm/E7UPDZXTNVWGR0SOaaicLmUgRzsREXl0cnEACFcrMTomDKcOHsUNW9dY2v3n3gjJTkKKiIjIWYOCwnC80HriV3+5HN0bSEgRtTUzgjpBDgkmCKv21BAmnohcIXVwEB79IcdOOz9niHxJ5+ozuP/8p5bry6L+CYDzgbaUxxNPQM1cTr+uX4+Xfv3K0rZr7tUejKi9MgP+EqAEoAdgNns6ICIilxgUFI4fCzOs2sK5PG6DjldUoJufH9Ryloe0FeEKNUZrYrCuMtvSFiJTYowmxqX7OWkoQ5w8AP4yrzjFJGo1veJU6BylxKm8C6uo9ohVoVsMP2vaEpNZ4GBxBXqHanx2kMSxskokavyhknu8+Mkrxerz8K/sry3Xt1dd4cFo2g6vONrszeXUP5y/DrSanDP4dtAcrL7rEuDhIODeIODhICTtuQR4ZQ6Qc8bTERIRtUis0nbujXBOKm5hNJuxJj8Pjx46iP5rVuGf+/ZAJfOKUwRyofpldTOCO8FPcm1y8YyxHPFnv8FVuSvwcfFBZBkqXXr/RN5KkiSbsrrUJla787innwaee865bZ57rma7dkouk/DcvpPo9csG3LftCFZmFUJnMnk6LKccLC1H/C9/YfaG3fjqVCbyqnWeDonaAa/4Oap7iAYJAWqrNgVPeFvHD68Ae1/ApVOAmtH3dTL3QWagainw9lJgwBPA7Ec8FCQRUcvY+1EyWOHX+oF4kWK9Hn/k5iAtOwvLcrJRYjBYbvtv3/4++0suNSw1OBEPZ2+xXE8J7uTyfUxUx2GgsgOWVJ3FkqqzAIAh6kikBiYhNTAZg9QdeGxRm5U6OBhv/1louZ7i7YknuRx46qma/z/5ZNP9n3uupv+zz7o3Li/3eL/OGL5kCz48eg4fHj2HQD85psZHIjUxBrM6RiHS37t/2Lo0IRovHjiJ38/n4ffzefjntgMY1iEMqR2jkdoxBv3Cgvk+TS7nFYknSZIwOibc02G0Pz+8Ahx8AVDUPAf1l32SateFVYiafj+AySciajPa4ynVsfJypGVnIT0nC+sLCmASwqbPqLBwTIjo4IHoyN16qELRVRmME/oyyCFhRpDrE0+SJOHfYYMwK+cPS9tObT52avPxdMF2xCk0SAlMRGpgMiZrEliSR23KuJ4BCPaXoazajDCNHKO7e/lCSbXJJkeST3WTTo4kqdqw/uFBuLRTFH47mwcAqDCY8HNGDn7OyIEEYERUGFITo5HaKRp9woK8LokjkyQ83rcLrtu4F0DN2IOtBcXYWlCMf+8+gk4af6R2jEFqxxhMiImAimX35AJe82k/OibM0yG0LzlngL01SSfImngzlEmAWdT0Hz8HiOFEpEREvsBoNmNjYQHSsrOQlp2NYxXlTW7z7+49vO4kmVxDkiSkBifhzYJ9GK2JQbhC3fRGzTBRHYeRqmhs1uXa3JZlrMTHJYfwcckh+EsKTNEkIDUwCbMCkxDn5+Vf0omaoFTIMK1fEH7aVooZAwKhkPvAe2n95NPs2cDcuRduj4pi0smOx/t1tiSe6hIANucVY3NeMR7ffgRJgf5I6RSN1MRojI/1niTOpQnR6BsSiAOlFTa3na2sxntHTuO9I6ehUcgxNS4KqR2jMSshBlFePpqLvJfXJJ44p1Mr+/IRwA/260/skUmAnwC+ehR4+Du3hkZERM3XWAldUzoHBEAtk2NLcRFUSqVb4vOTyTA0jKOcPSU1JBFvFuxFP/8wbK6yXYGrpXT6mrlCZgR0tJt4qqtaGJFWkYG0igwALMmjtiF1cE3iKXWQD323qZ98+uKLC7f5aNJpb2EpqozumXtJp6+ZQH5wRDB2FZY12jejohrvHsrAu4cyEOgnx7SEKKR2isbMJkryMiurcbay2qVx16qNf2Z8lN3EU12VRhN+OZuNX85mQwIwPDIMqR1jkJIQzZI8corXJJ44p1MrMpuBvOVAoJPbCQC5f9Rsz+eLiMhrHCsvR3p2FtIaKaFzxKmqKkzavMHF0VmLVauRNesSt+6DGjZGEwN/uRzvle3He2X7PR2OlbolefEKDVICk5ASmMSSPPIpMwYEQamQML2/l8/vVJ+9sjsfTToBwLy1e7CniaRQa6swmPC/09n43+nsJkvyvj19Hg/vOOS5YO0QALbkF2NLfjGe2HUYiRp/pLAkjxzET/H2KPNEzcThzs5wIpNqtss6BSR0dUtoRETkuOcOH8La/AKHSuiIAMBPkmNSUDyWVGV4OpRGZRor8VHJQXxUctCqJC8lMAmxLMkjL9YhSIFHUiIRqvHBL+F1k0/PPw/o9T6ZdPIF9kryUhNjkNIpCuNjIzwdnkPO1CnJC1TIMTU+CikJLMkj+7wi8fTf3P0oytqBZ+q0rS/PxliPRdTGleS3bPviXCaeiMinjA2Oxnc9xwEAdGYzVDIZOvi5Z34bd5BJEr4bMhIAUGk04n+Z57G+oACfnD4FX5sm3SQEjGYzRzp70PSgjl6feKrLUpJXdRoRRSr0VUUgRhEAALhc0xmzg7p7OEIioLzahH98cQ4AYDILzPkgAwDw+c2dEKDyofe7J5+8kHRSKn0y6SSEgN5k9nQYTsmoqMY7B0/jq+PncE3nOMRofCtxU2E04ecz2fjlXCY6+CvRLzTYUkp4XVICLkmI83CEjrmopxJPzwsB7rvQ9s9LfGz0opfyisTTpspcZJZnWSWezugrmHhyl9DIlm0fFu2aOIiIWkmyfxCS/X33xEEmSZgTf2Fhh1sSu8AkzNhSWGRZpe5gmXeVFDREazJhY0Ehxke18LOImk0p+c5IDI2kwNTATkgNTMIK7Vl8V3EMa7WZltu7+oVgtgfjI6qlNwn8sK3Epv3jeR1bP5iWeO65C0knvb7muo8ln44UV6BAq/d0GA7rGqxB6t8TkI+JCYefTIbXDhz3dFgOC/ZTYHp8FFI7xuCnc+fxe2Y2/sq7MNBhcFgoLknwYIBOSIhSIGGov1XbiD6+lQT0Vl6ReKJWFt8VKJcBGlPTK9rVZRZApRyI6+y+2IiIyCFySYbRHTpgdIcOeLlff5yqqEB6Ts3qdWvz82EQzv/aq5LJEOrn9/c194ykqjAYkZaZzcSTB/nLFIiW+zfdsQWMwoxCs65Z23ZSBCI1KBmpgUmYEBAPlawmUbYhN8uVIRJRffXndKq9DvhU8in9TB4q9CZEu6vc6+95FMsMRlQ3Y2SVTALGRIdbVrvrERJoM0l3gFyOaLW7Eh418evNZhTrjc26hy5BGqR2jEZKQgzGRkdAKa8Z1fdbFt+nyT4mntojmQyImgZULXVuOwlA9HROLE5E5IU6Bwbi7q7dcXfX7igzGPDn3yvbLcnJRqHesV9+w/2UODRxMtRyOdRq15ciFuv1iPwlHelZ2fjPoP4uv39yzI0hPXBjSA+33LdWqwUAvF96EA8UbXFoGwnAcP9oyxxO/VQRXCmJqLXZm0jc3oTjPiAtIw9VOoG9V41G1xDXzwmn1WphFgIXpW3GodJKh7YJUSowPSEKqYnRmJEQhXB14yvH/qtXZ/yrl3t+7K99n3754Ek8s/+EQ9vIJGBUZDhS/55MvKedZBlRY7wm8XS8YxTmLZhruT6kcycPRtMOzH0FeHspoBCOjXoyC8AI4KaX3R4aERG1TLCfH65K6IirEjpaSvJqRkM1XpKXrdNi4bmz+L+kZLfEtSwrByYhcLS8AsfLy9EtyHfLH6lhWrMRr5Xua7SPRlJgWmAnpAQmYWZgIqL/nrOJiDygsdXrfCz5VKjVY2NOEQAgPSMP9w5wz+fZL2fzmkw62Suh8xalegPePprRaJ+6JXQz4qMR0USyrK2o6tobV/X/FnoDMHdmAG7s29fTIbUJXpN4yosIxpepoyzXe0X6xmz+PismERjwBHDwhZqkUmPJJ/Pfy3IPfLJmOyIi8hl1S/Je6tt0Sd5rJ45jfsdOcMfU62lZ2Rf+n5mN+3sy8dQWfV5+FDmmKpv2hkroiMiDGks61fKh5NOyM3mWry5pGbluSTyZhcCLe0/atNeW0NWuTmevhM5bfHD8rN0yu4ZK6NqTlcf9sUxTM9t0aZEfbgwN9WxAbYTXJJ7IA2Y/AvwAYO8LgJ+oKfetm4Ayi5rx70bUJJ2uecgzcRIRkcs0VJK3NCcHBXqdZdTTfT17uXS/BrMZy7JzLdfTsnJwf0+uRtbW1B3tVLeELjUwGX1V4V77JYyoXXIk6VTLR5JPaRl5lv+vyy5Cqc6AEJVfI1s4r+5opxA/BaZ3dLyEzhvUHe0kk4DRURFISYhmCd3f0jZoLf/fccSArHwT4iL5Q0lLMfHU3s1+BBg/B/jqUSD3DyCozi/flfKaOZ3mvQpE+diKHERE1KT6JXnrsnOwNC8Hy/Jy8H/dukMtd92J1sb8QpQaDJbr6/MLUKzXI0zp/Sfp5LgfK09huCoKMwM64rKwrohiCR2R9zKZHEs61artZzK5L6YWMJjM+OPchdXUjGaBP87mY3a3OJftwywEfjidjbt6dcKshEiMigpFUIBvvc8tysjCpOgOmBUfiamxHRAfEuzpkLyG2SywZHO1VdvSzVrceonr5wprb5h4opryuYe/A8xmIOsUUJwLhEXXrF7nRbXIRETkPnJJhpHh4RgZHg6gZoU7V6pbZgcAJiHwR3Yurk3kDxttyY2B3XBTUM1INrXCHQWbROQyTz/t/DZeOtIJANZnF6GsXvlYWkauSxNPEoAfxg/w6VFB/9etE+7ozulT7Nl11IDsAuspCNI2VDPx5AJek3hSGE0IqrwwrE0WZWikN7mFTAYkdK25EBFRu+bqk+r6iScASM/KZuKpjfHlL2NE5NvqltnVWnY2H0azGQoX/ZgiSZLPv8/5evzulLaxGgGmKnTRnrG0bdyShGpdBPxV/Lu1hNcknoYfOI0Nt75muf7Nr58DHS/yYERERETkCkfLynG8vMKmfVl2jku/EBARUfskhEBaRq5Ne5HOgM05JRgbF+6BqMjXpG3QYlDlAWw4eKWlbUyf/+GvHQmYNdrfg5H5Pp7pERERkVvZG+0EAMV6AzYWFLZyNERE1NYcKa7AyTLb1TQB2E1IEdV3Ps+I3cfsV12lbdTabSfHMfFEREREbpWeaT/xBABpjdxGRETkiPQztmV2tZh4Ikcs2dRwcil9oxZCiFaMpu1h4omIiIjcplivx4ZGRjU1NBqKiIjIUfbmd6p1pKQSJ0orWzEa8kVpGxpOPGXmm7CngdFQ5BgmnoiIiMhtlmXlwNTIr4THyitwrKy8FSMiIqK2pFCrx8acokb7cNQTNaZKa8aqHY2X07HcrmWYeCIiIiK3cWREUzpHPRERUTMtO5MHcxNVUOmNjIgiWrldB62+8T5pG6pbJ5g2ioknIiIicguD2Yxl2U3/ypyWldMK0RARUVvUWJldrXXZRSjVsVSK7GuszK7WjiMGZOWbWiGatomJJyIiInKLjfmFKDU0faK/Pr8AxfomfmokIiKqx2Ay449z+U32M5oF/jjbdD9qf8xmgSWbHRvNtHQzy+2ai4knIiIicgtHJw43CYE/HBgZRUREVNf67CKU6Y0O9eU8T2TPrqMGZBeYHerLcrvmY+KJiIiI3MKZFevSMjnPExEROceRMrtaS8/mw2h2LMFA7UfaRseTSSu261Cta2JCMbKLiSciIiJyuaNl5TheXuFw/2XZOTDwCwERETlICOHUKKZinQGbcordGBH5Ikfmd6pVrRP4q4nV78g+Jp6IiIjI5ZwZ7QQAJQYDNhUUuikaIiJqa44UV+BkWZVT23B1O6rrfJ4Ru485N+l82kYmnppD4ekAapUHqLC5X7Lluj4wwIPREBERUUukN6N0Li0zG+OjIt0QDRERtTXpZ5xPIqVl5OLVUb3cEA35oiWbbJNIhYow/BQ+y+p6XekbtRBCQJIkt8fXljQr8aTVNj/L93rBAfRQhmBWUILlyTKZTNjXvSNGLXzU0u+5qC6W/ejMJnxVcgIhciWuCUm2e79N8ff3b3bM3qglz4G38LXHwGPI+7SFx0D2tYUPc19/DNXVzZ9As1hvwIY6o5d6BQVCADhSr/RuVEQYTlZUIVenAwD8npmF53t1b/Z+6/P158AX3+Pqfla25Bh6t/wA4uQBuMw/GTLL+aLtBMJGo9HydzIIM76rOg4JEm7UuOY48vVjiBrX3NdYSZUJT/2ajwemRSAxwu/v+7K/zLpWq4VSkgMATufr8caKIrx4RSSC1PLmBV2Prx+jLXmf++1UjuX/YUoFBkQEYU22dSldp0A1Oqj9sKugHABwpKQSB/OK0CW4+YMc2tp3gmZLuQzIPA/s3nGh7a4HgOGjrLo98sjDeGTJbzVXFApg3CSgsgLYusklYbToGFpXafl/UICE4b0VWLmjG67p8aGlPSZcwsg4OTYfqPkMysw3YeuBSgzs5roxPL74ee+sVi+1i1ME4OpzqzHq1BKkl52DEA1PzqUzm/BJ0VH0PfEL7s7eiv7qsAb7EhERkXdYnpsHkxDoFRSIry8ahB2TxqF3UJBNvxnR0Th08US82rc3olUqHK+oxPEKx+eForarkyIQ1xetwrDc/+HnqlMwN3K+aBBmfFV5FANyfsTtxevQ0y+09QKldik0QI59mTr0feok7lyUgzOFjZfqnM7X4/++zkb/p0/haI7OZUmn9qxQa8DmvBKEKRVYMLgzDl8zGtd3jbXp11GjxobUi/DzxQMwuEPN59CSswWtHW7bVFIMPPAY8NyrwKChjfdVKIBJU4H/vAvcfDtw9kzrxNiIKq3A6l0GBAVIePQGfxz5Ngy3pqpt+kWFybDqvyFY8lowRvatSTYt3axv7XB9XquX2k0NjIMMEvZoi3D1udUYqA6HQdhOJrqiIhMfFR/BeUNN3W5nZRB6KENaO1wiIiJy0pmqKnx90SBcERdrGa3SkACFHHd1TcYtSZ3wWcZZ7CwuRbfAwFaKlLzVZFU8VJDjoLEY1xetQh9FmGXUSF3rddkYkPMjTptqRjPEyPwxxI/lmuR+s/oFYuupany2oQRfbirBFYOD7fa7+7tc/G9nGYx/f92Z2Z/vb66wPb8UTw7qjP/r3REhysa/0kqShBkdO2B6QgSWny/EhpyS1gmyrduzCzCbgOQuNQmo0ycBhZ9tv/6DgItnAB3+fm/OyQayM1s3Vjt2HjXi3mv8cddV/ggPbnw8jiRJmDREiYmD/bB6lwHLtjDx5KxmJZ7UattMoKPiocbowGisr6gZGrlHW2S337oq6xUKLglNdOmwxsZGWnmrukPwWvIceAtffww8hjyvLTwGss/XX1+Abx6fdUs2WhL/ggH9bNrkctuTOj8/hWU/agAP9W3ZvBv1S7t87TmoXzLja/HX15L41VBjUkACllXV/Cp+0Gh/JapNeuvzxVmByQhowfmirx9DgO+XXrWmljy/lw8Nx1O/5QMAjGbgxx1ldvv9sN26/YqhES49rnz987K5f4vLuiXgsm7WbX5+tkkPmUxmtY+a7RKatc+G+Npz4MrzlTF/rsXG/L9L65O72O/Ux/qc4L4JY/FGC/9mrjhfuXi4GhcPt25TKm3jkuodQzNH+2Pm6GbtskG++FnjLI+sapcaktgq2xARERGRb0rVOD+vZ2pA8+YCJXJWn3g1kjoondqme4wK3WPa/hdMaj9S42OasY1tSSS1fZ5JPIXaJpF6ns7Gj498ZLn0PH1hNZxgmR/GBvEAJSIiImovUgKSnOqvkuSYEtDRPcEQ1SNJElIH2i+va0jqAOf6E3m71ATnvqOH+PlhTFSEm6Jxjf6Vh7Bp/6WWS/eig54OqU3wSOKphyoEXVTWb7wRpZW4etUuyyWi9MIM89NDOsJP8kioREREROQBHf2CMFDZweH+k/wToJHZmV+EyE1SBzo3/2yKk4kqIm/XKzgIyYGOrxA4Iy4afjLv/l4fZKrAyIpdlkuAgYueuIJHnnVJkpAa0snh/iyzIyIiImp/Upwot2tOaR5RS4zrrkGg2rGvU6EBcozuyonFqW2RJMmp0rmUZpTmUdvgsXSjo8kkGSTMCOGwaSIiIqL2JlWT5HBfZ0vziFpK5SfDtL5BDvWd0S8IfgpO/E5tj6OJJ7kkYUYcE0/tlccST2ODYhEib3pCvtGB0YhQcBI+IiIiovZmqCoaMfKmyzgGKjugo59jCQAiV0od4Fi5nbNleUS+YlxUBwT7KZrsNzoyAuEq5ybkp7bDY4knP0mG6cFNL2XJMjsiIiKi9kkmSZjlwKgnltmRp8zsHwypiYFMchkwvR8To9Q2KeUyTIuNbrJfc1bAo7bDozN7pTiQVEpxYi4oIiIiImpbUgOaTiqlOFGSR+RKkcEKjOyiabTPmG4ahGmaHhFC5KscmbvJ2RXwqG3xaOJpRkhHyNDwTwRdVMHoqQ5tvYCIiIiIyKtMCegIlSRv8PYYeQCGqpr+tZ3IXVKbWK2OZXbU1s2Mi4GskZF/3YIC0SOYo/7aM48mniIUaowObPhEITWkE6Smxq4SERERUZulkflhkn/D0zPM0iRBxvNF8qCUAU0lnhq/ncjXdVCrMLJDRIO3czU78mjiCWh8DifO70REREREjc3h5EgpHpE79YlXI6mD/UmTu8eo0D2GCyVR29fYHE6OrnxHbZfHE08NzeGkkeQYE8jMKBEREVF7lxKQZLddJckxJaBj6wZDVI8kSQ2OampqNBRRW5HSQHIpxM8PY6IaHg1F7YPHE0891aHoorJ9Qx4eGA2lrOF6fiIiIiJqHzr6BWGgsoNN+yT/BGhkfh6IiMhaQ/M4scyO2oveIUFIDgywaZ8RFw0/mcfTDuRhHj8CJElCqp1RT6M1nCSSiIiIiGrYK7drrASPqDWN76FBkNr6q1VogByjuwZ6KCKi1iVJkt2SOpbZEQB4xbqeqSGJ+LhHR/T/7kkAgAwSVo2Z6uGoiIiIHFdRbcIlLxSgUmfGkC5KfHJXHORyTnjcmrKrtfgjOx9Ls/JxV/dETO0U7+mQyIVSNcl4rni7VVtDJXjNlWWqxG1lqzFZmYBZqiT0B6d9IMcoFTJM6xuExTtKLW0z+gXBT8HPgbr2F5TjwXWHMaNTBGYkRqCHmvNftSYhBJ74tggrCvOgSCrDr2MHo5ML3+ZS42Px9tGTlutyScL0ON8aULI1cBDCh+6zXO8cGebBaNoOzySenp4GSHJgwVIAwNigWCg0gdjfTVVzPTAGESH16kCfmQkIE/D08taOloiIyK7MQgPSt1cibXsFVu2tgtYgAAHsO2lE+tYMzLwoAKnDNJg6OABBAR4fZNzmCCGwp6gUaedzkHY+BzsKSwAAQ8JDMDYy3LPBkcsNUUUhRh6AHFMVAGCgsgM6+rl2ee44uQbJ8mA8XrEFj1dsQbfSUKT6d0ZqQDJGq+LgJ3EaCGpYyoAQq8RTQ+V37Vm/DkGQS8B9G4/jvo3H0b9DEFKSI5GaHIVhMSFcodINqoxG/JWXh7SsbKRnZyMrUAsEAvilB7o+YsaEEZVImaJA6hQ/JHdq2bnKuKgOCFIoUG40AgBGR0YgXGV/4n1vZZT5oVgWZnWdWs4ziSdJDoiNNcmkBUvhJ8kwPaQjfiw+BcDOhOPPzKzpL432QLBEREQ1zGaBXSd1SNtegbTtFdh9SmfTJyRAhtIyCfmlJny5shxfriyHnwKY0M8fqcM1SB2uQVI0T2Kaq9powl85+Ug7n4P08znIrNLa9Pl3n66Q+OWlzZFJEmZpkvBZ2SEAQIqbyuwe1AzCl9VHYIAZx40leKN8F94o34VQmQrT1YlIDeiMGeokhMk5UoOszewfDEkChADkMmB6P9cmRtuKx4ckYdnZIgDAvoJy7Csox4vbTyHKX4lZyZFISY7E1E4dEKj0iuIcn5RVXY30rGykZWVjVV4eqk0mq9s1RhUqNyfAYARWrDdhxXoT7lmgQ5/uMqRerEDKZAVGDJY7PXJbKZdhWlw0Fp/NBND4SnfUvnjm1bxg6YVk0t/Jp9SQREviKTUk8ULfukmnv0dIERERtZYqnRkr91QhfUcF0rdXILvY1GBfPznw1DWheODTUqt2gxFYsbsaK3ZX4+4PC9A3UYnU4RqkDAvA8B5qluQ1IbtKiyWZOUg7l4OVOfmoMjb8HAwJD8G0GNtJqKltSA1ItiSeUjVJbtlHojwIc/174tPqQ1btJWYdvq86hu+rjkEOCWNUcUj5ezRUDz+OsCMgMliBkV002HSiEmO6aRCmYeLEnqFRwZjRKdySfKqVV63HwkOZWHgoE0q5hIkJEUhNjkRKchQSg/09FK1vEEJgV3EJ0rKykJ6dg53FxY32f7hHF7zhL0dpuXX7wWNmHDymx8vv6dEhXMLMSQqkTlFg6jgFgoMcO1dJjY+5kHhK4PxOVMNz74b1kk8znvgZMkhIVgWhpzq0pg+TTkRE5AFWJXT7qqDVC4e2mzcpELdPC8THyypxNNPYYL8DZ/Q4cEaPl34sRmSInCV59TRUQucIjnZq26YEdIRKkiNMpsJQlfvmDak76skeEwTW6jKxVpeJh0rWo5uipiQvJSAZY1iS166lDgzGphOVLLNrQt1RT/boTQLLzxRg+ZkC3LnmMPpFBCK1cxRL8uqoMhqxKi8P6bUldNW2I4DtiVGpcFfPROjnCbzwjv33OAAoKBL4arEBXy02wM8PGD9CjlQHSvJmxsVAJgFdAgPRI5ij/qiGZ9PwdZJPEc9cgrs7j0F3VRWknFXA2lcB+VYmnYiIyKVSFmTh4Fm9VZsQAnqTQJXejGqDGXqTY4mm+j5bWYHPV1XAbIbDn7D5lSZ8uUaPL9eUAADUSgkBKgkBKhkUdkZC/WNqCB6/OsKm3dc5UkLniHt2HrQkntyVgPpu7FCM4BxSHqGR+WG8Og6bTJnokrnQ5fcvRPNe+yzJo1qpA4Px2OJspA4M9nQozXaypApTftnedMdmqn2dSQAcfcXtL6zA/sKKdlOS9/EiPV56z7ac36jRojo5H1Wd86HtWAjh13DiqCG5FQZEfrsaCAXwuGPbGACsBLBSB9yzBPDzkxDgDwT4S1ApUfNk1hGgkvlsmV2UPh8zSlZbrp9NmArAtyZI90aef5XWJp/kG/HmF2uBdXpgnBKYqGbSiYiIXC6ryISMXCMAUXOiJBOAJGxOmprDLHDhLLqZ96c1CGgNAkUV9k8miyoaLjPzNWV6Iz45loH08zlYkZ1vMwdFc5xtZsLKGVoXxEnNN0OTiD9LM1BhMng6FLvql+SNVsVZJihnSV7b1ztOjen9gtA9xncTjgazGRll1Z4Oo0ENleRpzW3nvbm0XCDj3N8nFQnlQO88oHc+0LG8yW2bIvzMMIW07LPSAKAUQKkRgJ0B3sEKhc+W2XXTnsYXJx+wXJ/X9TcAfT0XUBvh+cQTUJNcum8UMPEgMFYFKCSgtA/wJpNORETUcmfzDdh9uuYkK7dcD/jVniX53lD9Sq3zv256g6HhYdCZzYAAzlVV43RFJV7cdwwQvvcc6E2++Ry0FTMDknBf6VpPh+EQEwTW6TKxTpeJh0rWIVahwSR1R1wa0BlKyBEg+eFidWLTd0ReT280Y9mBMgDAJYOC8dueEgDAzL4h8FP41vuczofe4+qW5EESCFIrkBTsj6Rgf0iQ0Dss0NMhOswsBNKyswAA2xXVwM3ngeQSIMAAXztfMetkKNwbjN8kA3p3laFbsm+UH8eEyzCmvxI4eKFtUHcuCOMK3pF4AoD7vgc+7luTdDKKmutEREQusOZgJea+m32hwQ+ACYBRqjmX86HzOY3aN+eAerhXD8v/hRA4WFJumcNpS36Rw+UW3uCXM9mYGs9h954Sp9B4OgSn9fYLRz9lBH7QH8Ui3WEs0h0GACTLQ3BKfYuHoyNXKNeacdn7p2zaS/87AH4K3/jSXeu3E/meDsFpQ6KCkZochZTkSAyOCvbJuf5MQuCyLRtrroT/fQGAzfFAl2Ig3P0jel2lokLCVU/UjJp75RE1Hr7dN14DI/upMPKOUOC7C233XMN5qlzBexJPC/95IemkkGqus8yOiIjcRgJMclhK7iTxd9mdp+Nq+yRJQt+wYPQNC8Zj/bojr1qHZVm5SDuXg+VZeagwNjwxuzf4K7vQ0yGQl/ODDOPVCUjxT0aqf2d09gvBKt1Z/FB41NOhETXpr3Pe/x6nlsswpVMEUpOjMCs5EvGBvlva2KRl3YBSFRBbUVNu1zsf6FQK+ObvUNROeUfiqe7qdc9br3bH5BMREblD3yQl/jvXeuJLIQRO5Rqw+Wg1Nh/V4kimvoGt7Zs+yB/je6vx+YoKHM9yfK4JPwUwqIsKI3uqMbKXGpEhDf8y2LFD2xvyHeWvwtwunTC3SyfoTCaszS1E2rlspJ3PwZlK5+YZ+eiivugUULPstlKpdHmsbxw4iSVnc5FVqUWcpg1/0fFiakmBVVFXuuW+9Yaa17xemHBd6Z+oFI4nQSNkasz0T0aqfzKm+iciRKZyS4xE7lRlMGFLdilGRYXhuTFd3bIPvV6PIp0BN648VDM3ooPiNCqkJEciNTkKkzpGIMDPN0bRtNT376sRKQ8AoEHtJNdFJi22aXOxWZuDHbo8aIXj5xyxsgDcHdQXO/cLLF7iXFlllyQZRg6WY+RgBbp3kWxWF3zmbS3WbTMCRmbFyJrnE091k061SaYFTD4REZF7hWpkmDQwwKZ9MoB/TA8FAOQUG7F0ZyXStlXgzz2VqNI1foZ86Lwez8wOxeNfljU5d1FMmBwpwzRIHa7B5IH+PltC52oquRxT46IwNS4Kbw/r73RJ3rbCEtyUnAAAUKtdmxgSQuDGNbsBSFh6Phe39uDcPJ6gkGSY5N/RLfetlWpKWT6rOuRQ0qm3XzhS/TsjxT8ZI1WxkEt8HZNvW3W2EDqjwJ68coyKDYXaDWWCWq0Wz24/7VDSaXBUMFL/Tjb5agldS40eqkBCQP2v7YG4CoEAukBrMmFNXj7Ss7ORlpWNs1VVjd5ftrkKg3vL8P3rIcCJxp8ElQqYNEqB1CkKpExRoGNc4+9xH5RUAie9c+EHRwkhOPjdDTybeLKXdKrF5BMREXlYTJgCN08Jwc1TQqDVm7F6fxXStlcifXsFzhXYfik9m2/CHR8VoaEV2Qd1USFlWABSh2swpKsKMhlPbRpjryRvaWYO0s/nNliS9+XpTDzUqwsSNf4uj2d3YSmy/l41L+0sE09tlV6Y8ErlLru3KSDDeHW8JdnUxS+0dYMjcrO0kzXzO1UZzVh9rggzkiNdvo8irQHvHThv97Z2VULnImq5HNNjYzA9NgbvDBqI/aWlSMuqSUJtK7L/g839W4/j4OEhdu8vOlJCyuSaZNOUsQpoAtrXucrRM0b09HQQbZDnEk+NJZ1qMflERERu4uxk1mqlDDOGBGLGkEC8d3sU9mXokLa9ZjTUtuMXJvzceUqHmokXJKj8JEwe6I/UYRqkDNcgoYPnBxr7sih/FeZ1TcS8rokNluQZhcBrh0/i3aGuX/o47Wyu5f8rMvNRbTTB38cmDaamfV19FOfMFZbrLKGj9sIsBNJPFViup53Md0vi6d3951Gmv1AaFlunhG5yOyqhcwdJktA/NBT9Q0PxRO9eyNVqsTQ7B2lZWfgzNxeVxpq/+0FzIdC5CDhVM4P5gN4ypE5RIHWKH4YOkLXrH8Y27dNbJZ50egG+67ecZ86AHUk61WLyiYiI3KC8qvnLRUuShAHJagxIVuPf10Qgp9iI37aU4NkfSpBdbMLIPko8fEUEpgwKYAmdm9QvyTtQUoZfM85jSVY+vsnIwkO9uqCHi0vt0s7lWP5fbTLhr6wCzOrE1e3aktrRTr3kYZihSsTlQd1YQkftxq7cMmRX6izX008V4D0hXFreVqTV4/0D5zGoQyBmJkbg8m5xGBQVbDNXELlGtFqN+clJmJ+cZCnJe3PzWfxZkIfwa05hgToSl8/wb7KErj3ZuE+Pm+tc33VEj5GTPBZOm+GZxJMwOZZ0qmVJPjk+aRoREVGtnCLbz4/CsuYnnuqLCVPgxvEa9OukRM94BU7kGDGsZ6DL7p8aJ0kS+oWFoJu/Cg/16oI8rQ5VRteeM2RVarGzoNSqLf1cDhNPbUyZ0OOPsFR0VoQAcP08YUTerLbMrta5ci325VdgQJTrlpOvMpix85phiNfUjCHha6xpwukx2vbVluRFdg3GovHAaWMFugXWzHlJNTLzTDh6xvr8YdN+PUZ6KJ62xDOJp6eXO78NRzoREVEz7T5huzpdUbnrEk8AIJNJGNylZhW1/kmuX02NHBeldv2g+CXncm3a0s/l4n0XjwYgz+og80cHmevnByPyBWmn8u22uTLxlBCkhlbbdL/2KDPb/nnJoaNmdBzkuv306V6TaOqHYNfdaRuxZKPtwblpnwH387O+xZjeJCKiNs9e4qlaZ8aJTN9eeYVaT90yu1rnK7XYU1jmgWiIiFwrs1yL3XnlNu1pJ/M8EE37tHSV/ZG6K9e79ocyaljaetvEU26RGXuPN73KKTWOiSciImrTistNONZAgil9S+NLDhMBQLXRhJWZBXZvs5eQIiLyNel2RjsBwLacMuTUmfeJ3Cd9pf3kxsp1THq0hiqtGSu363BGGY/H4h+1XM4o4+0mpMg5TDwREVGbtmxbNUQDPxamMfFEDliVlY9qk/1fouuudEdE5KvsldnVWtLIbeQaVVUCf220/zmz56AZOXkc9eRuq7brodUB51XxeDnuLsvlvIqJJ1dg4omIiNq0xkY1rdunRWkFT+aocel25neqtaOgBNlVPCElIt9VZTBh1dmiBm9PP2V/xCe5zqoNJuga+ShZspKLbLlb+oaGn4DthwzIKeBz0BJMPBERUZtlMAos217d4O1GE/DHdo56ooYJIZDexKgmexOPExH5ipVnCqE1NvwjzJ8ZBdC6eKVQspb2Z+PldE3dTi0jhGg08QTYn3icHMfEExERtVkbD2hR0sSIpvStTDxRw3YXliKziRFNLLcjIl/W0PxOtaqMZqw+1/CIKGoZs1kgvYkRTSvWmaDVilaKqP3ZdcSArPzGzxfT1nOus5Zg4omIiNosR+ZwWrq1GkYTT+bIPkeSSisy81HN0QBE5IPMQjhUSpd2kvM8ucuufWZk5zZ+HlJVDaxuYA4oajlH5nBasU0HrY7ni83FxBMREbVZ6VsaLrOrVVRuxuZD/BWL7Gtsfqda1SYTVmdzDhQi8j27csuQ7cCqdemnCiAEv3S7Q0Or2dWXtoLldu6SvuHCa2BU+XZodyRbLqPKtwMAqrQCq3fyfLG5mHgiIqI26dh5A46dNzjUN20zy+3IVlalFjsKShzqm3Y2x73BEBG5gaMjmc6Va7Evv8LN0bRPaX86NpIpfYWJyT83yMo3YeeRC+eLEgRUQm+5SLjwN+fqds3HxBMREbVJziSTHCnJo/bHmUnD08/l8gsBEfmctCbmd2puX3JMZrYZu/Y7trruuSyBvQe5Eq+rNTWpuHVfHT/rm4mJJyIiapOcSTwdOWvAiUzHRkdR+5F2zvFRTOcrtdhTWObGaIiIXOt8uRa788od7p92Ms+N0bRP6Sucm7fJ0dFR5DhnRjGdyzVh73GWPDYHE09ERNTmFJebsOGAc8Oh0znqieqoNpqwMtO5eZucSVQREXnaEidHMG3LKUOOA/NBkeOcnbfJ0fmgyDFVWjNWbnfumGa5XfMw8URERG3OH9urYXJyNDrL7aiuv7IKUG1y7pfldAdWwCMi8hbNKZ1b6sAKeOSYqiqBVRuc+5zZttuMnDyW27nKX9v10DqZS3WmNI8uUDRnI63W9//YvvgY/P39PR2CS/nic1CXL8bPY4h8RUue231ndFi02rp0QKUE6p9XyCQAMsD89/nb2n3V+HZtIa4YrmnWftva60uSJE+H0GLV1U2vatiQX09nWl0PVMhRYbT+gqCSyWAUAqa/53vYXlCC08WliPVXNXu/dfn6e1x7PoZOmEpggBm95OGWNr1Bb9NPCGH1PJuEGcsNZzFTmdSs/ZJzmvsaK602Ye95LcZ1u/B5odXZH4mi1WqhlOQAap7vtcerMKSTGkFqebP2be/+m6PKYMKqM0WW6xIAf4UMVUbrpEagnxwVhgvvfb8ez8F13SKatc9abe3zsjnPQbXJhDdWFUCrDUfNXx/QaIBKO30DAoCqkgvX//NnFu69JAgdlM37rKn/92/u+9xfm0wYPlAGTcCF93qTnR9sDEaj1d8oJ1/gbJbAsAGuGQPTks/KX9dY/8UD/QHUqz5V+gFyOVD70LYdNCAjswoxEa4bw+Prn/eO4IgnIiJqU4QAlhwqB/wN6JIgw9ePhOK6ibYnuRp/GXa9F4mrx6kgqYwwaXT4cjVX7KGaL4dLM2tGAnQNCsBnI/vio5F9bPr1CNFgX+po3NQ5DvK/kyx/ZHLyXQJCJRWGlf6Imyr+xGFTUZP9TcKM73XHMLj0e3yjO9oKEVJLBKtluPWbLEx7OwPrjttLFVgTQmDNsUpc/PYZ3PlDNgJVnv8K9tf5EmhNZkgAruwaie1zhmBUbIhNv+dHJuO76b3RL6ImybbqXDG0Ro64aSl/uRzvlR4CHtgM/0H5eOROYM8K+8nInz+V49mHZQgeWATcuRXvynYi3E/ZyhHb2nlAoPc0Hd5aaERlVdMTbufkCzz8igG9puoc6u9uQggs3Vzzg0DXBBk+e0KDDx8NtOnXKVqGfd+E4KaZSsj/for+2Mx5QZ3l+Xc9IiIiFyopFfCTSYDKhDPVVVh9rBJFlba/wAkhsO5YFTZnVkD4GwEZYNLyY5GAPcXlCFDI8dnIvtidMgrXdY6DQrJ/bHQOCsBHI/taElB/ZrEMhYAOMn9cpIjCT/oTGFL6PW5sIAFlwoWE0/zKlThmLsEsZaIHIiZnSJKEmX0Dse5EFaa9cwZT387AuuP2y7XXHK9JOM149ww2nqzCzD6BXjEa8I+MQkvC6ZtpvdAnwv5oX5kEXNalA7bMHozvpvdGlxB/rM0sad1g2yCzWUA6EAV0LkH1rduxeuRm7DLZ/+HiiCjCmsFbUPaPLUCvQiiOREJvO4Cy1c2cKENeIfDYa0b0mqrDm58bUWVn8FRuwYWE0ztfmqD0A0YP8fz51u5jJmjUEj57QoPdX4XgumkqKBoYiNg5Xo6PHg20JKD+3OYFT4CPaVapHRERkbfq2ckPt04JxAcrymE0AZ+vtr9iT4XBjLsXFlquB/tLeO+OsNYKk7xYfIAKu1NGQSFz/MS4NgGVXc2Jd6nGTL8kbDbmQABYrD+BxfoTNn3OmSswv3Kl5boMEqb5MfHkC2b1DcJH64sBAOtPVGH9CfuJp9mfnrfZzhs8MSwRsRrHS7VkkoTLunTAJZ0jkFfF0R4tpTcAC2+NwaX7TwIAtpUUY/aebXb73puxy+r6+9fFwmAA1K6p6m623l0lJMZLOJMpkF8EPP4f++Wm73xp/ePfxWNkUCo9n3xNiJJh91chUCgcj6U2AZVdwFF/zmpW4kmtVrs6jlbn649BCM8PT3RW/dpVX38OfD1+HkPkzVry3CbGApePEPhgheNLRAPA9EGB6NHJdoh1c/n6a8wXX1/1RxE09zF0srOd0s/P7v7q7yPZhX83X3wO6vL11wDQsufgCnkPPFm9xaltRipjkRDABHhracnzO7WvEoGq86jQOf4FNMRfjkm9w+HnxBfdpjT3Mdh7r5LZSbb7+fnZ7CPJhXM0tdf3CbUamBUci8hjKuTrHP/BQiWT4cquHaFRuG78SEteB5dMEXjnS+dG/1w2VQ212nWlgs3+rI+1bVP62Tse7XzWJzRrlxb159Xy9c97R3h+jBsREZGLje+tQaDauY+41KHe8Ss0EbUNvRTh6Cy3nTOnMamqzm6KhlxN5SfD1N7BTm0zo2+wS5NO5Nvkkgyzou1kPxoxOTLapUmnlkqdZPujTGNkMmDGeO+Jn1oPE09ERNTmKP0kTBvo+Op0MhkwY1DzVrMjIrJHkiSkqp1LJKU42Z88K3WAc4nFlP7O9ae2LyU2zqn+qbHOJarcbdwwBQKdOH0aPUSOiDDvTkHoJCUylAmWi0Hu+Ync2wLvftaJiIiaKXWo42Vzo7r7IyKIv8ARkWs5k0hKloegt6Jly9RT65rZNxiOzhMul9WMeCKqa2pUNJROzCc4K8a5RJW7qVQSpo11fNRTipMjpDxhR+BAJA/YarkcjBjk6ZDaBCaeiIioTZo5KNDhLwQssyMidxinTECw5Niv5anqzl6x2hk5LirYD8OTHRvuMbpLIMI1/IGDrAX5+WFCh0iH+g4MCUXHgAA3R+S81MmOJ5Oc6UttCxNPRETUJkWGKDCyu2MToDozOoqIyFFKSY5pqiSH+jpblkfeIdXB8jlny/Ko/Uh1sNzO0X6tbeYEhUM/9HVJlKFnF6Yf2is+80RE1GY5klDqEuOHnvGs3yci93AkoRQkKTFO2cJlksgjHE48cX4nakCKg+VzqV5WZlcrMkKGkYPlTfZLneTHUZ3tGBNPRETUZqUMaTrxlDokiCdCROQ2M9XJkKHx95hpqkQopaa/uJH36RuvRmJE4z9edI1SoXu0qpUiIl+TpNGgb3DjickYlRpDwsJaKSLnpUxsuoQudTJLTdszJp6IiKjN6tNRhaSoxk+GWGZHRO4UIfPHKGXjIxVS1V1aKRpyNUmSmhzNlNo/hD9wUKNSYxpfrS4lNhYyLz6Gmpq7KTgQGHuRbySeOmsz8N8zT1ouCeUZng6pTWDiiYiI2ixJkpDayKin4AAZxvT0vok6iahtSVElN3ibDBJmNnI7eb8UBxJPRI1pav4mR8vxPKVPdxmSEhpOLUwf7wc/P+9NnNUVa8jD3XmfWy4dqnM9HVKbwMQTERG1aY2NaJo+UAOlj5wIEZHvamxE00hlLDrIHVsIgbzThO6BCFTZ/1oV4i/HmK4cWUuNGxYejkil/XJMlSTDlKjoVo7IOZIkNVpKx9XsiIknIiJq08b1DoC6geRS6tCgVo6GiNqjXopwdJbbH/WSouJqdr5O5SfD1N7Bdm+b3icYfgr+wEGNk0syTI+KsXvb6JAoaBTeX6aWMsl+ckkmA2aM9/74yb2YeCIiojZN5SdD3wS13dtmDNK0cjRE1B5JktTg6naOrHpH3i91gP3EYkPtRPXNirZfTjclrPH5n7zF+GEKBNo5rRo9RI6IMKYd2jseAURE1OYNSrRNPAUr5YgI4i9wRNQ67JXbJctD0FsR4YFoyNVm9g1G/bmf5TJgRl/7I6GI6rs4Khow2H49nxLqG4knlUrCtLG2o55YZkcAE09ERNQO9O+oBoR1W7g/T4TsOXHWhPd/1EGrE0139jYR0cDIKUBQqKcjIR+VJSrwunE77jSsxMemvS6977HKeARLSqu2VHVnrnbWRkQF+2FEsvVwj9FdAhGu4Q8cbYlJmPFuxX58VXACP2Wfc+l9Byn8gOPh1o1ngxGr8p1FUOwlmZh4IgDgOyEREbV5wf5ywCQBigvJlHA1PwIBwGgU2LjHgLR1OqSt1eLYGTPmpvpBrfLBL8NFecCkS4Cb7gFOH8XzO48jNTEa/SOC+OWeGrXBeA5v6bdjtTkDRVI1IAG9TJEo0uqR6tcNg2XRLT6GlJIc01RJ+El7zNLGMru2JaV/CDafqrRcZ5ld21Gs12NZXhbScjPxizgCXUQFohGAzaWdcZm5K8b7x0MlueC84kAU0LvA+vo1Lb/b1jJzggKSBIi/T7e6JMrQozPHuhATT0RE1F4Y5IDCWPN/kwR/Rfs9ESouM+OPjTqkr9Nj2UYdissuJOTkcuCRefbnxPJ6QgBLvgNufxxI7oEntx/Fk9uPomOgGqmJ0UhJjMbEuAioFXJPR0oepjcbsdCwH18a92OXyIZO9vd7Q+3bgknCYVGEZ3Qb8YxuI+KkQMxSdEGqX1dMViQhQGreL/ip6s6WxFOQpMQ4ZYILHg15i9T+IXji1yzL9ZR+TDz5sqMVZUjLzURaTiY2FhfAVJtNkashC6tErqwKH1QdwAdVBxAo+WGafyJSA5IxMyAJkfJmjlLaHwVcc8j6ug+JjJBhxCA5Nu/6//buOzyO8lwb+D2zVb1LtmyrusndgG3cbcA2lrUJkAQIISHkpEJ6DiSB5MtJIQkkgUNCykkCJKSQTpEsV9y7jQvu3XJRL1bfOu/3x6pvX23X/ePaC+/szO6zWmlm9pn3eV4bAMBwh4YXfggAE09ERDRSWGQgrv/fI+1E6HyVtWdUkwk7j1hgszlf7+FSDQrHRHFS7tg+4PplYGxh36JrHUb86mQVfnWyCglqFVaMzYShIAeledkYFR+lSTbyWbWtAy9Y9uMN6zlcklogJAFIsN8GEsAskYOjaOjfVnTgd5Zj+J3lGPRQ4y51PgyaCVijLsYY2fvZMUv1hZAhQYHAKl0+tBKToLFk2hg98jO0qGoyY3y2DpNG6cIdEvnAoijY1dyAirobKK+rxvnOducr2mR8QD0B/1T6Ry92CAv+3XUB/+66AAnA7brRMMQXwhBfiKmaDO/POZrjgRuJwJgOoFUHXIu+5KXhDk1/4ulOphvIjr8JREQ0MiiSvdxOJQBrFCdWvDS4hM6Ec1UuMk0DRPVop14DRz050Wm14c0rdXjzSh0AYG52Kgz5OSzJi1H9JXRVaJa67EkmD3/+tytj8C31fJRZ3nD6uBFWVFgvosJ6EQBwi5wDg2Y8DJoJmC3nQHbzO5Qhx2GBNhe7zDecNhun6CZJEgwzUvDS1gYYZqRwfxIFms0mrK+vQXndDaxvqMFNi8XjNgtSM/CzzDmobLiETmF1eFwA2GuqwV5TDZ5q2YMCdTLK4gthiCv0riTvRI498XQiGxDR9ztkuFODp35qREoSsHgO0w1kx98EIiIaISR7wkm2xWziyV0JnTdysyT84W0zAECtdjyZDgRNvA2WaTVBeW6876P2/0sSYLEAGs/lUAfqb+JA/c2+kryyvBwYCliSF8lMworvmXY7fcyqKHhP1OO4qEctOmCTFfsDPvzJn0cLPm3bAFkWUIbOSuDEYdTgsKUG37XshAYqpEt6pCEOqZIOssNwKuCGtgOwKijVFTp5Nop2AxNPFD4vtR1DjbXT6WNNFhPOd7bjfEc7rhu7IXpL6NK8e+7aeIH7r2+BXq1Bp+z5WHnF2oaX2o7hpbZj0AoVCpU0TLBlolhJRwL6JxywKQDuMQMpRkASUVdm12vqRBkFY2XMm6WCRhN9iTMKDiaeiIho5LDI9pM5J18Go9W5KisqvCih88a1WoHn/mjquWdyu66/ssdZUW+5EJTnxurhdWC91mHEr09V4denHEvyKHJYoOCHpr0DlvSUzMnC/vftrHzOB02qrmHEZkUdOlCHDtcrqYExunRkquJcr0NRa+nERIxN02DR+MRwhzKivdx+EkfNDa5XkAAk9dx8dAlduORnXGbJhrOqRpxVNdqHRnWrgTYd0K4DTCqgtGfn1akBzmT6+SrhJUkSDHeqMW9mjKUaOjuBI0d82yYjAygpcVgsHT8OtLX1L9B5UZY7b57jBbX6euDcOefrA4BeD8yc6dWFuGCLsd8GIiIiN2JgpJM/JXTku6EleRNSo2c665FBBCzRFA5z1UxmxiqdRsYL94+FRh1lv5QxxiaUcIfgmQQg3mq/jeoEzLI9AdWuBd7Lsk+KEqXuWaHBzJLojP9k3ESsmviXvvtdqZPs/7hyBVi82Lcnu/de4D//cVis+dKXIO/d62QDN+rrgayswcs2bgQ++lH3282eDezfH/bkExNPREQU+/RWxI+xj2KwKYBKBrRRdCHRahVIWV7bd99mE7ApQKI2+k7quhPdjASJYBarwOcmFGB1XjYWj0qHRiW77eVDgfc5WyVeU96z34nrn6EyGnugTFB7WdNDUaOpw4q8bx/ru//In+3/r/nhLCTHRce++q17ZsEmBHZcvYm5ucnQq2Vo5ei5YPOX6sv49Ml9EBAw5t3EgCq26KBSgJxOILsTqqJW6B45DQAQWR+HX0OzwuDh/27HG5vNg5b94Mvx+MrHo2OEp2GxHtd3T4YQk7DlgAV3ztNG/7H+yBHg2DHgttvCGgYTT0RENCJ0mQf3ajFbfet/FG5dRsd4j/wtAzfqFJTvMKFihwknL0b+6KfuzDbPK0UAWQLm56ShrKfx+JS0RDYKDjOzsKELPY1/ez8KIdlLaKNs9JOas9nFpC5zFIyycaO3r92b5xsgSRLuLsoIc0S+sQoFXTYboLcAcpR8FiaVfYRTuw7oVAOz6wEJsEFBF+zvIZoOPSYz0NU9eJkX/dojhlotQa2WcPi0Ba++3Y33LYvyCVd6GY3hjoCJJyIiomilkiUsnK3Fwtla/PhLSbh03YqKHWaUbzdh+7tmWHzsDz46S8Kq2+2nBqogNdZ+RdOORFMcHpgZ+CFnL7/8cv+duct9HlaepFFj1bgsGPLtfZ0y46LtcvnIM1POxm2aMX33u2HBCaURV3ATbZLRryRUvE0LNSS0w+zzYCoJQAK0SIAGCdBA7aKr+Qx1ltPlROEmhEDFhSao5ehLPPWJt9qT0je1yNHpUZY1tu8hBQL1JiOudnfhancXWi1mN0/kXI5Oh2SVBrWadrSrfOuHKAkgx5aEcdY05FnTkKLoIWklIANQMhS8inqf46HAK99hwsa9ZhhNAnpdz4GgoADYudO3J8pw/jdkefHFQT2edN70eEpNdVy2cqXzmN57D3j8cS+DDA0mnoiIiGJE0Vg1vviQGl98KB5tHQo27DGjYocJa3eZ0HTT8wiv5laBb31KjzHZMvT6wF/l23SiDS9vNaHTpMKvFk6HVhPYEo6Xl//C/o+S2cDClV5tU5gUD0N+Nsryc7A0NwNaVfSUlRBQphmPH6iWO33Mqij4i+UEXrYewyFRg27Zu8vuCzAGT6luxx2Wf3i1/jgpGWWaYhjU47FcnQ+9p6nSiSLYkbp2VHeYUHGhCS+tENE50jPeAkACbuoxMT4Xv59yl8tVL3a2o7zuBsrrqrGjqR5W4flYOTMjB3+adRsm1/8VXkx8iRRZi7vjCmCIL8TquAKkq5wfXy3Chldv7PP8hBR0FTuM6DIKbDtkxt0Le5JCCQnAokUBeX4xffrgBf6ec2Vn229RgEdGIiKiGJScKONDK/X40Eo9bDaBfe/1NyQ/dcl5SZ7JDPzsTyY8/7Xg9GL45R57nyqhs+H3u5rw2PIgjfooe8jlQxLsJXSGApbQxTq1LOMR3Qw8opsBANhvvYH/NR/EO8oVNEidLkdDvSNfgdHqvmx1rmo0DOrxMGjGY4aczd8hihnlFxoBAFfbjDje0IEZ2dHRW6iPxgZoe8rs4j0nm4sTkvDlosn4ctFktFrM2NBQi/LaG6isr0azi9FQG5vq8FTTQbQI16OdxqtTYIgvQll8IRbrc6FheW3UqK634dAp+5Dx8h2m/sQTDQsTT0RERDFOpfK+JO+Vt8z42kd1KM4LfBzbGxv6+qP+8VhtcBJPJbOBosmDFg0soVudl4WsOJ5EjkTz1GPwutpellevdOB/zYfwb+sZXJCaoUj9wxaEJLBLugaI/tFv8dBgpboABs14lKqLMUpODHn8RKHQm3jq/XfUJZ4GJpsSLECn95umaLS4PzcP9+fmwaoo2NvSiIq6apTX3cDpjgH9CWUFfzSfxsBKWhkSFupGwxBfBEN8ISZp0piQjlJrd/UnFMt3GPHSN5Ki77PMywO+//3B98OMiSciIhqRjOboai4eSC5L8naa0NQq8LM/mfCrp+MD+ppVjSbcTGjvu3+0uymgz9+nd7RTYy2+uOx2ltCRU9lyIn6oX4YfYhmsioI/WU7gVesxHBTVMMpWQBYYrSTgHu1EltDRiFHdbsK7tf376fILjXh6QWEYI/LDwMSTVoGx27/O1mpZxuKMbCzOyMazU2YNKsnbJl2CVbYhARqs1ufhnqTxuDsuHxmq6Ji5jdwr396feLpWq+C9c1bMnORbz8iwy8sDvvWtcEcxCI+gREQU85zNCNfcFiUz3gTZwJK8zs5u7D9hw5YD1sENNQPg+S119pnHepgTu7HldDvuKAng1fTMHODYfuDPvwBqruJFL3p1EKllGY/qZuBR3Qxc6m7ED617cRXtuEvOx5NxC8MdHlHIVFxsHHT/QHUb6jpNyEmIjlGincIC6AeXyTZpOgLy3L0leV8onIin6zWQujTIEyl4NK0wKD0RKTy6jQKbDwwuoazYaYq+xFMEYuKJiIhi3nuXHPs0NLW57+EyEqlUEhbMVGPBTHVAk04A8PaleiBh8LJf7KoJbOKpsQ7Y+K/APR+NOLlSIl7SrAh3GERhUX5+cOJJAKi82IRHZ+SGJyAfHbc1OPRua9b4UGvnBZUk439S5gApAX1aAEB3t/OLJQ1NAmNzAv965GjLQRO6jYOXle8w4elPsrx6uDjunIiIYt6R846Jp9ZOgbZOjnoKBaPZhip1s8Py7Q2NTtYmIqJQ67LYsLnKcT89sOdTpDtqrXdY1qruQpvNeZPwSLNlp/NzElfLKfAGltn1OnDCgromXqwcLiaeiIgoplmtAu9ddNLjQQAbDnSHPqAR6He7miB0jidtLQltuNrkelYgIiIKjS1VLTBaHRMcGy83e5zlMRJYhA3v2RoclgsJ2Nh1NQwR+W7tJuc/583bI//nHwuEEKjY6XhOIgSw1sly8g0TT0REFNN2nzA57fEEAOV7mHgKhdeO1Tl/QBZ44R0XjxERUciUX3BM2gBAp8WGbVdvhjYYP+zurkEXrE4fK++8HOJofCeEcJl42r5XgdHFeQwFzpEzVtyodz66rHxHlCWe9uwBEhL6b3v2hDsiJp6IiCi2Vex1nVyq3N8Nm40nc8H2ntF1qcZblxxLI4iIKHSEEKi44Hqm0YooKLer6Lzi8rHKzirYRGSXqx15T6DGxXWY7i5g2+7Ijj8WVLhJLm3aZ4bRFEXni4oCdHX135Tw//4w8URERDGtfE+Xy8eaWhXsPRllV7GizDsn22FONLp8/Iq6GUYzywiIiMLlcF07qjtcHwvLLzRCRPgsoeUdV1w+1mgzYp8xskfXlm9wfxz09DgNX/kO1+cqnd0C2w5FR6+wSMXEExERxazz1y04e9X50Pte7kZE0fD9YneN28eFzoZXdjs2tCUiotDwNKLpapsRxxs6QhSN786ZW3DOctPtOhUdkV1u5ymxVLFRifjkXzSrrrfh0Cn354tRV24XYZh4IiKimFW+23NSiX2egmt7o/O+IQP98VhtCCIhIiJnvJm5LpJnt3M32qlvHTeleOFWXSPw7jH3SaWr1wWOn2LiKVjW7vKcVCrfYWTybxiYeCIiophVsdd1mV2vU1csuFTtZNY7GraqRhNuJrR7XO9ot+veIkREFDzV7Sa8W+t5Px3JfZ7c9XfqddLcjMuWtuAH4wdXTcWHYrld8Ljr79TrWq2C4+fdj4oi15h4IiKimHSzXcHO97wbFs1RT8Hx/JY6QPZ8ddCc2I0tpz1/8SEiosCquOhdQml/dRvqOyOvx02LzYid3dVerVseoeV23iaUmHgKjm6jwKb9Xp4vstzOb0w8ERFRTFp/oBtWL8/RmHgKjrd9mLHuF7vc94IiIqLAKz/vXeJJAFjrZZIqlNZ3XoUN3pU/RWK5XXe3wOYd3s04duCwQF09S70CbctBE7pd9xUfhIkn/zHxREREMcndbHZDbT9qRGtH+KeajSVGsw1Vau+bhm+vj7wvNEREsazLYsPmKu/305HY56m80/tRTNu7bqDNFlmjtt7ZoaDby2tfQnhflkfeK9/ufTLpwAkL6pr4GfiDiSciIoo5VqvAuv1eXr4CYLUBGw9y1FMg/W5XE4TO+5OzlsQ2XG3ilUQiolDZUtUCo9X7iy4bLzfD6O1Q4hCwCBvWdV71fn0o2Njl/fqh4Gv5XMXGyPn5xwIhBCp2en/uIQSw1of1qR8TT0REFHP2nDShpd23EUwstwusPx2r820DWeCFd3zchoiI/FZ+wfOsowN1WmzYfvVmcILxw57uWtxUfEsC+DJCKtiEED4nkjZuU2A0stwuUI6eteJGvW/ni74kqqif2p+NJEkKdBwhZzR6fyU8EkVj/HFxceEOIaCi8TMYKBb+jil2Defvq61bwRs7On3ernJfF2oaO5GWqPL7tQfy9z2YLQI2BYjT9f+NWq3OTzKNJiOMxv54LVYBixWI1/v39z1wP93t7dh/F44ZG4FE37Z582IdfmTMHtbrDsT9dHgN6+8YJiRDN2iZTbI5XDK1Wq0wWga/jrNtvRVr5yrknr+/o0aLAlkCtOr+X0ijyflsV0aTEVqpfz9tsioQAtBrAnP939/3IITwur/TQG+crcXS3AS/XtMZf+Nvs1rwRvsFn7er7KhCTXsr0jT+7SMAx/2EP8dLs7Dh8AkF1bW+fR3v7AQqt3Zi2TKBeEnj8+s64/dn0CGQnDj4OGVTHBNpFqsFRuPg9Zxt669hHStzvgKMftKnTd7Y1AxJHg2IwCWghnvONZRkMg06CppMJogwnxNxxBMREcWUAxeN+L89jYDW/iWgbL4OK+doHdZLiJPw7Y8mICVBAmQFTejGx3/jfTPsYFHJwPLPteFX/zLCaPLuqqbFKvDaWhPmPdoGJQJaVW093QlzYs8JjkXGreZcpLUlO6w3sSsb+R2ZQE/MVZoWGM0sIyDgRekgPilV4gJavN7mGOrwgPwmXpdOBTEyIrv5L1zAy3ubYfayVM1kVfDbPU1Y+MIFqOTwJ5WP1HeipmeWuiStCt+YOxZzRyU5rPe5WaNxz/iMvvuVl1ogRPhH3Oxva8Jvb57pu18Wl48Vcp7DeglWHb6VcgtSJPt5QKNixMcv7Q1ZnK6oIOFB3RvAg8cBrRXjC4FfPut83f/3BDC9BIDaBrz/DD6Z+y8v26kH1w9+bcbj3zOh6ob3Jx4Hj9tw7+eNqNjqPFEbcikr+//dtgWofdFxHeMFoPoZwNrTD02VACQuCE18/tJqIXJz+27QOp4HhxoTT0REFFNykzToVmxAZjdm327GFx7UYmym4ygmWQY+YdDjgXskqHM7gUQLZHNgRjsNh0olYXqxCl97sQslD9y0J6Bc9EK12oDX1pow8yOt+MyPOzEuR0ZifPi/0Pxqf31fwunde+Zh1+OTnF6ZzU+Mw5mvTMcbC+cgvyMTQmPDq3tbwxAxRZqVogh/kU9ipvyyxwRUb8LpdtVreFs6j7tFUQgjpZFIr5ExPkuHz//rBqb9+Jw9AWVzngowWQV+u6cJU394Dl/6dzUm5+ihUYV/P115qbkv4XTmE7fiOwvykax1PAaWpMfh9bLJOPCRWbhnfAautZtwotH7yTuCZXS8Ft0qC9Cpxuyb4/AF9UyMlRyH2aqEhE/oS3C/aQrULXGADVAlhD/poZJkWE5lAN/YjdSdf8Vn1h/HPfc6v/CybKmCz719Btm7/gZ8dxu6LyUi3r/CpYBasUCFV/5txbT3dXtMQPUmnJY8bMTG3TasXBT++KHOAeJn2RNO59YAlz4CdB9zXE8YgfqXgFNz+xNQyStCHq4vxJw5MF282HcTc+aEO6QI+I0lIiIKoM5uYFlJPLad7cKRqyaserYaKXrH6yxdVhtKnqiC0WL/siBLQNktgSsfGI7ShVr8eb0ZtU0CX3uxCz/5k/Mh2Hd8rg21zf1fdlYvCMyw++GakB6Hd1fOw5RcvVfr3z0tEWemTcf6Ex043xDd5XEUGLdhFLJEPBqkLvxFOonXxSmkw/H36VXpPTwr7+u7P01kIh8poQyVRqjSkiS8fbwN11os+Py/bmDUBudfq+b+9Dxq2/sTHWumOo4qCofJGfE484lbka737rgxPSsBr5dNxvGGTnRYwj8ytUuyYmlHIbbXt+AI2rGqeQdSUgWQPni9TpsVU/avg1FRAOggtWpQNmtsWGIeqLtb4MG0fPwK53BT14Ununfjp8YjTtd9QPMmGjq70LsLfCgrH43NQFaG09VDZskcFRLjgY4u4JV/W/HaW1YkOzmN+sWfrPjW/1r67s+bISMzLfzJV2gy7QmnrsPera902hNQja8CKauCG1sM8ivxFAnDK301tHZVr/fuZDhSRXv8QPT9Hg2tH47Gz2Bg/XA0xh8Lf8fR3rMlVIbz2S6epccjrVZsO9t/RbbV6HgVzgYBW/95EOZPjMfj9/h/Fje0Pn8476FssRZaTQfMPfENTC4NNHT5vcsTodcH5prScOJ//v4Ch2XOfvVVsjzode65LbB/09G2jwjk71C4DNzHDTf+NdYJ+IOwX31WJIFGOCZg66XBIy/ep5oEvdb/1421z4DcG87ne8/sLHzunzfQezo7MLk00MDlsgS8b2ZWwPbTgP/v4eEZjskXWeV4kUaj0Qx6jTnjImM/vUSfh0eyLdhe318212q1OKxnEwK2ATXoC1Ny8Fj2LL9e0xV/3oNeD/xoxQT8rvodWHrqzeuE85FkDUP2c9+5fRLGqQPXj87fz0CvB1YusuI/G+3Dsq1WoNnJoOW6psHnKu+/Uz/sfWuwvtO8scWI+752c9CymTNn4eiZwH5vjYXvlb5iqR0REcWc0llJThMd7hhuiYyr0ACQlCBj2a2+NT6dMUGN/NEcyEyxwyBP8H0baWIQIiFylJOswdx830bJLixKREYi99OBsiZrDHxNsxqywj/aqVeyrMMynW/xzNRkIU/t2DMxXAzLfR9pbbgjMkZnU2gx8URERDEnO0WN28f7djUwkhJPAGBY7NvVL1/XJ4p0K6ViaOF937UsxGOuNCaIERENZpieGtT1yb1snR7zUjJ92saQHTmJJwAwxPnWk86gj6wedqVLtT5d6CsaJ6OkOPz9NCn0mHgiIqKYVOZDIqkoW4OSMf5PrRwMZYt8i4eJJ4o1iZIWy6UCr9dfI02AzDIzCiFfE0llTDwFXFm298nm4vhETE6InNFCAFDmYyLJ10RVsGVnyJg30/tRfIblWpYDh8KlS8BXv9p/u3Qp3BEx8URERLHJcIv3J5dltyRH3IlQQa4a04q9O5nLTpcxZwqHrlPsKZO8L7fzpzSPaDim58ZhXJp305QXZ+owOYcXCALNlxFMZVljI+5YX6hOwVS1d/0lc+R43KbJCXJEvvOl3K7Mj9I88kN1NfDCC/236upwR8TEExERxaZp43TIz/TuBCfSyux6eTuKac1CHWQ5sk6miQLB22SSFiqslIqDHA3RYJIkeT3qyTA9NeKSHrFgemIq8vTe9doy+DA6KpS8HcW0Rl8YkaM6Dcu9S74mJ0pYchsTTyMVE09ERBSTJEnyKqGUHCdjSUl8CCLynbeJJ5bZUazKl1IxHdke11suFSBR8u7LD1EgGaalercey+yCQpIkrxJKyWoNFqd53peEg7d9myKtzK7XtIkq5I/xnFZYtUgDrTbyEmcUGkw8ERFRzDLc6jnxtGpGIrTqyDwczp2qQVaa+9i0GmDFvMjqT0UUSN6MejL4UJJHFEjLJiYhQet+P52sV2Hx+MQQRTTyeDNT3d2ZudDKkdnUep52FDJl9xOi6KDCCl1+iCLyjSRJXo168nZkFMWmyDzTJiIiCoClJQlI1Ls/1HmTnAoXlUpC6QL3SaU7btMhMZ6Hc4pdBmmix3XK2N+JwkSvkbGyxH1PwbunJEOj4n46WJam5yBB5b4nYqSW2QGASpJRqi9wu84d+nFIkCO3TK1smfvYZBkoXRq58VPwcQ9IREQxS6eRsXKG66vMsgSsnhm5iScAMCxxX0bHMjuKdXOlMciC63LY6chGvpQauoCIhvBURscyu+DSq1RYmTna5eMyJKzOjNzEE+C53M7bcrxwWTZPg0Q3XQsWzFYjw8MIbopt/PSJiCimuevzNH9iPDKTvZ8GOBxWztNB6+Yi4ZpFLLOj2CZLEta4KaXjbHYUbqVTU+Gq57MsAaunpIY0npHIXbndgrRMZGgj+1i5Up8PjZuv5mv0hSGMxnc6rYSVi1yX0pUtY5ndSMfEExERxbTSWUlw1coyUmezGygpQcayW52fMM+YoEb+6MhOnBEFgrvkkjeleETBlJOswdx85zOrLSxKREYi99PBVpqV6/Ixb3pAhVuyrMNSrfM4pyATeWr35ZyRwLDc9VUywx0ssxvpmHgiIqKYlp2iRlGW88RNNCSeAKDMxagmltnRSLFSKoYWjo2BsxCPOZLrL5xEoeKqnK6MZXYhkaOLQ1G889J6Q3bkJ54AoFTnfFTTXYjsMrtepUu1Tkf+FY2TUVIcmY3dKXSYeCIiopg3e6zjbDF6WUbJmMgeet/LVYKJiScaKRIlLZZLBQ7L10gToJJ4Okvh5yrxxP5OoTMrKc1hmV6lwuSEyB8tBABrdM4TTHdJ0ZF4ys6QMW+m4+g+w3ItJFe1qDRi8EhNREQxb9Y4x46X6drgnAgJIVBVawvocxbkqjGtePDJXHa6jDlTOHSdfKQowLVzwPHd9v8rSrgj8prBSZ8n9neiSDE9Nw55aYP72BRn6jA5hxcIQmV2crrDsgyNLmqSHoWqFODCkORZYxxmIic8AfnBWbmd4Y7A9ndquqmgrUME9Dkp+Jh4IiKimDc2VQNYB594pmsCdyLUZVSwdo8Jn3++A8X3t+CtneaAPXevoaOb1izUQZaj42SaIkBtFfDsg8ATGcDLc4B/l9r//0SGfXltVbgjdPQ/q4DvlvbdLRuSZNJChZVS8eBtvltq344oxCRJciirM0xPjZqkRywYq3dykUkTHSOb+2wvGHx/Zz7kKPodMiwffG6VnChh8a2B7XGmkoFp93ZizWNd+OXfzLh8PbAX+6LO1h8B25/zbZvtz9m3CyEmnoiIKOZJkgQYB5z4KECyZnijhaobbPjtmx0wPNGIzNU1+OC32vFyhRGKIvBJQ+CvcA9NPLHMjrz292eBn08HuiqBhCEn6Ak2+/KfT7evF0kkFSB29yWf8qVUTEd238PLpQIkSgO+5Hy31L6+xF4iFB6GaamD77PMLqScpWdS1FE2MnhHvvv7EW7aRBXyx/SnGFYt0kCrDWziLDVZxqc/qMGWAzb8909NKLq7GVPf34xvvNCB3YctsNlG2GgoWQVsfWZw8mnKFKCiov82ZUr/Y9ufs68vh/ZYySkWiIhoZDCpgURL3799vYIohMDhsxaU7+pG+W4jDp+1OF3vqw/GI14f+KuTc6dqkJkqo/GmAq0GWDEvyq7iUnj8/Vng5DP2Mz5Jcvxm1jtqTi3s6/0dwANfD3GQLnynsj+Z9N1S4DuVMMgTcFypBwCUDSy960s6LbRvRxQGyyYmIUEro9OsIFmvwqJi582uKXSibsTZ8WygWQ+kGwGTCtgbHY3Re0mShLJlGvzyLyYAjiOgAuXzD2nx0utmtHbY75+6aMOpi9149uVuZKRKKF2shWGZDqsWapCcGONjbZY+af//1mf676enA2vWOK7bm3Ra/nT/diES458CERFRD5MK6G1nY/TuukuXUUH5rm58+sctGPv+Gtz2iXp895V2l0mnnDQpKKOdAEClkrBmoT3ZdMdtOiTG8xBOHtRWAcd6TkQ9lWX2Pn7smcgqu/tOpT2Z1JN8MkgT+x7q6+/EpBNFCL1GxsoSeyPru6ckQ6vmfpp8pMjA7jz7vw/mAsYoG7GF/mSTLAOlS4MTf2qShM9/2HlSq+mmwJ/KTbj/a23IXNSEFZ+8iZ//uQuXrsVwSd7SJ+3JpKEjnwYKY9IJ4IgnIiIaMST7qCe91W3i6UaDDWt320c1bT5ohNGHdk33LtXhSo39xEanc56cGo5Zk9T441rBMjvyzh+/DmgAp/NbOyNLgEYAr30DePL1oIbmkwEjn+Z+/1PIfmoFcpCAfCmVSSeKOIbpqXjj2E2W2ZH/tucDhnOO/Z6ixLJ5GiTECUwsUqG2SUFtU+AnsTCZbLhjngo/+QNgdnO6ZbECm/dZsHmfBV/6cSemFKtgWKaFYakOt89UQ6WKshFx7jgb+dQrzEkngIknIiIaSYxqQBaA6D/RUBSBI+c8l9B54zdvGvGbN42BiNQlWQOULWaZHXmgKED9BsDXSh8BoG69fXs5gkZr9CSfZLEbW59pRMUjXwV+vgBIOQm0TgU+8BSwa5d93enTgZSUwdt3dABHj3p8Gclk6r+TmQnMnOm40tGj9ufzxe23A2qedo8EpVNToZYlrJ6SGu5QKFrtHQeY5ajr79RLp5WwZK4W6/aYMO2elnCHM0jMl+Q5Sz5FQNIJYOKJiIhGEpPKnngC0Nym4NM/bsHaPd2oboyeKeVvmaRB3igevsmDGxeAJAXO2+26IUv27aovAWPHByU0v/Ukn6aI3Sh5+TNAigRsNQI79gL/u7h/va1bgWXLBm977hyweDE8GZjStX3oQ8A//uG40qc+BRw65Fvsra1AcrJv21BUyknW4Ct35CAjkftp8lOnFvjrdKAuenuE3TVfjXV7TJ5XDKPekrw/lZugUQNLb9MgLzcGRkAtfRKwmPvL7hQLsOiJsCadACaeiIhoBNAl2bBoub0ErrVTQlWtEaeaTDj1dvQknHrNnx6cRp3B9oXZeThRl4mmLjNS9RqoZAllU9LCHVbsutkwvO1b6iIv8QQA36mE+FYyJLUEWAWww4daWKIg6jDZ8JU37P3RLDaBT/3tEgDg5/cVIE4bHSMpvnzbOHxwUjZajBak6tSQJAkLx6Z43jBCVLV3Icdoj9csrNBKanQGvuo9aISsYNH67QCALosN8Xfb/y2SlgKIC2NkvitbpsXXftYZ7jC81luSBwgkJcq4e5EWd8zTQKWSkJ4cHX+/g+iXAdbnALXFfqzULwt3REw8ERFR7DMJG3Zdbu9fIANz58Tj07emoXxXNzYdNKHLGB3T72o10Xk17sm7RwEA7v31BSzKT8bn7sgKc0QxLnWYP9+0nMDEEWjfLe1POqklYIk2upJPtbX2qa17lZUBo0aFLx4KGJNVwe/3OSZ8f3ZPHuKiZD6n1cWZAIDv7biM+YWpmJ4TXSNurnUbUddpBmQF0CiASUF3FB0yJRnYNfak4/L4hWGIZngS4qPoBw9gxkQVypbqYFimxdzpasieJuSIdJdetx8je4+Vl14HFi0Ka0hMPBER0Yik1Uj4L0MC/suQAKNJYOthI8p3GVG+24jr9f7NfKLVAKq+7xfBOWnRqKP7ZGh7fSNqOs1MPAXbmPFAuwwk2DzPaDeQIoBOFZBbFLzY/DWwkfinfwO88CCw/CRwy63ABwbM4jN9uuO2EycCO3d6fAnTkB5PKmcr/e53vvd4io+3///CBXupXq+dO5l4oohTfq4JalmKusRTH7Viv0V2pVdMkyQgLpjzoPRcK+z28zPWaoDlczUwLNOhbKkW+blO9/bRaftzwKU/95Sim+0XaPBne9N69ngiIiIKH71Owur5cVg9Pw6//G+BY+ctKN9tRPmubhw87f04/cfujcOPPptgf049Z54b6mqTGS0J7TjaFUW1D9FKloHsVUCXjzO9SQBy7o6sxuKA89nrXthjX56yG3jnh+5ntUtM9OpqrzB6MTnArFnexUwUhWraTThU0w6NSsJTiwrCHY5/1AqgEoAUHSOZY1Futgpdh4J3gcloNOLKDQXT7+uE1ctrhdnpEtYssSeaVizQICkhwo5zgdDTSPxS4RoUfbdndtodZuC/Pul8trsQisGfNhERkf8kScKsiVp8+9FkHHg5BzXlo/H7b6bh/Yv1iNe7Hznyf291o74l+vpGhcoLm+oAWcCU2I0dZ3wcMUK+e+RZwAL7KCZvKMK+/sd+HMyofOcs6dTrO5X25WK3fT0iGpa1F5oAAPuut6G+M4rKWPsIe9IJsCegKGY996rZY9JpxkQVnvpUPPb+JRU12zLwyg+ScN8KXUwnnbD8afylYNrgx4o+bJ/VrrfheBjE4E+ciIgocEZlqPBfhgS8+WwmmtblovJnGfjcvQkYm+04LLvbBLzw9+4wRBkd3rrQ2PfvF7fVhTGSEWJUPjDzafu/PSWfeh+f9W37dpHCXdKpF5NPRAFTfs6eeBIAKnuSUFFFrfRXumv8K5unyHflhoI/lTuOntZqgFULNXjp6URc2ZiOY/9JxzNfSsDtMzXR37fJnQFJJ+uS/8ZeccNxnaVPhjX5xMQTERGRl3pL8n71RBquvjEKR/6Qje99KhlzSjR963DUk3NGsw1XVM1997fVNbpZmwLmga8DU58GrIAQAmJIAkooAhACsAKY9m3g/ifCE6cz3iSdejH5RDRs3RYbNl3q30/3JqGiimbA8VcloIDldrFo4Gin7HQJj96jx79fSEbjrgys/79UPP7huNjq2+TOgKQTlj6JvbiONlcNzsKYfGKPJyIiIj/0luT1luVdqe7C+n1mrN1rxm/f6sYPPhsf7hAjyis7myF0/Vefm+PbcL3JgrEZGjdbUUA88HVg6YN4895voGzOOmjSB3wRa5eB0auBjz8HZI8LX4zOCJt3Sade36nsSVZxlAORP7ZcaUG3tT9xs/FSM0xWBTp1dIxVsCrK4PI6CTCr2FMw1ly5YcPRMzY8+agWpUvUWHxrfGyPZvJEsfUlnQCgQjnnfv3eHk9KaI+VTDwREREFwKh0GR8v1ePjpXrYbLzCOtQfj9QPHmetEnh+cx2ef2Bs2GIaUUbl46Gjr+PWfTuwK24ZoAVgBq78ehsKH1kS7uic+58Nvm/jbZKKiBwMHeHUYbZhe9VNrCxOD1NEvjljbXGYUNaitoYnGD8I4fzcwWQWQFyIg4lg40bJ2PPnhL77IzrpBADLvznobrk4j6F/sZ3CjISBC8LQYDw60tdERERRRKUa4SdBThztcizZeOtCQxgiGelkoFsArcL+/0ibvY6IwkIIgYrzjvvp8vPRUxZ9wdrisEyobTAr0ZF8OnrceeJp3wFezBqI51iuXRTNOA3Hv9kDzno+hRjPNoiIiCiotpxshznRcZr6y1ILzBb2wyIiCrejtR240e7YF6b8XJPLkTiRpllyMrmHDPyh6Xzog/HD2g3Oj4ebt7F8mLxTLpz/ru8W10MciSMmnoiIiCiofrHD+Qx2Qm/FyzujsHktEVGMcTWyqarViBP1nSGOxneb2q5DUTlP3Pyh+WyIo/FPhYvE06ZtImqSfxRe5cJ5f6d94gZsIrwX+ph4IiIioqDaXu+6VOOPh1luR0QUbu5msHNWghdpftlw0uVjh831IYzEPzW1AoePOk8u3bgBnDjFxBO51yqM2CGuAgCa0+PwdtmkvtuldAn7Ed5yOzYXJyIioqC52mRGS0K7y8ed9X6i4DmLSfgw/tp3/38KJ4UxGiKKBNXtJhyqcb2fLj/fiG8uyg9hRL7b3nXD5ZAKk2zFrvYaLEoaHdqgfOCqzK5X+ToF06dyzAi5tkFchBX236PTU7Lx/jc+MujxcuUcFqjCN3stE09EREQUNC9sqgNk11dqTYnd2HaqA8umJIYwqpGrEVn4Gz7cd//b0TFZVewoKACee27wfaIwq7zg/gLAvuttqO80IztBG6KIfFNlasNNybGP4EAvNpyI6MRT+Xr3iaeKDQqe+u8QBUNRyVV/p4GP/wh3higaR0w8ERERUdC8daERiHe/zi921DHxRCPD2LHAE0+EOwqiQdyV2QGAgD059fGZkZm4+VndccDDRGdbu8LfXNmV7m6BTVvdJ572HRSobxDIzuKMbuTIKhRUigtu1zmJBlwWLSiU0kIU1WAcr0dERERBYbYouKJq9rjetrroma6biCiWdFts2HTJ8366wkNyKpzKO654XKcJ3ag2R2aT9K07FXQ7mZBvICGAyo2cBZac24fraIaHXyIAFR5GRQUTE09EREQUFL/f0QSh8zwNdHN8G643WUIQERERDbTlSgu6rZ4TGhsuNcPkxXqhZlSsqLK1eV5RAl6oey/4AfmhfJ13P1dv16ORp1xxPpudw3pMPBEREVGs+eMRL2cSUgk8v7kuuMEQAEADM0ahpu8GszncIRFRGHkqs+vVYbZhe9XN4Abjh981nIFw00dwoDfaLwc5Gt8JIVDhobF4r41bFZhMnN2OHA1NKE07Xoetd77Sd5t23H6OtU1cQZswhSNEJp6IiIgoOHyZse6t8w1BjIR6zcUB1CC37xZ3/EC4QyKiMBFCoOK89/vp8vORVxb92k3vRnoAwCVbK8yKNYjR+O7oewLXvZzlvqMD2LaTiSca7KJoxmkM/ttMaTVi2Y4rfbeUVnvzfQsUbBQXwxEmE09EREQUeFtOtsOc6H6WoYEuq1pgtrCMgGLcrl2AWt1/27Ur3BHRCHa0tgM32r0f/VB+rglCRFbi4z2z9xcthCzwh6bwlRo542k2u6EqNnguX6eRxdfyuXCV2zHxRERERAH30k4vy+x6CJ0VL++M3Oa1RAFjs/XfiMLI1xFMVa1GnGyInAbdm9quwyz79nf0h+azQYrGPxU+Jp7K1ysRl/yj8PK1YXiluACbCP2FPiaeiIiIKOC21fleOvfHwyy3IyIKFW/7Ow13m2D5ZcNJn7c5bPbtokgw1dQKHDzsWxKp6ipw4hQTT2TXKozYLqp82qYRXdgPL+s7A0jtz0ZGo/dD5yNFXFxcuEMIqGj8DIaK9vcgSVK4Qxjxuj3NPUtRazj7hy2nO3GpwYKPLUiBVm3/O7VYHGdMUxRl0OscutKNd0514eulGX69Lo8z/a41WdCS0N53X9WphQwJloTBJR3x7Qno1hr7Zr470tUY0GNDtO+n/d3HWa3A00+r8dhjNuTnD/yConNY12Ix9/3MW1qAl15S42MfsyI/36+XHiQaj/ND/44DfZyRTKZBn4LJZIKIwp9TrPD3d7TVaMOPt9Thy4uzkJOk6Xku572DjEYTtLA/VtNmwYs7G/D0XTlI0qn8C9rh+f17D9UdZhyq6d9Pj0/Tw2wTuNo2eD89d3QiTjV2oaOnFPqts/X4ym05/gc8hL/x/7TmJCo7qvq/zQpArahgVQ0ZAaUAWqj6RkaZZCtuOfIG9pSsHkbUg/nzHrqFFQ9f2gdkzwbqEwEAdywR2OJk3QW3C+x5q+dOWjceq96DvxbOQpYcmPOOaD9WxgJ//w7KpTOwqvpHLy1T8rBTuuaw3i0iB3sEIHo+6jcsp3GLkuXXa/qLI56IiCimTB2jwxf/Wodp376El3fchNnq/srgoSvduO+l61j8o6uQeVQMiJ9vbQJkAVWnFh9JKkbtF+YgWyQ4rLcwNQOnPzoXSzEWkkkFc6IRO850hSHi2KJWA1VVEqZN0+Lxx9WoqnL/paKlBfj+99WYPFmHP/9Zhby8EAVKFKVS9CrsutyJkudO4xtrq1HX7nhxY6CaNgueKL+BKc+dxoGrnQFLOg3H+ostAOwJp1dKx+PIJ2ZhYrreYb2Hp2XhzGduwZO3j0GiRsaB6g7Ud7p/v6EwIy4VFpUVEEC6JR67R78PhSLFcUVFQkPxR7BcGgvY7PvCG2h3XC/E4iQ13rM0Ae+8hrz/245/bWjHP//ofN0ffxfYuL0LE369B3jnNbybXBWwpBNFt0rJ3ih8mZKHTdYHsU55ABo47l++oNyGI7ZP4AGlBJLo3y6U/BrxREREFKlyktW4rUCPg5eN+Pxf6vDsuibMznM8ma5rs+K+l65j3fH+fhWl0xNDGWrMOlLXiY8kF+N/PzEKiXr3X7DyMzVY/1gRqhrH4TP/uIZ/HL2JJZPjQxRp7CotVfDWWyq88ooar72mwsc+ZoPVyYCMf/xDxk++okNbm/0L2UMPWcGL30SelU5OxqFrXXhxZwN+u68RD81Oc7reU5XV+MvhFhh7LoKUljhJjoTB+ZZuvFI6Hh8qyYRadv9HnxGnwXcX5+GLt43Gzw/VYPf1Ntw7yb/RwYGyz1QP2ayGYpbRLGxYcnYjtFo4/XY7/vhbaFCMADSAWkG8h+NSKHR3A6NPF6Bx0nVcXXYcD+EkPmoucbruS5qDWDvqHDpH2XfiefsK0DgWyAzvR0BhZoUCE2zYZH0QizDO4/qTkIE/KGX4JubjR/JeVKEV+Qjd/sivxJNe73gCH22isSnbwCF4sfAZRNt7GDrcPtriBwYPpY32vwEgOj8D8s5wP9v335KKg5drAQDXmq241tzhsM7Fegsu1vdftS3I1OKWouSADTmPxr+xge99OJ/Bjq+UQB4yfMzZz1Uly32vM2msHtu+OgWKojhs661o308P/RkNJ/577gE++1lACMBqlfDKK85P+dZvUKMN/a97771q6PWBuS4ZbT9/ZwL+HnS6IXd1QAz8nKLVcD7fe2dm4nub7MeZbovAyweana43dPl9szID+nvl73M9v2qSwz7H2b5Xo9H0vcYYvR7PrkiCECJgx0p/4//BuHk40NaKd0z2XjU2SaAbzhuN25NOACBBbdHg/OwHoFYHbvyFP+9BpxN485OTUNxon9nSDAUvW533rPqH+tSg+3/40ESM0ej8/gyi/VgJRP/34kB8pxFC4N/S/Y4POLnIpNGq+15jJsbgb/hgQP+OvcGiAiIiijmGWcm+bzM7cEmnkc7fxNFwt6V+2dnAvHm+bZOYCCxdGpx4iGLNzDHxGJeq9WmbogwdSnIio0RqOMe7SDhWyrKMT+dM8nm7qfq0gCad/CVJEorUqZii9m3YUrYcj7ma0RHxGVB4Dfd3INS/Qzy7IyKimDN9nB55GRqftvEnWUUUyQwG39ZftcphQA4RuSBJEsqmpvq0jWFqGhMGAfTBzHyohG8/z4eyioIUjX8MOt/iWaMrhMzfIYpCTDwREVHMkSQJZT4kkhL1MpZOdmx+TRTNfE08lZUFJw6iWGWY6ryvkyu+JqrIPVmWMVmf6v0GAnhs9OSgxeOPMh8TTwZdcZAiIQouJp6IiCgm+TKCadW0JGjVPCRSbJk2DV7PUCdJQGlpcOMhijXLJyQjXuvdsSNZr8KS4qQgRzTy3J/hfeJmjDoBiWrfyiODbb4mFxmSd/19tFBhhTY/yBERBQfPsomIKCYtm5yIBJ13hznDbJbZUeyRJMdRT61IwTYs7bu19sxoc/vt9r5QROQ9vUbGionezQq1anIKL3AEwRdzSwAv5/IoTfM881eoqSQZpV6OelquHYdEObISZxSZDswdg9FXn+i7dc+9JdwhMfFERESxSa+VsXKa56vLkgSUzmDiiWLT0MTTCUzHcmzru53AdKfrUZDo9UBxcf8tCmdjosEM01K9W49ldkGRqtFhtDre84oC+NqYqcEPyA8GvXeJJ1/7QdHIZdGqUTs6qe8GbfgTlkw8ERFRzPKm3G5+cTyyksM/ww1RMCxbZp+tzhMmnkLkttuACxf6b7fdFu6IaJjWTEn1uI4sAatLPK9H/lmVOtbjOkmyFpPiU4MfjB9WaQug9uJreZme/Z0oejHxREREMat0ZhI8Tf7CMjuKZTodsHKl+3Xy84GpkTkQgCjijUrWYm6e+8kp5hckIjPRt5lWyXtfyfW8A1uYmBOCSPyTLOuwVOs+eTZDnYV8Fc9XKHox8URERDErJ0WDuUXuh+AbZnnXn4MoWnkazWQwwGOClohcM0xzP7udr7PfkW9mJKYjAe4Te58bFVmz2Q3labY6ltlRtGPiiYiIYpq7cruCTC2mjNGFMBqi0CstdZ9YYpkd0fCUeSi387YPFPnv9kTXsyOohYyydM/leOHkKbFUxsQT+SCzoRMP/u29vpuqoTHcITHxREREsc1d4skwOxkSh3pQjMvOBubNs/+7BKfwFt7Xd7s1/hSWLg1vfETRbuaYeIxLdd68tyhDh5KcuBBHNPJ8OmeSy8em6tMgy5H9tbdInYoSVYbTxzJFPOZqRoc4Iopmk8424vWP/qvvpj17IdwhMfFERESxbfo4PcalOx+C703zcaJY0DuqKR3NeB/K+26rbmuGjoP+QufiReDxx/tvFy+GOyIKAEmSUOZi1rqyqam8wBECH8zMhySc/5wfyoqO0UKlmkKny+8QhZD5O0RRjoknIiKKaZIkOW0gnqSXsXSy+4awRLHCVTndwoWhjWPEq6kBfvWr/ltNTbgjogBx1ceJ/Z1CQ5ZlpKicjzp7bHRk93fqVaZ13ufpLhEdiTMid5h4IiKimOdsZNOq6UnQqnkYpJFh2jT77HVDzZ8f+liIYtHyCcmI1w4+piTrVVhSnBSmiEaeIp3jz1qChES184RUpLldPRpo0Q9eaJaxBE523kRRhmfcREQU85ZNTkSCbvAhr4xldo5uMQCrvgQU3QaTVQl3ND771752ZP7PUWR97yi+9a+GcIcTUSQJKCtzXJ7GwRhEAaHXyFgxcfAsqasmp/ACRwhNi3fcoamj6OuuSpKB7UOSTPvHIgGBTZz9sPo47jy0HSueu4bWbmtAnzsUjrY2Y3FVBZa9fBrl+7rDHY7PrFaBD9RuxF2bDuALv22GECLwL6IoQJwEpEj2/yvhP6dThzsAIiKiYNNrZaycloQ33m0FYP8SXjqDiScHp3cAdz0GzL0PmT/ei5Xj02CYlI7SCenITozMK8ZbTnTgF1vrsb22CS0J7UCqAATws0vn8Zuv12B+RgY+szgT981LivjmssFmMABHfxnuKIhil2FaKt460dJ/30XfJwoOreS4j9fJqjBEMgxbC4F7zvbf31IALBjeU1qtAnv2AeWVCsorBc42TAb2/h54/BjGKxqsai9EmaYYa7TFyJLjh/diQXLxokB5BVC+VmDHzlRYfy8DH92ABwA835mLMvV4GNTjMV3Oisieam1twIYNQHk5UFkpoWnRROD1f2M3dmI9kmAwT4BBNQHL5QLopWGkaGqr8Pqr/8Ca+ovAk/0jAPPffATYdzfwyLPAqPCMoGPiiYiIRoSyWf2Jp/nF8chK5iHQQXcrcPA/wKKH0WG24T+nGvGfU42QJOD2sckom5gOw+QMTMuOD9uJndFsw++3teBP7zbgaGczzIlG+wMDKyxsEiBJ6EzsxGZTJzZvvgrV21qUaNPwwMxMfHFVBpITouzLSAAsWwb8LA5A9F0gJooKa6ak9v1bloDVJaku16XQiLrLDbvGARYZ0PSMUNlWAHzL96e5eVNg/SaB8kqBdRsFWloGPhoH/d9mwfhfB9EBC/5tPod/m89B6gRuV+fCoB0Pg6YYU1WZYTvWW60Ce/cB5RUC5WuBM2eGrPCTBYDhHASAfbZq7LNV41umHciTkmFQj4dBMx7LVHnQDSeJM0yXLtkTTeXlwI4dgMUy4MG3JyH5ahba8hpwHe34te0wfm07jARosEIuhEE1AaWq8RglJXr/gn9/Fjj2DN6vweBzIgBIUoCuSuDnlcDMp4EHvh6Ad+gbnnUTEdGIsGZmMiQJEAJOm41Tj33/AObcB+j6r3oKAey91oa919rw9DtXUJCqQ9mkDBgmpWNpQSp0QS4ludpgwQsb6/HWuUZckVsgdDZAAuDkfEzfEYdUaxxqE24OWm6LN+ME6nDiZB2+fVTGaEsK7i7MxFdXZWJavt7xiWKQTgfMmQNgR7gjIYpNo5K1mJuXgANXOzG/IBGZic5nVCVyqUMHHMwFFlwHzmQA1d6fr5y/YE80VawT2LlbwOqmiu7L2tn4BY6iE/3ZEAFgr7Uae63VeAo7UCCnoExbDIOmGEs144KexGltFVi/AahYK1C5Hmhudr3uTFUmCqTxeEtcGLT8qmjDLy2H8UuLPYmzUl0Ig3o81qiLkS0Hd0IZmw3YuxeoqLAnm06dcrOykPC0NB9fx9uDFnfCgjeVc3hTOQdYgLlSLgwq+2ioGVK260Tg358FTj4DqO2T6mDIapLcs0At7Ov9HSFPPjHxREREI0JOigZzi+Kx/2IXDLNSPG8wUg0Y9eTKlZsmvLS/Gi/tr0aiVhWUkjyHEjpZAHGet3usZBxuHReHj2y/6XoljYIaTQterWvBq388j4TOhBFTkrdwIZh4Igoiw7Q0HLjaydnsyH9bC+2Jp62FblezWgV27wUq1vWU0J3z7ukz0gW+9rAeVs0M/NTyrsv1riiteMl4GC8ZDyMRGqzUFsKgKUaptihgSZwLFwQq1vaW0MFtsmygp75hQ4FqHt6yXnC5TicseMN6Dm9Yz0ECMFeVax8NFcCSvNZWYOPG3hI6oKnJu+3uu8+Gz48bjz8hEyfQ6HK9A6IaB6zV+LZ1O8ZJySiTxzuW5NVWAcfsSSfIHt6TLAGKsK+/9MGQlt0x8URERCOGYVYy6tusmDJGF+5Q/PbHI7V4fs+N4Dz5p1+2/1/j/QigoSV588YkwTApw6uSvI1NNYj7uv2SpoCATVZg09ggtFb7VTnAcbi4B89fOg9ckgCV4nDFz5XO1HZstrVj87YrwDsSJKsKKpsKKiE7fYrfrJiMR5am+xZYhOAsdkTBZZiaim9XXodhWmq4Q6FotbUA+NZ2wHAGWHERK7USNDftD9lsQHs70NYOtLcL2ABgdc/NSy0yMO4yoOgtQK5323TAgv+Yz+E/5nNAOxB/ZjSSDxQh6UAR9FcyIQ05WqYUd6H1t/90eB4hgK4ue8+jtjbAZAIwp+fmg0f0AM4AKJABtefG2QLAfls19veU5Glqk5G8txjJe4uRcCQPssUxLZJfsRZV6bUOy83m/vg7OgDkAXi85+altzVAxnnAktEFeHk6cU209ZXkSd0aJB0oRPKuCXjl6A9w163wPpEmS4BGAK99A3jyde+DHiYmnoiIaMQom5WMujZrRDae9FZDpwXv1XUG58lzxg9rcyGAfdfbse96O55+5wryU3UwTMpA2cR0CDjO2qLoLTCqbfbRTBK8ThS5pRGAk9fymlpAqK2w/+dcS1f4Z4fxF2exIwquGbnxWFqchJIcL4ZoEjlzLcV+K7wJADgNwJ5h6pEEny/KDKQAMPq/OSADXVNq0DWlBrUf3w1cTQbeKQI2FwH7xgJmNXIkG+oUF7PLxvXccvwPYVjxA7CMakPTvUfQdO8RoENj76W1YTywqQhosI/mklQteE/UO26sAZDRc/OTtefmLxFnQdvSc2hbfAZLv73JjycAULfePttdiEZ5M/FEREQxr7bVgtM1RgghMDtfj61n2pESp8It+ZE5e8tQiiKw/VIbAOBMffR0hq4aUJKn0tugMWmgtqjRHWcEIABJ9I9siiJmq83zShFo+w6BpGMCtwxY1t0tvKlgJCIPLDYFuy63AwAemZuJbRft++zFhclQq6LjYseMnESYbQJCiL4LNLmJ0TNCOEOtR4JiL/e2CgVqScYoVXQc5wH7jLvLFtt/7udOFqG68HCYI/JSXhvw6FH7rUMD7MiHafvkcEflvUQLUHbeflMAHB4N/GsKuowAIrwl6ITqZmiTAZ+v3MmSveF49SVg7PAuOnqLiSciIop5G0+24ZFXrg5atmhCAnZ+fWKYIvKNIoA7ft3TpVJrtV9tixKyBMwfl2wvv5uUjrfLFXyz+mDPCCdhn3IoOr6T9dGqo3NGvLvLBG7tEtg1YFltLeC+iwgReaPNaMMdv3HsJtz6gzlIVkXHV66f3GX/AvqHI7VYMzEdWQmB6dkXKiX6NHQae0a9SoBJCOQk+jArWJip1RK2Vth/5j/pTsKTXWEOyBc2CXg3F9hcCGwuhjYuik5UelWlABuK7SOfdo9D/HdOhzsij7Jbh/lL0lLHxBMRERENJaIiSZOkU+Hu8WkwTMrA6gnpyEzoPwF9Yl8bkCfZh3kLyX51Eb0JqACW3JFTh6VbMEnd/+X4zSl5YYyGiCLRm6ebIAF4ZPaocIfiHwn2Em4bDyZB1a61l6htLrI3Qm/pHz8rzWgPX1zeUgAcHGNPNq0fD5zNQLSdgNR3DqNeEQDShrm9D5h4IiIiihYS7AkbkwwICb/7UFFAp+u+99577f/Imwncfr9P2xal6e39nCalY0l+CrRqx54BNpvA3l0SCqZPwIP3Oj8FaTNacbC6Hec7O3BT3wFofeunNLErCwlqFY6g3v7Fw1tWCYnGBBTFJWLuWPfToK+eGT1X0IfqluJxDpP67ou46DrJjnrTpgGbNg2+TxRBjBYFmy62QKOSojfx1Ns3cDj9/sLsHu0ETFC57jpdWytw8LDAoXcFTpyyt+rxVna2wMceEjiVch2V4476FFdOdwrmtBRjTnMxStrGQpOuAu6H/TaAFBcPEXefy+fp6hY4ehQ4eAh497C9YbovPvGoDYkZFvxq+kZYZe/L3+OsWsxqLsScxvG4pbkIKZZ4YDHstyFUmqWwaZ13k1IU4Nx54NBB4OBB4OpVp6u5NH++goULFZQXH8TZdO8njJEEMPHmGMxpmIDbGiYgry0DSusvICXZIHma0W7QGxBApwrILfIt8GFg4omIiChayAJ9V+NsMlaNT8e4tAD23zjbU4S14CHPoQwpoSvJcj+DHQDsO6SgpVGFzt3peOqVOCQlul/fbFHw6o4W/OFgA450NMOU6Lm/lU4tIz9JjyMdsI+ockPdpcUUXTo+PCsTn1+VjsS46CyhoyiSmgrcdVe4oyByaevlm+iyKNhwoQVmq+L0IkJkGzByNorz6hNU6W4TT8gDPpsH4B6gtVVg4zsC5ZUClRsEmprcP3c9gNKPWLA9/2DPqGPXZEhYoB4Dg7YYZZpilKRnQBrrzQ9WB8BNOwMN8NASAEvsF6X27wfK1wqUrwVOnvT87Pp8G/J+dAhWm+ekU6GUAoNmPMrU47FUlQdtugrwqros3/VDKgBTem6PAFeuABUVQHk5sG2bfeY7d6reFfjd5xrxc53jrHlDJUKLVXIRylTjUaoaj+z4hMGzEZ5fBXRVenyeQSQAOXeHrLE4wMQTERFRlBD9I3iCeSW3aA4wdqrTh9yV0HmjfIP9BNFsBjZuteEDBvenIVqNjM/cmYHP3GmfOmbH6U78fEs9ttY0oTmuDVA5/gyOq+pxolED6J08oQCSOhOxICsdn1uSBcNtiZBDeNJFRBTpys/asxbtJhu2X2nFivFRNhXmwISTL6Neo1hKioQP3SfhQ/f1jCzeD1SsU1BeKXDKRZuir627hiNT65w+lixpsUpTCIN2PFZrCpEpB7dBu0olYcECYMECCT96Brh8WaBirT0RtW07YLE4bvP7v9qQ+r1D9jL9ISQA81VjYFCPh0E9HlPkzKDPZlxQAHz+8/Zbe7t9YGt5ObB2LdDgZHK/6moJnz1/EOZpzhNn+VIKDPIEGFQTsFTOg05yc770yLPAzyvtk7V4M+pJEfYp9T72Y6/eW6Aw8URERBQNBp5MB/NK7tJHB93tLaEzTErHYhcldN4q39h/glW+wXPiaaglJQlYUlIIoBDVzRa8sKEBb5xtxCW0QOh7JiZWCYh4M6D0xGmWMcaaitLiDHzl7kyUjHWWkSIiIiEEKs41990vP9sUhYmnAckmyf6eRhKVSsKiBcCiBSr8+PvApcsCFevso6G27xQ9SRyBI3fsG7RdkZwKg7YYBu14LFaPhVYK3wjgwkIJX/g88IXPS2hrE9i4CahYK7B2HdDYaF/H/MBx1MudfdskQYtV6kIY1ONRqi4OerLMnaQk4L777DebDThwoH801PHjPSuNacOuie/1bSMBuF0e05dsmipleZ8sG5UPzHwaOPmMPankLvmk9Pw9zPq2fbsQYuKJiIgoGkhDTp6DcSW3aA6QOxm4+h6e/a/3o8zLEjpvXLqi4NTZ/pjXbrbBZhNQ+TnNeG66Bj/5cC5+gty+krzf7avFu6gDZIHirgx8cs5oltANkSaaMV/s7bsv31wAICN8ARFRxDhW24lrraa++xXnmvFiqQj6aJGAGnhtRALahZPhMiNIUaGELz4m4YuPAW1tAhs2C/zq3AVsm1mH1LO5+O9phbgvfjImq9Ij8nNOTpbwwQ8AH/yA1FeS958NZrz4yD5Yq1LwSHYhHs6YjCWqcWFNlrmiUgHz59tvzzzTX5L33KjduGZSYcb1YnyhqAjv009GtpTg/ws98HXg7wCOPQNohH1Q/MAElNJTgmqFPel0/xPDel/+YOKJiIgoGgxNNMkCivCt8bZHXTeB5+8Fulvx5B8+H9Cnrtg4eDh5YxOw/10FC+YO/0SxtyRvRq4a15tGISUBsNiANbcxoTLUFHEKa23v67t/+eIOYIGTrqoUHJ2dwMWL/feLi4GEYXzZIAqg3jK7XpdbjDjV0IWp2dHxO1pv7XYYDdysOG8OPRIlJ9tL8sZ26pErPomL5jjcogCp6ugYCdxbkpd/uxkPGe9D3NV02BokTMuJjvgBe0ne448LTDZOwOSOxbjQoMHtxQJ6KQDv4YGvA0sfBF77BlC3HkgacI7YqbL3dPr4c0D2uOG/lh+YeCIiIopwJ2q7HEvrJGDj2VZ8an6c0238Uns+cM81RPlGxz4GFRttAUk89ZpdqMPswgA2WycKtCNHgMUDEn07dwKLFoUvHqIBKs42OywrP9MUNYmnI92NDsuYeHI0W5UNAMi5PcyB+GmMnIQMWQMUhDsS/0iShEXSWCAJyLw9wKPXR+UDT75un3av+hLQUgek5dhnrwtzT0t21CQiIopwL+yodtrT6c9HnHSsjEBt7QLb9ziOznKWjCIiotCrbTfjwA3HOe3LnSSjItVRo2PiqVNYUWV2fF9EMU2WgbHjgekL7f+PgIlUwh8BERERubXxQovT5e9Wd4Q4Ev9s2GJzOivNidMCV64GuFyQiIh8tvZck9Ple6+3oaHTw9zwEaDVZsI5U6vTxypaq0IcDRENxcQTERFRBLvZZUWti5P+TqsNJ2u7QhyR74b2dxqofANHPRERhZurkU1CAOvOO7/4EUk2tF2HDc7LlsrbmHgiCjcmnoiIiCLYS7trnJbZAQCknjK8CGazCVS+4ybxxHI7IqKwMloUbLroOrk0tOl4JHKXXNraUY12W+SP2iKKZUw8ERERRbC/v+fYs2Kg9eci+0r0vkMKGt18Z9m2W0F7R4CbaxIRkde2Xr6JLovrsucNF1pgtkZuWbRVKKhsu+rycbNQsLn9RggjIqKhmHgiIiKKUIqi4HSj+1K6Gx0mtHVbQxSR7zyV0lkswMatHPVERBQunkY0tZts2H7Fef+kSLC3sw7NNpPbdVhuRxReTDwRERFFqP8cb3bZs6KPBPxyT21oAvJDxSbPSSX2eSIiCg8hBCrOeZ65rsJF8/FIUOFFUmlt21UogqNricKFiSciIqII9X/767xa7/VjDUGOxD+XqxScPOP5RH/tZhtsNn4hICIKtWO1nbjW6n60EGBvPi4iNHFT7sWsdfXWbhzoqg9BNETkDBNPREREEWrvtTav1jvV0AVFibz+G96OZGpsAva/G3nxExHFOm8bh19uMeJUQ+TNonrR1IrTppterctyO6LwYeKJiIgoAp2o6UKnxbvEjQ0Cb5yIvCbjvsxYx3I7IqLQKz/rucyub90zkVdu581oJ3/WJaLAYuKJiIgoAv1sRzUgeb/+b/dHVp+ntnaB7Xu8H8XkTS8oGr5qKRfPy1/uu1mzc8MdEhGFSW27GQdvtHu9vi9JqlDxZRTTcWMzqszev18iChx1uAMgIiIiRxvO+zaCac/VyDqZ3rjVBovF+/VPnBa4clVBQR6viQXTZakIX1P9rO/+3eN8yG7S8GVkAB/84OD7RGGy1seG4Xuvt6Gx04LMBE2QIvJNq82EHR2+XXSpaK3C41nTghQREbnCszsiIqIIc7PLipoOz81eB+qwWHGyNnL6b/hTOsdyO4p5JSXAP//ZfyspCXdENIL5OoJJCKDyfOSMetrQdh1W+NYfkH2eiMLDrxFPRqMx0HGEXDS+h7i4uHCHEFDR9hkM/fl3d3eHKZLAkCRe5abINZz9w6kaEzISVMhJ7j/EWZwMvVEUZdDr2BSBPRe7sHhCgt+vPZC/78FoUfDVtdcGl9kJOC+7G7hcAp6qvIxf3ZOPjPjhD2gezmdgswlUbh48+5FWC5jNcLvsrXUWfOqj/iefeJy0s1qBffslLFo4dAYqDYb+IpnMJgx8mdNngNRUYPQov156kFg4zkTbuQr5xt/Pt9Vow8UmE24ZE9//XCari9cwQYv+xw5e78TkLD2SdCq/Xtvx+f081lgVbLo4eGStViXBPGSG0aHL3jxVj/snp/j1mk7j8DP+U8ab+FvT+UHL1JBgxeD4JWDQkq0d1Xir/iJWJY/x63WdiYV9HVGwccQTERHFFItNoOQ7F/CN/9Shrs35F4GBbIrA3w624pZnLuE/R8JfrqbXyPjLsZ7yBwFMz4zHpo9PcrruC3fn4fbcpL6z6vJzN5GqD8yXmeHYfxho7LkovnQBsPEfEspWOq739Jcl/PElCZMn2O/v2GfvDUXDo1YDT31bhZWlauzY6d0XotNngI89qsKyuzRISw1ufETRLlkn4/6/XMIH/3wRh294N9L04PVO3PvaRXzs71eQqA3/V7BtV9rQZbGPFlpVnILtj0zBkrwkh/V+fGcefldWiKI0HQBg86VWmG3hn4W0S7HijXb76KWx6gT8etQCPJRU7LBekqTB7oIylCaMBQCYhYJft5wOaaxExMQTERHFmBljdMhIVOHFLc39Cah2x1E0NgV9CadH/1iNc3VmlE5LDEPEgymKYr9ia5MAi4yceC1MFufJGKNVICdBA1hkwCZBQKDTHP5ytcrNoi/htP7vMhbPd578kFXA/e+XcGiTPQFVXAC8szO0scaq0rsV7NwlY9UajdsE1OkzEj72qAq3ztPgn/9WYdlSAb0+xMESRRlJkrB6UjLWnmnDwl+fxQf/fBFHXCSgDvUknJb85hzWn2vD6kkpETFCZt2Fm30JpzcfmIS5Y5wf/9SyhIdnZOHYZ2bgd2WFyErQYGcE9BQ0CitUkgRYJTQaTTjT3YYOxfFikwBwtrsVF7o7AIsEKIBN4gUOolBjc3EiIoopkiShdFoifrvzJrotAi9ucd6PYv/lbuy/3F8ym6iTsWRCvNN1Q6nNpOCXa/LxuTeuAQA2X2jH5gttgNZx3W+uuwF7IYEE2CT89O4xaDUqSA5z4uC/HpLwg296/8VKpZJw//uBD5QB12uCGNgIUrpa4Ls/sP/bnoCyX2ucoxzAf2z9za3ve/hfOCjP7bu/ZnX4RzIQRYPSySn4/UH76NS1Z9qw9kyb0/XW/OHi4PuTk4Memze+PG8UCtO8P1j0JqAenJaJ6naz5w2CLF+bhI8nTsTLLedhhIIXG08BknD4dttus+AT13f33JOQKDT4afackMdLNNL5lXjSR+GlsKH9eKL9PURj/ENruKPxPQwUjfHzdyj8IuEqZzQY7md7zy3p+O3Omz5ts3JqElKS/E88Beo4M0oPfGpBAr61oQZNXZ5LBXtpVBI+tSAXyfrAXFMazmdQ4qQyUCWbAAwejaVRq6HXD54dadJ4v1826o/1gdzHzblNYNw4gWvXBi/XwoyxuDHofi9JAu55nwZ6vf/7KR5nPDh2DPjsZ/vv/+Y3wMyZgX0N8tpwPt+7p2gQp7mCbov3ydoknQorJmdCq/a/6CRQ+7mS0Y7bybJjqbZGo3Z4jYnxgeun52/8E/R63Gcrwsst5z2vPMCqlHGYmTq8JnY81oTfwPcQ7fED0fkefP1Ow1I7IiKKOcsnJyHexx4ahpmBa5Y6XCpZQmlJqk/bLCtODljSiaKfJEkwrPFtm3lzgexsJseDqr0d2Lev/9Ye/pIl8k+cRoUVE307bqyalDKspBMNdkdyLuJl3457htS8IEVDRO5wz0dERDFHr5GxYopjk1RXJAkonR4Z5Q+9yqak+bS+wcf1KfYZ1viWRCorZdKJyBe+7nfLSrifDiS9rMZdPsxOJwEoTRkXvICIyCUmnoiIKCb5MoJpXmE8spM1nlcMoVWTUqGWvU8E+Jqooti3bCmQkOD9+r6OkCIa6db4kEiSJKCUiaeA82UE0+0J2cjSBK5MkIi8x8QTERHFpDUzvB/BFElldr1S4tRYWuzde5g6Kg6FGdHXH4CCS6+XsOJO79bNywOmTw9uPESxZnSyFreN9S67Oz8/CVmJkXWBIxasSfE+8WRIzQ9iJETkDhNPREQUk0alaDC30Ltm4ZGYeAK8L+NgmR25YijzbtScYQ0nPyDyB/fT4TVaG485CVlercv+TkThw8QTERHFLG8SSvkZWkwbE5mjhbwtnzNMSQ9yJBSt1qy2l/h44ms/KCKyM0z1bv/LxFPweJNQKtAmYmocPwOicGHiiYiIYlaZF+V2hpnJETvSozhTj5Ic9/0oMhPUmJefGKKIKNrk5EiYO8f9OgkJwNIloYmHKNbMyo3H2BSt23UK0nSY4mFfTv4r86LczpCaH7HHeqKRgIknIiKKWTPHxWFcuvueGpFaZtfL01XyNSVpUPnQhJxGHk+jmVbeZe8HRUS+kyTJ4+hUw9Q0Jj2CaFZ8BsZq3PfaYpkdUXgx8URERDFLkiSUzXCdWErUyVg6MbJHC3lKPHE2O/KkrNT94972gSIi58o8zFbHMrvgkiQJZW4SS4myBkuSRocwIiIaioknIiKKaYaZrsvtVk5Ngk4T2YfC+QVJSItTO31MLUtYOSmyR2xR+M2YAYwb5/wxSQJK7w5tPESx5o4JyYhzcSxJ1MlYWuT9LKvkH3cjmlaljIVOVoUwGiIaKrLPtomIiIZp+eQkxGudH+4ivcwOAFSyhFWTU50+dsuYBCTrnSeliHpJkgTDGvu/FcjoRHzfbXKJjJwcjngiGo44jQorJjo/nqyamAqtml+5gm15ci40sotjPcvsiMKOe0EiIoppeo2MFVOSHJZLElA6PTquQq+Z7LxMY1GR4/sicqa3z9NeeQESNe19t4IPLwxzZESxwVU5HcvsQiNOVmOq3vnPujTFxZBPIgoZJp6IiCjmORvZdHtRArKT3TcejxSurqQvLGDiibyzbKl99rqhekdCUYjMmwc0NfXf5s0Ld0QUIGuc9HmSJKDUQ/8nCpzZ8RkOy5JVWmRpOKMgUbgx8URERDFvzQzHkU1lTpYNh6IIvLa/BVXN5oA+LwCkuCinG+NhCu+RyGgENrwDHD0e7kj8IwRw/CTwxtuBfV69XsKKOwcvy8sDpk8P7OuQBxoNkJ7ef9NER/KbPBudrMVtYwdnd+fnJyErMbCfceW5mzh0oxOKEAF93lgw00niKV2tC0MkRDQUE09ERBTzRqVoMLcwftCyQPd3kmUJJ2uNmPz9c5jz3Hk8/dZ17LvUAUXhl4Ngq60TePk1G+5/FBg7Bfj4Y0BBFLX0MJkE1m9U8OUnJUyaJWPuEhUs1sD3XRo6e51hDTjFO1EADS2rC0aZXbxGxuLfn0bx8+/hsbev4K1TTeg02wL+OtEoVe14MYaJJ6LIwI6kREQ0IpTNSMGBy10AgPwMLaaN0Qf8Nb6yPBO/292MEzUmnKipxQ/X1yI7SY0101JQNj0VK0uSkajnzDrDJYTAeycEytcrKF+v4MC7vck9exLl208IpEZ43/j6eoG16wXK1ynY+I5AZyfQez1w8kSBD7w/8AnLNavtpT+9AyXKSpl0Igokw9R0fGfj9b77ZUEos1takISFeYnYfbUDrx5pxKtHGqFXy7ijOAWGknSUTU7H2BQmW3olyPy6SxQJ+JdIREQjgmFmMv7fWzV9/w7GSI9RyRp8amE6fr6tqW9ZfbsVr+5twqt7m6BVS1g+MQmG6akom56C/Ax+OfCW0Siwdac90VSxQcG1687XS00ReOyToY3NG0IIHD8BlK9TUF4pcOCQgKtKmW8+IaAKQn4yJ0eCYUYVph/+E7Ra4M69AEoesdfcEdGwzcqNx9gULa63mlGQpsPUUYHvLSRJEr61LBerXzvXt8xoVVB5tgWVZ1vwOVzErNEJMJSkwzA5HbeOSYQsM8lMROHFxBMREY0IM8fFYVy6BteaLQEvsxuod9RTt8Uxq2C2Cmw41YYNp9rw+b8D08fEwTA9BYbpqZhbkMAvB0PU1gms3WBPNm3apqCry/M2X/g0Ima0k8kksHW7QPk6gYp1Cq5e87xNsEY79brvlmt45ND/A4wAvgvgruVMPIVSXR2wbl3//dWrgZyc8MVDASVJEsqmpOE3e+tgmJoWtFLWgaOenDla04mjNZ34/pZrGJWkQdlk+0iou8anIkHLUbdEFHpMPBER0YggSRLKZqTglT2NOFjVgSPXOwP6/Barte/fRZlanKwxedzm+I1uHL/RzZK8HkIIHDsuULFhaAmd97qNwE9/Yf+3RmN1v7KfPvwBFfLGOf9CWVcnULlhaAmd9/LGAS+8ZH9ujTrwfVv0bUrAn5N8cP488Oij/fd37mTiKcYYpqThN/tq0WW14tntLoZmDoPFYgEAZHvZtLy23YLfH6zD7w/WsSSPiMKGiSciIhoxymYk46/vNuJb5dXhDsWBu5K8nKTYnfnK2xI6b/30FwMTQsFpuDvvVrkv8eRLCZ03Nr4jYeM7ve8h8EmihTaBLw1c8N57zlecOBHIzh68zGIB9u93+/ySaUDCVacDkpOBGTMcVzx9GmhqclzuzuzZQMLgWcPQ0gKcPOnb84weDRQXOy4/eBBSW9vgZTo3X8wlCVi40HH5tWtAVZXzbVz9vClmLB+fjASdhJffrQt3KA48leQREQULE09ERDRi3FGShPQEFVqNkT0D0NCSvKmjY/Oq9Guv2/C9H3tXQhdJzGb7LHS+lNBFrMcfd778T38CHn548LKbN4HFi90+ncNv6sKFwK5djis+/TTwxhveRml34gQwdergZQcOAHff7dvzfOELwM9/7rj8Qx+CzlXCyBmtFjA5Gdn45z8DTz3lW0wUM+I0KqyYmIo3T/uYWA2DoSV5KjVnYSWi4GDiiYiIRgy9RkZqvAqI/O8Dg5xrMGJBQTqWjk/EXZOTkZ5oP3xPyYkPc2Te+7+fafHiM4CAwI49AhvesWHz1uhLOgFAfQNw7ZrAkWNi2CO0Qs2IwM/mSMOg5+cRi6aNisObp8MdhW9q2y2YMSoeD0zNQtnkDEzOtjdGT9ZFz9fFD6UWYWXSWAD22TslCdBKI69snSgSRc+ehIiIKCCio4F3TrIaZdNSYZiRgrsmJyNBF90nz2mpvT93CQ/eBzx4n8pepnayv6fT/mGWqYXK2DESHn5QxjefAOrrBdZttPd02rBZoMN5r9+IcUyegauZs5DXeDTcodDs2cDMmeGOgoIgWE3FA02vlnHX+BQYSjKwZlIaxkR5z6d4WYN4OXZL04miGRNPREQ0oqwsScaE7MCfXNts/eV7h652o6rZ4vNzzBwbB8N0e7LptrzYn+VOkiTMmCZhxjQZT30NqKsXqNxo7/W0YYvic2NuADCsFtD2fO9QqYKTrMvK7P93draERx6W8MjDMkwmge07BSrWC5RXKrjiQ9VWr9kzBYoK7dm34MSvxYZF+/CpW44DRqPr1SZOdFyWmmpvhu2GaUDpma63x5MzzzwDfPWrXsQ7QEGB47K5cz3G5GD0aOfL//lPmIb0eNJ56vHkzMMPeyxJhF5vTzpp+CU5Fk3Licf90zM9r+gHm2I/1lxvNWO/H5Nk5CZre2a5S8OdxamI5yx3RBQCkhCery2OHTsWN27c6LvvxSYRxzjk5EofhUObB76HaI8fiL73MPTqVbT/HUTbzx+I/t8hwPH3aMyYMbh+PcpqdYIglo4znSYFJT84i4YOz32kdGoJd0zqbSKeinHp2mCH6dbA389wfwYmk8C2XQLl620oX6fgqpd/Jr/8qcAneloThXMfIYTAyVNAeaW9F9S+A96N5lqySGDDW/am4tG4j+NxJvx4nHEtlo41D//rIv59ssWrbW7J7WkiXpKBW3ITwj4iK5KONf6I9v1EtMcP8FgTCXw91nDEExERUQD9dk+z26RTrJXQBYtOJ2HVnRJW3SnjF88JnDglUL7ec0nes/8LPHy/ve9zOEmShGlTgWlTVfjmE0BDg0DlBs8leTt2SdixC1iyKLTxElH0OFnfjf+4STrFWgkdEUU/Jp6IiIgCpNOk4IUtDQ7LZ42NQ9kIKqELNEmSMH2qhOlT7SV59Q0Cazc4L8m7el3Cn//RP+opUmRleV+S98xPZCxZpIQnUCKKeD/aUY2huffeEjrD5HTcUZzCEjoiiihMPBEREQVI72inSCuhizXZWRIefViFRx9WDSrJe7vShms3pL5RT5E6cl2nk7DyLgkr7wJe/IncV5L3dqUN+w/2j3paeVe4IyWiSDNwtNMto+NhmJIRMSV0RESuMPFEREQUAIoicLPLhn98Ig93TExERkp8uEMaEQaW5P3kezacPCNQuRE4dBS4Y0m4o/NsYEneV75gQUMjsGGThOMnJSaeiMjBoRud+EVZPu6ekIIxydqo7A1DRCMPE09EREQBIMsSvrsmJ9xhjGiSBEwrsd+iVVYm8PCHo6/ZLhGFxiOzgzNbHhFRMMnhDoCIiIiIiIiIiGITE09ERERERERERBQUTDwREREREREREVFQMPFERERERERERERBwcQTEREREREREREFBRNPREREREREREQUFEw8ERERERERERFRUDDxREREREREREREQcHEExERERERERERBQUTT0REREREREREFBRMPBERERERERERUVAw8UREREREREREREHBxBMREREREREREQUFE09ERERERERERBQUan82kiQp0HEQRR3+HRAFD/++wo+fARHFOu7nwo+fAdHIwBFPREREREREREQUFJIQQnhaSavVwmKxhCIeIqIRRaPRwGw2hzuMsONxhogoOHic6cdjDRFRcHg61ng14slmswUsICIi6sf9qx1/DkREwcH9az/+LIiIgsPT/tWrHk96vR5GoxEqlQrZ2dkBCYyIaCSrr6+HzWaDXq8PdygRgccZIqLA4nHGEY81RESB5e2xxqtSOyIiIiIiIiIiIl+xuTgREREREREREQUFE09ERERERERERBQUTDwREREREREREVFQMPFERERERERERERBwcQTEREREREREREFBRNPREREREREREQUFEw8ERERERERERFRUPx/t/XTBm8POEcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxTUlEQVR4nOzdd3gTV9YG8HfUbbl3G4Nteu+B0EIN1U7fQCqQ7Cb7ZdM3vZG+KZuym4SUTUJ67zYQAoTq0HsJHVPce1e/3x/GwrJkW7IlS7Lf3/P4AV3d0RxJI2nmzD13JCGEABERERERERERkZvJvB0AERERERERERF1TEw8ERERERERERGRRzDxREREREREREREHsHEExEREREREREReQQTT0RERERERERE5BFMPBERERERERERkUcw8URERERERERERB7BxBMREREREREREXkEE09EREREREREROQRTDwRERE1IysrC5Ik4aOPPnJ52bVr10KSJKxdu9btcbWHjz76CJIkISsry+Vln3zySUiS1GK/SZMmYeDAga2IrmmSJOHJJ5+03m7L8/AGZ187Tzh69CimT5+O0NBQSJKEn376qV1ev7Z8ztpDcnIyFixY4O0wiIiI/JLC2wEQERERkW+YP38+Tp48ieeeew5hYWEYOXIkVq1a5e2wiIiIyI8x8URERETkQx577DE89NBD7b7e2tpabNq0CY8++ihuv/12a/sNN9yAefPmQa1Wt3tMvuLw4cOQyVgoQERE1BpMPBERERH5EIVCAYWi/XfRCgsLAQBhYWE27XK5HHK5vN3j8SWdOelGRETUVjx1Q0REPq1+vpsjR47g+uuvR2hoKKKjo/H4449DCIEzZ87g0ksvRUhICOLi4vDKK6/YPUZBQQFuvvlmxMbGQqPRYMiQIfj444/t+pWVlWHBggUIDQ1FWFgY5s+fj7KyModxHTp0CFdddRUiIiKg0WgwcuRI/PLLLy0+n5qaGhw6dAhFRUUt9q2f/2jv3r2YOHEiAgMD0bNnT3z33XcAgHXr1mH06NEICAhAnz59HJZE7dq1C7NmzUJISAiCgoIwdepUbN682a7fgQMHMGXKFAQEBCAxMRHPPvssLBaLw7iWL1+OCRMmQKvVIjg4GHPmzMGBAwdafD7NOXjwICZPnozAwEB06dIFL730ks39BoMBTzzxBEaMGIHQ0FBotVpMmDABa9ascXld9957LyIjIyGEsLbdcccdkCQJ//3vf61t+fn5kCQJb7/9ttMxCCGQnJyMSy+91G69Op0OoaGhuPXWW5uNr/EcTwMHDsTkyZPt+lksFnTp0gVXXXWVtc3RNrx79+4W50968sknkZSUBAC4//77IUkSkpOTATieIys5ORmpqanYuHEjRo0aBY1Gg+7du+OTTz6xedySkhLcd999GDRoEIKCghASEoJZs2Zhz549zb4GTZEkqcm/+vj27t2LBQsWoHv37tBoNIiLi8NNN92E4uJiu+csSRKOHTuGBQsWICwsDKGhoVi4cCFqamps+nKOJyIiotZj4omIiPzC3LlzYbFY8MILL2D06NF49tln8frrr+Piiy9Gly5d8OKLL6Jnz5647777sH79eutytbW1mDRpEj799FNcd911ePnllxEaGooFCxbgP//5j7WfEAKXXnopPv30U1x//fV49tlncfbsWcyfP98ulgMHDuDCCy/En3/+iYceegivvPIKtFotLrvsMvz444/NPo+tW7eiX79+ePPNN5163qWlpUhNTcXo0aPx0ksvQa1WY968efj6668xb948zJ49Gy+88AKqq6tx1VVXobKy0ibOCRMmYM+ePXjggQfw+OOP4+TJk5g0aRK2bNli7ZeXl4fJkydj9+7deOihh3D33Xfjk08+sXl96n366aeYM2cOgoKC8OKLL+Lxxx/HwYMHMX78+FZPPl1aWoqZM2diyJAheOWVV9C3b188+OCDWL58ubVPRUUF3n//fUyaNAkvvvginnzySRQWFmLGjBnYvXu3S+ubMGECSkpKbJJlGzZsgEwmw4YNG2zaAOCiiy5yOgZJknD99ddj+fLlKCkpsVlveno6KioqcP3117sU79y5c7F+/Xrk5eXZtG/cuBE5OTmYN28eANe24cauuOIKvPbaawCAa665Bp9++ilef/31Zpc5duwYrrrqKlx88cV45ZVXEB4ejgULFti8ridOnMBPP/2E1NRUvPrqq7j//vuxb98+TJw4ETk5OS69DkDd9tf4LykpCQEBAQgKCgIArFy5EidOnMDChQvxxhtvYN68efjqq68we/Zsm2RjvauvvhqVlZX417/+hauvvhofffQRnnrqKZdjIyIioiYIIiIiH7Zo0SIBQNxyyy3WNpPJJBITE4UkSeKFF16wtpeWloqAgAAxf/58a9vrr78uAIjPPvvM2mYwGMSYMWNEUFCQqKioEEII8dNPPwkA4qWXXrJZz4QJEwQAsWTJEmv71KlTxaBBg4ROp7O2WSwWMXbsWNGrVy9r25o1awQAsWbNGru2RYsWtfjcJ06cKACIL774wtp26NAhAUDIZDKxefNma/uKFSvs4rzsssuESqUSx48ft7bl5OSI4OBgcdFFF1nb7r77bgFAbNmyxdpWUFAgQkNDBQBx8uRJIYQQlZWVIiwsTPztb3+ziTMvL0+EhobatNe/b84+x08++cTaptfrRVxcnLjyyiutbSaTSej1eptlS0tLRWxsrLjpppts2hu/vkuWLLF5HgUFBQKAWLx4sRBCiLKyMiGTycRf/vIXERsba13uzjvvFBEREcJisbgUw+HDhwUA8fbbb9v0veSSS0RycrL18ZrS+LWrf7w33njDpt9tt90mgoKCRE1NjRDCtW3YkZMnTwoA4uWXX7Zpb/z6CSFEUlKSACDWr19vbSsoKBBqtVr885//tLbpdDphNpvt1qNWq8XTTz9tt+6WYmzspZdestt+6l+Phr788ku7eOtf58bbz+WXXy4iIyNt2pKSkmy+V4iIiMh5HPFERER+4a9//av1/3K5HCNHjoQQAjfffLO1PSwsDH369MGJEyesbcuWLUNcXByuueYaa5tSqcSdd96JqqoqrFu3ztpPoVDg//7v/2zWc8cdd9jEUVJSgt9//906SqKoqAhFRUUoLi7GjBkzcPToUWRnZzf5PCZNmgQhBJ588kmnnndQUJB1RAsA9OnTB2FhYejXrx9Gjx5tba//f/1zN5vN+O2333DZZZehe/fu1n7x8fG49tprsXHjRlRUVFif+4UXXohRo0ZZ+0VHR+O6666ziWXlypUoKyvDNddcY33eRUVFkMvlGD16dKvK3uqfY8NRQCqVCqNGjbJ5H+VyOVQqFYC6ErOSkhKYTCaMHDkSO3fudGl90dHR6Nu3r3VkXGZmJuRyOe6//37k5+fj6NGjAOpGPI0fP95a9uZsDL1798bo0aPx+eefW9tKSkqwfPlyXHfddTZldM7o3bs3hg4diq+//traZjab8d133yEtLQ0BAQEAnN+G3aV///6YMGGC9XZ0dLTd50+tVlsn5TabzSguLkZQUBD69Onj8vvW2Jo1a/Dwww/jjjvuwA033GBtr389gLryxqKiIlx44YUA4HCdf//7321uT5gwAcXFxdbPBxEREbUNE09EROQXunXrZnM7NDQUGo0GUVFRdu2lpaXW26dOnUKvXr3srkjVr18/6/31/8bHx1vLder16dPH5vaxY8cghMDjjz+O6Ohom79FixYBqJtTyl0SExPtEhWhoaHo2rWrXRsA63MvLCxETU2NXfxA3XO3WCw4c+YMgPOvUWONl61PyEyZMsXuuf/222+tft6OnmN4eLjN+wgAH3/8MQYPHgyNRoPIyEhER0dj6dKlKC8vd3mdEyZMsJbSbdiwASNHjsTIkSMRERGBDRs2oKKiAnv27LFJrLgSw4033ojMzEzr9vXtt9/CaDRaEyQGgwF5eXk2f2azucl4586di8zMTGtSc+3atSgoKMDcuXOtfZzdht2l8WcSsH/fLBYLXnvtNfTq1QtqtRpRUVGIjo7G3r17W/W+1Tt79izmzp2LcePG4dVXX7W5r6SkBHfddRdiY2MREBCA6OhopKSkAIDDdTZ+HuHh4QBgt/0RERFR6/CqdkRE5BccXVWrqSttCQfzuLhL/YTb9913H2bMmOGwT8+ePd22vqaeozef+6effoq4uDi7+1t7JTZnnstnn32GBQsW4LLLLsP999+PmJgYyOVy/Otf/8Lx48ddXuf48ePxv//9DydOnMCGDRswYcIESJKE8ePHY8OGDUhISIDFYrFJPLkSw7x583DPPffg888/xyOPPILPPvsMI0eOtCaB/vjjD7sJw0+ePGmd0LuxuXPn4uGHH8a3336Lu+++G9988w1CQ0Mxc+ZMl5+7uzjzvj3//PN4/PHHcdNNN+GZZ55BREQEZDIZ7r777iYnr2+JwWDAVVddBbVajW+++cZuu7v66qvxxx9/4P7778fQoUMRFBQEi8WCmTNnOlynNz5LREREnQkTT0RE1KElJSVh7969sFgsNqOeDh06ZL2//t/Vq1ejqqrKZsTI4cOHbR6vvmxNqVRi2rRpng6/1aKjoxEYGGgXP1D33GUymXXUVFJSknU0U0ONl+3RowcAICYmpt2f+3fffYfu3bvjhx9+sBkdVT/KzFX1CaWVK1di27ZteOihhwDUTST+9ttvIyEhAVqtFiNGjGhVDBEREZgzZw4+//xzXHfddcjMzLSZrHvIkCFYuXKlzTKOknn1UlJSMGrUKHz99de4/fbb8cMPP+Cyyy6DWq229nF2G25P3333HSZPnowPPvjApr2srMxutKKz7rzzTuzevRvr169HbGyszX2lpaVYvXo1nnrqKTzxxBPWdkfbNxEREbUPltoREVGHNnv2bOTl5dnMj2MymfDGG28gKCgIEydOtPYzmUx4++23rf3MZjPeeOMNm8eLiYnBpEmT8O677yI3N9dufYWFhc3GU1NTg0OHDqGoqKgtT6tFcrkc06dPx88//2xztbn8/Hx88cUXGD9+PEJCQgDUPffNmzdj69at1n6FhYU2cxQBwIwZMxASEoLnn38eRqPRbp0tPffTp09bE36teT6A7SiULVu2YNOmTa16vJSUFHTp0gWvvfYajEYjxo0bB6AuIXX8+HF89913uPDCC21G07gaww033ICDBw/i/vvvh1wut5mrKzw8HNOmTbP502g0zcY8d+5cbN68GR9++CGKiopsyuwA57dhoK7k7NChQ20qd3OGXC63Gzn07bffNjsPWj1HMS5ZsgTvvvsu3nrrLZs5yRquD7AfrdTSFfqIiIjIczjiiYiIOrRbbrkF7777LhYsWIAdO3YgOTkZ3333nXUESnBwMAAgLS0N48aNw0MPPYSsrCz0798fP/zwg8MD87feegvjx4/HoEGD8Le//Q3du3dHfn4+Nm3ahLNnz2LPnj1NxrN161ZMnjwZixYtcnqC8dZ69tlnsXLlSowfPx633XYbFAoF3n33Xej1erz00kvWfg888AA+/fRTzJw5E3fddRe0Wi3ee+8962ixeiEhIXj77bdxww03YPjw4Zg3bx6io6Nx+vRpLF26FOPGjcObb77ZZDw33ngj1q1b16oSptTUVPzwww+4/PLLMWfOHJw8eRLvvPMO+vfvj6qqKpcfD6hLMn311VcYNGiQdV6f4cOHQ6vV4siRI7j22mvbFMOcOXMQGRmJb7/9FrNmzUJMTEyr4qx39dVX47777sN9992HiIgIu1FnrmzDP/74IxYuXIglS5ZgwYIFbYqrOampqXj66aexcOFCjB07Fvv27cPnn39uM+F9UxrHWFRUhNtuuw39+/eHWq3GZ599ZtP/8ssvR0hICC666CK89NJLMBqN6NKlC3777TecPHnSU0+RiIiIWsDEExERdWgBAQFYu3YtHnroIXz88ceoqKhAnz597A64ZTIZfvnlF9x999347LPPIEkSLrnkErzyyisYNmyYzWP2798f27dvx1NPPYWPPvoIxcXFiImJwbBhw2zKe7xtwIAB2LBhAx5++GH861//gsViwejRo/HZZ5/ZXBEvPj4ea9aswR133IEXXngBkZGR+Pvf/46EhASbqwYCwLXXXouEhAS88MILePnll6HX69GlSxdMmDABCxcu9NhzWbBgAfLy8vDuu+9ixYoV6N+/Pz777DN8++23WLt2basesz7xNH78eGubQqHAmDFjsGrVKruJxV2NQaVSYe7cuVi8eLHNVddaKzExEWPHjkVmZib++te/QqlU2tzvyjbcXh555BFUV1fjiy++wNdff43hw4dj6dKl1tJGV1RVVUGn0+HgwYMOX8+TJ09Cq9Xiiy++wB133IG33noLQghMnz4dy5cvR0JCgjueEhEREblIEpw5kYiIiMgj7rnnHnzwwQfIy8tDYGCgU8s8/vjj+Ne//gWTyeSWGLKyspCSkuLx0U0dWdeuXTFjxgy8//773g6FiIjI73COJyIiIiIP0Ol0+Oyzz3DllVc6nXQCgNzc3FZPvE3uZzQaUVxczPeEiIiolVhqR0RERORGBQUFWLVqFb777jsUFxfjrrvucmq5EydO4Mcff8S3336L1NRUD0dJzlixYgW++uor1NbWYurUqd4Oh4iIyC8x8URERETkRgcPHsR1112HmJgY/Pe//8XQoUOdWm79+vV46qmnMGnSJLz66queDZKc8sILL+DYsWN47rnncPHFF3s7HCIiIr/EOZ6IiIiIiIiIiMgjOMcTERERERERERF5BBNPRERERERERETkEUw8ERGRX3vyySchSZK3wyDyCR999BEkSUJWVpZN+8svv4zu3btDLpc7PedUS+vYvn17mx6HiIiIOgcmnoiIqNNavHgxPvroI2+HAQDIycnBk08+id27d7fpcRYsWABJkqx/arUavXv3xhNPPAGdTmfXv2FfhUKBiIgIjBgxAnfddRcOHjxo1z8rK8tmmYZ/F154obWfwWDAf/7zHwwbNgwhISEICwvDgAEDcMstt+DQoUNteo4NrV27tsl4JEnCc88957Z1AUB5eTkeeOAB9OrVCwEBAUhKSsLNN9+M06dPu3U97vTbb7/hgQcewLhx47BkyRI8//zz7br+N998E/369YNarUaXLl1w7733orq62qZPTk4Orr/+evTp0wfBwcEICwvDqFGj8PHHH6PxdKTJyclNvt+9evWy6dtUvxdeeMGm348//ogZM2YgISEBarUaiYmJuOqqq7B//37PvChERESdCK9qR0REndbixYsRFRWFBQsWeDsU5OTk4KmnnkJycnKbR6So1Wq8//77AOoSJT///DOeeeYZHD9+HJ9//rld/4svvhg33ngjhBAoLy/Hnj178PHHH2Px4sV48cUXce+999otc80112D27Nk2bdHR0db/X3nllVi+fDmuueYa/O1vf4PRaMShQ4eQkZGBsWPHom/fvm16jvX69euHTz/91K79008/xW+//Ybp06e7ZT0AYLFYcPHFF+PgwYO47bbb0Lt3bxw7dgyLFy/GihUr8OeffyI4ONht63OX33//HTKZDB988AFUKlW7rvvBBx/ESy+9hKuuusqazHzjjTdw4MABrFixwtqvqKgIZ8+exVVXXYVu3brBaDRi5cqVWLBgAQ4fPmyTLHv99ddRVVVls55Tp07hsccec/h+12/fDQ0bNszm9r59+xAeHo677roLUVFRyMvLw4cffohRo0Zh06ZNGDJkiDteDiIios5JEBER+bFFixaJ1v6cDRgwQEycONG9AbXStm3bBACxZMmSNj3O/PnzhVartWmzWCziwgsvFJIkiby8PJv7AIh//OMfdo9TVFQkxowZIwCIpUuXWttPnjwpAIiXX365yRi2bt0qAIjnnnvO7j6TySSKiopcfVou69mzp+jVq5dbHzMzM1MAEG+++aZN+4cffigAiB9++MGt62uNJUuWCADi5MmT1raFCxfabRPuWMe2bdua7ZeTkyMUCoW44YYbbNrfeOMNAUD88ssvLa4rNTVVaLVaYTKZmu33zDPPCAAiMzPTpr2p7dsZeXl5QqFQiFtvvbVVyxMREVEdltoREZHf2LhxIy644AJoNBr06NED7777rsN+S5YswZQpUxATEwO1Wo3+/fvj7bfftumTnJyMAwcOYN26ddbym0mTJgEASkpKcN9992HQoEEICgpCSEgIZs2ahT179tit64033sCAAQMQGBiI8PBwjBw5El988YVNn+zsbNx0002IjY2FWq3GgAED8OGHH1rvX7t2LS644AIAwMKFC63x1JcB1tTU4NChQygqKmrV6yZJEsaPHw8hBE6cOOHUMpGRkfjqq6+gUChcLlc7fvw4AGDcuHF298nlckRGRjr1ON9++y369+8PjUaDgQMH4scff8SCBQuQnJzc7HJbt27FsWPHcN111zm1nkmTJmHgwIE4ePAgJk+ejMDAQHTp0gUvvfSSTb+KigoAQGxsrE17fHw8ACAgIKDFdf3888+YM2eOtaSrR48eeOaZZ2A2m52KtaEDBw5gypQpCAgIQGJiIp599llYLBabPpIkYcmSJaiurrbbrlauXInx48cjLCwMQUFB6NOnDx555BGn16/X63HvvfciOjoaWq0Wl19+OQoLC633b9q0CSaTCfPmzbNZrv72V1991eI6kpOTUVNTA4PB0Gy/L774AikpKRg7dqzD+2trax2WmjYnJiYGgYGBKCsrc2k5IiIissVSOyIi8gv79u3D9OnTER0djSeffBImkwmLFi2ySwIAwNtvv40BAwbgkksugUKhQHp6Om677TZYLBb84x//AFBXrnPHHXcgKCgIjz76KIDzCYUTJ07gp59+wl/+8hekpKQgPz8f7777LiZOnIiDBw8iISEBAPC///0Pd955p7WMSKfTYe/evdiyZQuuvfZaAEB+fj4uvPBCSJKE22+/HdHR0Vi+fDluvvlmVFRU4O6770a/fv3w9NNP44knnsAtt9yCCRMmAID1IHrr1q2YPHkyFi1ahCeffLJVr1/9ZNPh4eFOL9OtWzdMnDgRa9asQUVFBUJCQqz31dTU2CXCQkNDoVQqkZSUBAD4/PPPMW7cOCgUru9uLF26FHPnzsWgQYPwr3/9C6Wlpbj55pvRpUuXFpetLyd0NvEEAKWlpZg5cyauuOIKXH311fjuu+/w4IMPYtCgQZg1axYAYOTIkdBqtXj88ccRERGBPn364NixY3jggQdwwQUXYNq0aS2u56OPPkJQUBDuvfdeBAUF4ffff8cTTzyBiooKvPzyy07Hm5eXh8mTJ8NkMuGhhx6CVqvFe++9Z5f8+vTTT/Hee+9h69at1vLLsWPH4sCBA0hNTcXgwYPx9NNPQ61W49ixY8jMzHQ6hjvuuAPh4eFYtGgRsrKy8Prrr+P222/H119/DaAuMQXYJ+QCAwMBADt27LB7zNraWlRXV6Oqqgrr1q3DkiVLMGbMmGaTert27cKff/5p/Rw39tFHH2Hx4sUQQqBfv3547LHHrJ/PxsrKymA0GpGXl4fXX38dFRUVmDp1assvBhERETXN20OuiIiInHHZZZcJjUYjTp06ZW07ePCgkMvldqV2NTU1dsvPmDFDdO/e3aatqVI7nU4nzGazTdvJkyeFWq0WTz/9tLXt0ksvFQMGDGg27ptvvlnEx8fblZfNmzdPhIaGWmNtrtRuzZo1AoBYtGhRs+sS4nypXWFhoSgsLBTHjh0T//73v4UkSWLgwIHCYrHY9EcLpUh33XWXACD27NkjhDhfaufob82aNUKIutK+iRMnCgAiNjZWXHPNNeKtt96yee9aMmjQIJGYmCgqKyutbWvXrhUARFJSUpPLmUwmERsbK0aNGuX0uupj/eSTT6xter1exMXFiSuvvNKmb0ZGhoiPj7d53jNmzLCJszmOts1bb71VBAYGCp1O53TMd999twAgtmzZYm0rKCgQoaGhdqV2jsovX3vtNQFAFBYWOr3OevWldtOmTbPZnu655x4hl8tFWVmZEEKIHTt2CADimWeesVn+119/FQBEUFCQ3WP/61//snltp06dKk6fPt1sPP/85z8FAHHw4EG7+8aOHStef/118fPPP4u3335bDBw4UAAQixcvdvhYffr0sa47KChIPPbYY3bfBUREROQaltoREZHPM5vNWLFiBS677DJ069bN2t6vXz/MmDHDrn/D0RHl5eUoKirCxIkTceLECZSXl7e4PrVaDZlMZl13cXGxtRRp586d1n5hYWE4e/Ystm3b5vBxhBD4/vvvkZaWBiEEioqKrH8zZsxAeXm5zeM1ZdKkSRBCOD3aqbq6GtHR0YiOjkbPnj1x3333Ydy4cfj5558hSZJTj1EvKCgIAFBZWWnTfsstt2DlypU2f/UTMEuShBUrVuDZZ59FeHg4vvzyS/zjH/9AUlIS5s6d22LpUk5ODvbt24cbb7zRun4AmDhxIgYNGtTssqtXr0Z+fr5Lo53qn+f1119vva1SqTBq1Ci70sTo6GgMGzYMzz33HH766Sc8+eST2LBhAxYuXOjUehpum5WVlSgqKsKECROs5ZTOWrZsGS688EKMGjXKJjZnn3dYWBiAutK/xuV5zrrllltstqcJEybAbDbj1KlTAIDhw4dj9OjRePHFF7FkyRJkZWVh+fLluPXWW6FUKlFbW2v3mNdccw1WrlyJL774wjoqyVG/ehaLBV999RWGDRuGfv362d2fmZmJu+66C5dccgn+/ve/Y8eOHRg4cCAeeeQRh4+7ZMkS/Prrr1i8eDH69euH2traVpVBEhER0XkstSMiIp9XWFiI2tpau0ulA0CfPn2wbNkym7bMzEwsWrQImzZtQk1Njc195eXlCA0NbXZ9FosF//nPf7B48WKcPHnS5sCz4fxEDz74IFatWoVRo0ahZ8+emD59Oq699lrr3EaFhYUoKyvDe++9h/fee8/hugoKCpp/8q2g0WiQnp4OADh79ixeeuklFBQUODUHUWP1Vw9rfLW2Xr16NVtaplar8eijj+LRRx9Fbm4u1q1bh//85z/45ptvoFQq8dlnn8FgMKCkpMRmuejoaGviomfPnnaP27Nnz2aTdZ9//jnkcjnmzp1r015bW2uXdIyLi7P+PzEx0S4pFx4ejr1791pvnzhxApMnT8Ynn3yCK6+8EgBw6aWXIjk5GQsWLMDy5csxa9YsVFVV2Vx1TS6XW6/4d+DAATz22GP4/fffrXNG1XMmKVrv1KlTGD16tF17nz59nFp+7ty5eP/99/HXv/4VDz30EKZOnYorrrgCV111lTXpmpeXZ7NMaGiozTbUMAkMnC/jLC0ttbZ9//33mDt3Lm666SYAda/Fvffei3Xr1uHw4cN2cSUlJVlLNa+55hrccsstmDZtGg4fPuxw+123bh2ys7Nxzz33OPW8VSoVbr/9dmsSavz48Tb3jxkzxvr/efPmWZNZ//73v516fCIiIrLHEU9ERNShHD9+HFOnTkVRURFeffVVLF26FCtXrrQemDozuuP555/Hvffei4suugifffYZVqxYgZUrV2LAgAE2y/fr1w+HDx/GV199hfHjx+P777/H+PHjsWjRIpt1XX/99Xajg+r/HE3A3VZyuRzTpk3DtGnTsGDBAqxevRp5eXm49dZbXX6s/fv3Qy6XIyUlpdXxxMfHY968eVi/fj169eqFb775BiaTCX/88Qfi4+Nt/s6cOdPq9dTW1uLHH3/EtGnT7Ob++vrrr+3W1ZBcLnf4mEII6/8/+ugj6HQ6pKam2vS55JJLAMA6P9K///1vm/XUTxxfVlaGiRMnYs+ePXj66aeRnp6OlStX4sUXXwTg3LbpLgEBAVi/fj1WrVqFG264AXv37sXcuXNx8cUXWxOtjV+v+rmb6jnzmnXp0gUbN27EkSNHsH79emsi9MyZM+jdu3eLcV511VU4c+YM1q9f7/D+zz//HDKZDNdcc42zTx1du3YFALukZ2Ph4eGYMmWKdc4wIiIiah2OeCIiIp8XHR2NgIAAHD161O6+xqMm0tPTodfr8csvv9iMyFizZo3dsk2VnX333XeYPHkyPvjgA5v2srIyREVF2bRptVrMnTsXc+fOhcFgwBVXXIHnnnsODz/8MKKjoxEcHAyz2dzixNOulsC5Ij4+Hvfccw+eeuopbN68GRdeeKFTy50+fRrr1q3DmDFj7EY8tYZSqcTgwYNx9OhRFBUVYciQIVi5cqVNn7i4OKhUKgDAsWPH7B7DUVu9X375BZWVlQ7LzWbMmGG3Llfl5+dDCGFXemU0GgEAJpMJAHDjjTfajKSpH6mzdu1aFBcX44cffsBFF11kvf/kyZMux5KUlOTU56E5MpkMU6dOxdSpU/Hqq6/i+eefx6OPPoo1a9Zg2rRpdq/XgAEDXI6zXq9evawjFg8ePIjc3FwsWLCgxeXqy+EcjQbT6/X4/vvvMWnSJOuE/86oL5+sH4XW0vpdGYlGRERE9ph4IiIinyeXyzFjxgz89NNPOH36tDWh9Oeff2LFihV2fQHbURfl5eVYsmSJ3eNqtVqH8w3J5XKb5QHg22+/RXZ2tk35V3FxsU3pnUqlQv/+/bF8+XIYjUZoNBpceeWV+OKLL7B//34MHDjQ5jELCwutB79arRYAHMZTU1OD06dPIyoqyi7x5aw77rgDL7/8Ml544QX89NNPLfYvKSnBNddcA7PZ3OTVwppy9OhRqNVqu1KssrIybNq0CeHh4YiOjraOzGosISEBAwcOxCeffIKHH37YOs/TunXrsG/fPmspVmNffPEFAgMDcfnll9vd52iUk6t69+4NIQS++eYbm6TJl19+CQAYNmwYAKB79+7o3r273fKOtk2DwYDFixe7HMvs2bPx+uuvY+vWrdZ5ngoLC50enVNSUoKIiAibtqFDhwI4fzU6Z67S5yqLxYIHHngAgYGB+Pvf/25tb/hZaOiDDz6AJEkYPny43X3Lli1DWVlZk/NaOXrMyspKvP7664iKisKIESOs7QUFBYiJibHpm5WVhdWrV2PkyJEuPUciIiKyxcQTERH5haeeegq//vorJkyYgNtuuw0mkwlvvPEGBgwYYDMPz/Tp06FSqZCWloZbb70VVVVV+N///oeYmBjk5ubaPOaIESPw9ttv49lnn0XPnj0RExODKVOmIDU1FU8//TQWLlyIsWPHYt++ffj888/tkgnTp09HXFwcxo0bh9jYWPz555948803MWfOHOsIoRdeeAFr1qzB6NGj8be//Q39+/dHSUkJdu7ciVWrVlnLfXr06IGwsDC88847CA4OhlarxejRo5GSkoKtW7di8uTJWLRokdMTjDcWGRmJhQsXYvHixfjzzz9tJmI+cuQIPvvsMwghUFFRgT179uDbb79FVVUVXn31VcycOdOlde3ZswfXXnstZs2ahQkTJiAiIgLZ2dn4+OOPkZOTg9dff73JMq16zz//PC699FKMGzcOCxcuRGlpKd58800MHDjQZv6keiUlJVi+fDmuvPJKmwnJ3WnBggX497//jVtvvRW7du3CgAEDsHPnTrz//vsYMGCAw4RXQ2PHjkV4eDjmz5+PO++8E5Ik4dNPP7VLcjrjgQcewKeffoqZM2firrvuglarxXvvvYekpCSbz0NTnn76aaxfvx5z5sxBUlISCgoKsHjxYiQmJtrNe9QWd911F3Q6HYYOHQqj0YgvvvgCW7duxccff2yTmHzuueeQmZmJmTNnolu3bigpKcH333+Pbdu24Y477nA439fnn38OtVptnW+rsbfeegs//fQT0tLS0K1bN+Tm5uLDDz/E6dOn8emnn1pH1gHAoEGDMHXqVAwdOhTh4eE4evQoPvjgAxiNRrzwwgtuez2IiIg6Je9cTI+IiMh169atEyNGjBAqlUp0795dvPPOO2LRokWi8c/ZL7/8IgYPHiw0Go1ITk4WL774ovjwww/tLjOfl5cn5syZI4KDgwUAMXHiRCGEEDqdTvzzn/8U8fHxIiAgQIwbN05s2rRJTJw40dpHCCHeffddcdFFF4nIyEihVqtFjx49xP333y/Ky8tt4snPzxf/+Mc/RNeuXYVSqRRxcXFi6tSp4r333rPp9/PPP4v+/fsLhUIhAIglS5YIIYRYs2aNACAWLVrU4ms0f/58odVqHd53/PhxIZfLxfz5861taHDpeplMJsLCwsSwYcPEXXfdJQ4cOGD3GCdPnhQAxMsvv9xkDPn5+eKFF14QEydOFPHx8UKhUIjw8HAxZcoU8d1337X4HOp99dVXom/fvkKtVouBAweKX375RVx55ZWib9++dn3feecdAUD88ssvTj9+vYkTJ4oBAwbYtc+fP18kJSXZtJ09e1bcdNNNIiUlRahUKhEfHy/+9re/icLCQqfWlZmZKS688EIREBAgEhISxAMPPCBWrFghAIg1a9a4FPfevXvFxIkThUajEV26dBHPPPOM+OCDD+y2c0fbxOrVq8Wll14qEhIShEqlEgkJCeKaa64RR44caXG9S5YsEQDEtm3bbNrrt9OGz2PJkiViyJAhQqvViuDgYDF16lTx+++/2z3mb7/9JlJTU0VCQoJQKpUiODhYjBs3TixZskRYLBa7/uXl5UKj0YgrrriiyTh/++03cfHFF4u4uDihVCpFWFiYmD59uli9erVd30WLFomRI0eK8PBwoVAoREJCgpg3b57Yu3dvi68HERERNU8SohWn2YiIiIi8YOjQoYiOjm7zfE1ERERE1D54VTsiIiLyOUaj0TpZd721a9diz549mDRpkneCIiIiIiKXccQTERER+ZysrCxMmzYN119/PRISEnDo0CG88847CA0Nxf79+20mde9InLmKWkREhM38RERERES+jJOLExERkc8JDw/HiBEj8P7776OwsBBarRZz5szBCy+80GGTTgDw9ddfY+HChc32WbNmDUd9ERERkd/giCciIiIiH5Gbm4sDBw4022fEiBEIDw9vp4iIiIiI2oaJJyIiIiIiIiIi8ghOLk5ERERERERERB7BxBMREREREREREXkEE09EREREREREROQRTDwREREREREREZFHMPFEREREREREREQewcQTERERERERERF5BBNPRERERERERETkEUw8ERERERERERGRRzDxREREREREREREHsHEExEREREREREReQQTT0RERERERERE5BFMPBERERERERERkUcw8URERERERERERB7BxBMREREREREREXkEE09EREREREREROQRTDwREREREREREZFHMPFEREREREREREQewcQTERERERERERF5BBNPRERERERERETkEUw8ERERERERERGRRzDxREREREREREREHsHEExEREREREREReQQTT0RERERERERE5BFMPBERERERERERkUcw8URERERERERERB7BxBMREREREREREXkEE09EREREREREROQRTDwREREREREREZFHMPFEREREREREREQeoXCmk1arhU6ng1wuR0xMjKdjIiLq8AoKCmA2m6HRaFBdXe3tcLyOvzNERO7F3xl7/K0hInIvZ39rJCGEaOnB5HI5LBaLWwMkIiJAJpPBbDZ7Owyv4+8MEZFn8HfmPP7WEBF5Rku/NU6V2snlcrcFRERE5/H7tQ5fByIiz+D363l8LYiIPKOl71enEk8cikpE5Bn8fq3D14GIyDP4/XoeXwsiIs9o6fvVqTmeGnOiOs/n6HQ6m9sajcZLkbRew+fgj/FLkmRz29+2I25D3tcR3oPGnwNyzN++H4COt33yPWh//h4/wN8ZX8DfGefxe847+D3hXf4eP+D/25C/HxcDrv/W8Kp2RERERERERETkEUw8ERERERERERGRRzDxREREREREREREHsHEExEREREREREReQQTT0RERERERERE5BFMPBERERERERERkUcw8URERERERERERB7BxBMREREREREREXkEE09EREREREREROQRTDwREREREREREZFHMPFEREREREREREQewcQTERERERERERF5BBNPRERERERERETkEUw8ERERERERERGRR3SqxFNuuRFLNpVia1aNt0NpFZ1eYMUmIz7K0Hs7FCIicqDGbEJGUQ6+yDvl7VCIvGJZ2Vm8nL8fT+fvRoXZ4O1wiDoci0Vg63EdXs4ohcksvB1Oq5wpNuG9VRXYe8o/j2lq9BZkbK/BF+urvR1KqwghsPO4AS9/XwGdwT+3odwSMz78tQbbDvN3xl8ovB2AJwkhsPtMLdL3luHn3aXYeUaH2GAFDj7Ry9uhOS2vyIylG/VI36DDyi161OiAH14K8nZYRER0ztnaGmQUnsUveWewprQAOosFK4dd5O2wiNqNzmLC2spcpJedxk+lJ5FjqoVkkbCpqgSp4V2RFt4NvQNCvR0mkd+q0pmxcm810ndUYunOShRUmPHPOWFQyCVvh+YUi0Vg+3Ed0rdXIn17FfZk6ZEcrcDefyd6OzSnnS0yImNbNdK3VeP3PTXQGQVWPhXj7bCcVqOzYPXuWqRvqUbG1irkllhwy0wtNCr/2IaEENh1zID0TTXI2FyD7UcMiAuX4eD7/vMedHYdLvFUa7Dg98OVSN9bhoy95cguM9rcf+/USASqfHeglxACe46YkL5Bh4wNemw9YBv/8L5yzBzT4d42IiK/YRECOytKkF6QjfSCs9hVUWpz/6SwaIwPi/ZSdETtI99Yg6XlZ5BedgorK7JRbTFZ75MACDOwtiIXaytycd+preitCUVaeFekhnfD+JBYKCTf3Rcj8gWniwxI31GJjJ1V+H1/NQym8yNTtGoJd80M815wTqjWWbByTzUydlRi6Y4q5JWZbe5/6LIwKBW+m/SwWAR2HNcjY1sV0rdWY9cJ29FZkwepMb6fxkvROSe7yISlW6uRvqUaq3bX2oxuUiqA+64M9mJ0LavVW7B6lw4Zm+uSTdlFttvQP68KQoDad7chstUhMhi55UZk7C1Dxr5yrDxYgVqj4yGDscEK/HVcRDtH1zKdXuD3bXpkbNQjY4MOZ/ItTfZ97KYASBI/YERE7anGbMKqojykF5zF0sIc5Oprm+z7aEq/doyMqH0IIbC3tgTpZaeQUX4GW6sL0FSBRmpwV/xamgujOL8/c0RXjldyy/FK7n6EyVWYFZaItIhumBmWiHCFun2eBJEPs1gEth2vRfqOSqTvqMTe002Xof19WiiiQ+TtGJ1zzhQZkbG9CunbK/H7/hromzgmS45W4NrxvlfBUa2zYPWeGqRvq0LGtmrklZqb7PvIVb43itNiEdh1XI/0LdVI31KDncea3oYWTtOia5TvpQJyi03I2FyD9M21WLWzFrV6x9tQXLgMN88MbOfoqC18b2tzQsMSuvS95dh+yrk5m3xptJNtCZ0BNbqW62s52omIqP3Ul9BlFGRjdXE+dJamd0DrcbQTdSQNS+gyyk/jtKGqxWVkkPBM3DDEyQLxv6KjDvuUmQ34svgEviw+ATkkTAiJY0kedUo2JXS7KlFQ3vLvjC+NdmpYQpexowq7Tzo3Z5MvjXayKaHbW+PUnEe+NNqpYQnd0m3VyClueRvypdFOjkronMHRTv7Hb7IYLZXQOeNgrh73fJcLAFDIPXOW4I4pMegda/9F1FIJnTM0Kgn3vl53ll0h98xkfGMGq3DtzACPPDYRkS94MXsPzhrsT1gIIVBo0OFkbTVO1lahyNDge9bJARlHUYoL9i0HAEgyz+wQJWoC0SPQQzuM91xj/e8dJzd5Zh0eZDKZbG4rFH6zmwPAN+KvsZiQZahElqECZ4zVMKLpUdiOqCUZrj+1HtUWMyBreVkzgLVV2VhblY37zmxGmEKNZHUQUtTBiFcFwtHHSCXJ8UrXC12Ki8hXnC4yIGNHFdJ3VmLNgeomRwU1JSZEjud/LrHeVsjd/z0REyrH41c6njunWmfBqr3VSN/uuITOGduP67H7VF2CwVPHZA9cFomuUUq79pZK6JwhBHDPh559D6YOCcRlFzoeFdZcCZ0zYkLlePXHSuttT8QfqpXh2fmRDu+r1Vvw+y4d0psooXPGgVNG3PNOOQBAIffMJO93Xh6CXon22xC1jk/vkeXllGHbTxuReawK20/VQHeutjn53J8jxepQHApPsWsfVHwUx352baPcEjMQJpntSxRdW4Le5aebXKZKdAW61Q370xsEdh0yIP10LD7dF21XQjemahtkLuzQGTap8M7eYXbtKfpTSDDmOf04AHBQ0xulinCbtgBLDRKPHgGiooEhQwAlP2hE1PF8XXwSu6qLm+8kwelkU0PZqEK2qeV+bbHPUAxUeOjB/zLV+t838w56aCXkW84dsMgASKJu229DzrRWmLHfUFZ3oxXHk2VCj906PXbrmv6MamUKJp7Ib7hSQueMk4UmvLPKUz8CdQbESng86TSg0wEA8stM+ONQLTIP1+Ctin7QmWy/JOJrC9C9+ozTj//nN8AJbVfkBjRKbgmBccU7XYq1Rh6AXeH97dr/L6UIUJcBAHQGC7Yf1SHzUC02HdKhqKIu0REIYFyDZfaF9EGF0vbETpCpCkPKD9m0GdcB+5qJqVAdgSNB3e3ah5YfhNbkXKVO34uCAVM4MGYMhEyGncfOl9Dl7D+DHrV1x6MjnHo04GRAInI0cQCA7GIz3llWd1w8rnS7k49Qp1amwc7QgXbtPapPIc5QaL0dFSIDeiRYbxeVm/DHAT0yD+ix/YgeeqPAvqA+qFCE2DyO1lSNoVUt738c/eb8/4uUETis7WHXZ0jlQQSZXTv+3xwyDOZzx/9XXRTIxJMb+UTiySLqdnoaltBl7CtH7a79OPDdXKS58Fg/JE/GldNftmtfvPEFjM/f41Jc0TesRFGAbXJm+tnN+GzNE00v9Mv5/6oBXAggI+EBnIm/267ryqPzoLU0PU9IY2eV8eg6eIdd++0FS3BvwXtOPw4AzOn5CZaFTrNp62rIwYPvzwbeBzBsGLBlC5NPRNQhCCGs89EYnCiZI+qYxPl/JdQlmmQA/GzuSP+8+Dd1dEIInDukQZXOjFX7z02svbMKBRX+87ujsBjx9VfXAW+cP/iPBXD5ub83Lt0NyFU2y1yeswpv7XnWpfXcOfhhvNHzBps2uTBj4/obmljCsQPBPTDw4nS79uA3XgZ+/gQAoAEw/txfc8aP/RyZkSNt2vpWncDGP65zKabPuqThhuH/tmv/YPejGF7h5EmdPwC8ANzx0gn8sAc2JXS3FKzGuwebOR514N4+D+O1lJvs2jduucZB76YdDkxB34t+s2u//+T/cOvZr20bV57/bxSAS8791Zs0/AusC7c9idC75iQ27pjrUkxfxqbi2oH/tWv/358P44LK5lKE9kIm7kGlrC75KPhj41Y+kXi6ZvVOfHMi16atmzYSwf61H+T3Yo1F52/s2gXs2QOMHNn0AkREfuLTvBOYfzATgAA0prqDbaLOJsBkP5rJwA8DkTuUVJkR9X9/2rXHB/nXSdwhZYcxoND/R7zKOshXm1IhQeF788h3CpsO6DFpKKegcRef/UjeNjEa6+/r7e0w3GLMICVSuvj+N0Yv/QnbhnPDa4mIOgye0CCyZZYAo1T3rwV+MZyIH2PyJ3++2hM7/tUdT14VjZHdfWNC6uZozM1P7hzoJxM6q5U+e5jrkldviUbWR0nYs7grnr0xAhf2VfvbIFW/lf6H85VJ1DKfGPEEAGHVVRiVdcR6W903HhEj+gIbNgAADCYL9pypRebxKmQer0JuheNJNIrVjq+Gctv4h3BtHxk0566gIJe3/GU0v2d3WBS2ZymCRqbijUn2dcT1Lhsahq4RthODzOnWDbO7RuPPkyakr6+7kt2mfUZc3Osrl+Z46t8nAHeMr3vshpPA1RTfhjfKr3D6cQBgWFwf9AnU2rTFb+8OnHLpYYiI/IskAIsEmIEEdSDmxiZb7xICKDLqcaKmEidqqpCndz353lUTiEhlXQmCzAOnW6tNJhyuqsSlsV3QXev+S1G/9tpr1v/fc889bn98TzOZbMtZFH52mtjT8f+3fA/MjTJLN0b3QqT8/MFw7bnJxU8YKpFlrIRBuDa5eIAkRx9VKKrMJhzTuz4PTaRCje6aEHTXBCNOGQCZgyMsleRf7yt1bhIkDO8egOHdA7DoLzHIKTFi6a5KpO+owqp9Vah1cWLo7jEKzBl2fh/e3RchSDkSAqxp0PDWW8DgwdabOSP6Y83B81eyO1tswo8J07AntI/T67j0gkCExCXhjrAQ24mthcAbfX92KV6DOgD3JEXYtZsG3A/ccbNduxACx3ONyPyzFpl/6nDwzPk5t/aF2D+HQ0HdMX7s5zZtI3uqkRxz/ntI3miC9KrgSNwTF2b3WGuG/ReZeufmeBqWosb4AYGARgNJkjA4RY3BKWo8ek0ECv9cgKXLRyHzYC22HdE7tQ2dDEi0/j8xSo7Lx9SN5Hm930+QK5zfXzEqA3BPkv3xdvG4e/BGxfmSRK1ahptmOD4uNxgFdh/X44KSHsjao8Cp/PPH9UcCUzB+xNcOl2sobbQGamXd74MuNBr3xIXY9Vk36r/YrHdtjqdbUmKhrSqGesUynP7dDP3b4VBffgkQF+fS45A9SYiWqxcTExORnZ1tve3EIi6Zu2oHsn9bhY0vP2Rt++zDL3H9wnkO+wshcCBHZ50LatOJaqdqMJ+/NBb3TIkCAGg03j3jUFRmwbKNOmRs1OPXTXpUVrf8BIb2luOPD4IhSZJH4v/q9o2Y99aE8w0bNgDjW6qGdp7UaOfR3duRp+kajQDz9jbUGg2fg7/HD/jnc2j8OejSpQvOnj3rpWh8h6d/Zz7JPY75BzcCinNz25gkjA+JxYaRM5tcJl9fi6UFOUgvPIvfinJRY255jo6LwqKxYthFADyzfT5xaB+eOXIAtyT1wLtDLnD74zfcPv3tOxrw/+8IT8cfsPd/0Anb7fhAn6vRX2N/0AbUzYe2oSoP6WWnkV5+Cif0lQ77NSQB2NEzDW8WHMaHxcda7K+UZJgUEoe08G5IDe+GFI13L/Ht79sQwN+Z5njyt6a40uSw1K78vf4ICXScLK01WPD7/mqk76hExs5KZJe0fHWKQJWEP1/phpiQuoSN27fRjRuBCc4dDwghsCdLj/TtlUjfXoVtx5w7YbP4r1FYOLnus+7tz1heqQnLtlcjfVsVfttVgxp9y9vExAFq/Loo1nrbm89BZ7Bg3b5apG+pQfqWapwuaHkbUiqAfW/FISnGQ9uQC4QQOJBlRPqmGqRvrsHmP/VOHde/cHMw7rq87gScNz8DreXvx8WA6781PjPiyRWSJGFglwAM7BKAh2fFo7DSiGX7K5C+twwrDlSgSu/47Nxrq4twy7gIaNXeH3oZFSbDjamBuDE1EAajwPqdBqRv0CF9gx4nsx0f3Ow+YsbSTCNSx6sc3t9WmZmA41QfEVEHUf8bKbX8Ax+rDsBNXXvgpq49oDObsbYkH+kFZ5FekI0zOsdnLNeXFWJ9aSEuCo92Y9DnpefVHTBl5OdACGH3o0/kTiqZHFNDumBqSBe8Ji7EIV2ZNQn1R1UBLA7q8gSAx/J24bfSXPsHPCdKocGc8K5IDe+K6aFdEKLwzH4Nka8LUMkwZ3gw5gwPhhACu07qrEmo7SccJ3FqDAKvLy/H83MdX6q+PUmShKEpGgxN0eDxv0Qjt9SIpTuqkLG9Civ3VjeZxHnx5zJcNyEIKoX3f8PiwhW46eJQ3HRxKHQGC9bsq0XGtiqkb63GmSLHSZx1B/TYcFCHCf29n5jWqGSYMUKLGSO0eOP/orAvy4CMLdVI31KNLYcdJ3GMJuDf31fijf8Lt7+znUmShIEpKgxMUeHha8NQUGrG8m01SN9UgxXba1FV63gbevX7avxtlhaBGvdvQ/mlJsS23I1c5JeJp8aig5WYPyYS88dEQm+0YP3RKqTvLUP63nJkFZ+vUy6sMuO9zBLrqCdfoVJKmDZajWmj1Xj9n8KuJM/SII/23Ic6zBnn/kkKS0uBvXvd/rBERL5D1sT/naCRyzEzOgEzoxPwZn+BvZVlSC84i4yCbGwtL7Y5/H4u60+PJJ7O1FZjd0UZACBHV4ud5aUYEeZ4pAqRu0mShH4B4egXEI4H4oeg2KTD8vIzSC87jV8rzqDCbLT2XVZ1Fucum2dtGxgQjtTwrkiL6IbRQdGQS94/CUjkSyTJ+ZK8d1eV4+5ZodZRT74iPlyJv04Lx1+nhaNWb8Ga/TU2JXn1ThWa8PmGKuuoJ1+hUckwa4QWs0Zo8eatAnuzDEjfWoX0bdXYesQ2Efjct+X4dZH3E08NNSzJe2ReBPJLTVi2rW4k1G87a1CtO78Nffx7Ne67Mtg66slXxITLMX96MOZPD4beILBuby3SN9UifXONTUleQZkF/1tebR315E5/7DPg8ga3hRCcW9ANfGtLcwO1UoaL+4fg4v4h+M/cupK8jH3l+Hl3CbZk1VpHPfnqyGlJktC/uxL9uyvx4IIgFJVZsDyzbiTUr3/orKOerprm3hn2ly8HzK5N40BE5F8ajnKS6uayadXDSBKGhIRjSEg4Hus5yFqS91Peafxemm8d9TQ9vqubAq+TkZdjczs9L5uJJ/KaSIUG10f2wvWRvawleRllp/FD6UmcNlZDkgPTghJ8poSOyN8kRCjxt6kR+NvUCJuSvPQdFcgpNfvMqKemBKhlmD0iCLNHBGGxg5K8+lFPPnpIVvdbn6LGkBQ1HpsbaVeS50ujnpoSG67AwukhWDg9BHqDwNp9NUjfUoNfNlfhTKHZZ0Y9NUWtkjB9ZCCmjwzEf2+PsCvJqx/15O7j+sz9OpvE0+EzRvR17yo6pQ6XeGqoYUne3ZPCUFhlwoqDVTiQq8NFoYHeDs8pUWEy3DAnEDfMCURFZS027jbhbIH7M0Tp6fZtQvDKMUTUMVSZjXZfaMVmvePOLqovybs2ugt0ZjPWlxUix+D+K6Fk5DdKPOXn4Mm+g9y+HiJXNSzJm6iKxjFjJaqECfd2GYIQOcvoiNqqYUnea9eHY/cpA9b9WQuT2QPzwgQGAoMG2d5uo8YleSdzq7BiTy0O5xhxQW//uFx9w5K8soparD+oQ3ZJy3M/+gq1SrKW5L28MAgHTpuwcpcOOoPw2QEZDTUuyTuTX40V2/U4eNqI8WHu24aqay3YedT2yo5/7Ncz8eQGHTrx1Fh0kALXjwrzdhitplJKmHKB+8vsjMa6EU8DG7WfPg0kuX1tRETtb091qV3iqcTs+lXrWqKRyzE90v1XPqk2mbC6KN+mbWd5KbJra9AlwD9OpFDnMDPs/JWTNEw6EbmdJEkYlqzGsGR1y51bY/hwj8+/ER+uwIJJ/jsKUqOSMH2ofyTMHJEkCQOTlBiY5P7jyvYSHSrH9VPdv/+zaocOBqNtW+Z+PW5y+5o6HxbYEzIzgfJyx+1ERB3B7upiu7YKixGlRveMevK0VYV50FvsR7subTQKioiIiIhaJ/0P+xHrh0+bkNPERPPkPCaeyGGZHcDEExF1DAaLGftqSh3e92tptsN2X5PeRIKpqXYiIiIicp7FIpCxyfFVizMcJKTINUw8kTXxVIII/II069+6fREoth8kQETkVzaU56PW4ngehvTiM+0cjessQtjN71RvVWE+akw8C0dERETUFtsPG5Bf4nguZUcjocg1nWqOJ7J3+DBw9Gjd//9Ef1yKX87fKYBffwWuu847sRERuUNGydkm71temg2jxQKlzHfPw+woK0G+3vF8VDqLGauL8pEW16WdoyIiIiLqOJob1bRqhw41OgsCNb67v+jr+Mp1ck2V2Tl7PxGRLxNCNDuqqcxkQGZFfpP3+4KWyunS8/2jXJCIiPzAkSPAggXn/44c8XJARO0j/Q/HZXYAoDMI/L7T/Rel6UyYeOrkWkos/fpr3VXviIj80aHachzXVTbbJ7246RFRviA9r/nEUkZeDizCA5fUJiKizqegAPj44/N/BQXejojI484UmLD7WPMHvSy3axufKbXLDY3AfyenWm+ro6K9GE3nUFLS8gTi5eXAhg3AlCntExMRkTs5M4dTRskZvNLjgnaIxnVnaquxu6Ks2T65eh12lZdiRFhE+wRFRERE1IE0LLPL0iTi/pSHbW4DQMamWgghIElSu8fXEfhM4ulEdDzumner9fYLXZO8GE3n8OuvgNnxfLs20tOZeCIi/+RM4ulIbQWO1JSjd2BoO0Tkmow8565al56XzcQTERERUSs0LLPLVsfj311vteuTU2TGziMGjOijbs/QOgyW2nVijcvsBmIf1mCS9W8g9ln7sYqDiPxNsVGHPyoKneqbXuKbV7dr6mp2jbU0DxQRERER2auuteD3Xc7N35SxieV2rcXEUydlNALLl9u2haIck7DO+heKcgDA8eN1V78jIvIny0uyYYFzWXNnRka1t2qTCauLnJv4fGd5KbJrm54Uk4iIiIjsrdqhg97gXF/O89R6TDx1Uhs31s3f5Cxe3Y6I/I0ro5g2lheg1Kj3YDSuW1WYB73F4nR/Z0dHEREREVEdV5JJOw4bkFNk8mA0HRcTT52Uq4kkJp6IyJ8YLGb8WtL81eAaMkNgeanz/duDq+VzLLcjIiIicp7FIpCxybUR4xkc9dQqPpN4Gpl1BCcfudn6F3dgr7dD6tAyMlzrn5kJFBd7JhYiInfbUJ6PCnPzl8VtLMOHyu0sQrg8gml1YT5qTDwLR0REROSM7YcNyC+xHV0+rnwbjOt7WP/GlW+zuZ/ldq3Tqqva6XTOTb7lSJHOgCiNyqbNbLZAbTIiubjA2rauttZmPUIIFOuNdss6KyAgoHUB+6ja2tZv8EeOSDh61LXZ+C0W4JdfDLjmGufLPlrSlu3IG7gNeV/j98AfnwM5p02/M0Y9firIcnm55SVncbKiFPGq1n3W3bl9bi8vRb7etddAZzFjec4ZzImJb/V6G+oIlwv2t+8Id21DJmFBpcWIcHnLv/V6vQE6nN/W9BYz9MKMEDn3twD/24bINa39ranR180gqFWfP4ev0zu+VLROr4NKJrfertJZIJcBAarWnf/39L6QpNej4TeHXq+HcPM+e0f7niDvastn4Kf1VQ7bFWj60u+rdtSipKwWgRr37Sf523Fxa7T7iKdX9p/CDev34WCZ4ze5MSEE1uaW4OIVO7Aqp8TD0XUOS5eef9v79bPg008N0GjsJ+C9524TJk8+/6Fbtkxu14eIyNfsqyrFe/nHAAAySLg2MhmpoV3s+mklBV7qNgyxSg0AoMxsxC1Ht7RrrE1ZVphn/f+Q4FB8PvgCh/3eGzAMY8IiHC5HnZccElLP/IZninah1Ozc3GV6ixn/KzuEoVk/wuTkpPxEnZVCLmH0U6fx+opSVOudOylbpbPgleUlGPvMaSjl/p/YJ+oIlm2p+42UJODKi9RYNF9r1ycpVobXbw9GQlTdMbTOAKzd7eRs5GTV7omnmYmR+C4rHyN/2dxsAkoIWBNOs1buxObCckzvEtnO0XZMy5bJrQmn7dsNuOoqCxyd2B440IJly4xYuVKPyZPNWLlSBqNrlStERO0uSqWGQVgAC9BbGYLLw7oi+lxyqSGZJCEtrAsu1sZDZpYAAch95GBgWWEehgSH4puho7Hpwkm4pIlRTJMio7H6gglYNmIcxoRFYFlRPiyCSYPOTpIkjA2MxfPFe9D3xHfNJqD0oi7hNPDkD7gzfzMSFVpEODFSiqgzUykkDO6qxsPfFqH/Q1nNJqCq9AKvLC9Bv4ey8Nj3xRierIHCR35riDqzMwVm7D1hwpUXqbHtnUh89mgY+iXZF4Qp5RJuTQvEwSVR1gRUfcKKnNeqUru2GBsThlClAuVGE77Lysf3WfkIVsoxqFG/r0/m4teVO623x8SEIkKtbN9gOyCzGfjHP0y45BILZE6mHcePF1i2zIiNGyUUFABd7AcOEBH5DBMEpgcl4LeyPByqqcRfDmUiUC6zO9VSbTZh0M7lMAkBQILMImFuVJJXYm5IZzbj0R59kRodd77crZlkkiRJmBwZjUkRUVhbUoQSowFRKiYOOrs52q54s/QgKixGPF+8B2+WHoRe2JcOzDqzAmWW82duZwd1bc8wifzWnCFa/LijCgWVZjz8bRFeXOq4MmPEE6dQVnM+KTV7iP2ICiJqf+XVFmx7JxIDkp1LiahVdQmoBTMC8Os2Jp5c1arEk0Zjf+bY6WUBzOoWg6+O102aKgBUGO13hCpNtm2XJse3ab2Naz/b8lje0nC+jbbEP2+ec/1UKpXNeqZNa/UqHfK394DbkO/pCM+BHGvLeztGk4AbDDr8Vna+7KzGYrZLPFmEsBkdNCEsFgsT+7Z6vY219jloAPxFm2LTZrI4PpOuUatt1jOrS9uSBg2/5/zx89V4Xip/fA4NtSX+qepuCM1RofxcUqnC4njIcsOkEwBcEdHTbftb/vj6d7RtiJrXlvf30gsUuGVJPiznfkYaJpcaatiukAOXjIiARuO+6Svcvo1ecAHwxx/Wm+oBAwAPfg6EH47SbTwfj799T/h7/IB7jmlG9rNfTqV08DmWJJt1aDTA3KnunafMH98DV3nlqnZpSbHtsgwREXVOs6ISIINrpQxpUYkeioao/SklOWaGuJaI7KUKRR9NmGcCIupgooIVGNMr0KVlJvTRIkzr43OmhoQAY8ac/wsJ8XZERNQBeCXxNDMxGnIXrpbTMyQQvUM5LJWIiJwTqdRgbGi0S8ukRbPEiDqWtBDXSkdTXexP1NmlDXMtKZM6NNhDkRAR+TavJJ4iNCqMiwt3un9aUmyHuKwzERG1n7Ro50cw9Q4MQe9AntWljmVWcDeXRv6lhTLxROSKtOGuJZLShvN3hog6J68kngAgrZvzpXMss2sfWzEK8cix/tUOGuXtkIiIWs2V0rlUltlRBxSh0GCcNs6pvqEyFcY72ZeI6vRLUCMl2rmLH/WJV6NXHC/8QESdk/cST04mk0JVCoyPi/BwNAQARqiQh3jrn1CqvB0SEVGr9Q0MRY8A585Gc34n6qicLbebFdINSsnH554h8jGSJDldbpc2zE/K7CoqgE2bzv9VVHg7IiLqALyWeOoTFoReTszbNKtrDJQyr4VJRER+SpIkpxJKYQoVxoXGtENERO3P2cSTq/NBEVEdZ8vn/KbMbu9eYOzY839793o7IiLqALya0Untdn5HX0CCXqGw/olzcxI07ENEROQKZ0roZkUm8AQHdVh91GHoqWr+gFcOCTODObk+UWtc1DcQIQHN/4aEa+UY6+IV8IjIO3QyNY5pkqx/BgVLZN1B4c2VpyXF4rV9JwEAf/TsD81bP9rcL5ckzOrKxBMREbXOhLAYhMiVqLAYmuyTFsUDbuq4JElCWkgyXitqetTCOG0cIhSadoyKqONQKWSYMSgY324tb7LPrCFBUMh5oSQif7AjeDB6jVpnvT0kyrl53Kh5Xj3FOz4uAqGqpnNf4+LCEaHhPEPtJQqFmIcvrX/ykkJvh0RE1CYqmRwzIxOavF8uSc3eT9QRpLZQRscyO6K2SW1h/iZn54EiIuqovJp4UspkzY5ocuXKd9R2fXAYX+Ja658667C3QyIiarPmRjSND41BuJJDqKljmxAUh1BZ0yfy0kKS2y8Yog5o9tBgyJoY0KSQAzMH+8nE4kREHuL1SS2au7qds1e+IyIiasqsqAQ0VeDAq9lRZ6CU5JgZ4jgB20sVij6asPYNiKiDiQpWYEwTczhN6KNFmJZXjCSizs3riaeZidGQS/aHBD1DAtHbiaveERERNSdSqUHPQMdlDmnRnN+JOoemyulaKsMjIuc0VU6XOpSjnYiIvDq5OABEaFQYFxeOEwcO4/ota63tAfNvgOQgIUVEROSqYcHhOFpsO/FrgFyO3k0kpIg6mlnB3SCHBDOETXtaKBNPRO6QNjwYD32d56CdvzNE/qR77Snce/Z96+3lMX8HwPlA28rriSegbi6nnzZswL9++sTatnP+X7wYUWdlAQIkQAXAAMBi8XZARERuMSw4At8UZ9m0RfDyuE06WlWFXkolNHKWh3QUEQoNxmnjsL4619oWKlNhvDbOres5bqxAgjwQATKf2MUkajf9EtToHqPCiYLzV1HtE69Grzj+1nQkZovAgdIq9A/T+u0giSMV1UjSBkAt93rxk0+KNxTgH7mfWm9vq7nCi9F0HD6xtTmay2lwBM8OtJu8U/hi2DysueMS4IFg4O5g4IFgJO++BHhxHpB3ytsREhG1SbzKfu6NCE4qbmWyWLC2sAAPHTyAwWtX4+97d0Mt84ldBHKjxmV1s0K6QSm5N7l4ylSJLqc/w1X5K/Fe6QHkGKvd+vhEvkqSJLuyurQWrnbndU8+CTzzjGvLPPNM3XKdlFwm4Zm9x9Hvx424Z+shrMopht5s9nZYLjlQXokuP/6OuRt34ZMT2Sio1Xs7JOoEfOJ0VO9QLRIDNTZtCu7wto+vXwT2PIdLpwF1o+8bZO6DLUDNMuC/y4AhjwJzH/RSkEREbePopGSIQtn+gfiQUoMBv+bnIT03B8vzclFmNFrv+8/AwX57JpealhaShAdyN1tvp4Z0c/s6JmsSMFQVhaU1p7G05jQAYIQmGmlByUgLSsEwTRS3Leqw0oaH4L+/FVtvp/p64kkuB554ou7/jz/ecv9nnqnr//TTno3Lxz0yqDtGL92Mdw6fwTuHzyBIKcf0LtFIS4rDnK4xiA7w7RNblybG4vn9x/HL2QL8crYAf9+6H6OiwpHWNRZpXeMwKDyE39Pkdj6ReJIkCePiIrwdRufz9YvAgecARd170PiyT1L9dWEVoq7f12DyiYg6jM64S3WkshLpuTnIyMvBhqIimIWw6zM2PAKTIqO8EB15Wh91GHqqQnDMUAE5JMwKdn/iSZIkPBY+DHPyfrW27dAVYoeuEE8WbUOCQovUoCSkBaVgqjaRJXnUoVzUNxAhATJU1FoQrpVjXG8fv1BSfbLJmeRTw6STM0mqDmxwRDAu7RaDn08XAACqjGb8kJWHH7LyIAG4MCYcaUmxSOsWiwHhwT6XxJFJEh4Z2APXZu4BUDf2YEtRKbYUleKxXYfQTRuAtK5xSOsah0lxkVCz7J7cwGd+7cfFhXs7hM4l7xSwpy7pBFkLX4YyCbCIuv4T5wFxnIiUiMgfmCwWZBYXIT03B+m5uThSVdniMo/17uNzO8nkHpIkIS0kGa8V7cU4bRwiFJqWF2qFyZoEjFHHYpM+3+6+HFM13is7iPfKDiJAUmCaNhFpQcmYE5SMBKWPH6QTtUClkGHGoGB8u7Ucs4YEQSH3g+/SxsmnuXOB+fPP3x8Tw6STA48M6m5NPDUkAGwqKMWmglI8su0QkoMCkNotFmlJsZgY7ztJnEsTYzEwNAj7y6vs7jtdXYu3Dp3EW4dOQquQY3pCDNK6xmJOYhxifHw0F/kun0k8cU6ndvbxg4ASjutPHJFJgFIAnzwEPPClR0MjIqLWa66EriXdAwOhkcmxubQEapXKI/EpZTKMDOcoZ29JC03Ca0V7MCggHJtq7K/A1VZ6Q91cIbMCuzpMPDVUK0xIr8pCelUWAJbkUceQNrwu8ZQ2zI+ObRonnz766Px9fpp02lNcjhqTZ+Ze0hvqJpAfHhmCncUVzfbNqqrFmwez8ObBLAQp5ZiRGIO0brGY3UJJXnZ1LU5X17o17nr18c/uEuMw8dRQtcmMH0/n4sfTuZAAjI4OR1rXOKQmxrIkj1ziM4knzunUjiwWoGAFEOTicgJA/q91y/P9IiLyGUcqK5GRm4P0ZkronHGipgZTNm10c3S24jUa5My5xKProKaN18YhQC7HWxX78FbFPm+HY6NhSV4XhRapQclIDUpmSR75lVlDgqFSSJg52Mfnd2rMUdmdnyadAGDBut3Y3UJSqL1VGc34/mQuvj+Z22JJ3hcnz+KB7Qe9F6wDAsDmwlJsLizFozv/RJI2AKksySMn8Ve8M8o+VjdxuKsznMikuuVyTgCJPT0SGhEROe+ZPw9iXWGRUyV0RACglOSYEtwFS2uyvB1Ks7JN1Xi37ADeLTtgU5KXGpSMeJbkkQ+LClbgwdRohGn98CC8YfLp2WcBg8Evk07+wFFJXlpSHFK7xWBifKS3w3PKqQYleUEKOaZ3iUFqIkvyyDGfSDz9J38fSnK246kGbRsqczHBaxF1cGWFbVu+NJ+JJyLyKxNCYvFl34sAAHqLBWqZDFFKz8xv4wkyScKXI8YAAKpNJnyffRYbiorwv5Mn4G/TpJuFgMli4UhnL5oZ3NXnE08NWUvyak4iskSNgepIxCkCAQCXa7tjbnBvL0dIBFTWmvG3j84AAMwWgXlvZwEAPrypGwLVfvR99/jj55NOKpVfJp2EEDCYLd4OwyVZVbV448BJfHL0DK7unoA4rX8lbqpMZvxwKhc/nslGVIAKg8JCrKWE1yYn4pLEBC9H6JwL+qrw5IJQ4J7zbX+/xM9GL/oon0g8/VGdj+zKHJvE0ylDFRNPnhIW3bblw2PdEwcRUTtJCQhGSoD/7jjIJAnzupy/sMPNST1gFhZsLi6xXqXuQIVvlRQ0RWc2I7OoGBNj2vhbRK2mkvxnJIZWUmB6UDekBSVjpe40vqw6gnW6bOv9PZWhmOvF+IjqGcwCX28ts2t/b0HX9g+mLZ555nzSyWCou+1nyadDpVUo0hm8HYbTeoZokXZuAvLxcRFQymR4ef9Rb4fltBClAjO7xCCtaxy+PXMWv2Tn4veC8wMdhoeH4ZJELwbogsQYBRJHBti0XTjAv5KAvsonEk/Uzrr0BCplgNbc8hXtGrIIoFoOJHT3XGxEROQUuSTDuKgojIuKwguDBuNEVRUy8uquXreusBBG4frZXrVMhjCl8twtz4ykqjKakJ6dy8STFwXIFIiVB7TcsQ1MwoJii75Vy3ZTBCEtOAVpQcmYFNgFalldomxjfo47QySixhrP6VR/G/Cr5FPGqQJUGcyI9VS517l5FCuMJtS2YmSVTALGx0ZYr3bXJzTIbpLuQLkcsRpPJTzq4jdYLCg1mFr1CD2CtUjrGovUxDhMiI2ESl43qu/nHH5Pk2NMPHVGMhkQMwOoWebachKA2JmcWJyIyAd1DwrCnT17486evVFhNOK3c1e2W5qXi2KDc2d+I5QqHJw8FRq5HBqN+0sRSw0GRP+YgYycXPx72GC3Pz4554bQPrghtI9HHlun0wEAFpcfwD9LNju1jARgdECsdQ6nQepIXimJqL05mkjc0YTjfiA9qwA1eoE9V41Dz1D3zwmn0+lgEQIXpG/CwfJqp5YJVSkwMzEGaUmxmJUYgwhN81eO/Ue/7vhHP8+c7K//nn7hwHE8te+YU8vIJGBsdATSzk0m3tdBsoyoOT6TeDraNQYLFs233h7RvZsXo+kE5r8I/HcZoBDOjXqyCMAE4MYXPB4aERG1TYhSiasSu+KqxK7Wkry60VDNl+Tl6nVYcuY0/i85xSNxLc/Jg1kIHK6swtHKSvQK9t/yR2qazmLCy+V7m+2jlRSYEdQNqUHJmB2UhNhzczYRkRc0d/U6P0s+FesMyMwrAQBkZBXg7iGe+T378XRBi0knRyV0vqLcYMR/D2c126dhCd2sLrGIbCFZ1lHU9OyPqwZ/AYMRmD87EDcMHOjtkDoEn0k8FUSG4OO0sdbb/aL9YzZ/vxWXBAx5FDjwXF1Sqbnkk+XcZbmHPl63HBER+Y2GJXn/GthySd7Lx45iYddu8MTU6+k5uef/n52Le/sy8dQRfVh5GHnmGrv2pkroiMiLmks61fOj5NPyUwXWQ5f0rHyPJJ4sQuD5Pcft2utL6OqvTueohM5XvH30tMMyu6ZK6DqTVUcDsFxbN9t0eYkSN4SFeTegDsJnEk/kBXMfBL4GsOc5QCnqyn0bJqAsom78uwl1Saer7/dOnERE5DZNleQty8tDkUFvHfV0T99+bl2v0WLB8tx86+30nDzc25dXI+toGo52alhClxaUgoHqCJ89CCPqlJxJOtXzk+RTelaB9f/rc0tQrjciVK1sZgnXNRztFKpUYGZX50vofEHD0U4yCRgXE4nUxFiW0J2TvlFn/f/2Q0bkFJqREM0TJW3FxFNnN/dBYOI84JOHgPxfgeAGZ76r5XVzOi14CYjxsytyEBFRixqX5K3PzcOygjwsL8jD//XqDY3cfTtamYXFKDcarbc3FBah1GBAuMr3d9LJed9Un8BodQxmB3bFZeE9EcMSOiLfZTY7l3SqV9/PbPZcTG1gNFvw65nzV1MzWQR+PV2Iub0S3LYOixD4+mQu7ujXDXMSozE2JgzBgf71Pfd5Vg6mxEZhTpdoTI+PQpfQEG+H5DMsFoGlm2pt2pZt0uGvl7h/rrDOhoknqiufe+BLwGIBck4ApflAeGzd1et8qBaZiIg8Ry7JMCYiAmMiIgDUXeHOnRqW2QGAWQj8mpuPa5J4YqMjuSGoF24MrhvJplF4omCTiNzmySddX8ZHRzoBwIbcElQ0Kh9Lz8p3a+JJAvD1xCF+PSro/3p1w229OX2KIzsPG5FbZDsFQfrGWiae3MBnEk8KkxnB1eeHtclijM30Jo+QyYDEnnV/RETUqbl7p7px4gkAMnJymXjqYPz5YIyI/FvDMrt6y08XwmSxQOGmkymSJPn995y/x+9J6Zm1CDTXoIfulLUtc3MyavWRCFDzdWsLn0k8jd5/Ehv/+rL19mc/fQh0vcCLEREREZE7HK6oxNHKKrv25bl5bj0gICKizkkIgfSsfLv2Er0Rm/LKMCEhwgtRkb9J36jDsOr92HjgSmvb+AHf4/ftiZgzLsCLkfk/7ukRERGRRzka7QQApQYjMouK2zkaIiLqaA6VVuF4hf3VNAE4TEgRNXa2wIRdRxxXXaVn6hy2k/OYeCIiIiKPysh2nHgCgPRm7iMiInJGxin7Mrt6TDyRM5b+0XRyKSNTByFEO0bT8TDxRERERB5TajBgYzOjmpoaDUVEROQsR/M71TtUVo1j5dXtGA35o/SNTSeesgvN2N3EaChyDhNPRERE5DHLc/JgbuYs4ZHKKhypqGzHiIiIqCMp1hmQmVfSbB+OeqLm1OgsWL29+XI6ltu1DRNPRERE5DHOjGjK4KgnIiJqpeWnCmBpoQoqo5kRUUSrtumhMzTfJ31jbfsE00Ex8UREREQeYbRYsDy35bPM6Tl57RANERF1RM2V2dVbn1uCcj1Lpcix5srs6m0/ZEROobkdoumYmHgiIiIij8gsLEa5seUd/Q2FRSg1tHCqkYiIqBGj2YJfzxS22M9kEfj1dMv9qPOxWASWbnJuNNOyTSy3ay0mnoiIiMgjnJ043CwEfnViZBQREVFDG3JLUGEwOdWX8zyRIzsPG5FbZHGqL8vtWo+JJyIiIvIIV65Yl57NeZ6IiMg1zpTZ1Vt2uhAmi3MJBuo80jOdTyat3KZHrb6FCcXIISaeiIiIyO0OV1TiaGWV0/2X5+bByAMCIiJykhDCpVFMpXoj/sgr9WBE5I+cmd+pXq1e4PcWrn5HjjHxRERERG7nymgnACgzGvFHUbGHoiEioo7mUGkVjlfUuLQMr25HDZ0tMGHXEdcmnU/PZOKpNRTeDqBeZaAamwalWG8bggK9GA0RERG1RUYrSufSs3MxMSbaA9EQEVFHk3HK9SRSelY+XhrbzwPRkD9a+od9EqlYEY5vI+bY3G4oI1MHIQQkSfJ4fB1JqxJPOl3rs3yvFO1HH1Uo5gQnWt8ss9mMvb27YuySh6z9nonpYV2P3mLGJ2XHECpX4erQFIeP25KAgIBWx+yL2vIe+Ap/ew7chnxPR3gO5FhH+DH39+dQW9v6CTRLDUZsbDB6qV9wEASAQ41K78ZGhuN4VQ3y9XoAwC/ZOXi2X+9Wr7cxf38P/PE7ruFvZVu2oTcr9yNBHojLAlIgs+4v2k8gbDKZrK+TUVjwZc1RSJBwg9Y925G/b0PUvNZ+xspqzHjip0L8c0YkkiKV5x7L8WXWdTodVJIcAHCy0IBXV5bg+SuiEayRty7oRvx9G23L99zPJ/Ks/w9XKTAkMhhrc21L6boFaRClUWJnUSUA4FBZNQ4UlKBHSOsHOXS0Y4JWS70MyD4L7Np+vu2OfwKjx9p0e/DBB/Dg0p/rbigUwEVTgOoqYMsfbgmjTdvQ+mrr/4MDJYzur8Cq7b1wdZ93rO1xERLGJMixaX/db1B2oRlb9ldjaC/3jeHxx997V7V7qV2CIhB/ObMGY08sRUbFGQjR9ORceosZ/ys5jIHHfsSduVswWBPeZF8iIiLyDSvyC2AWAv2Cg/DpBcOwfcpF6B8cbNdvVmwsDl48GS8N7I9YtRpHq6pxtMr5eaGo4+qmCMJ1JasxKv97/FBzApZm9heNwoJPqg9jSN43uLV0Pfoqw9ovUOqUwgLl2Jutx8AnjuP2z/Nwqrj5Up2ThQb836e5GPzkCRzO07st6dSZFeuM2FRQhnCVAouGd8efV4/DdT3j7fp11WqwMe0C/HDxEAyPqvsdWnq6qL3D7ZjKSoF/Pgw88xIwbGTzfRUKYMp04N9vAjfdCpw+1T4xNqNGJ7BmpxHBgRIeuj4Ah74Ix1/TNHb9YsJlWP2fUCx9OQRjBtYlm5ZtMrR3uH6v3UvtpgclQAYJu3Ul+MuZNRiqiYBR2E8murIqG++WHsJZY13dbndVMPqoQts7XCIiInLRqZoafHrBMFyREG8drdKUQIUcd/RMwc3J3fBB1mnsKC1Hr6CgdoqUfNVUdReoIccBUymuK1mNAYpw66iRhjboczEk7xucNNeNZoiTBWCEkuWa5HlzBgVhy4lafLCxDB//UYYrhoc47Hfnl/n4fkcFTOcOd2YP5vebO2wrLMfjw7rj//p3Raiq+UNaSZIwq2sUZiZGYsXZYmzMK2ufIDu63TsBixlI6VGXgDp5HFAo7fsNHgZcPAuIOvfdnJcL5Ga3b6wO7Dhswt1XB+COqwIQEdL8eBxJkjBlhAqThyuxZqcRyzcz8eSqViWeNBr7TKCzukCDcUGx2FBVNzRyt67EYb/1NbZXKLgkLMmtwxqbG2nlqxoOwWvLe+Ar/P05cBvyvo7wHMgxf/98Af65fTYs2WhL/IuGDLJrk8vtd+qUSoV1PRoA9w9s27wbjUu7/O09aFwy42/xN9aW+DXQYEpgIpbX1J0VP2ByfCWqPwy2+4tzglIQ2Ib9RX/fhgD/L71qT215fy8fGYEnfi4EAJgswDfbKxz2+3qbbfsVIyPdul35++9la1+Ly3ol4rJetm1KpX3SQyaT2ayjbrnEVq2zKf72Hrhzf2X8b+uQWXiutD6lh+NOA2z3Ce6ZNAGvtvE1c8f+ysWjNbh4tG2bSmUfl9RoG5o9LgCzx7VqlU3yx98aV3nlqnZpoUntsgwRERER+ac0revzeqYFtm4uUCJXDeiiQXKUyqVlesep0Tuu4x9gUueR1iWuFcvYl0RSx+edxFOYfRKp78lcfPPgu9a/vifPXw0nRKbEhGBuoERERESdRWpgskv91ZIc0wK7eiYYokYkSULaUMfldU1JG+JafyJfl5bo2jF6qFKJ8TGRHorGPQZXH8Qf+y61/vUuOeDtkDoErySe+qhD0UNt+8UbWV6Nv6zeaf2LLD8/w/zM0K5QSl4JlYiIiIi8oKsyGENVUU73nxKQCK3MwfwiRB6SNtS1+WdTXUxUEfm6fiHBSAly/gqBsxJioZT59nF9sLkKY6p2Wv8CjbzoiTt45V2XJAlpod2c7s8yOyIiIqLOJ9WFcrvWlOYRtcVFvbUI0jh3OBUWKMe4npxYnDoWSZJcKp1LbUVpHnUMXks3OptMkkHCrFAOmyYiIiLqbNK0yU73dbU0j6it1EoZZgwMdqrvrEHBUCo48Tt1PM4mnuSShFkJTDx1Vl5LPE0IjkeovOUJ+cYFxSJSwUn4iIiIiDqbkepYxMlbLuMYqopCV6VzCQAid0ob4ly5natleUT+4qKYKIQoFS32GxcdiQi1axPyU8fhtcSTUpJhZkjLl7JkmR0RERFR5ySTJMxxYtQTy+zIW2YPDoHUwkAmuQyYOYiJUeqYVHIZZsTHttivNVfAo47DqzN7pTqRVEp1YS4oIiIiIupY0gJbTiqlulCSR+RO0SEKjOmhbbbP+F5ahGtbHhFC5K+cmbvJ1SvgUcfi1cTTrNCukKHpUwQ91CHoqwlrv4CIiIiIyKdMC+wKtSRv8v44eSBGqls+207kKWktXK2OZXbU0c1OiIOsmZF/vYKD0CeEo/46M68mniIVGowLanpHIS20G6SWxq4SERERUYellSkxJaDp6RnmaJMh4/4ieVHqkJYST83fT+TvojRqjImKbPJ+Xs2OvJp4Apqfw4nzOxERERFRc3M4OVOKR+RJA7pokBzleNLk3nFq9I7jhZKo42tuDidnr3xHHZfXE09NzeGkleQYH8TMKBEREVFnlxqY7LBdLckxLbBr+wZD1IgkSU2OamppNBRRR5HaRHIpVKnE+JimR0NR5+D1xFNfTRh6qO2/kEcHxUIla7qen4iIiIg6h67KYAxVRdm1TwlIhFam9EJERLaamseJZXbUWfQPDUZKUKBd+6yEWChlXk87kJd5fQuQJAlpDkY9jdNykkgiIiIiquOo3K65Ejyi9jSxjxbBGttDq7BAOcb1DPJSRETtS5IkhyV1LLMjAPCJ63qmhSbhvT5dMfjLxwEAMkhYPX66l6MiIiJyXlWtGZc8V4RqvQUjeqjwvzsSIJdzwuP2lFurw6+5hViWU4g7eidhercu3g6J3ChNm4JnSrfZtDVVgtdaOeZq3FKxBlNViZijTsZgcNoHco5KIcOMgcH4bnu5tW3WoGAoFfwdaGhfUSXuW/8nZnWLxKykSPTRcP6r9iSEwKNflGBlcQEUyRX4acJwdHPj11xal3j89/Bx6225JGFmgn8NKNkSNAwRI/dab3ePDvdiNB2HdxJPT84AJDmwaBkAYEJwPBTaIOzrpa67HRSHyNBGdaBPzQaEGXhyRXtHS0RE5FB2sREZ26qRvq0Kq/fUQGcUgAD2HjchY0sWZl8QiLRRWkwfHojgQK8PMu5whBDYXVKO9LN5SD+bh+3FZQCAERGhmBAd4d3gyO1GqGMQJw9EnrkGADBUFYWuSvdenjtBrkWKPASPVG3GI1Wb0as8DGkB3ZEWmIJx6gQoJU4DQU1LHRJqk3hqqvyuMxsUFQy5BNyTeRT3ZB7F4KhgpKZEIy0lBqPiQnmFSg+oMZnwe0EB0nNykZGbi5wgHRAE4Mc+6PmgBZMurEbqNAXSpimR0q1t+yoXxUQhWKFApckEABgXHYkIteOJ932VSaZEqSzc5ja1nXcST5IcEJl1yaRFy6CUZJgZ2hXflJ4A4GDC8adm1/WXxnkhWCIiojoWi8DO43qkb6tC+rYq7Dqht+sTGihDeYWEwnIzPl5ViY9XVUKpACYNCkDaaC3SRmuRHMudmNaqNZnxe14h0s/mIeNsHrJrdHZ9HhvQExIPXjocmSRhjjYZH1QcBACkeqjM7j7tMHxcewhGWHDUVIZXK3fi1cqdCJOpMVOThLTA7pilSUa4nCM1yNbswSGQJEAIQC4DZg5yb2K0o3hkRDKWny4BAOwtqsTeoko8v+0EYgJUmJMSjdSUaEzvFoUglU8U5/ilnNpaZOTkIj0nF6sLClBrNtvcrzWpUb0pEUYTsHKDGSs3mHHXIj0G9JYh7WIFUqcqcOFwucsjt1VyGWYkxOK709kAmr/SHXUu3vk0L1p2Ppl0LvmUFppkTTylhSad79sw6XRuhBQREVF7qdFbsGp3DTK2VyFjWxVyS81N9lXKgSeuDsM/3y+3aTeagJW7arFyVy3ufKcIA5NUSButReqoQIzuo2FJXgtya3RYmp2H9DN5WJVXiBpT0+/BiIhQzIizn4SaOoa0wBRr4ilNm+yRdSTJgzE/oC/erz1o015m0eOrmiP4quYI5JAwXp2A1HOjofooOcKOgOgQBcb00OKPY9UY30uLcC0TJ46MjAnBrG4R1uRTvYJaA5YczMaSg9lQySVMToxEWko0UlNikBQS4KVo/YMQAjtLy5Cek4OM3DzsKC1ttv8DfXrg1QA5yitt2w8cseDAEQNeeMuAqAgJs6cokDZNgekXKRAS7Ny+SlqXuPOJp0TO70R1vPdt2Cj5NOvRHyCDhBR1MPpqwur6MOlEREReYFNCt7cGOoNwarkFU4Jw64wgvLe8GoezTU3223/KgP2nDPjXN6WIDpWzJK+RpkronMHRTh3btMCuUEtyhMvUGKn23LwhDUc9OWKGwDp9Ntbps3F/2Qb0UtSV5KUGpmA8S/I6tbShIfjjWDXL7FrQcNSTIwazwIpTRVhxqgi3r/0TgyKDkNY9hiV5DdSYTFhdUICM+hK6WvsRwI7EqdW4o28SDAsEnnvD8XccABSVCHzynRGffGeEUglMvFCONCdK8mYnxEEmAT2CgtAnhKP+qI530/ANkk+RT12CO7uPR291DaS81cC6lwD5FiadiIjIrVIX5eDAaYNNmxACBrNAjcGCWqMFBrNziabGPlhVhQ9XV8FigdO/sIXVZny81oCP15YBADQqCYFqCYFqGRQORkL9bXooHvlLpF27v3OmhM4Zd+04YE08eSoB9eWEkbiQc0h5hVamxERNAv4wZ6NH9hK3P74QrfvssySP6qUNDcHD3+UibWiIt0NpteNlNZj247aWO7ZS/edMAuDsJ25fcRX2FVd1mpK89z434F9v2Zfzm7Q61KYUoqZ7IXRdiyGUTSeOmpJfZUT0F2uAMACPOLeMEcAqAKv0wF1LAaVSQmAAEBggQa1C3ZvZQKBa5rdldjGGQswqW2O9fTpxOgD/miDdF3n/U1qffJJn4rWP1gHrDcBFKmCyhkknIiJyu5wSM7LyTQBE3Y6STACSsNtpag2LwPm96FY+ns4ooDMKlFQ53pksqWq6zMzfVBhM+N+RLGSczcPK3EK7OSha43QrE1au0LkhTmq9Wdok/FaehSqz0duhONS4JG+cOsE6QTlL8jq+/gkazBwUjN5x/ptwNFosyKqo9XYYTWqqJE9n6TjfzeWVAllnzu1UJFYC/QuA/oVA18oWl22JUFpgDm3bb6URQDmAchMABwO8QxQKvy2z66U7iY+O/9N6e0HPnwEM9F5AHYT3E09AXXLpnrHA5APABDWgkIDyAcBrTDoREVHbnS40YtfJup2s/EoDoKzfS/K/ofrVOtfPbvqCkRHh0FssgADO1NTiZFU1nt97BBD+9x4YzP75HnQUswOTcU/5Om+H4RQzBNbrs7Fen437y9YjXqHFFE1XXBrYHSrIESgpcbEmqeUHIp9nMFmwfH8FAOCSYSH4eXcZAGD2wFAoFf71Paf3o++4hiV5kASCNQokhwQgOSQAEiT0Dw/ydohOswiB9NwcAMA2RS1w01kgpQwINMLf9lcsehmK94TgZ8mI/j1l6JXiH+XHcREyjB+sAg6cbxvWmxeEcQffSDwBwD1fAe8NrEs6mUTdbSIiIjdYe6Aa89/MPd+gBGAGYJLq9uX8aH9Oq/HPOaAe6NfH+n8hBA6UVVrncNpcWOJ0uYUv+PFULqZ34bB7b0lQaL0dgsv6KyMwSBWJrw2H8bn+T3yu/xMAkCIPxQnNzV6OjtyhUmfBZYtP2LWX/2cIlAr/OOiu9/OxQm+H4LIRMSFIS4lBako0hseE+OVcf2YhcNnmzLobEef+AGBTF6BHKRDh+RG97lJVJeGqR+tGzb34oAYP3Oofn4Exg9QYc1sY8OX5truu5jxV7uA7iaclfz+fdFJIdbdZZkdERB4jAWY5rCV3kjhXduftuDo+SZIwMDwEA8ND8PCg3iio1WN5Tj7Sz+RhRU4BqkxNT8zuC37PLfZ2COTjlJBhoiYRqQEpSAvoju7KUKzWn8bXxYe9HRpRi34/4/vfcRq5DNO6RSItJQZzUqLRJch/SxtbtLwXUK4G4qvqyu36FwLdygH/PA9FnZRvJJ4aXr3uWdur3TH5REREnjAwWYX/zLed+FIIgRP5Rmw6XItNh3U4lG1oYmnHZg4LwMT+Gny4sgpHc5yfa0KpAIb1UGNMXw3G9NMgOrTpM4NdozrekO+YADXm9+iG+T26QW82Y11+MdLP5CL9bB5OVbs2z8i7FwxEt8C6y26rVCq3x/rq/uNYejofOdU6JGg78IGOD9NICqyOudIjj20w1n3mDcKMa8t/Q7VwPgkaKdNgdkAK0gJSMD0gCaEytUdiJPKkGqMZm3PLMTYmHM+M7+mRdRgMBpTojbhh1cG6uRGdlKBVIzUlGmkpMZjSNRKBSv8YRdNWXy3WIFoeCECL+kmuS8w6bNXlY5MuD9v1BdAJ5/c54mWBuDN4IHbsE/huqWtllT2SZRgzXI4xwxXo3UOyu7rgU//VYf1WE2BiVoxseT/x1DDpVJ9kWsTkExEReVaYVoYpQwPt2qcC+NvMMABAXqkJy3ZUI31rFX7bXY0affN7yAfPGvDU3DA88nFFi3MXxYXLkTpKi7TRWkwdGuC3JXTuppbLMT0hBtMTYvDfUYNdLsnbWlyGG1MSAQAajXsTQ0II3LB2FwAJy87m4699ODePNygkGaYEdPXIY+ukulKWD2oOOpV06q+MQFpAd6QGpGCMOh5yiZ9j8m+rTxdDbxLYXVCJsfFh0HigTFCn0+HpbSedSjoNjwlB2rlkk7+W0LXVuJEKJAY2PmwPwlUIAtADOrMZawsKkZGbi/ScXJyuqWn28XItNRjeX4avXgkFjjX/JqjVwJSxCqRNUyB1mgJdE5r/jnu7rBo47psXfnCWEIKD3z3Au4knR0mnekw+ERGRl8WFK3DTtFDcNC0UOoMFa/bVIH1bNTK2VeFMkf1B6elCM257twRNXZF9WA81UkcFIm20FiN6qiGTcdemOY5K8pZl5yHjbH6TJXkfn8zG/f16IEkb4PZ4dhWXI+fcVfPSTzPx1FEZhBkvVu90eJ8CMkzUdLEmm3oow9o3OCIPSz9eN79TjcmCNWdKMCsl2u3rKNEZ8db+sw7v61QldG6ikcsxMz4OM+Pj8MawodhXXo70nLok1NYSxyds7t1yFAf+HOHw8WKjJaROrUs2TZuggDawc+2rHD5lQl9vB9EBeS/x1FzSqR6TT0RE5CGuTmatUckwa0QQZo0Iwlu3xmBvlh7p2+pGQ209en7Czx0n9KibeEGCWilh6tAApI3SInW0FolR3h9o7M9iAtRY0DMJC3omNVmSZxICL/95HG+OdP+lj9NP51v/vzK7ELUmMwL8bNJgatmntYdxxlJlvc0SOuosLEIg40SR9Xb68UKPJJ7e3HcWFYbzpWHxDUropnaiEjpPkCQJg8PCMDgsDI/274d8nQ7LcvOQnpOD3/LzUW2qe90PWIqB7iXAiboZzIf0lyFtmgJp05QYOUTWqU+M/bHXYJN40hsE+K3fdt7ZA3Ym6VSPySciIvKAyprWXy5akiQMSdFgSIoGj10dibxSE37eXIanvy5DbqkZYwao8MAVkZg2LJAldB7SuCRvf1kFfso6i6U5hfgsKwf39+uBPm4utUs/k2f9f63ZjN9zijCnG69u15HUj3bqJw/HLHUSLg/uxRI66jR25lcgt1pvvZ1xoghvCeHW8rYSnQGL95/FsKggzE6KxOW9EjAsJsRuriByj1iNBgtTkrEwJdlakvfaptP4ragAEVefwCJNNC6fFdBiCV1nkrnXgJsa3N55yIAxU7wWTofhncSTMDuXdKpnTT45P2kaERFRvbwS+9+P4orWJ54aiwtX4IaJWgzqpkLfLgocyzNhVN8gtz0+NU+SJAwKD0WvADXu79cDBTo9akzu3WfIqdZhR1G5TVvGmTwmnjqYCmHAr+Fp6K4IBeD+ecKIfFl9mV29M5U67C2swpAY911OvsZowY6rR6GLtm4MCT9jLRMuj9F2rL4kL7pnCD6fCJw0VaFXUN2cl1Qnu8CMw6ds9x/+2GfAGC/F05F4J/H05ArXl+FIJyIiaqVdx+yvTldS6b7EEwDIZBKG96i7itrgZPdfTY2cF6Nx/6D4pWfy7doyzuRjsZtHA5B3RckCECVz//xgRP4g/UShwzZ3Jp4SgzXQ6Vru1xll5zreLzl42IKuw9y3ngG96xJNgxDivgftIJZm2m+cf+w14l7+1rcZ05tERNThOUo81eotOJbt31deofbTsMyu3tlqHXYXV3ghGiIi98qu1GFXQaVde/rxAi9E0zktW+14pO6qDe49UUZNS99gn3jKL7Fgz9GWr3JKzWPiiYiIOrTSSjOONJFgytjc/CWHiQCg1mTGquwih/c5SkgREfmbDAejnQBga14F8hrM+0Sek7HKcXJj1XomPdpDjc6CVdv0OKXqgoe7PGT9O6Xq4jAhRa5h4omIiDq05VtrIZo4WZjOxBM5YXVOIWrNjs9EN7zSHRGRv3JUZldvaTP3kXvU1Aj8nun4d2b3AQvyCjjqydNWbzNApwfOqrvghYQ7rH9n1Uw8uQMTT0RE1KE1N6pp/V4dyqu4M0fNy3Awv1O97UVlyK3hDikR+a8aoxmrT5c0eX/GCccjPsl9Vm80Q9/MT8nSVbzIlqdlbGz6Ddh20Ii8Ir4HbcHEExERdVhGk8DybbVN3m8yA79u46gnapoQAhktjGpyNPE4EZG/WHWqGDpT0ydhfssqgs7NVwolW+m/NV9O19L91DZCiGYTT4DjicfJeUw8ERFRh5W5X4eyFkY0ZWxh4omatqu4HNktjGhiuR0R+bOm5neqV2OyYM2ZpkdEUdtYLAIZLYxoWrneDJ1OtFNEnc/OQ0bkFDa/v5i+gXOdtQUTT0RE1GE5M4fTsi21MJm5M0eOOZNUWpldiFqOBiAiP2QRwqlSuvTjnOfJU3butSA3v/n9kJpaYE0Tc0BR2zkzh9PKrXro9NxfbC0mnoiIqMPK2Nx0mV29kkoLNh3kWSxyrLn5nerVms1Yk8s5UIjI/+zMr0CuE1etyzhRBCF40O0JTV3NrrH0lSy385SMjec/A2Mrt0G3PcX6N7ZyGwCgRiewZgf3F1uLiSciIuqQjpw14shZo1N90zex3I7s5VTrsL2ozKm+6afzPBsMEZEHODuS6UylDnsLqzwcTeeU/ptzI5kyVpqZ/POAnEIzdhw6v78oQUAtDNY/Cedfc17drvWYeCIiog7JlWSSMyV51Pm4Mml4xpl8HhAQkd9Jb2F+p9b2Jedk51qwc59zV9c9kyOw5wCvxOtuLU0qbttXz9/6VmLiiYiIOiRXEk+HThtxLNu50VHUeaSfcX4U09lqHXYXV3gwGiIi9zpbqcOugkqn+6cfL/BgNJ1TxkrX5m1ydnQUOc+VUUxn8s3Yc5Qlj63BxBMREXU4pZVmbNzv2nDoDI56ogZqTWasynZt3iZXElVERN621MURTFvzKpDnxHxQ5DxX521ydj4ock6NzoJV21zbpllu1zpMPBERUYfz67ZamF0cjc5yO2ro95wi1JpdO7Oc4cQV8IiIfEVrSueWOXEFPHJOTY3A6o2u/c5s3WVBXgHL7dzl920G6FzMpbpSmkfnKVqzkE7n/y+2Pz6HgIAAb4fgVv74HjTkj/FzGyJ/0Zb3du8pPT5fY1s6oFYBjfcrZBIAGWA5t/+2bm8tvlhXjCtGa1u13o72+ZIkydshtFltbctXNWzKTyezbW4HKeSoMtkeIKhlMpiEgPncfA/bispwsrQc8QHqVq+3IX//juvM29AxcxmMsKCfPMLaZjAa7PoJIWzeZ7OwYIXxNGarklu1XnJNaz9j5bVm7Dmrw0W9zv9e6PSOR6LodDqoJDmAuvd73dEajOimQbBG3qp1O3r81qgxmrH6VIn1tgQgQCFDjck2qRGklKPKeP6776ejebi2V2Sr1lmvo/1etuY9qDWb8erqIuh0Eah79QGtFqh20DcwEKgpO3/737/l4O5LghGlat1vTePXv7Xfc7//YcbooTJoA89/15sdnLAxmkw2r1FeocDpHIFRQ9wzBqYtv5U/rbV9xYMCADSqPlUpAbkcqH9qWw8YkZVdg7hI943h8fffe2dwxBMREXUoQgBLD1YCAUb0SJTh0wfDcO1k+51cbYAMO9+Kxl8uUkNSm2DW6vHxGl6xh+oODpdl140E6BkciA/GDMS7YwbY9esTqsXetHG4sXsC5OeSLL9mc/JdAsIkNUaVf4Mbq37Dn+aSFvubhQVf6Y9gePlX+Ex/uB0ipLYI0cjw189yMOO/WVh/1FGqwJYQAmuPVOPi/57C7V/nIkjt/UOw38+WQWe2QAJwZc9obJs3AmPjQ+36PTsmBV/O7I9BkXVJttVnSqEzccRNWwXI5Xir/CDwz00IGFaIB28Hdq90nIz84X05nn5AhpChJcDtW/CmbAcilKp2jtjejv0C/Wfo8foSE6prWp5wO69Q4IEXjeg3Xe9Uf08TQmDZproTAj0TZfjgUS3eeSjIrl+3WBn2fhaKG2erID/3Fv26ifOCusr733pERERuVFYuoJRJgNqMU7U1WHOkGiXV9mfghBBYf6QGm7KrIAJMgAww6/izSMDu0koEKuT4YMxA7Eodi2u7J0AhOd42ugcH4t0xA60JqN9yWIZCQJQsABcoYvCt4RhGlH+FG5pIQJlxPuG0sHoVjljKMEeV5IWIyRWSJGH2wCCsP1aDGW+cwvT/ZmH9Ucfl2muP1iWcZr15CpnHazB7QJBPjAb8NavYmnD6bEY/DIh0PNpXJgGX9YjC5rnD8eXM/ugRGoB12WXtG2wHZLEISPtjgO5lqP3rNqwZswk7zY5PXBwSJVg7fDMq/rYZ6FcMxaFoGOwHULa72ZNlKCgGHn7ZhH7T9XjtQxNqHAyeyi86n3B642MzVEpg3Ajv72/tOmKGViPhg0e12PVJKK6doYaiiYGI3bvI8e5DQdYE1G9bfeAN8DOtKrUjIiLyVX27KfHXaUF4e2UlTGbgwzWOr9hTZbTgziXF1tshARLeui28vcIkH9YlUI1dqWOhkDm/Y1yfgMqt5cS7VGe2MhmbTHkQAL4zHMN3hmN2fc5YqrCwepX1tgwSZiiZePIHcwYG490NpQCADcdqsOGY48TT3PfP2i3nCx4dlYR4rfOlWjJJwmU9onBJ90gU1HC0R1sZjMCSv8bh0n3HAQBby0oxd/dWh33vztppc3vxtfEwGgGNe6q6W61/TwlJXSScyhYoLAEe+bfjctM3PrY9+XfxeBlUKu8nXxNjZNj1SSgUCudjqU9A5RZx1J+rWpV40mg07o6j3fn7cxDC+8MTXdW4dtXf3wN/j5/bEPmytry3SfHA5RcKvL3S+UtEA8DMYUHo081+iHVr+ftnzB8/X41HEbT2OXRzsJxKqXS4vsbrSHHj6+aP70FD/v4ZANr2Hlwh74PHaze7tMwYVTwSA5kAby9teX+nD1QhSH0WVXrnD0BDA+SY0j8CShcOdFvS2ufg6LtK5iDZrlQq7daR7MY5mjrr94RGA8wJiUf0ETUK9c6fsFDLZLiyZ1doFe4bP9KWz8El0wTe+Ni10T+XTddAo3FfqWCrf+vj7dtUSkfbo4Pf+sRWrdKq8bxa/v577wzvj3EjIiJys4n9tQjSuPYTlzbSN85CE1HH0E8Rge5y+zlzmpOm7u6haMjd1EoZpvcPcWmZWQND3Jp0Iv8ml2SYE+sg+9GMqdGxbk06tVXaFPuTMs2RyYBZE30nfmo/TDwREVGHo1JKmDHU+avTyWTArGGtu5odEZEjkiQhTeNaIinVxf7kXWlDXEsspg52rT91fKnxCS71T4t3LVHlaReNUiDIhd2ncSPkiAz37RSEXlIhS5Vo/TPKvT+Re0fg2+86ERFRK6WNdL5sbmzvAEQG8wwcEbmXK4mkFHko+ivadpl6al+zB4bA2XnC5bK6EU9EDU2PiYXKhfkE58S5lqjyNLVawowJzo96SnVxhJQ3bA8aipQhW6x/ByKHeTukDoGJJyIi6pBmDwty+oCAZXZE5AkXqRIRIjl3tjxN090nrnZGzosJUWJ0inPDPcb1CEKElic4yFawUolJUdFO9R0aGoaugYEejsh1aVOdTya50pc6FiaeiIioQ4oOVWBMb+cmQHVldBQRkbNUkhwz1MlO9XW1LI98Q5qT5XOuluVR55HmZLmds/3a2+xJCqdO9PVIkqFvD6YfOiu+80RE1GE5k1DqEadE3y6s3yciz3AmoRQsqXCRqo2XSSKvcDrxxPmdqAmpTpbPpflYmV296EgZxgyXt9gvbYqSozo7MSaeiIiow0od0XLiKW1EMHeEiMhjZmtSIEPz3zEz1ElQSS0fuJHvGdhFg6TI5k9e9IxRo3esup0iIn+TrNViYEjzick4tQYjwsPbKSLXpU5uuYQubSpLTTszJp6IiKjDGtBVjeSY5neGWGZHRJ4UKQvAWFXzIxXSND3aKRpyN0mSWhzNlDY4lCc4qFlpcc1frS41Ph4yH96GWpq7KSQImHCBfySeuuuy8J9Tj1v/EiuzvB1Sh8DEExERdViSJCGtmVFPIYEyjO/rexN1ElHHkqpOafI+GSTMbuZ+8n2pTiSeiJrT0vxNzpbjecuA3jIkJzadWpg5UQml0ncTZw3FGwtwZ8GH1r+o2nxvh9QhMPFEREQdWnMjmmYO1ULlJztCROS/mhvRNEYVjyi5cxdCIN80qXcQgtSOD6tCA+QY35Mja6l5oyIiEK1yXI6plmSYFhPbzhG5RpKkZkvpeDU7YuKJiIg6tIv6B0LTRHIpbWRwO0dDRJ1RP0UEussdj3pJVfNqdv5OrZRhev8Qh/fNHBACpYInOKh5ckmGmTFxDu8bFxoDrcL3y9RSpzhOLslkwKyJvh8/eRYTT0RE1KGplTIMTNQ4vG/WMG07R0NEnZEkSU1e3c6Zq96R70sb4jix2FQ7UWNzYh2X000Lb37+J18xcZQCQQ52q8aNkCMynGmHzo5bABERdXjDkuwTTyEqOSKDeQaOiNqHo3K7FHko+isivRANudvsgSFoPPezXAbMGuh4JBRRYxfHxAJG+8PzaWH+kXhSqyXMmGA/6olldgQw8URERJ3A4K4aQNi2RQRwR8iRY6fNWPyNHjq9aLmzr4mMBcZMA4LDvB0J+akcUYVXTNtwu3EV3jPvcetjT1B1QYiksmlL03Tn1c46iJgQJS5MsR3uMa5HECK0PMHRkZiFBW9W7cMnRcfwbe4Ztz52sEIJHI2wbTwdgni1/1wExVGSiYknAgB+ExIRUYcXEiAHzBKgOJ9MidDwJxAATCaBzN1GpK/XI32dDkdOWTA/TQmN2g8PhksKgCmXADfeBZw8jGd3HEVaUiwGRwbz4J6atdF0Bq8btmGNJQslUi0gAf3M0SjRGZCm7IXhstg2b0MqSY4Z6mR8qztibWOZXceSOjgUm05UW2+zzK7jKDUYsLwgB+n52fhRHII+sgqxCMSm8u64zNITEwO6QC25Yb9ifwzQv8j29tVtf9j2MnuSApIEiHO7Wz2SZOjTnWNdiIknIiLqLIxyQGGq+79ZQoCi8+4IlVZY8GumHhnrDVieqUdpxfmEnFwOPLjA8ZxYPk8IYOmXwK2PACl98Pi2w3h822F0DdIgLSkWqUmxmJwQCY1C7u1IycsMFhOWGPfhY9M+7BS50MvOfTfUfy2YJfwpSvCUPhNP6TORIAVhjqIH0pQ9MVWRjECpdWfw0zTdrYmnYEmFi1SJbng25CvSBofi0Z9yrLdTBzHx5M8OV1UgPT8b6XnZyCwtgrk+myLXQBZejXxZDd6u2Y+3a/YjSFJiRkAS0gJT/r+9+w6PozzXBn7PbFWXVW1ZVnWTuwH3DtjGsjYBkgAhJIScVEjPgSSQfDkpJIEkcEhIOUmABEhIp0iWK+7dxgX3brnI6rL61nm/P1Z9+2q77h/XXnhnZ3af1Uozs8+8z/OiNL4AmSo/RykdywLuOznwfhTJTJcxd6YKew7ZAACG2zW88EMAmHgiIqLhwiIDcX3/Hm4nQueqrN2jmkzYcdgCm835eg+ValA4OoqTckf3AtcuAbmFvYuuthvxmxNV+M2JKiSoVViemwFDQTZK87IwMj5Kk2zks2pbO5637MOb1rO4KDVDSAKQYL/1J4AZIhtHUN+3rWjHHyxH8QfLUeihxp3qfBg047BaXYzRsvezY5bqCyFDggKBlbp8aCUmQWPJlNF65KdrUdVoxtgsHSaM1IU7JPKBRVGws6keFbXXUV5bjXMdbc5XtMn4kHoc/qn0jV5sFxb8u/M8/t15HhKAubpRMMQXwhBfiMmadO/POZrigeuJwOh2oEUHXI2+5KXhdk1f4ukOphvIjr8JREQ0PCiSvdxOJQBrFCdWvDSwhM6Es1UuMk39RPVopx79Rz050WG14a3LtXjrci0AYHZWKgz52SzJi1F9JXRVaJI67UkmD3/+c5XR+I56Hsosbzp93AgrKqwXUGG9AAC4Rc6GQTMWBs04zJSzIbv5HUqX4zBfm4Od5utOm41TdJMkCYZpKXhxSz0M01K4P4kCTWYT1tXdQHntdayrv4GbFovHbeanpuMXGbNQWX8RHcLq8LgAsMd0A3tMN/Bk824UqJNRFl8IQ1yhdyV5x7PtiafjWYCIvt8hwx0aPPlzI1KSgEWzmG4gO/4mEBHRMCHZE06yLWYTT+5K6LyRkynhT++YAQBqtePJdCBo4m2wTLkRlOfGBz5u/78kARYLoPFcDrW/7ib2193sLckry8uGoYAleZHMJKz4gWmX08esioL3RR2OiTrUoB02WbE/4MOf/Dk047O29ZBlAWXwrAROHMINHLLcwPctO6CBCmmSHiMQh1RJB9lhOBVwXdsOWBWU6gqdPBtFu/6JJwqfF1uP4oa1w+ljjRYTznW04Vx7G64ZuyB6SuhGePfcNfEC913bDL1agw7Z87HysrUVL7YexYutR6EVKhQqIzDOloFiJQ0J6JtwwKYAuNsMpBgBSURdmV2PyeNlFOTKmDNDBY0m+hJnFBxMPBER0fBhke0nc06+DEars1VWVHhRQueNqzUCz/7Z1H3P5HZdf2WNsaLOcj4oz41VQ+vAerXdiN+erMJvTzqW5FHksEDBj017+i3pLpmThf3v21n5nA8aVZ1DiM2KWrSjFu2uV1IDo3VpyFDFuV6HotaS8YnIHaHBwrGJ4Q5lWHup7QSOmOtdryABSOq++egiOnHRz7jMkg1nVA04o2qwD43qUgOtOqBNB5hUQGn3zqtDA5zO8PNVwkuSJBjuUGPO9BhLNXR0AIcP+7ZNejpQUuKwWDp2DGht7Vug86Isd84cxwtqdXXA2bPO1wcAvR6YPt2rC3HBFmO/DURERG7EwEgnf0royHeDS/LGpUbPdNbDgwhYoikcZquZzIxVOo2M5+/LhUYdZb+UMcYmlHCH4JkEIN5qv43sAMyyPQHVpgXez7RPihKl7l6uwfSS6Iz/RNx4rBz/l977nakT7P+4fBlYtMi3J7vnHuA//3FYrPnKVyDv2eNkAzfq6oDMzIHLNmwAPv5x99vNnAns2xf25BMTT0REFPv0VsSPto9isCmASga0UXQh0WoVSFlW03vfZhOwKUCiNvpO6roS3YwEiWAWq8AXxhVgVV4WFo1Mg0Ylu+3lQ4H3BVslXlXet9+J65uhMhp7oIxTe1nTQ1Gjsd2KvO8e7b3/8Ov2/9/48Qwkx0XHvvrtu2fAJgS2X7mJ2TnJ0KtlaOXouWDzl+pL+OyJvRAQMObdRL8qtuigUoDsDiCrA6qiFugePgUAEJmfhF9Ds8Lgof9uw5ubzAOW/eir8fjaJ6NjhKdhkR7Xdk2EEBOweb8Fd8zRRv+x/vBh4OhR4LbbwhoGE09ERDQsdJoH9moxW33rfxRunUbHeA//LR3XaxWUbzehYrsJJy5E/uinroxWzytFAFkC5mWPQFl34/FJIxLZKDjMzMKGTnQ3/u35KIRkL6GNstFPas5mF5M6zVEwysaNnr52b52rhyRJuKsoPcwR+cYqFHTabIDeAshR8lmYVPYRTm06oEMNzKwDJMAGBZ2wv4doOvSYzEBn18BlXvRrjxhqtQS1WsKhUxa88k4XPrA0yidc6WE0hjsCJp6IiIiilUqWsGCmFgtmavHTryTh4jUrKrabUb7NhG3vmWHxsT/4qEwJK+faTw1UQWqs/bKmDYmmONw/PfBDzl566aW+O7OX+TysPEmjxsoxmTDk2/s6ZcRF2+Xy4We6nIXbNKN773fBguNKAy7jJlolo19JqHibFmpIaIPZ58FUEoAEaJEADRKggdpFV/Np6kyny4nCTQiBivONUMvRl3jqFW+1J6VvapGt06MsM7f3IQUCdSYjrnR14kpXJ1osZjdP5Fy2TodklQY1mja0qXzrhygJINuWhDHWEcizjkCKooeklYB0QElX8ArqfI6HAq98uwkb9phhNAnodd0HgoICYMcO354o3fnfkOWFFwb0eNJ50+MpNdVx2YoVzmN6/33gsce8DDI0mHgiIiKKEUW5anz5QTW+/GA8WtsVrN9tRsV2E9bsNKHxpucRXk0tAt/5jB6js2To9YG/yrfxeCte2mJCh0mF3yyYCq0msCUcLy37lf0fJTOBBSu82qYwKR6G/CyU5WdjSU46tKroKSshoEwzFj9SLXP6mFVR8BfLcbxkPYqD4ga6ZO8uu8/HaDypmovbLf/wav0xUjLKNMUwqMdimTofek9TpRNFsMO1bahuN6HifCNeXC6ic6RnvAWABNzUY3x8Dv446U6Xq17oaEN57XWU11Zje2MdrMLzsXJ6ejZem3EbJtb9FV5MfIkUWYu74gpgiC/EqrgCpKmcH18twoZXru/1/IQUdBXbjeg0Cmw9aMZdC7qTQgkJwMKFAXl+MXXqwAX+nnNlZdlvUYBHRiIiohiUnCjjIyv0+MgKPWw2gb3v9zUkP3nReUmeyQz84jUTnvtGcHox/Hq3vU+V0Nnwx52NeHRZkEZ9lD3o8iEJ9hI6QwFL6GKdWpbxsG4aHtZNAwDss17H/5oP4F3lMuqlDpejod6VL8NodV+2Ols1Cgb1WBg0YzFNzuLvEMWM8vMNAIArrUYcq2/HtKzo6C3US2MDtN1ldvGek83FCUn4atFEfLVoIlosZqyvr0F5zXVU1lWjycVoqA2NtXiy8QCahevRTmPVKTDEF6EsvhCL9DnQsLw2alTX2XDwpH3IePl2U1/iiYaEiSciIqIYp1J5X5L38ttmfOPjOhTnBT6ObQ31vf1R/3y0JjiJp5KZQNHEAYv6l9CtystEZhxPIoejOerReENtL8urU9rxv+aD+Lf1NM5LTVCkvmELQhLYKV0FRN/ot3hosEJdAINmLErVxRgpJ4Y8fqJQ6Ek89fw76hJP/ZNNCRagw/tNUzRa3JeTh/ty8mBVFOxpbkBFbTXKa6/jVHu//oSygj+bT6F/Ja0MCQt0o2CIL4IhvhATNCOYkI5Sa3b2JRTLtxvx4reSou+zzMsDfvjDgffDjIknIiIalozm6GouHkguS/J2mNDYIvCL10z4zVPxAX3NqgYTbia09d4/0tUY0Ofv1TPaqaEGX146lyV05FSWnIgf65fix1gKq6LgNctxvGI9igOiGkbZCsgCo5QE3K0dzxI6Gjaq20x4r6ZvP11+vgFPzS8MY0R+6J940iowdvnX2Voty1iUnoVF6Vl4ZtKMASV5W6WLsMo2JECDVfo83J00FnfF5SNdFR0zt5F75dv6Ek9XaxS8f9aK6RN86xkZdnl5wHe+E+4oBuARlIiIYp6zGeGaWqNkxpsg61+S19HRhX3Hbdi83zqwoWYAPLe51j7zWDdzYhc2n2rD7SUBvJqekQ0c3Qe8/ivgxhW84EWvDiK1LOMR3TQ8opuGi10N+LF1D66gDXfK+XgibkG4wyMKmYoLDQPu769uRW2HCdkJ0TFKtENYAP3AMtlGTXtAnrunJO9LhePxVJ0GUqcGeSIFj4woDEpPRAqPLqPApv0DSygrdpiiL/EUgZh4IiKimPf+Rcc+DY2t7nu4DEcqlYT509WYP10d0KQTALxzsQ5IGLjsVztvBDbx1FALbPhX4J6Php0cKREvapaHOwyisCg/NzDxJABUXmjEI9NywhOQj47Z6h16tzVpfKi184JKkvE/KbOAlIA+LQCgq8v5xZL6RoHc7MC/HjnafMCELuPAZeXbTXjq0yyvHiqOOycioph3+Jxj4qmlQ6C1g6OeQsFotqFK3eSwfFt9g5O1iYgo1DotNmyqctxP9+/5FOmOWOsclrWoO9Fqc94kPNJs3uH8nMTVcgq8/mV2PfYft6C2kRcrh4qJJyIiimlWq8D7F5z0eBDA+v1doQ9oGPrDzkYIneNJW3NCK640up4ViIiIQmNzVTOMVscEx4ZLTR5neYwEFmHD+7Z6h+VCAjZ0XglDRL5bs9H5z3nTtsj/+ccCIQQqdjiekwgBrHGynHzDxBMREcW0XcdNTns8AUD5biaeQuHVo7XOH5AFnn/XxWNERBQy5ecdkzYA0GGxYeuVm6ENxg+7um6gE1anj5V3XApxNL4TQrhMPG3bo8Do4jyGAufwaSuu1zkfXVa+PcoST7t3AwkJfbfdu8MdERNPREQU2yr2uE4uVe7rgs3Gk7lge9/oulTj7YuOpRFERBQ6QghUnHc902hFFJTbVXRcdvlYZUcVbCKyy9UOvy9ww8V1mK5OYOuuyI4/FlS4SS5t3GuG0RRF54uKAnR29t2U8P/+MPFEREQxrXx3p8vHGlsU7DkRZVexosy7J9pgTjS6fPyyuglGM8sIiIjC5VBtG6rbXR8Ly883QET4LKHl7ZddPtZgM2KvMbJH15avd38c9PQ4DV35dtfnKh1dAlsPRkevsEjFxBMREcWsc9csOHPF+dD7Hu5GRNHQ/WrXDbePC50NL+9ybGhLRESh4WlE05VWI47Vt4coGt+dNTfjrOWm23Uq2iO73M5TYqligxLxyb9oVl1nw8GT7s8Xo67cLsIw8URERDGrfJfnpBL7PAXXtgbnfUP6+/PRmhBEQkREzngzc10kz27nbrRT7zpuSvHCrfqGwHtH3SeVrlwTOHaSiadgWbPTc1KpfLuRyb8hYOKJiIhiVsUe12V2PU5etuBitZNZ72jIqhpMuJnQ5nG9I12ue4sQEVHwVLeZ8F6N5/10JPd5ctffqccJcxMuWVqDH4wfXDUVH4zldsHjrr9Tj6s1Co6dcz8qilxj4omIiGLSzTYFO973blg0Rz0Fx3ObawHZ89VBc2IXNp/y/MWHiIgCq+KCdwmlfdWtqOuIvB43zTYjdnRVe7VueYSW23mbUGLiKTi6jAIb93l5vshyO78x8URERDFp3f4uWL08R2PiKTje8WHGul/tdN8LioiIAq/8nHeJJwFgjZdJqlBa13EFNnhX/hSJ5XZdXQKbtns349j+QwK1dSz1CrTNB0zoct1XfAAmnvzHxBMREcUkd7PZDbbtiBEt7eGfajaWGM02VKm9bxq+rS7yvtAQEcWyTosNm6q8309HYp+n8g7vRzFt67yOVltkjdp6d7uCLi+vfQnhfVkeea98m/fJpP3HLaht5GfgDyaeiIgo5litAmv3eXn5CoDVBmw4wFFPgfSHnY0QOu9PzpoTW3GlkVcSiYhCZXNVM4xW7y+6bLjUBKO3Q4lDwCJsWNtxxfv1oWBDp/frh4Kv5XMVGyLn5x8LhBCo2OH9uYcQwBof1qc+TDwREVHM2X3ChOY230YwsdwusF47WuvbBrLA8+/6uA0REfmt/LznWUf767DYsO3KzeAE44fdXTW4qfiWBPBlhFSwCSF8TiRt2KrAaGS5XaAcOWPF9Trfzhd9SVRRH7U/G0mSFOg4Qs5o9P5KeCSKxvjj4uLCHUJAReNn0F8s/B1T7BrK31drl4I3t3f4vF3l3k7caOjAiESV36/dn7/vwWwRsClAnK7vb9RqdX6SaTQZYTT2xWuxClisQLzev7/v/vvpLm/H/rtw1NgAJPq2zVsXavETY9aQXrc/7qfDa0h/xzAhGboBy2ySzeGSqdVqhdEy8HWcbeutWDtXIff8/R01WhTIEqBV9/1CGk3OZ7symozQSn37aZNVgRCAXhOY6//+vgchhNf9nfp780wNluQk+PWazvgbf6vVgjfbzvu8XWV7FW60tWCExr99BOC4n/DneGkWNhw6rqC6xrev4x0dQOWWDixdKhAvaXx+XWf8/gzaBZITBx6nbIpjIs1itcBoHLies239NaRjZfbXgFFP+LTJmxubIMmjABG4BNRQz7kGk0ymAUdBk8kEEeZzIo54IiKimLL/ghH/t7sB0Nq/BJTN02HFLK3DeglxEr778QSkJEiArKARXfjk77xvhh0sKhlY9oVW/OZfRhhN3l3VtFgFXl1jwpxHWqFEQKuqLac6YE7sPsGxyLjVnIMRrckO643vzEJ+ewbQHXOVphlGM8sICHhBOoBPS5U4j2avtzmKWtwvv4U3pJNBjIzIbt7z5/HSniaYvSxVM1kV/H53IxY8fx4qOfxJ5cN1HbjRPUtdklaFb83OxeyRSQ7rfWHGKNw9Nr33fuXFZggR/hE3+1ob8fubp3vvl8XlY7mc57BeglWH76TcghTJfh7QoBjxyYt7QhanKypIeED3JvDAMUBrxdhC4NfPOF/3/z0OTC0BoLYBHzyNT+f8y8t26sH1o9+a8dgPTKi67v2Jx4FjNtzzRSMqtjhP1IZcyoq+f7duBmpecFzHeB6ofhqwdvdDUyUAifNDE5+/tFqInJzeG7SO58GhxsQTERHFlJwkDboUG5DRhZlzzfjSA1rkZjiOYpJl4FMGPe6/W4I6pwNItEA2B2a001CoVBKmFqvwjRc6UXL/TXsCykUvVKsNeHWNCdM/1oLP/bQDY7JlJMaH/wvNb/bV9Sac3rt7DnY+NsHpldn8xDic/tpUvLlgFvLbMyA0NryypyUMEVOkWSGK8Bf5BKbLL3lMQPUknOaqXsU70jncJYpCGCkNR3qNjLGZOnzxX9cx5adn7Qkom/NUgMkq8PvdjZj847P4yr+rMTFbD40q/PvpyotNvQmn05+6Fd+bn49kreMxsCQtDm+UTcT+j83A3WPTcbXNhOMN3k/eESyj4rXoUlmADjVm3hyDL6mnI1dyHGarEhI+pS/BfaZJUDfHATZAlRD+pIdKkmE5mQ58axdSd/wVn1t3DHff4/zCy9IlCr7wzmlk7fwb8P2t6LqYiHj/CpcCavl8FV7+txVTPtDlMQHVk3Ba/JARG3bZsGJh+OOHOhuIn2FPOJ1dDVz8GNB11HE9YQTqXgROzu5LQCUvD3m4vhCzZsF04ULvTcyaFe6QIuA3loiIKIA6uoClJfHYeqYTh6+YsPKZaqToHa+zdFptKHm8CkaL/cuCLAFltwSufGAoShdo8fo6M2oaBb7xQid+9przIdi3f6EVNU19X3ZWzQ/MsPuhGpcWh/dWzMGkHL1X6981JRGnp0zFuuPtOFcf3eVxFBi3YSQyRTzqpU78RTqBN8RJpMHx9+kV6X08I+/tvT9FZCAfKaEMlYap0pIkvHOsFVebLfjiv65j5HrnX6tm//wcatr6Eh2rJzuOKgqHienxOP2pW5Gm9+64MTUzAW+UTcSx+g60W8I/MrVTsmJJeyG21TXjMNqwsmk7UlIFkDZwvQ6bFZP2rYVRUQDoILVoUDYjNywx99fVJfDAiHz8BmdxU9eJx7t24efGw07XvV/zFuo7OtGzC3wwMx8NTUBmutPVQ2bxLBUS44H2TuDlf1vx6ttWJDs5jfrVa1Z8538tvffnTJORMSL8yVdoMuwJp85D3q2vdNgTUA2vACkrgxtbDPIr8RQJwyt9Nbh2Va/37mQ4UkV7/ED0/R4Nrh+Oxs+gf/1wNMYfC3/H0d6zJVSG8tkumqHHwy1WbD3Td0W2xeh4Fc4GAVvfeRDmjY/HY3f7fxY3uD5/KO+hbJEWWk07zN3x9U8u9Td4+T3LEqHXB+aa0lDif+6+Aodlzn71VbI84HXuvi2wf9PRto8I5O9QuPTfxw01/tXWcfiTsF99ViSBBjgmYOukgSMvPqCaAL3W/9eNtc+A3BvK53v3zEx84Z/X0XM62z+51F//5bIEfGB6ZsD204D/7+GhaY7JF1nleJFGo9EMeI1ZYyJjP71Yn4eHsyzYVtdXNtditTisZxMCtn416AtSsvFo1gy/XtMVf96DXg/8ZPk4/KH6XVi6681rhfORZPWD9nPfmzsBY9SB60fn72eg1wMrFlrxnw32YdlWK9DkZNBybePAc5UP3qEf8r41WN9p3txsxL3fuDlg2fTpM3DkdGC/t8bC90pfsdSOiIhiTumMJKeJDncMt0TGVWgASEqQsfRW3xqfThunRv4oDmSm2GGQx/m+jTQ+CJEQOcpO1mB2vm+jZBcUJSI9kfvpQFmdORq+plkNmeEf7dQjWdZhqc63eKZrMpGnduyZGC6GZb6PtDbcHhmjsym0mHgiIqKYk5Wixtyxvl0NjKTEEwAYFvl29cvX9Yki3QqpGFp433ctE/GYLY0OYkREAxmmpgZ1fXIvS6fHnJQMn7YxZEVO4gkADHG+9aQz6COrh13pEq1PF/qKxsgoKQ5/P00KPSaeiIgoJpX5kEgqytKgZLT/UysHQ9lC3+Jh4oliTaKkxTKpwOv1V0vjILPMjELI10RSGRNPAVeW5X2yuTg+ERMTIme0EACU+ZhI8jVRFWxZ6TLmTPd+FJ9hmZblwKFw8SLw9a/33S5eDHdETDwREVFsMtzi/cll2S3JEXciVJCjxpRi707mstJkzJrEoesUe8ok78vt/CnNIxqKqTlxGDPCu2nKizN0mJjNCwSB5ssIprLM3Ig71heqUzBZ7V1/yWw5HrdpsoMcke98Kbcr86M0j/xQXQ08/3zfrbo63BEx8URERLFpyhgd8jO8O8GJtDK7Ht6OYlq9QAdZjqyTaaJA8DaZpIUKK6TiIEdDNJAkSV6PejJMTY24pEcsmJqYijy9d722DD6Mjgolb0cxrdYXRuSoTsMy75KvyYkSFt/GxNNwxcQTERHFJEmSvEooJcfJWFwSH4KIfOdt4olldhSr8qVUTEWWx/WWSQVIlLz78kMUSIYpqd6txzK7oJAkyauEUrJag0UjPO9LwsHbvk2RVmbXY8p4FfJHe04rrFyogVYbeYkzCg0mnoiIKGYZbvWceFo5LRFadWQeDmdP1iBzhPvYtBpg+ZzI6k9FFEjejHoy+FCSRxRIS8cnIUHrfj+drFdh0djEEEU0/HgzU91dGTnQypHZ1HqOdiQyZPcTouigwnJdfogi8o0kSV6NevJ2ZBTFpsg80yYiIgqAJSUJSNS7P9R5k5wKF5VKQul890ml22/TITGeh3OKXQZpvMd1ytjficJEr5GxosR9T8G7JiVDo+J+OliWpGUjQeW+J2KkltkBgEqSUaovcLvO7foxSJAjt0ytbKn72GQZKF0SufFT8HEPSEREMUunkbFimuurzLIErJoeuYknADAsdl9GxzI7inWzpdHIhOty2KnIQr6UGrqAiAbxVEbHMrvg0qtUWJExyuXjMiSsyojcxBPgudzO23K8cFk6R4NEN10L5s9UI93DCG6Kbfz0iYgoprnr8zRvfDwykr2fBjgcVszRQevmIuHqhSyzo9gmSxJWuyml42x2FG6lk1PhquezLAGrJqWGNJ7hyF253fwRGUjXRvaxcoU+Hxo3X81X6wtDGI3vdFoJKxa6LqUrW8oyu+GOiSciIopppTOS4KqVZaTOZtdfUoKMpbc6P2GeNk6N/FGRnTgjCgR3ySVvSvGIgik7WYPZ+c5nVltQlIj0RO6ng600M8flY970gAq3ZFmHJVrncU5CBvLU7ss5I4FhmeurZIbbWWY33DHxREREMS0rRY2iTOeJm2hIPAFAmYtRTSyzo+FihVQMLRwbA2ciHrMk1184iULFVTldGcvsQiJbF4eieOel9YasyE88AUCpzvmopjsR2WV2PUqXaJ2O/CsaI6OkODIbu1PoMPFEREQxb2au42wxellGyejIHnrfw1WCiYknGi4SJS2WSQUOy1dL46CSeDpL4ecq8cT+TqEzI2mEwzK9SoWJCZE/WggAVuucJ5julKIj8ZSVLmPOdMfRfYZlWkiualFp2OCRmoiIYt6MMY4dL9O0wTkREkKgqsYW0OcsyFFjSvHAk7msNBmzJnHoOvlIUYCrZ4Fju+z/V5RwR+Q1g5M+T+zvRJFiak4c8kYM7GNTnKHDxGxeIAiVmclpDsvSNbqoSXoUqlKA84OSZw1xmI7s8ATkB2fldobbA9vfqfGmgtZ2EdDnpOBj4omIiGJebqoGsA488UzTBO5EqNOoYM1uE774XDuK72vG2zvMAXvuHoNHN61eoIMsR8fJNEWAmirgmQeAx9OBl2YB/y61///xdPvymqpwR+jof1YC3y/tvVs2KMmkhQorpOKB23y/1L4dUYhJkuRQVmeYmho1SY9YkKt3cpFJEx0jm3ttKxh4f0c+5Cj6HTIsG3hulZwoYdGtge1xppKBKfd0YPWjnfj138y4dC2wF/uizpafANue9W2bbc/atwshJp6IiCjmSZIEGPud+ChAsmZoo4Wq6234/VvtMDzegIxVN/Dh77ThpQojFEXg04bAX+EenHhimR157e/PAL+cCnRWAgmDTtATbPblv5xqXy+SSCpA7OpNPuVLqZiKrN6Hl0kFSJT6fcn5fql9fYm9RCg8DFNSB95nmV1IOUvPpKijbGTw9nz39yPclPEq5I/uSzGsXKiBVhvYxFlqsozPfliDzftt+O+fm1B0VxMmf7AJ33q+HbsOWWCzDbPRULIK2PL0wOTTpElARUXfbdKkvse2PWtfXw7tsZJTLBAR0fBgUgOJlt5/+3oFUQiBQ2csKN/ZhfJdRhw6Y3G63tcfiEe8PvBXJ2dP1iAjVUbDTQVaDbB8TpRdxaXw+PszwImn7Wd8kuT4zaxn1Jxa2Nf7O4D7vxniIF34XmVfMun7pcD3KmGQx+GYUgcAKOtfetebdFpg344oDJaOT0KCVkaHWUGyXoWFxc6bXVPoRN2Is2NZQJMeSDMCJhWwJzoao/eQJAllSzX49V9MABxHQAXKFx/U4sU3zGhpt98/ecGGkxe68MxLXUhPlVC6SAvDUh1WLtAgOTHGx9osecL+/y1P991PSwNWr3ZctyfptOypvu1CJMY/BSIiom4mFdDTzsbo3XWXTqOC8p1d+OxPm5H7wRu47VN1+P7LbS6TTtkjpKCMdgIAlUrC6gX2ZNPtt+mQGM9DOHlQUwUc7T4R9VSW2fP40acjq+zue5X2ZFJ38skgje99qLe/E5NOFCH0GhkrSuyNrO+alAytmvtp8pEiA7vy7P8+kAMYo2zEFvqSTbIMlC4JTvypSRK++FHnSa3GmwKvlZtw3zdakbGwEcs/fRO/fL0TF6/GcEnekifsyaTBI5/6C2PSCeCIJyIiGjYk+6gnvdVt4ul6vQ1rdtlHNW06YITRh3ZN9yzR4fIN+4mNTuc8OTUUMyao8ec1gmV25J0/fxPQAE7nt3ZGlgCNAF79FvDEG0ENzSf9Rj7N/uFnkPXkcmQjAflSKpNOFHEMU1Px5tGbLLMj/23LBwxnHfs9RYmlczRIiBMYX6RCTaOCmsbAT2JhMtlw+xwVfvYnwOzmdMtiBTbttWDTXgu+8tMOTCpWwbBUC8MSHeZOV0OlirIRce44G/nUI8xJJ4CJJyIiGk6MakAWgOg70VAUgcNnPZfQeeN3bxnxu7eMgYjUJVkDlC1imR15oChA3XrA10ofAaB2nX17OYJGa3Qnn2SxC1uebkDFw18HfjkfSDkBtEwGPvQksHOnfd2pU4GUlIHbt7cDR454fBnJZOq7k5EBTJ/uuNKRI/bn88XcuYCap93DQenkVKhlCasmpYY7FIpWe8YAZjnq+jv10GklLJ6txdrdJky5uznc4QwQ8yV5zpJPEZB0Aph4IiKi4cSksieeADS1KvjsT5uxZncXqhuiZ0r5WyZokDeSh2/y4Pp5IEmB83a7bsiSfbvqi0Du2KCE5rfu5NMksQslL30OSJGALUZg+x7gfxf1rbdlC7B06cBtz54FFi2CJ/1TuraPfAT4xz8cV/rMZ4CDB32LvaUFSE72bRuKStnJGnzt9mykJ3I/TX7q0AJ/nQrURm+PsDvnqbF2t8nzimHUU5L3WrkJGjWw5DYN8nJiYATUkicAi7mv7E6xAAsfD2vSCWDiiYiIhgFdkg0Ll9lL4Fo6JFTVGHGy0YST70RPwqnHvKnBadQZbF+amYfjtRlo7DQjVa+BSpZQNmlEuMOKXTfrh7Z9c23kJZ4A4HuVEN9JhqSWAKsAtvtQC0sURO0mG772pr0/msUm8Jm/XQQA/PLeAsRpo2MkxVdvG4MPT8hCs9GCVJ0akiRhQW6K5w0jRFVbJ7KN9njNwgqtpEZH4Kveg0bIChau2wYA6LTYEH+X/d8iaQmAuDBG5ruypVp84xcd4Q7Daz0leYBAUqKMuxZqcfscDVQqCWnJ0fH3O4B+KWB9FlBb7MdK/dJwR8TEExERxT6TsGHnpba+BTIwe1Y8PnvrCJTv7MLGAyZ0GqNj+l2tJjqvxj1x10gAwD2/PY+F+cn4wu2ZYY4oxqUO8ec7IjswcQTa90v7kk5qCVisja7kU02NfWrrHmVlwMiR4YuHAsZkVfDHvY4J31/cnYe4KJnPaVVxBgDgB9svYV5hKqZmR9eIm6tdRtR2mAFZATQKYFLQFUWHTEkGduaecFwevyAM0QxNQnwU/eABTBuvQtkSHQxLtZg9VQ3Z04Qcke7iG/ZjZM+x8uIbwMKFYQ2JiSciIhqWtBoJ/2VIwH8ZEmA0CWw5ZET5TiPKdxlxrc6/mU+0GkDV+/0iOCctGnV0nwxtq2vAjQ4zE0/BNnos0CYDCTbPM9r1pwigQwXkFAUvNn/1byT+2d8Bzz8ALDsB3HIr8KF+s/hMneq47fjxwI4dHl/CNKjHk8rZSn/4g+89nuLj7f8/f95eqtdjxw4mnijilJ9thFqWoi7x1Eut2G+RXekV0yQJiAvmPCjd1wq7/PyMtRpg2WwNDEt1KFuiRX6O0719dNr2LHDx9e5SdLP9Ag1etzetZ48nIiKi8NHrJKyaF4dV8+Lw6/8WOHrOgvJdRpTv7MKBU96P03/0njj85PMJ9ufUc+a5wa40mtGc0IYjnVFU+xCtZBnIWgl0+jjTmwQg+67IaiwOOJ+97vnd9uUpu4B3f+x+VrvERK+u9gqjF5MDzJjhXcxEUehGmwkHb7RBo5Lw5MKCcIfjH7UCqAQgRcdI5liUk6VC58HgXWAyGo24fF3B1Hs7YPXyWmFWmoTVi+2JpuXzNUhKiLDjXCB0NxK/WLgaRd/vnp12uxn4r087n+0uhGLwp01EROQ/SZIwY7wW330kGftfysaN8lH447dH4IOL9IjXux858n9vd6GuOfr6RoXK8xtrAVnAlNiF7ad9HDFCvnv4GcAC+ygmbyjCvv4nfhrMqHznLOnU43uV9uVil309IhqSNecbAQB7r7WiriOKylh7CXvSCbAnoChmPfuK2WPSadp4FZ78TDz2/CUVN7am4+UfJeHe5bqYTjph2VP4S8GUgY8VfdQ+q11Pw/EwiMGfOBERUeCMTFfhvwwJeOuZDDSuzUHlL9LxhXsSkJvlOCy7ywQ8//euMEQZHd4+39D77xe21oYxkmFiZD4w/Sn7vz0ln3oen/Fd+3aRwl3SqQeTT0QBU37WnngSACq7k1BRRa30Vbpr/Cubp8h3+bqC18odR09rNcDKBRq8+FQiLm9Iw9H/pOHpryRg7nRN9Pdtcqdf0sm6+L+xR1x3XGfJE2FNPjHxRERE5KWekrzfPD4CV94cicN/ysIPPpOMWSWa3nU46sk5o9mGy6qm3vtbaxvcrE0Bc/83gclPAVZACAExKAElFAEIAVgBTPkucN/j4YnTGW+STj2YfCIasi6LDRsv9u2ne5JQUUXT7/irElDAcrtY1H+0U1aahEfu1uPfzyejYWc61v1fKh77aFxs9W1yp1/SCUuewB5cQ6urBmdhTD6xxxMREZEfekryesryLld3Yt1eM9bsMeP3b3fhR5+PD3eIEeXlHU0Qur6rz03xrbjWaEFuusbNVhQQ938TWPIA3rrnWyibtRaatH5fxNpkYNQq4JPPAlljwhejM8LmXdKpx/cqu5NVHOVA5I/Nl5vRZe1L3Gy42ASTVYFOHR1jFayKMrC8TgLMKvYUjDWXr9tw5LQNTzyiReliNRbdGh/bo5k8UWy9SScAqFDOul+/p8eTEtpjJRNPREREATAyTcYnS/X4ZKkeNhuvsA7258N1A8dZqwSe21SL5+7PDVtMw8rIfDx45A3cunc7dsYtBbQAzMDl325F4cOLwx2dc/+z3vdtvE1SEZGDwSOc2s02bKu6iRXFaWGKyDenrc0OE8pa1NbwBOMHIZyfO5jMAogLcTARbMxIGbtfT+i9P6yTTgCw7NsD7paLcxj8F9shzEjovyAMDcajI31NREQURVSqYX4S5MSRTseSjbfP14chkuFOBroE0CLs/4+02euIKCyEEKg457ifLj8XPWXR563NDsuE2gazEh3JpyPHnCee9u7nxaz+eI7l2gXRhFNw/Jvd76znU4jxbIOIiIiCavOJNpgTHaepvyQ1w2xhPywionA7UtOO622OfWHKzza6HIkTaZokJ5N7yMCfGs+FPhg/rFnv/Hi4aSvLh8k75cL57/oucS3EkThi4omIiIiC6lfbnc9gJ/RWvLQjCpvXEhHFGFcjm6pajDhe1xHiaHy3sfUaFJXzxM2fms6EOBr/VLhIPG3cKqIm+UfhVS6c93faK67DJsJ7oY+JJyIiIgqqbXWuSzX+fIjldkRE4eZuBjtnJXiR5tf1J1w+dshcF8JI/HOjRuDQEefJpevXgeMnmXgi91qEEdvFFQBAU1oc3imb0Hu7mCZhH8Jbbsfm4kRERBQ0VxrNaE5oc/m4s95PFDxnMAEfxV977/9P4YQwRkNEkaC6zYSDN1zvp8vPNeDbC/NDGJHvtnVedzmkwiRbsbPtBhYmjQptUD5wVWbXo3ytgqmTOWaEXFsvLsAK++/RqUlZ+OCbHxvweLlyFvNV4Zu9loknIiIiCprnN9YCsusrtabELmw92Y6lkxJDGNXw1YBM/A0f7b3/3eiYrCp2FBQAzz478D5RmFWed38BYO+1VtR1mJGVoA1RRL6pMrXipuTYR7C/F+qPR3TiqXyd+8RTxXoFT/53iIKhqOSqv1P/x3+CO0IUjSMmnoiIiCho3j7fAMS7X+dX22uZeKLhITcXePzxcEdBNIC7MjsAELAnpz45PTITN7+oPQZ4mOhsS2f4myu70tUlsHGL+8TT3gMCdfUCWZmc0Y0cWYWCSnHe7TonUI9LohmF0ogQRTUQx+sRERFRUJgtCi6rmjyut7U2eqbrJiKKJV0WGzZe9LyfrvCQnAqn8vbLHtdpRBeqzZHZJH3LDgVdTibk608IoHIDZ4El5/biGprg4ZcIQIWHUVHBxMQTERERBcUftzdC6DxPA90U34prjZYQRERERP1tvtyMLqvnhMb6i00webFeqBkVK6psrZ5XlIDna98PfkB+KF/r3c/V2/Vo+ClXnM9m57AeE09EREQUa/582MuZhFQCz22qDW4wBADQwIyRuNF7g9kc7pCIKIw8ldn1aDfbsK3qZnCD8cMf6k9DuOkj2N+bbZeCHI3vhBCo8NBYvMeGLQpMJs5uR44GJ5SmHKvFljte7r1NOWY/x9oqLqNVmMIRIhNPREREFBy+zFj39rn6IEZCPWZjP24gp/cWd2x/uEMiojARQqDinPf76fJzkVcW/epN70Z6AMBFWwvMijWI0fjuyPsC17yc5b69Hdi6g4knGuiCaMIpDPzbTGkxYun2y723lBZ7830LFGwQF8IRJhNPREREFHibT7TBnOh+lqH+LqmaYbawjIBi3M6dgFrdd9u5M9wR0TB2pKYd19u8H/1QfrYRQkRW4uN9s/cXLYQs8KfG8JUaOeNpNrvBKtZ7Ll+n4cXX8rlwldsx8UREREQB9+IOL8vsugmdFS/tiNzmtUQBY7P13YjCyNcRTFUtRpyoj5wG3Rtbr8Es+/Z39KemM0GKxj8VPiaeytcpEZf8o/DytWF4pTgPmwj9hT4mnoiIiCjgttb6Xjr350MstyMiChVv+zsNdZtg+XX9CZ+3OWT27aJIMN2oEThwyLckUtUV4PhJJp7IrkUYsU1U+bRNAzqxD17WdwaQ2p+NjEbvh85Hiri4uHCHEFDR+BkMFu3vQZKkcIcw7HV5mnuWotZQ9g+bT3XgYr0Fn5ifAq3a/ndqsTjOmKYoyoDXOXi5C++e7MQ3S9P9el0eZ/pcbbSgOaGt976qQwsZEiwJA0s64tsS0KU19s58d7izIaDHhmjfT/u7j7NagaeeUuPRR23Iz+//BUXnsK7FYu79mTc3Ay++qMYnPmFFfr5fLz1ANB7nB/8dB/o4I5lMAz4Fk8kEEYU/p1jh7+9oi9GGn26uxVcXZSI7SdP9XM57BxmNJmhhf+xGqwUv7KjHU3dmI0mn8i9oh+f37z1Ut5tx8EbffnrsCD3MNoErrQP307NHJeJkQyfau0uh3z5Th6/dlu1/wIP4G//Pb5xAZXtV37dZAagVFayqQSOgFEALVe/IKJNsxS2H38TuklVDiHogf95Dl7DioYt7gayZQF0iAOD2xQKbnaw7f67A7re774zowqPVu/HXwhnIlANz3hHtx8pY4O/fQbl0GlZV3+ilpUoedkhXHda7RWRjtwBE90f9puUUblEy/XpNf3HEExERxZTJo3X48l9rMeW7F/HS9pswW91fGTx4uQv3vngNi35yBTKPigHxyy2NgCyg6tDiY0nFqPnSLGSJBIf1FqSm49THZ2MJciGZVDAnGrH9dGcYIo4tajVQVSVhyhQtHntMjaoq918qmpuBH/5QjYkTdXj9dRXy8kIUKFGUStGrsPNSB0qePYVvralGbZvjxY3+brRa8Hj5dUx69hT2X+kIWNJpKNZdaAZgTzi9XDoWhz81A+PT9A7rPTQlE6c/dwuemDsaiRoZ+6vbUdfh/v2GwrS4VFhUVkAAaZZ47Br1ARSKFMcVFQn1xR/DMikXsNn3hdfR5rheiMVJarxvaQTefRV5/7cN/1rfhn/+2fm6P/0+sGFbJ8b9djfw7qt4L7kqYEknim6Vkr1R+FIlDxutD2Ctcj80cNy/fEm5DYdtn8L9Sgkk0bddKPk14omIiChSZSercVuBHgcuGfHFv9TimbWNmJnneDJd22rFvS9ew9pjff0qSqcmhjLUmHW4tgMfSy7G/35qJBL17r9g5WdosO7RIlQ1jMHn/nEV/zhyE4snxoco0thVWqrg7bdVePllNV59VYVPfMIGq5MBGf/4h4yffU2H1lb7F7IHH7SCF7+JPCudmIyDVzvxwo56/H5vAx6cOcLpek9WVuMvh5ph7L4IUlriJDkSBueau/By6Vh8pCQDatn9H316nAbfX5SHL982Cr88eAO7rrXingn+jQ4OlL2mOshmNRSzjCZhw+IzG6DVwum327HH3ka9YgSgAdQK4j0cl0KhqwsYdaoADROu4crSY3gQJ/Bxc4nTdV/UHMCakWfRMdK+E8/bW4CGXCAjvB8BhZkVCkywYaP1ASzEGI/rT0A6/qSU4duYh5/Ie1CFFuQjdPsjvxJPer3jCXy0icambP2H4MXCZxBt72HwcPtoix8YOJQ22v8GgOj8DMg7Q/1sP3hLKg5cqgEAXG2y4mpTu8M6F+osuFDXd9W2IEOLW4qSAzbkPBr/xvq/96F8Btu/VgJ50PAxZz9XlSz3vs6EXD22fn0SFEVx2NZb0b6fHvwzGkr8d98NfP7zgBCA1Srh5Zedn/KtW69GK/pe95571NDrA3NdMtp+/s4E/D3odIPu6oAY+DlFq6F8vvdMz8APNtqPM10WgZf2Nzldb/Dye2dkBPT3yt/nem7lBId9jrN9r0aj6X2N0Xo9nlmeBCFEwI6V/sb/ozFzsL+1Be+a7L1qbJJAF5w3GrcnnQBAgtqiwbmZ90OtDtz4C3/eg04n8NanJ6C4wT6zpRkKXrI671n1D/XJAff/9JHxGK3R+f0ZRPuxEoj+78WB+E4jhMC/pfscH3BykUmjVfe+xnSMxt/w4YD+HXuDRQVERBRzDDOSfd9mZuCSTsOdv4mjoW5LfbKygDlzfNsmMRFYsiQ48RDFmumj4zEmVevTNkXpOpRkR0aJ1FCOd5FwrJRlGZ/NnuDzdpP1IwKadPKXJEkoUqdiktq3YUtZcjxma0ZFxGdA4TXU34FQ/w7x7I6IiGLO1DF65KVrfNrGn2QVUSQzGHxbf+VKhwE5ROSCJEkom5zq0zaGySOYMAigD2fkQyV8+3k+mFkUpGj8Y9D5Fs9qXSFk/g5RFGLiiYiIYo4kSSjzIZGUqJexZKJj82uiaOZr4qmsLDhxEMUqw2TnfZ1c8TVRRe7JsoyJ+lTvNxDAo6MmBi0ef5T5mHgy6IqDFAlRcDHxREREMcmXEUwrpyRBq+YhkWLLlCnweoY6SQJKS4MbD1GsWTYuGfFa744dyXoVFhcnBTmi4ee+dO8TN6PVCUhU+1YeGWzzNDlIl7zr76OFCsu1+UGOiCg4eJZNREQxaenERCTovDvMGWayzI5ijyQ5jnpqQQq2YknvraV7Rpu5c+19oYjIe3qNjOXjvZsVauXEFF7gCIIv55QAXs7lUTrC88xfoaaSZJR6OeppmXYMEuXISpxRZNo/ezRGXXm899Y1+5Zwh8TEExERxSa9VsaKKZ6vLksSUDqNiSeKTYMTT8cxFcuwtfd2HFOdrkdBotcDxcV9tyicjYkGMkxJ9W49ltkFRapGh1HqeM8rCuAboycHPyA/GPTeJZ587QdFw5dFq0bNqKTeG7ThT1gy8URERDHLm3K7ecXxyEwO/ww3RMGwdKl9tjpPmHgKkdtuA86f77vddlu4I6IhWj0p1eM6sgSsKvG8HvlnZWqux3WSZC0mxKcGPxg/rNQWQO3F1/IyPfs7UfRi4omIiGJW6fQkeJr8hWV2FMt0OmDFCvfr5OcDkyNzIABRxBuZrMXsPPeTU8wrSERGom8zrZL3vpbjeQe2IDE7BJH4J1nWYYnWffJsmjoT+Sqer1D0YuKJiIhiVnaKBrOL3A/BN8zwrj8HUbTyNJrJYIDHBC0RuWaY4n52O19nvyPfTEtMQwLcJ/a+MDKyZrMbzNNsdSyzo2jHxBMREcU0d+V2BRlaTBqtC2E0RKFXWuo+scQyO6KhKfNQbudtHyjy39xE17MjqIWMsjTP5Xjh5CmxVMbEE/kgo74DD/zt/d6bqr4h3CEx8URERLHNXeLJMDMZEod6UIzLygLmzLH/uwQn8TY+0Hu7Nf4kliwJb3xE0W766HiMSXXevLcoXYeS7LgQRzT8fDZ7gsvHJutHQJYj+2tvkToVJap0p49liHjM1owKcUQUzSacacAbH/9X70175ny4Q2LiiYiIYtvUMXqMSXM+BN+b5uNEsaBnVFMamvABlPfeVt7WBB0H/YXOhQvAY4/13S5cCHdEFACSJKHMxax1ZZNTeYEjBD6ckQ9JOP85P5gZHaOFSjWFTpffLgoh83eIohwTT0REFNMkSXLaQDxJL2PJRPcNYYlihatyugULQhvHsHfjBvCb3/TdbtwId0QUIK76OLG/U2jIsowUlfNRZ4+Oiuz+Tj3KtM77PN0poiNxRuQOE09ERBTznI1sWjk1CVo1D4M0PEyZYp+9brB580IfC1EsWjYuGfHagceUZL0Ki4uTwhTR8FOkc/xZS5CQqHaekIo0c9WjgGb9wIVmGYvhZOdNFGV4xk1ERDFv6cREJOgGHvLKWGbn6BYDsPIrQNFtMFmVcEfjs3/tbUPG/xxB5g+O4Dv/qg93OBFFkoCyMsflIzgYgygg9BoZy8cPnCV15cQUXuAIoSnxjjs0dRR93VVJMrBtUJJpXy4SENjE2Y+rj+GOg9uw/NmraOmyBvS5Q+FISxMWVVVg6UunUL63K9zh+MxqFfhQzQbcuXE/vvT7JgghAv8iigLESUCKZP+/Ev5zOnW4AyAiIgo2vVbGiilJePO9FgD2L+Gl05h4cnBqO3Dno8Dse5Hx0z1YMXYEDBPSUDouDVmJkXnFePPxdvxqSx221TSiOaENSBWAAH5x8Rx+980bmJeejs8tysC9c5IivrlssBkMwJFfhzsKothlmJKKt48399130feJgkMrOe7jdbIqDJEMwZZC4O4zffc3FwDzh/aUVqvA7r1AeaWC8kqBM/UTgT1/BB47irGKBivbClGmKcZqbTEy5fihvViQXLggUF4BlK8R2L4jFdY/ysDH1+N+AM915KBMPRYG9VhMlTMjsqdaayuwfj1QXg5UVkpoXDgeeOPf2IUdWIckGMzjYFCNwzK5AHppCCmamiq88co/sLruAvBE3wjA/LceBvbeBTz8DDAyPCPomHgiIqJhoWxGX+JpXnE8MpN5CHTQ1QIc+A+w8CG0m234z8kG/OdkAyQJmJubjLLxaTBMTMeUrPiwndgZzTb8cWszXnuvHkc6mmBONNof6F9hYZMASUJHYgc2mTqwadMVqN7RokQ7AvdPz8CXV6YjOSHKvowEwNKlwC/iAETfBWKiqLB6Umrvv2UJWFWS6nJdCo2ou9ywcwxgkQFN9wiVrQXAd3x/mps3BdZtFCivFFi7QaC5uf+jcdD/bQaM/3UA7bDg3+az+Lf5LKQOYK46BwbtWBg0xZisygjbsd5qFdizFyivEChfA5w+PWiFn80HDGchAOy1VWOvrRrfMW1HnpQMg3osDJqxWKrKg24oSZwhunjRnmgqLwe2bwcsln4PvjMByVcy0ZpXj2tow29th/Bb2yEkQIPlciEMqnEoVY3FSCnR+xf8+zPA0afxQQ0GnhMBQJICdFYCv6wEpj8F3P/NALxD3/Csm4iIhoXV05MhSYAQcNpsnLrt/Qcw615A13fVUwhgz9VW7LnaiqfevYyCVB3KJqTDMCENSwpSoQtyKcmVegue31CHt8824LLcDKGzARIAJ+dj+vY4pFrjUJNwc8ByW7wZx1GL4ydq8d0jMkZZUnBXYQa+vjIDU/L1jk8Ug3Q6YNYsANvDHQlRbBqZrMXsvATsv9KBeQWJyEh0PqMqkUvtOuBADjD/GnA6Haj2/nzl3Hl7oqlircCOXQJWN1V0X9XOxK9wBB3oy4YIAHus1dhjrcaT2I4COQVl2mIYNMVYohkT9CROS4vAuvVAxRqBynVAU5PrdaerMlAgjcXb4vyA5VdEK35tOYRfW+xJnBXqQhjUY7FaXYwsObgTythswJ49QEWFPdl08qSblYWEp6R5+CbeGbC4Axa8pZzFW8pZwALMlnJgUNlHQ02TslwnAv/+DHDiaUBtn1QHg1aT5O4FamFf7+8IefKJiSciIhoWslM0mF0Uj30XOmGYkeJ5g+Gq36gnVy7fNOHFfdV4cV81ErWqoJTkOZTQyQKI87zdoyVjcOuYOHxs203XK2kU3NA045XaZrzy53NI6EgYNiV5CxaAiSeiIDJMGYH9Vzo4mx35b0uhPfG0pdDtalarwK49QMXa7hK6s949fXqawDce0sOqmYafW95zud5lpQUvGg/hReMhJEKDFdpCGDTFKNUWBSyJc/68QMWanhI6uE2W9ffkt2woUM3B29bzLtfpgAVvWs/iTetZSABmq3Lso6ECWJLX0gJs2NBTQgc0Nnq33b332vDFMWPxGjJwHA0u19svqrHfWo3vWrdhjJSMMnmsY0leTRVw1J50guzhPckSoAj7+kseCGnZHRNPREQ0bBhmJKOu1YpJo3XhDsVvfz5cg+d2Xw/Ok3/2Jfv/Nd6PABpckjdndBIME9K9Ksnb0HgDcd+0X9IUELDJCmwaG4TWar8qBzgOF/fguYvngIsSoFIcrvi50pHahk22Nmzaehl4V4JkVUFlU0ElZKdP8bvlE/HwkjTfAosQnMWOKLgMk1Px3cprMExJDXcoFK22FADf2QYYTgPLL2CFVoLmpv0hmw1oawNa24C2NgEbAKzqvnmpWQbGXAIUvQXI8W6bdljwH/NZ/Md8FmgD4k+PQvL+IiTtL4L+cgakQUfLlOJOtPz+nw7PIwTQ2WnvedTaCphMAGZ133zwsB7AaQAFMqD23DhbANhnq8a+7pI8TU0ykvcUI3lPMRIO50G2OKZF8ivWoCqtxmG52dwXf3s7gDwAj3XfvPSOBkg/B1jSOwEvTyeuitbekjypS4Ok/YVI3jkOLx/5Ee68Fd4n0mQJ0Ajg1W8BT7zhfdBDxMQTERENG2UzklHbao3IxpPequ+w4P3ajuA8efbYIW0uBLD3Whv2XmvDU+9eRn6qDoYJ6SgbnwYBx1lbFL0FRrXNPppJgteJIrc0AnDyWl5TCwi1Ffb/nGvuDP/sMP7iLHZEwTUtJx5LipNQku3FEE0iZ66m2G+FNwEApwDYM0zdkuDzRZn+FABG/zcHZKBz0g10TrqBmk/uAq4kA+8WAZuKgL25gFmNbMmGWsXF7LJx3bds/0MYUvwALCNb0XjPYTTecxho19h7aa0fC2wsAurto7kkVTPeF3WOG2sApHff/GTtvvlLxFnQuuQsWhedxpLvbvTjCQDUrrPPdheiUd5MPBERUcyrabHg1A0jhBCYma/HltNtSIlT4Zb8yJy9ZTBFEdh2sRUAcLouejpDV/UryVPpbdCYNFBb1OiKMwIQgCT6RjZFEbPV5nmlCLRtu0DSUYFb+i3r6hLeVDASkQcWm4Kdl9oAAA/PzsDWC/Z99qLCZKhV0XGxY1p2Isw2ASFE7wWanMToGSGcrtYjQbGXe1uFArUkY6QqOo7zgH3G3aWL7D/3syeKUF14KMwReSmvFXjkiP3WrgG258O0bWK4o/JeogUoO2e/KQAOjQL+NQmdRgAR3hJ0XHUTtMmAz1fuZMnecLz6IpA7tIuO3mLiiYiIYt6GE614+OUrA5YtHJeAHd8cH6aIfKMI4Pbfdnep1FrtV9uihCwB88Yk28vvJqThnXIF364+0D3CSdinHIqO72S9tOronBHvrjKBWzsFdvZbVlMDuO8iQkTeaDXacPvvHLsJt/xoFpJV0fGV62d32r+A/ulwDVaPT0NmQmB69oVKiX4EOozdo14lwCQEshN9mBUszNRqCVsq7D/zn3Ul4YnOMAfkC5sEvJcDbCoENhVDGxdFJyo9qlKA9cX2kU+7xiD+e6fCHZFHWS1D/CVprmXiiYiIiAYTUZGkSdKpcNfYETBMSMeqcWnISOg7AX18byuQJ9mHeQvJfnURPQmoAJbckVOHpFswQd335fitSXlhjIaIItFbpxohAXh45shwh+IfCfYSbhsPJkHVprWXqG0qsjdCb+4bPytNawtfXN5SABwYbU82rRsLnElHtJ2A1HUMoV4RAEYMcXsfMPFEREQULSTYEzYmGRAS/vCRooBO133PPffY/5E3HZh7n0/bFo3Q2/s5TUjD4vwUaNWOPQNsNoE9OyUUTB2HB+5xfgrSarTiQHUbznW046a+HdD61k9pfGcmEtQqHEad/YuHt6wSEo0JKIpLxOxc99Ogr5oePVfQB+uS4nEWE3rvi7joOsmOelOmABs3DrxPFEGMFgUbLzRDo5KiN/HU0zdwKP3+wuxu7TiMU7nuOl1TI3DgkMDB9wSOn7S36vFWVpbAJx4UOJlyDZVjjvgUV3ZXCmY1F2NWUzFKWnOhSVMB98F+60eKi4eIu9fl83R2CRw5Ahw4CLx3yN4w3RefesSGxHQLfjN1A6yy9+XvcVYtZjQVYlbDWNzSVIQUSzywCPbbICrNEti0zrtJKQpw9hxw8ABw4ABw5YrT1VyaN0/BggUKyosP4Eya9xPGSAIYf3M0ZtWPw23145DXmg6l5VeQkmyQPM1oN+ANCKBDBeQU+Rb4EDDxREREFC1kgd6rcTYZK8emYcyIAPbfONNdhDX/Qc+hDCqhK8l0P4MdAOw9qKC5QYWOXWl48uU4JCW6X99sUfDK9mb86UA9Drc3wZToub+VTi0jP0mPw+2wj6hyQ92pxSRdGj46IwNfXJmGxLjoLKGjKJKaCtx5Z7ijIHJpy6Wb6LQoWH++GWar4vQiQmTrN3I2ivPq41RpbhNPyAM+nwfgbqClRWDDuwLllQKV6wUaG90/dx2A0o9ZsC3/QPeoY9dkSJivHg2DthhlmmKUpKVDyvXmB6sD4KadgQZ4cDGAxfaLUvv2AeVrBMrXACdOeH52fb4NeT85CKvNc9KpUEqBQTMWZeqxWKLKgzZNBXhVXZbv+iEVgEndt4eBy5eBigqgvBzYutU+8507Ve8J/OELDfilznHWvMESocVKuQhlqrEoVY1FVnzCwNkIz60EOis9Ps8AEoDsu0LWWBxg4omIiChKiL4RPMG8kls0C8id7PQhdyV03ihfbz9BNJuBDVts+JDB/WmIViPjc3ek43N32KeO2X6qA7/cXIctNxrRFNcKqBx/BsdUdTjeoAH0Tp5QAEkdiZifmYYvLM6E4bZEyCE86SIiinTlZ+xZizaTDdsut2D52CibCrN/wsmXUa9RLCVFwkfulfCRe7tHFu8DKtYqKK8UOOmiTdE31l7F4cm1Th9LlrRYqSmEQTsWqzSFyJCD26BdpZIwfz4wf76EnzwNXLokULHGnojaug2wWBy3+eNfbUj9wUF7mf4gEoB5qtEwqMfCoB6LSXJG0GczLigAvvhF+62tzT6wtbwcWLMGqHcyuV91tYTPnzsA8xTnibN8KQUGeRwMqnFYIudBJ7k5X3r4GeCXlfbJWrwZ9aQI+5R6n/ipV+8tUJh4IiIiigb9T6aDeSV3ySMD7vaU0BkmpGGRixI6b5Vv6DvBKl/vOfE02OKSBCwuKQRQiOomC55fX483zzTgIpoh9N0TE6sERLwZULrjNMsYbU1FaXE6vnZXBkpynWWkiIhICIGKs02998vPNEZh4qlfskmyv6fhRKWSsHA+sHC+Cj/9IXDxkkDFWvtoqG07RHcSR+Dw7XsHbFckp8KgLYZBOxaL1LnQSuEbAVxYKOFLXwS+9EUJra0CGzYCFWsE1qwFGhrs65jvP4Y6uaN3myRosVJdCIN6LErVxUFPlrmTlATce6/9ZrMB+/f3jYY6dqx7pdGt2Dn+/d5tJABz5dG9yabJUqb3ybKR+cD0p4ATT9uTSu6ST0r338OM79q3CyEmnoiIiKKBNOjkORhXcotmATkTgSvv45n/+iDKvCyh88bFywpOnumLec0mG2w2AZWf04znpGnws4/m4GfI6S3J+8PeGryHWkAWKO5Mx6dnjWIJ3SAjRBPmiT299+Wb8wGkhy8gIooYR2s6cLXF1Hu/4mwTXigVQR8tElD9r41IQJtwMlxmGCkqlPDlRyV8+VGgtVVg/SaB35w9j63Ta5F6Jgf/PaUQ98ZPxERVWkR+zsnJEj78IeDDH5J6S/L+s96MFx7eC2tVCh7OKsRD6ROxWDUmrMkyV1QqYN48++3pp/tK8p4duQtXTSpMu1aMLxUV4QP6iciSEvx/ofu/CfwdwNGnAY2wD4rvn4BSuktQrbAnne57fEjvyx9MPBEREUWDwYkmWUARvjXe9qjzJvDcPUBXC5740xcD+tQVGwYOJ29oBPa9p2D+7KGfKPaU5E3LUeNa40ikJAAWG7D6NiZUBpskTmKN7QO99y9d2A7Md9JVlYKjowO4cKHvfnExkDCELxtEAdRTZtfjUrMRJ+s7MTkrOn5H66xdDqOBmxTnzaGHo+Rke0leboceOeLTuGCOwy0KkKqOjpHAPSV5+XPNeNB4L+KupMFWL2FKdnTED9hL8h57TGCicRwmti/C+XoN5hYL6KUAvIf7vwkseQB49VtA7Togqd85YofK3tPpk88CWWOG/lp+YOKJiIgowh2v6XQsrZOADWda8Jl5cU638UvNucA91yDlGxz7GFRssAUk8dRjZqEOMwsD2GydKNAOHwYW9Uv07dgBLFwYvniI+qk40+SwrPx0Y9Qkng53NTgsY+LJ0UxVFgAge26YA/HTaDkJ6bIGKAh3JP6RJAkLpVwgCciYG+DR6yPzgSfesE+7V30RaK4FRmTbZ68Lc09LdtQkIiKKcM9vr3ba0+n1w046Vkag1jaBbbsdR2c5S0YREVHo1bSZsf+645z25U6SUZHqiNEx8dQhrKgyO74vopgmy0DuWGDqAvv/I2AilfBHQERERG5tON/sdPl71e0hjsQ/6zfbnM5Kc/yUwOUrAS4XJCIin6052+h0+Z5rrajv8DA3fARosZlw1tTi9LGKlqoQR0NEgzHxREREFMFudlpR4+Kkv8Nqw4mazhBH5LvB/Z36K1/PUU9EROHmamSTEMDac84vfkSS9a3XYIPzsqXyViaeiMKNiSciIqII9uKuG07L7AAAUncZXgSz2QQq33WTeGK5HRFRWBktCjZecJ1cGtx0PBK5Sy5taa9Gmy3yR20RxTImnoiIiCLY39937FnR37qzkX0leu9BBQ1uvrNs3aWgrT3AzTWJiMhrWy7dRKfFddnz+vPNMFsjtyzaKhRUtl5x+bhZKNjUdj2EERHRYEw8ERERRShFUXCqwX0p3fV2E1q7rCGKyHeeSuksFmDDFo56IiIKF08jmtpMNmy77Lx/UiTY01GLJpvJ7TostyMKLyaeiIiIItR/jjW57FnRSwJ+vbsmNAH5oWKj56QS+zwREYWHEAIVZz3PXFfhovl4JKjwIqm0pvUKFMHRtUThwsQTERFRhPq/fbVerffG0fogR+KfS1UKTpz2fKK/ZpMNNhu/EBARhdrRmg5cbXE/WgiwNx8XEZq4Kfdi1ro6axf2d9aFIBoicoaJJyIiogi152qrV+udrO+EokRe/w1vRzI1NAL73ou8+ImIYp23jcMvNRtxsj7yZlG9YGrBKdNNr9ZluR1R+DDxREREFIGO3+hEh8W7xI0NAm8ej7wm477MWMdyOyKi0Cs/47nMrnfd05FXbufNaCd/1iWiwGLiiYiIKAL9Yns1IHm//u/3RVafp9Y2gW27vR/F5E0vKBq6aikHz8lf7b1Zs3LCHRIRhUlNmxkHrrd5vb4vSapQ8WUU0zFjE6rM3r9fIgocdbgDICIiIkfrz/k2gmn3lcg6md6wxQaLxfv1j58SuHxFQUEer4kF0yWpCN9Q/aL3/l1jfMhu0tClpwMf/vDA+0RhssbHhuF7rrWiocOCjARNkCLyTYvNhO3tvl10qWipwmOZU4IUERG5wrM7IiKiCHOz04ob7Z6bvfbXbrHiRE3k9N/wp3SO5XYU80pKgH/+s+9WUhLuiGgY83UEkxBA5bnIGfW0vvUarPCtPyD7PBGFh18jnoxGY6DjCLlofA9xcXHhDiGgou0zGPzz7+rqClMkgSFJvMpNkWso+4eTN0xIT1AhO7nvEGdxMvRGUZQBr2NTBHZf6MSicQl+v3Z//r4Ho0XB19dcHVhmJ+C87K7/cgl4svISfnN3PtLjhz6geSifgc0mULlp4OxHWi1gNsPtsrfXWvCZj/uffOJx0s5qBfbuk7BwweAZqDQY/ItkMpvQ/2VOnQZSU4FRI/166QFi4TgTbecq5Bt/P98Wow0XGk24ZXR833OZrC5ewwQt+h47cK0DEzP1SNKp/Hptx+f381hjVbDxwsCRtVqVBPOgGUYHL3vrZB3um5ji12s6jcPP+E8ab+JvjecGLFNDghUD45eAAUu2tFfj7boLWJk82q/XdSYW9nVEwcYRT0REFFMsNoGS753Ht/5Ti9pW518E+rMpAn870IJbnr6I/xwOf7maXiPjL0e7yx8EMDUjHhs/OcHpus/flYe5OUm9Z9XlZ28iVR+YLzNDse8Q0NB9UXzJfGDDPySUrXBc76mvSvjzixImjrPf377X3huKhkatBp78rgorStXYvsO7L0SnTgOfeESFpXdqMCI1uPERRbtknYz7/nIRH379Ag5d926k6YFrHbjn1Qv4xN8vI1Eb/q9gWy+3otNiHy20sjgF2x6ehMV5SQ7r/fSOPPyhrBBFI3QAgE0XW2C2hX8W0k7Fijfb7KOXctUJ+O3I+XgwqdhhvSRJg10FZShNyAUAmIWC3zafCmmsRMTEExERxZhpo3VIT1Thhc1NfQmoNsdRNDYFvQmnR/5cjbO1ZpROSQxDxAMpimK/YmuTAIuM7HgtTBbnyRijVSA7QQNYZMAmQUCgwxz+crXKTaI34bTu7zIWzXOe/JBVwH0flHBwoz0BVVwAvLsjtLHGqtK7FOzYKWPlao3bBNSp0xI+8YgKt87R4J//VmHpEgG9PsTBEkUZSZKwakIy1pxuxYLfnsGHX7+Awy4SUAe7E06Lf3cW6862YtWElIgYIbP2/M3ehNNb90/A7NHOj39qWcJD0zJx9HPT8IeyQmQmaLAjAnoKGoUVKkkCrBIajCac7mpFu+J4sUkAONPVgvNd7YBFAhTAJvECB1Gosbk4ERHFFEmSUDolEb/fcRNdFoEXNjvvR7HvUhf2XeormU3UyVg8Lt7puqHUalLw69X5+MKbVwEAm863YdP5VkDruO63116HvZBAAmwSfn7XaLQYFSSHOXHwXw9K+NG3vf9ipVJJuO+DwIfKgGs3ghjYMFK6SuD7P7L/256Asl9rnKXsx39sfc2t733oXzggz+69v3pV+EcyEEWD0okp+OMB++jUNadbseZ0q9P1Vv/pwsD7E5ODHps3vjpnJApHeH+w6ElAPTAlA9VtZs8bBFm+NgmfTByPl5rPwQgFLzScBCTh8O22zWbBp67t6r4nIVFo8POsWSGPl2i48yvxpI/CS2GD+/FE+3uIxvgH13BH43voLxrj5+9Q+EXCVc5oMNTP9u5b0vD7HTd92mbF5CSkJPmfeArUcWakHvjM/AR8Z/0NNHZ6LhXsoVFJ+Mz8HCTrA3NNaSifQYmTykCVbAIwcDSWRq2GXj9wdqQJY/1+2ag/1gdyHzfrNoExYwSuXh24XAszcnF9wP0ekgTc/QEN9Hr/91M8znhw9Cjw+c/33f/d74Dp0wP7GuS1oXy+d03SIE5zGV0W75O1SToVlk/MgFbtf9FJoPZzJaMct5Nlx1JtjUbt8Brj4wPXT8/f+Mfp9bjXVoSXms95XrmflSljMD11aE3seKwJv/7vIdrjB6LzPfj6nYaldkREFHOWTUxCvI89NAzTA9csdahUsoTSklSftllanBywpBNFP0mSYFjt2zZzZgNZWUyOB1VbG7B3b9+tLfwlS+SfOI0Ky8f7dtxYOSFlSEknGuj25BzEy74d9wypeUGKhojc4Z6PiIhijl4jY/kkxyaprkgSUDo1MsofepRNGuHT+gYf16fYZ1jtWxKprJRJJyJf+LrfLSvhfjqQ9LIad/owO50EoDRlTPACIiKXmHgiIqKY5MsIpjmF8chK1nheMYRWTkiFWvY+EeBroopi39IlQEKC9+v7OkKKaLhb7UMiSZKAUiaeAs6XEUxzE7KQqQlcmSAReY+JJyIiikmrp3k/gimSyux6pMSpsaTYu/cweWQcCtOjrz8ABZdeL2H5Hd6tm5cHTJ0a3HiIYs2oZC1uy/UuuzsvPwmZiZF1gSMWrE7xPvFkSM0PYiRE5A4TT0REFJNGpmgwu9C7ZuGRmHgCvC/jYJkduWIo827UnGE1Jz8g8gf30+E1ShuPWQmZXq3L/k5E4cPEExERxSxvEkr56VpMGR2Zo4W8LZ8zTEoLciQUrVavspf4eOJrPygisjNM9m7/y8RT8HiTUCrQJmJyHD8DonBh4omIiGJWmRfldobpyRE70qM4Q4+SbPf9KDIS1JiTnxiiiCjaZGdLmD3L/ToJCcCSxaGJhyjWzMiJR26K1u06BSN0mORhX07+K/Oi3M6Qmh+xx3qi4YCJJyIiilnTx8RhTJr7nhqRWmbXw9NV8tUlI6DyoQk5DT+eRjOtuNPeD4qIfCdJksfRqYbJI5j0CKIZ8enI1bjvtcUyO6LwYuKJiIhiliRJKJvmOrGUqJOxZHxkjxbylHjibHbkSVmp+8e97QNFRM6VeZitjmV2wSVJEsrcJJYSZQ0WJ40KYURENBgTT0REFNMM012X262YnASdJrIPhfMKkjAiTu30MbUsYcWEyB6xReE3bRowZozzxyQJKL0rtPEQxZrbxyUjzsWxJFEnY0mR97Oskn/cjWhamZILnawKYTRENFhkn20TEREN0bKJSYjXOj/cRXqZHQCoZAkrJ6Y6feyW0QlI1jtPShH1kCQJhtX2fyuQ0YH43tvEEhnZ2RzxRDQUcRoVlo93fjxZOT4VWjW/cgXbsuQcaGQXx3qW2RGFHfeCREQU0/QaGcsnJTkslySgdGp0XIVePdF5mcbCIsf3ReRMT5+nPfJ8JGraem8FH10Q5siIYoOrcjqW2YVGnKzGZL3zn3Vpioshn0QUMkw8ERFRzHM2smluUQKykt03Ho8Urq6kLyhg4om8s3SJffa6wXpGQlGIzJkDNDb23ebMCXdEFCCrnfR5kiSg1EP/JwqcmfHpDsuSVVpkajijIFG4MfFEREQxb/U0x5FNZU6WDYWiCLy6rxlVTeaAPi8ApLgopxvtYQrv4choBNa/Cxw5Fu5I/CMEcOwE8OY7gX1evV7C8jsGLsvLA6ZODezrkAcaDZCW1nfTREfymzwblazFbbkDs7vz8pOQmRjYz7jy7E0cvN4BRYiAPm8smO4k8ZSm1oUhEiIajIknIiKKeSNTNJhdGD9gWaD7O8myhBM1Rkz84VnMevYcnnr7GvZebIei8MtBsNXUCrz0qg33PQLkTgI++ShQEEUtPUwmgXUbFHz1CQkTZsiYvVgFizXwfZcGz15nWA1O8U4UQIPL6oJRZhevkbHoj6dQ/Nz7ePSdy3j7ZCM6zLaAv040SlU7Xoxh4okoMrAjKRERDQtl01Kw/1InACA/XYspo/UBf42vLcvAH3Y14fgNE47fqMGP19UgK0mN1VNSUDY1FStKkpGo58w6QyWEwPvHBcrXKShfp2D/ez3JPXsS5buPC6RGeN/4ujqBNesEytcq2PCuQEcH0HM9cOJ4gQ99MPAJy9Wr7KU/PQMlykqZdCIKJMPkNHxvw7Xe+2VBKLNbUpCEBXmJ2HWlHa8cbsArhxugV8u4vTgFhpI0lE1MQ24Kky09EmR+3SWKBPxLJCKiYcEwPRn/7+0bvf8OxkiPkckafGZBGn65tbF3WV2bFa/sacQrexqhVUtYNj4JhqmpKJuagvx0fjnwltEosGWHPdFUsV7B1WvO10tNEXj006GNzRtCCBw7DpSvVVBeKbD/oICrSplvPy6gCkJ+MjtbgmFaFaYeeg1aLXDHHgAlD9tr7ohoyGbkxCM3RYtrLWYUjNBh8sjA9xaSJAnfWZqDVa+e7V1mtCqoPNOMyjPN+AIuYMaoBBhK0mCYmIZbRydClplkJqLwYuKJiIiGhelj4jAmTYOrTZaAl9n11zPqqcvimFUwWwXWn2zF+pOt+OLfgamj42CYmgLD1FTMLkjgl4NBamoF1qy3J5s2blXQ2el5my99FhEz2slkEtiyTaB8rUDFWgVXrnreJlijnXrce8tVPHzw/wFGAN8HcOcyJp5CqbYWWLu27/6qVUB2dvjioYCSJAllk0bgd3tqYZg8ImilrP1HPTlz5EYHjtzowA83X8XIJA3KJtpHQt05NhUJWo66JaLQY+KJiIiGBUmSUDYtBS/vbsCBqnYcvtYR0Oe3WK29/y7K0OLEDZPHbY5d78Kx610syesmhMDRYwIV6weX0Hmvywj8/Ff2f2s0Vvcr++mjH1Ihb4zzL5S1tQKV6weX0Hkvbwzw/Iv259aoA9+3Rd+qBPw5yQfnzgGPPNJ3f8cOJp5ijGHSCPxubw06rVY8s83F0MwhsFgsAIAsL5uW17RZ8McDtfjjgVqW5BFR2DDxREREw0bZtGT89b0GfKe8OtyhOHBXkpedFLszX3lbQuetn/+qf0IoOA1359wq9yaefCmh88aGdyVseLfnPQQ+SbTAJvCV/gvef9/5iuPHA1lZA5dZLMC+fW6fXzL1S7jqdEByMjBtmuOKp04BjY2Oy92ZORNIGDhrGJqbgRMnfHueUaOA4mLH5QcOQGptHbhM5+aLuSQBCxY4Lr96Faiqcr6Nq583xYxlY5ORoJPw0nu14Q7FgaeSPCKiYGHiiYiIho3bS5KQlqBCizGyZwAaXJI3eVRsXpV+9Q0bfvBT70roIonZbJ+FzpcSuoj12GPOl7/2GvDQQwOX3bwJLFrk9ukcflMXLAB27nRc8amngDff9DZKu+PHgcmTBy7bvx+46y7fnudLXwJ++UvH5R/5CHSuEkbOaLWAycnIxtdfB5580reYKGbEaVRYPj4Vb53yMbEaBoNL8lRqzsJKRMHBxBMREQ0beo2M1HgVEPnfBwY4W2/E/II0LBmbiDsnJiMt0X74npQdH+bIvPd/v9DihacBAYHtuwXWv2vDpi3Rl3QCgLp64OpVgcNHxZBHaIWaEYGfzZGGQM/PIxZNGRmHt06FOwrf1LRZMG1kPO6fnImyiemYmGVvjJ6si56vix9JLcKKpFwA9tk7JQnQSsOvbJ0oEkXPnoSIiCggoqOBd3ayGmVTUmGYloI7JyYjQRfdJ88jUnt+7hIeuBd44F6VvUztRF9Pp31DLFMLldzREh56QMa3Hwfq6gTWbrD3dFq/SaDdea/fiHFUnoYrGTOQ13Ak3KHQzJnA9OnhjoKCIFhNxQNNr5Zx59gUGErSsXrCCIyO8p5P8bIG8XLslqYTRTMmnoiIaFhZUZKMcVmBP7m22frK9w5e6UJVk8Xn55ieGwfDVHuy6ba82J/lTpIkTJsiYdoUGU9+A6itE6jcYO/1tH6z4nNjbgAwrBLQdn/vUKmCk6zLzOj7d1aWhIcfkvDwQzJMJoFtOwQq1gmUVyq47EPVVo+Z0wWKCu3Zt+DEr8X6hXvxmVuOAUaj69XGj3dclppqb4bthqlf6Zmup8eTM08/DXz9617E209BgeOy2bM9xuRg1Cjny//5T5gG9XjSeerx5MxDD3ksSYReb086afglORZNyY7HfVMzPK/oB5tiP9ZcazFjnx+TZOQka7tnuRuBO4pTEc9Z7ogoBCQhPF9bzM3NxfXr13vve7FJxDEOOrnSR+HQ5v7vIdrjB6LvPQy+ehXtfwfR9vMHov93CHD8PRo9ejSuXYuyWp0giKXjTIdJQcmPzqC+3XMfKZ1awu0TepqIp2JMmjbYYbrV//cz3J+BySSwdadA+TobytcquOLln8mvfy7wqe7WROHcRwghcOIkUF5p7wW1d793o7kWLxRY/7a9qXg07uN4nAk/Hmdci6VjzUP/uoB/n2j2aptbcrqbiJek45achLCPyIqkY40/on0/Ee3xAzzWRAJfjzUc8URERBRAv9/d5DbpFGsldMGi00lYeYeElXfI+NWzAsdPCpSv81yS98z/Ag/dZ+/7HE6SJGHKZGDKZBW+/ThQXy9Qud5zSd72nRK27wQWLwxtvEQUPU7UdeE/bpJOsVZCR0TRj4knIiKiAOkwKXh+c73D8hm5cSgbRiV0gSZJEqZOljB1sr0kr65eYM165yV5V65JeP0ffaOeIkVmpvcleU//TMbihUp4AiWiiPeT7dUYnHvvKaEzTEzD7cUpLKEjoojCxBMREVGA9Ix2irQSuliTlSnhkYdUeOQh1YCSvHcqbbh6Xeod9RSpI9d1Ogkr7pSw4k7ghZ/JvSV571TasO9A36inFXeGO1IiijT9RzvdMioehknpEVNCR0TkChNPREREAaAoAjc7bfjHp/Jw+/hEpKfEhzukYaF/Sd7PfmDDidMClRuAg0eA2xeHOzrP+pfkfe1LFtQ3AOs3Sjh2QmLiiYgcHLzegV+V5eOucSkYnayNyt4wRDT8MPFEREQUALIs4furs8MdxrAmScCUEvstWmVmAA99NPqa7RJRaDw8Mziz5RERBZMc7gCIiIiIiIiIiCg2MfFERERERERERERBwcQTEREREREREREFBRNPREREREREREQUFEw8ERERERERERFRUDDxREREREREREREQcHEExERERERERERBQUTT0REREREREREFBRMPBERERERERERUVAw8UREREREREREREHBxBMREREREREREQUFE09ERERERERERBQUTDwREREREREREVFQMPFERERERERERERBofZnI0mSAh0HUdTh3wFR8PDvK/z4GRBRrON+Lvz4GRANDxzxREREREREREREQSEJIYSnlbRaLSwWSyjiISIaVjQaDcxmc7jDCDseZ4iIgoPHmT481hARBYenY41XI55sNlvAAiIioj7cv9rx50BEFBzcv/bhz4KIKDg87V+96vGk1+thNBqhUqmQlZUVkMCIiIazuro62Gw26PX6cIcSEXicISIKLB5nHPFYQ0QUWN4ea7wqtSMiIiIiIiIiIvIVm4sTEREREREREVFQMPFERERERERERERBwcQTEREREREREREFBRNPREREREREREQUFEw8ERERERERERFRUDDxREREREREREREQcHEExERERERERERBcX/B9xPyWIMDFvEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -311,12 +311,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "rollouts for ../examples/model.hallway-jvq.final.zanj on pRDFS-g7-n7-a_dfs_percolation-h90892\n" + "rollouts for ../examples/model.hallway-jvq.final.zanj on pRDFS-g7-n7-a_dfs_percolation-h57935\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgW0lEQVR4nOzdd3hTZfsH8O9JmtU96KSlLZuytyzZu8XFKzgB98KtrxtwCz9cqIgLFfUVxdmyBGWDgLL33nTvkbZJnt8foWnTpG3SJk3Sfj/XlQvOk+ecc5/kZN197udIQggBIiIiIiIiIiIiB5O5OgAiIiIiIiIiImqamHgiIiIiIiIiIiKnYOKJiIiIiIiIiIicgoknIiIiIiIiIiJyCiaeiIiIiIiIiIjIKZh4IiIiIiIiIiIip2DiiYiIiIiIiIiInIKJJyIiIiIiIiIicgomnoiIiIiIiIiIyCmYeCIiIqrFmTNnIEkSvvzyS7vXXb9+PSRJwvr16x0eV2P48ssvIUkSzpw5Y/e6s2fPhiRJdfYbNmwYunTpUo/oaiZJEmbPnm1abshxuIKtj50zHD9+HGPGjEFAQAAkScKvv/7aKI9fQ15njSEuLg7Tp093dRhEREQeycvVARARERGRe5g2bRpOnz6N1157DYGBgejTpw/Wrl3r6rCIiIjIgzHxRERERORGXnjhBTzzzDONvt+SkhJs27YNzz//PB566CFT+2233YapU6dCpVI1ekzu4ujRo5DJWChARERUH0w8EREREbkRLy8veHk1/le0jIwMAEBgYKBZu1wuh1wub/R43ElzTroRERE1FP90Q0REbq1ivptjx47h1ltvRUBAAEJDQ/Hiiy9CCIHz58/jmmuugb+/PyIiIjB//nyLbaSnp+POO+9EeHg41Go1unfvjq+++sqiX25uLqZPn46AgAAEBgZi2rRpyM3NtRrXkSNHMHnyZAQHB0OtVqNPnz74/fff6zye4uJiHDlyBJmZmXX2rZj/aN++fRg6dCi8vb3Rtm1bLFu2DACwYcMG9O/fHxqNBh06dLBaErV7926MHz8e/v7+8PX1xciRI/H3339b9Dt48CBGjBgBjUaD6OhovPrqqzAYDFbjWrlyJYYMGQIfHx/4+flh4sSJOHjwYJ3HU5tDhw5h+PDh8Pb2RsuWLTF37lyz+8vKyvDSSy+hd+/eCAgIgI+PD4YMGYJ169bZva/HH38cISEhEEKY2mbOnAlJkvD++++b2tLS0iBJEhYuXGhzDEIIxMXF4ZprrrHYr1arRUBAAO69995a46s+x1OXLl0wfPhwi34GgwEtW7bE5MmTTW3WzuE9e/bUOX/S7NmzERsbCwB46qmnIEkS4uLiAFifIysuLg6JiYnYvHkz+vXrB7VajdatW+Prr7822252djaefPJJdO3aFb6+vvD398f48eOxd+/eWh+DmkiSVOOtIr59+/Zh+vTpaN26NdRqNSIiInDHHXcgKyvL4pglScKJEycwffp0BAYGIiAgADNmzEBxcbFZX87xREREVH9MPBERkUeYMmUKDAYD3nzzTfTv3x+vvvoq3n33XYwePRotW7bEW2+9hbZt2+LJJ5/Exo0bTeuVlJRg2LBhWLJkCW655RbMmzcPAQEBmD59Ot577z1TPyEErrnmGixZsgS33norXn31VVy4cAHTpk2ziOXgwYO46qqrcPjwYTzzzDOYP38+fHx8cO211+KXX36p9Th27NiBTp064YMPPrDpuHNycpCYmIj+/ftj7ty5UKlUmDp1KpYuXYqpU6diwoQJePPNN1FUVITJkyejoKDALM4hQ4Zg7969ePrpp/Hiiy/i9OnTGDZsGLZv327ql5qaiuHDh2PPnj145pln8Oijj+Lrr782e3wqLFmyBBMnToSvry/eeustvPjiizh06BAGDx5c78mnc3JyMG7cOHTv3h3z589Hx44d8d///hcrV6409cnPz8dnn32GYcOG4a233sLs2bORkZGBsWPHYs+ePXbtb8iQIcjOzjZLlm3atAkymQybNm0yawOAq6++2uYYJEnCrbfeipUrVyI7O9tsv8nJycjPz8ett95qV7xTpkzBxo0bkZqaata+efNmXLp0CVOnTgVg3zlc3fXXX4933nkHAHDTTTdhyZIlePfdd2td58SJE5g8eTJGjx6N+fPnIygoCNOnTzd7XE+dOoVff/0ViYmJePvtt/HUU09h//79GDp0KC5dumTX4wAYz7/qt9jYWGg0Gvj6+gIA1qxZg1OnTmHGjBlYsGABpk6diu+//x4TJkwwSzZWuPHGG1FQUIA33ngDN954I7788kvMmTPH7tiIiIioBoKIiMiNzZo1SwAQ99xzj6lNp9OJ6OhoIUmSePPNN03tOTk5QqPRiGnTppna3n33XQFAfPPNN6a2srIyMWDAAOHr6yvy8/OFEEL8+uuvAoCYO3eu2X6GDBkiAIjFixeb2keOHCm6du0qtFqtqc1gMIiBAweKdu3amdrWrVsnAIh169ZZtM2aNavOYx86dKgAIL777jtT25EjRwQAIZPJxN9//21qX716tUWc1157rVAqleLkyZOmtkuXLgk/Pz9x9dVXm9oeffRRAUBs377d1Jaeni4CAgIEAHH69GkhhBAFBQUiMDBQ3H333WZxpqamioCAALP2iufN1mP8+uuvTW2lpaUiIiJC3HDDDaY2nU4nSktLzdbNyckR4eHh4o477jBrr/74Ll682Ow40tPTBQDx0UcfCSGEyM3NFTKZTPznP/8R4eHhpvUefvhhERwcLAwGg10xHD16VAAQCxcuNOs7adIkERcXZ9peTao/dhXbW7BggVm/Bx54QPj6+ori4mIhhH3nsDWnT58WAMS8efPM2qs/fkIIERsbKwCIjRs3mtrS09OFSqUSTzzxhKlNq9UKvV5vsR+VSiVefvlli33XFWN1c+fOtTh/Kh6Pqv73v/9ZxFvxOFc/f6677joREhJi1hYbG2v2vkJERES244gnIiLyCHfddZfp/3K5HH369IEQAnfeeaepPTAwEB06dMCpU6dMbStWrEBERARuuukmU5tCocDDDz+MwsJCbNiwwdTPy8sL999/v9l+Zs6caRZHdnY2/vrrL9MoiczMTGRmZiIrKwtjx47F8ePHcfHixRqPY9iwYRBCYPbs2TYdt6+vr2lECwB06NABgYGB6NSpE/r3729qr/h/xbHr9Xr88ccfuPbaa9G6dWtTv8jISNx8883YvHkz8vPzTcd+1VVXoV+/fqZ+oaGhuOWWW8xiWbNmDXJzc3HTTTeZjjszMxNyuRz9+/evV9lbxTFWHQWkVCrRr18/s+dRLpdDqVQCMJaYZWdnQ6fToU+fPti1a5dd+wsNDUXHjh1NI+O2bNkCuVyOp556CmlpaTh+/DgA44inwYMHm8rebI2hffv26N+/P7799ltTW3Z2NlauXIlbbrnFrIzOFu3bt0ePHj2wdOlSU5ter8eyZcuQlJQEjUYDwPZz2FESEhIwZMgQ03JoaKjF60+lUpkm5dbr9cjKyoKvry86dOhg9/NW3bp16/Dss89i5syZuO2220ztFY8HYCxvzMzMxFVXXQUAVvd53333mS0PGTIEWVlZptcHERERNQwTT0RE5BFatWplthwQEAC1Wo0WLVpYtOfk5JiWz549i3bt2llckapTp06m+yv+jYyMNJXrVOjQoYPZ8okTJyCEwIsvvojQ0FCz26xZswAY55RylOjoaItERUBAAGJiYizaAJiOPSMjA8XFxRbxA8ZjNxgMOH/+PIDKx6i66utWJGRGjBhhcex//PFHvY/b2jEGBQWZPY8A8NVXX6Fbt25Qq9UICQlBaGgoli9fjry8PLv3OWTIEFMp3aZNm9CnTx/06dMHwcHB2LRpE/Lz87F3716zxIo9Mdx+++3YsmWL6fz68ccfUV5ebkqQlJWVITU11eym1+trjHfKlCnYsmWLKam5fv16pKenY8qUKaY+tp7DjlL9NQlYPm8GgwHvvPMO2rVrB5VKhRYtWiA0NBT79u2r1/NW4cKFC5gyZQoGDRqEt99+2+y+7OxsPPLIIwgPD4dGo0FoaCji4+MBwOo+qx9HUFAQAFicf0RERFQ/vKodERF5BGtX1arpSlvCyjwujlIx4faTTz6JsWPHWu3Ttm1bh+2vpmN05bEvWbIEERERFvfX90psthzLN998g+nTp+Paa6/FU089hbCwMMjlcrzxxhs4efKk3fscPHgwPv30U5w6dQqbNm3CkCFDIEkSBg8ejE2bNiEqKgoGg8Es8WRPDFOnTsVjjz2Gb7/9Fs899xy++eYb9OnTx5QE2rp1q8WE4adPnzZN6F3dlClT8Oyzz+LHH3/Eo48+ih9++AEBAQEYN26c3cfuKLY8b6+//jpefPFF3HHHHXjllVcQHBwMmUyGRx99tMbJ6+tSVlaGyZMnQ6VS4YcffrA472688UZs3boVTz31FHr06AFfX18YDAaMGzfO6j5d8VoiIiJqTph4IiKiJi02Nhb79u2DwWAwG/V05MgR0/0V//75558oLCw0GzFy9OhRs+1VlK0pFAqMGjXK2eHXW2hoKLy9vS3iB4zHLpPJTKOmYmNjTaOZqqq+bps2bQAAYWFhjX7sy5YtQ+vWrfHzzz+bjY6qGGVmr4qE0po1a7Bz504888wzAIwTiS9cuBBRUVHw8fFB79696xVDcHAwJk6ciG+//Ra33HILtmzZYjZZd/fu3bFmzRqzdawl8yrEx8ejX79+WLp0KR566CH8/PPPuPbaa6FSqUx9bD2HG9OyZcswfPhwfP7552btubm5FqMVbfXwww9jz5492LhxI8LDw83uy8nJwZ9//ok5c+bgpZdeMrVbO7+JiIiocbDUjoiImrQJEyYgNTXVbH4cnU6HBQsWwNfXF0OHDjX10+l0WLhwoamfXq/HggULzLYXFhaGYcOGYdGiRbh8+bLF/jIyMmqNp7i4GEeOHEFmZmZDDqtOcrkcY8aMwW+//WZ2tbm0tDR89913GDx4MPz9/QEYj/3vv//Gjh07TP0yMjLM5igCgLFjx8Lf3x+vv/46ysvLLfZZ17GfO3fOlPCrz/EA5qNQtm/fjm3bttVre/Hx8WjZsiXeeecdlJeXY9CgQQCMCamTJ09i2bJluOqqq8xG09gbw2233YZDhw7hqaeeglwuN5urKygoCKNGjTK7qdXqWmOeMmUK/v77b3zxxRfIzMw0K7MDbD+HAWPJ2ZEjRxpU7mYLuVxuMXLoxx9/rHUetArWYly8eDEWLVqEDz/80GxOsqr7AyxHK9V1hT4iIiJyHo54IiKiJu2ee+7BokWLMH36dPz777+Ii4vDsmXLTCNQ/Pz8AABJSUkYNGgQnnnmGZw5cwYJCQn4+eefrf4w//DDDzF48GB07doVd999N1q3bo20tDRs27YNFy5cwN69e2uMZ8eOHRg+fDhmzZpl8wTj9fXqq69izZo1GDx4MB544AF4eXlh0aJFKC0txdy5c039nn76aSxZsgTjxo3DI488Ah8fH3zyySem0WIV/P39sXDhQtx2223o1asXpk6ditDQUJw7dw7Lly/HoEGD8MEHH9QYz+23344NGzbUq4QpMTERP//8M6677jpMnDgRp0+fxscff4yEhAQUFhbavT3AmGT6/vvv0bVrV9O8Pr169YKPjw+OHTuGm2++uUExTJw4ESEhIfjxxx8xfvx4hIWF1SvOCjfeeCOefPJJPPnkkwgODrYYdWbPOfzLL79gxowZWLx4MaZPn96guGqTmJiIl19+GTNmzMDAgQOxf/9+fPvtt2YT3tekeoyZmZl44IEHkJCQAJVKhW+++cas/3XXXQd/f39cffXVmDt3LsrLy9GyZUv88ccfOH36tLMOkYiIiOrAxBMRETVpGo0G69evxzPPPIOvvvoK+fn56NChg8UPbplMht9//x2PPvoovvnmG0iShEmTJmH+/Pno2bOn2TYTEhLwzz//YM6cOfjyyy+RlZWFsLAw9OzZ06y8x9U6d+6MTZs24dlnn8Ubb7wBg8GA/v3745tvvjG7Il5kZCTWrVuHmTNn4s0330RISAjuu+8+REVFmV01EABuvvlmREVF4c0338S8efNQWlqKli1bYsiQIZgxY4bTjmX69OlITU3FokWLsHr1aiQkJOCbb77Bjz/+iPXr19drmxWJp8GDB5vavLy8MGDAAKxdu9ZiYnF7Y1AqlZgyZQo++ugjs6uu1Vd0dDQGDhyILVu24K677oJCoTC7355zuLE899xzKCoqwnfffYelS5eiV69eWL58uam00R6FhYXQarU4dOiQ1cfz9OnT8PHxwXfffYeZM2fiww8/hBACY8aMwcqVKxEVFeWIQyIiIiI7SYIzJxIRERE5xWOPPYbPP/8cqamp8Pb2tmmdF198EW+88QZ0Op1DYjhz5gzi4+OdPrqpKYuJicHYsWPx2WefuToUIiIij8M5noiIiIicQKvV4ptvvsENN9xgc9IJAC5fvlzvibfJ8crLy5GVlcXnhIiIqJ5YakdERETkQOnp6Vi7di2WLVuGrKwsPPLIIzatd+rUKfzyyy/48ccfkZiY6OQoyRarV6/G999/j5KSEowcOdLV4RAREXkkJp6IiIiIHOjQoUO45ZZbEBYWhvfffx89evSwab2NGzdizpw5GDZsGN5++23nBkk2efPNN3HixAm89tprGD16tKvDISIi8kic44mIiIiIiIiIiJyCczwREREREREREZFTMPFEREREREREREROwcQTEVETN3v2bEiS5OowiDxOXFwcpk+fbtZ2/PhxjBkzBgEBAZAkCb/++qtLYnMnw4YNw7Bhwxy6TVe+b1XsOzMz0yX7JyIiamqYeCIiohp99NFH+PLLL10dBgDg0qVLmD17Nvbs2dMo+ztz5gwkSTLdZDIZgoODMX78eGzbts2if8WP1Yqbt7c3WrVqhaSkJCxevBilpaUW60yfPt1snaq3VatWmfrt378fkydPRmxsLNRqNVq2bInRo0djwYIFDj3mYcOG1RiPQqFw6L7i4uJq3Fe7du0cui9HmjZtGvbv34/XXnsNS5YsQZ8+fVwdkscqLi7G7NmzsX79eleHUm/l5eWYM2cOWrduDZVKhdatW+PVV1+FTqez6FtaWor//ve/iIqKgkajQf/+/bFmzRqLfgaDAR9//DF69OgBX19fhIeHY/z48di6datF33///Rfjxo2Dv78//Pz8MGbMGIv3yOLiYnz44YcYM2YMIiMj4efnh549e2LhwoXQ6/UOeyyIiIhqwqvaERFRjT766CO0aNHCYtSHK1y6dAlz5sxBXFyczVcJc4SbbroJEyZMgF6vx7Fjx/DRRx9h+PDh2LlzJ7p27WrRf+HChfD19UVpaSkuXryI1atX44477sC7776LlJQUxMTEmPVXqVT47LPPLLbTvXt3AMDWrVsxfPhwtGrVCnfffTciIiJw/vx5/P3333jvvfcwc+ZMhx3r888/j7vuususraioCPfddx/GjBnjsP0AwLvvvovCwkKztrNnz+KFF15w+L4cpaSkBNu2bcPzzz+Phx56yNXheLzi4mLMmTMHACxGTL3wwgt45plnXBCVfW699Vb8+OOPuOOOO9CnTx/8/fffePHFF3Hu3Dl88sknZn2nT5+OZcuW4dFHH0W7du3w5ZdfYsKECVi3bh0GDx5s6vfUU0/h7bffxq233ooHHngAubm5WLRoEYYOHYotW7agX79+AIBdu3Zh8ODBiImJwaxZs2AwGPDRRx9h6NCh2LFjBzp06AAAOHXqFGbOnImRI0fi8ccfh7+/P1avXo0HHngAf//9N7766qvGe8CIiKh5EkRE1KTNmjVL1PftvnPnzmLo0KGODaiedu7cKQCIxYsXN8r+Tp8+LQCIefPmmbWvXLlSABD333+/WXvF45yRkWGxrW+++UbIZDLRv39/s/Zp06YJHx+fWuOYMGGCCA0NFTk5ORb3paWl2Xg09bdkyRIBQHz77bdO39crr7wiAIgtW7Y4fV+2iI2NFdOmTTMtnz171uo54UkKCwsdvs2hQ4fW630iIyNDABCzZs1yeEwNUdtruaodO3YIAOLFF180a3/iiSeEJEli7969prbt27dbnDslJSWiTZs2YsCAAaa28vJyodFoxOTJk822eerUKQFAPPzww6a2CRMmiKCgIJGZmWlqu3TpkvD19RXXX3+9qS0jI0McOHDAIv4ZM2YIAOL48eO1HicREVFDsdSOiKgJ2bx5M/r27Qu1Wo02bdpg0aJFVvstXrwYI0aMQFhYGFQqFRISErBw4UKzPnFxcTh48CA2bNhgKoGqGJWQnZ2NJ598El27doWvry/8/f0xfvx47N2712JfCxYsQOfOneHt7Y2goCD06dMH3333nVmfixcv4o477kB4eDhUKhU6d+6ML774wnT/+vXr0bdvXwDAjBkzTPFUlAEWFxfjyJEjNs3JMmzYMHTp0gX//vsvBg4cCI1Gg/j4eHz88cd1rgsAQ4YMAQCcPHnSpv4AcMstt+Cuu+7C9u3brZbW1ObkyZPo3LkzAgMDLe4LCwuzaRtZWVm47bbb4O/vj8DAQEybNg179+41ewxr8t1338HHxwfXXHNNnftZv349JEnCDz/8gNdeew3R0dFQq9UYOXIkTpw4Uef63333HeLj4zFw4MA6+9pzDtZFCIFXX30V0dHR8Pb2xvDhw3Hw4EGzPrNnz0ZsbCwA44gUSZIQFxcHACgoKMCjjz6KuLg4qFQqhIWFYfTo0di1a5fNMXz55ZeQJAkbN27Evffei5CQEPj7++P2229HTk6ORf+VK1diyJAh8PHxgZ+fHyZOnGgR8/Tp0+Hr64uTJ09iwoQJ8PPzwy233ALAWM713nvvoWvXrlCr1QgNDcW4cePwzz//mNbX6XR45ZVX0KZNG6hUKsTFxeG5556zWjZaVVlZGV566SX07t0bAQEB8PHxwZAhQ7Bu3TpTnzNnziA0NBQAMGfOHNNrevbs2abHu/ocT7bGExcXh8TERGzevBn9+vWDWq1G69at8fXXX9fxLJjLzc3F9OnTERgYiICAAMyYMQPFxcWm+zdt2gQAmDp1qtl6U6dOhRACS5cuNbUtW7YMcrkc99xzj6lNrVbjzjvvxLZt23D+/HkAxtK9kpIShIeHm20zLCwMMpkMGo3GbP+jRo1CSEiIqS0yMhJDhw5FSkqKaURhixYt0LlzZ4vju+666wAAhw8ftutxISIishdL7YiImoj9+/djzJgxCA0NxezZs6HT6TBr1iyLHzCAsRysc+fOmDRpEry8vJCcnIwHHngABoMBDz74IABjKdTMmTPh6+uL559/HgBM2zp16hR+/fVX/Oc//0F8fDzS0tJMpSCHDh1CVFQUAODTTz/Fww8/jMmTJ+ORRx6BVqvFvn37sH37dtx8880AgLS0NFx11VWQJAkPPfQQQkNDsXLlStx5553Iz8/Ho48+ik6dOuHll1/GSy+9hHvuuceU/KlIUOzYsQPDhw/HrFmzTD9ca5OTk4MJEybgxhtvxE033YQffvgB999/P5RKJe64445a1z1z5gwAICgoqM79VHXbbbfhk08+wR9//IHRo0eb3Vc9YaZQKBAQEAAAiI2NxbZt23DgwAF06dLFrn0CxgRDUlISduzYgfvvvx8dO3bEb7/9hmnTptW5bkZGBtasWYMpU6bAx8fH5n2++eabkMlkePLJJ5GXl4e5c+filltuwfbt22tcZ/fu3Th8+LDpXKuLreegLV566SW8+uqrmDBhAiZMmIBdu3ZhzJgxKCsrM/W5/vrrERgYiMcee8xUfunr6wsAuO+++7Bs2TI89NBDSEhIQFZWFjZv3ozDhw+jV69eNscBAA899BACAwMxe/ZsHD16FAsXLsTZs2dNST0AWLJkCaZNm4axY8firbfeQnFxMRYuXIjBgwdj9+7dpoQYYEzWjB07FoMHD8b//d//wdvbGwBw55134ssvv8T48eNx1113QafTYdOmTfj7779N81bddddd+OqrrzB58mQ88cQT2L59O9544w0cPnwYv/zyS43HkJ+fj88++ww33XQT7r77bhQUFODzzz/H2LFjsWPHDvTo0QOhoaFYuHAh7r//flx33XW4/vrrAQDdunWrcbv2xHPixAlMnjwZd955J6ZNm4YvvvgC06dPR+/eva0mYay58cYbER8fjzfeeAO7du3CZ599hrCwMLz11lsAYEp4VU0GATA9xv/++6+pbffu3Wjfvj38/f3N+laUze3ZswcxMTGmuZ++/PJLDBgwAEOGDEFubi5eeeUVBAUFmSWuSktLLfZdsf+ysjIcOHAAV111VY3Hl5qaCsCYmCIiInIqVw+5IiIix7j22muFWq0WZ8+eNbUdOnRIyOVyi1K74uJii/XHjh0rWrdubdZWU6mdVqsVer3erO306dNCpVKJl19+2dR2zTXXiM6dO9ca95133ikiIyPNykWEEGLq1KkiICDAFGttpXbr1q2zuWRn6NChAoCYP3++qa20tFT06NFDhIWFibKyMtPxABBz5swRGRkZIjU1VWzatEn07dtXABA//vij2XbrKs/JyckRAMR1111naps2bZoAYHGr+pj/8ccfQi6XC7lcLgYMGCCefvppsXr1alOcdfnpp58EAPHuu++a2vR6vRgxYkSdpYsLFiwQAMSKFSts2lfF89CpUydRWlpqan/vvfcEALF///4a133iiScEAHHo0CGb9mXrOViX9PR0oVQqxcSJE4XBYDC1P/fccwKAWaldTeWXAQEB4sEHH7R5n9YsXrxYABC9e/c2e27nzp0rAIjffvtNCCFEQUGBCAwMFHfffbfZ+qmpqSIgIMCsveL8euaZZ8z6/vXXXxZlWxUqHoM9e/YIAOKuu+4yu//JJ58UAMRff/1laqteaqfT6cyefyGM5394eLi44447TG21ldpVLxG2J57Y2FgBQGzcuNHUlp6eLlQqlXjiiScs9lXTvqvGKoQQ1113nQgJCTEtV7y2lixZYtbv448/FgBEly5dTG2dO3cWI0aMsNjXwYMHBQDx8ccfm9qOHz8uevXqZfae0Lp1a3HkyBGzdbt27Srat28vdDqdqa20tFS0atVKABDLli2r8RhLS0tFQkKCiI+PF+Xl5XU8IkRERA3DUjsioiZAr9dj9erVuPbaa9GqVStTe6dOnTB27FiL/lX/Sp6Xl4fMzEwMHToUp06dQl5eXp37U6lUkMlkpn1nZWXB19cXHTp0MCsvCgwMxIULF7Bz506r2xFC4KeffkJSUhKEEMjMzDTdxo4di7y8PJvKlYYNGwYhhE2jnQDAy8sL9957r2lZqVTi3nvvRXp6utkoBQCYNWsWQkNDERERgSFDhuDw4cOYP38+Jk+ebNO+KlSMjikoKDBrV6vVWLNmjdlt/vz5pvtHjx6Nbdu2YdKkSdi7dy/mzp2LsWPHomXLlvj999/r3O+qVaugUChw9913m9pkMplpZFttvvvuO4SGhlqM0KrLjBkzoFQqTcsVI9ROnTpltb/BYMD333+Pnj17olOnTjbtw9ZzsC5r165FWVkZZs6caVba9eijj9q8jcDAQGzfvh2XLl2yeZ2a3HPPPWZXELz//vvh5eWFFStWAADWrFmD3Nxc3HTTTWavF7lcjv79+5uVs1XdRlU//fQTJEnCrFmzLPpWPAYV+3v88cfN7n/iiScAAMuXL6/xGORyuen5NxgMyM7Ohk6nQ58+fex6bqqyN56EhATTeQcAoaGh6NChQ43noDX33Xef2fKQIUOQlZWF/Px8AMCECRMQGxuLJ598Ej///DPOnj2LH374Ac8//zy8vLxQUlJiWrekpAQqlcpiH2q12nR/BT8/P3Tu3BkPPvggfv75Z3z00UfQ6XS49tprzUZHPvDAAzh27BjuvPNOHDp0CAcOHMDtt9+Oy5cvW2yzuoceegiHDh3CBx98AC8vFkAQEZFz8ZOGiKgJyMjIQElJidXL0Hfo0MH0o63Cli1bMGvWLGzbts1szhLAmIiqKPOqScX8MB999BFOnz5tdknuqvON/Pe//8XatWvRr18/tG3bFmPGjMHNN9+MQYMGmeLOzc3FJ598YnEFqArp6em1H3w9REVFWZSOtW/fHoCxlK5qeco999yD//znP9Bqtfjrr7/w/vvv1+sS5BXzrfj5+Zm1y+VyjBo1qtZ1+/bti59//hllZWXYu3cvfvnlF7zzzjuYPHky9uzZg4SEBGRnZ5uVhmk0GgQEBODs2bOIjIw0lf9UaNu2ba37PHXqFLZt24aHHnrI4odpRkaG2WPg6+trSqwBMEt+ApVlidbmKgKADRs24OLFi3jssccs7qsoB6oQEBAAjUZj8zlYl7NnzwKAxWsnNDTU5nLKuXPnYtq0aYiJiUHv3r0xYcIE3H777WjdurXNcVSoHoevry8iIyNNJZ7Hjx8HAIwYMcLq+tVLuby8vBAdHW3WdvLkSURFRSE4OLjGOM6ePQuZTGZxnkRERCAwMND0uNXkq6++wvz583HkyBGUl5eb2uPj42tdz1HxVD8HAeN5WHEO6vV6ZGRkmN0fHBxsljCt7Tz29/eHWq3G8uXLceONN+KGG24AYEyIzp07F6+99prZa0Kj0VidG0ur1ZruB4ylkaNGjcKwYcOwYMECU79Ro0ahc+fOmDdvnqnU77777sP58+cxb94805Xp+vTpg6efftpi/1XNmzcPn376KV555RVMmDDBah8iIiJH4ognIqJm5uTJkxg5ciQyMzPx9ttvY/ny5VizZo3pR7/BYKhzG6+//joef/xxXH311fjmm2+wevVqrFmzBp07dzZbv1OnTjh69Ci+//57DB48GD/99BMGDx5sGmlR0ffWW2+1GPVTcatIUrlKu3btMGrUKCQmJuLtt9/GY489hmeeecZsEmZbHDhwAEDdCZ/aKJVK9O3bF6+//joWLlyI8vJy/PjjjwCMcxBFRkaabo888ki99wPANAF8xWTUVfXt29dsX//3f/9ndr9cLre6TSGE1fZvv/0WMpkMN910k8V9VfcTGRlpmrDZ1nOwMdx44404deoUFixYgKioKMybNw+dO3fGypUrHb6vimNbsmSJ1dfLb7/9Zta/6siw+qg+wbctvvnmG0yfPh1t2rTB559/jlWrVmHNmjUYMWJEg58bW+Op6xw8f/68xbm1detWu7YBAJ07d8aBAwdw4MABbNq0CZcuXcLdd9+NzMxMUzIbMJ7HFSORqqpoq5iTbOPGjThw4AAmTZpk1q9du3bo1KkTtmzZYtb+2muvIS0tDZs2bcK+ffuwc+dO02Ncdf8VvvzyS/z3v//FfffdhxdeeMHq8RERETkaRzwRETUBoaGh0Gg0ptEQVR09etRsOTk5GaWlpfj999/N/qJvrUSnph95y5Ytw/Dhw/H555+btefm5lpMVOvj44MpU6ZgypQpKCsrw/XXX4/XXnsNzz77LEJDQ+Hn5we9Xl/nqJ/6/ACuyaVLl1BUVGQ26unYsWMAYDYxszXPP/88Pv30U7zwwgtYtWqVzftcsmQJAFgtfayPigmgK364zp8/32xEUcUP2djYWKxbtw7FxcVmo57qusrcd999hzZt2lidnPjbb781K+Opz8ieCqWlpfjpp58wbNgwqxOCV78KYMXE0Pacg7WpuFLd8ePHzY4jIyOjxhFa1kRGRuKBBx7AAw88gPT0dPTq1QuvvfYaxo8fb/M2KuIYPny4abmwsBCXL182jUxp06YNAONVzup6zdSkTZs2WL16NbKzs2sc9RQbGwuDwYDjx4+blT+mpaUhNzfX9LhZs2zZMrRu3Ro///yz2eu2emmfPa/phsRjTUREhMW51b17d7u2UUGSJLMJy1esWAGDwWD2/PTo0QPr1q1Dfn6+2ai0ign3e/ToAcB4PACsjqosLy+HTqezaA8KCsLgwYNNy2vXrkV0dDQ6duxo1u+3337DXXfdheuvvx4ffvhhPY6UiIiofjjiiYioCZDL5Rg7dix+/fVXnDt3ztR++PBhrF692qIvYP5X+7y8PCxevNhiuz4+PsjNzbW6v+qjV3788UdcvHjRrC0rK8tsWalUIiEhAUIIlJeXQy6X44YbbsBPP/1kGhFUVdVSmIokkbV4iouLceTIEYurw9VEp9Nh0aJFpuWysjIsWrQIoaGh6N27d63rBgYG4t5778Xq1auxZ88em/b33Xff4bPPPsOAAQMwcuRIm9apsG7dOqsjhSrKJzt06AAA6N27N0aNGmW6JSQkADAmusrLy/Hpp5+a1jUYDLX+8Ky4wlzFlQerGzRokNm+GpJ4WrFiBXJzc62OrAJgtp9Ro0YhMjISgO3nYF1GjRoFhUKBBQsWmG3v3XfftWl9vV5vMS9aWFgYoqKirJZW1eWTTz4xK01buHAhdDqdKYE1duxY+Pv74/XXXzfrV6F6+Zg1N9xwA4QQmDNnjsV9FY9BRaKr+uPw9ttvAwAmTpxY4/atvcds374d27ZtM+tXkQi19pquriHxWKNWqy3OLXuvVGlNSUkJXnzxRURGRpqN4Js8eTL0er1ZSXFpaSkWL16M/v37IyYmBkDlKKXvv//ebLu7du3C0aNH0bNnz1r3v3TpUuzcuROPPvqo2Ui3jRs3YurUqbj66qtNIwyJiIgaC0c8ERE1EXPmzMGqVaswZMgQPPDAA9DpdFiwYAE6d+6Mffv2mfqNGTMGSqUSSUlJuPfee1FYWIhPP/0UYWFhFqUgvXv3xsKFC/Hqq6+ibdu2CAsLw4gRI5CYmIiXX34ZM2bMwMCBA7F//358++23FgmIMWPGICIiAoMGDUJ4eDgOHz6MDz74ABMnTjTNdfTmm29i3bp16N+/P+6++27TfEW7du3C2rVrkZ2dDcA4SiMwMBAff/wx/Pz84OPjg/79+yM+Ph47duzA8OHDMWvWLJsmGI+KisJbb72FM2fOoH379li6dCn27NmDTz75xGxi55o88sgjePfdd/Hmm29a/EBctmwZfH19UVZWhosXL2L16tXYsmULunfvbiqLs8fMmTNRXFyM6667Dh07dkRZWRm2bt2KpUuXIi4uDjNmzKh1/WuvvRb9+vXDE088gRMnTqBjx474/fffTY+rtVEn3377LQDrZXaO9u2330KlUpnmyLGVredgXUJDQ/Hkk0/ijTfeQGJiIiZMmIDdu3dj5cqVNo2cKigoQHR0NCZPnozu3bvD19cXa9euxc6dO80mibdVWVkZRo4ciRtvvBFHjx7FRx99hMGDB5tKr/z9/bFw4ULcdttt6NWrF6ZOnYrQ0FCcO3cOy5cvx6BBg/DBBx/Uuo/hw4fjtttuw/vvv4/jx49j3LhxMBgM2LRpE4YPH46HHnoI3bt3x7Rp0/DJJ58gNzcXQ4cOxY4dO/DVV1/h2muvNRuVVV1iYiJ+/vlnXHfddZg4cSJOnz6Njz/+GAkJCaa5zgDjvEYJCQlYunQp2rdvj+DgYHTp0gVdunSx2GZD4nGmG2+8EVFRUUhISEB+fj6++OILnDp1CsuXLzebz61///74z3/+g2effRbp6elo27YtvvrqK5w5c8Zs1F7v3r0xevRofPXVV8jPz8eYMWNw+fJlLFiwABqNxmzS+40bN+Lll1/GmDFjEBISgr///huLFy/GuHHjzEptz549i0mTJkGSJEyePNnifahbt27o1q2b8x4kIiIiF1xJj4iInGTDhg2id+/eQqlUitatW4uPP/7Y4rLkQgjx+++/i27dugm1Wi3i4uLEW2+9Jb744gsBQJw+fdrULzU1VUycOFH4+fkJAKZLpmu1WvHEE0+IyMhIodFoxKBBg8S2bdssLqu+aNEicfXVV4uQkBChUqlEmzZtxFNPPSXy8vLM4klLSxMPPvigiImJEQqFQkRERIiRI0eKTz75xKzfb7/9JhISEoSXl5cAIBYvXiyEEGLdunU1Xpa9uqFDh4rOnTuLf/75RwwYMECo1WoRGxsrPvjgA7N+p0+fFgDEvHnzrG5n+vTpQi6XixMnTgghKi/BXnFTq9UiOjpaJCYmii+++EJotVqLbUybNk34+PjUGu/KlSvFHXfcITp27Ch8fX2FUqkUbdu2FTNnzhRpaWl1Hq8QxsvW33zzzcLPz08EBASI6dOniy1btggA4vvvvzfrq9frRcuWLUWvXr1s2nZVFc/Djz/+aNZe8VhWPF8V8vLyhFqtFtdff73d+7L1HLSFXq8Xc+bMMW1r2LBh4sCBAyI2NlZMmzbN4jiqnhOlpaXiqaeeEt27dxd+fn7Cx8dHdO/eXXz00Ud2xbB48WIBQGzYsEHcc889IigoSPj6+opbbrlFZGVlWfRft26dGDt2rAgICBBqtVq0adNGTJ8+Xfzzzz+mPrWdXzqdTsybN0907NhRKJVKERoaKsaPHy/+/fdfU5/y8nIxZ84cER8fLxQKhYiJiRHPPvusxblc/TE3GAzi9ddfF7GxsUKlUomePXuKlJQUMW3aNBEbG2u27tatW03vWVVfw9bet2yNJzY2VkycONHimG09Nyr2nZGRYdZe8RxVfY986623RMeOHYVarRZBQUFi0qRJYvfu3Va3W1JSIp588kkREREhVCqV6Nu3r1i1apVFv+LiYvHyyy+LhIQEodFoREBAgEhMTLTY7okTJ8SYMWNEixYthEqlEh07dhRvvPGGKC0tNetX8bqs6WbL+yYREVFDSELUMNMnERFREzRs2DBkZmZaLe1rTn799Vdcd9112Lx5s8sncCfjpM8zZszAzp07TfN3ERERETUFLPAmIiJq4qpOBA4Y5yVasGAB/P390atXLxdFRURERETNAed4IiIiauJmzpyJkpISDBgwAKWlpfj555+xdetWvP7669BoNK4Oz2kyMjKsXh2sglKprPGqbo5SUlJiMfl4dc6OgYiIiMiVmHgiIiJq4kaMGIH58+cjJSUFWq0Wbdu2xYIFC/DQQw+5OjSn6tu3L86ePVvj/UOHDsX69eudGsPSpUvrnAB+3bp1To2BiIiIyJU4xxMRERE1SVu2bLEoM6wqKCgIvXv3dmoMly9fxsGDB2vt07t3bwQFBTk1DiIiIiJXYeKJiIiIiIiIiIicgpOLExERERERERGRUzDxRERERERERERETsHEExEREREREREROQUTT0RERERERERE5BRMPBERERERERERkVMw8URERERERERERE7BxBMRERERERERETkFE09EREREREREROQUTDwREREREREREZFTMPFEREREREREREROwcQTERERERERERE5BRNPRERERERERETkFEw8ERERERERERGRUzDxRERERERERERETsHEExEREREREREROQUTT0RERERERERE5BRMPBERERERERERkVMw8URERERERERERE7BxBMRERERERERETkFE09EREREREREROQUTDwREREREREREZFTMPFEREREREREREROwcQTERERERERERE5BRNPRERERERERETkFEw8ERERERERERGRUzDxRERERERERERETsHEExEREREREREROQUTT0RERERERERE5BRMPBERERERERERkVN42dLJx8cHWq0WcrkcYWFhzo6JiKjJS09Ph16vh1qtRlFRkavDcTl+zhARORY/Zyzxs4aIyLFs/ayRhBCiro3J5XIYDAaHBkhERIBMJoNer3d1GC7HzxkiIufg50wlftYQETlHXZ81NpXayeVyhwVERESV+P5qxMeBiMg5+P5aiY8FEZFz1PX+alPiiUNRiYicg++vRnwciIicg++vlfhYEBE5R13vrzbN8VSdDdV5bker1Zotq9VqF0VSf1WPwRPjlyTJbNnTziOeQ67XFJ6D6q8Dss7T3h8Az3+PA/ge4WqeHj/Ac8gd8HPGdp7+Pg145jnq6e8Tnv553xTOoarPgac9/kDTew5swavaERERERERERGRUzDxRERERERERERETsHEExEREREREREROQUTT0RERERERERE5BRMPBERERERERERkVMw8URERERERERERE7BxBMRERERERERETkFE09EREREREREROQUTDwREREREREREZFTMPFEREREREREREROwcQTERERERERERE5BRNPRERERERERETkFEw8ERERERERERGRUzDxRERERERERERETsHEE5Ed0su0+PrSGWzKyXB1KPVSqtdjbVoGFp086+pQiKg5EgIoygJyzhr/FcKhmz99WsKCBXKcOiU5dLuNRQiBd38qwub9ZdDpHfvYNJaVJ3Ow9FAmcrQ6V4dSL5fKSvDO5SM4VpLv6lCIiJzi101a/LRBi/wig6tDaZaEEPi/M0cx/+RxfH76nKvDaTReLtnr7NmAXA68+KLt67zyCqDXG9claiRCCBwoyENy+kX8dvk8duZnw99LgSMDx7o6NJtlaEux4lIqki9exurLaSjU6fFl3x6uDouImpOSXGDv/4Dti4Cc05XtQfFA/3uB7jcBmsAG7yYuTuD77+V4+mkFOnY0YNIkIDERGDAA8HLNNx67SJIEmQwY/XQ2gnwlTLjKG4kDNBjXT4NAX7mrw7NJ51BvdFm0BwYhMCQ2EIntQpDUIQTtQ7xdHZpNopQarM69hOfO7UFbtR+SQmKQFBKDwQHhUMjs/Hvt7LGAJAdmrbB9nTkTAKEHZq+2b19ERDbq2MoLve7OhpccGNJNgWuG+CJpoAbxUR7wQenBUku0SLl4GSmXUrEi8yLKVWXwk3thc3Earo1shbGhkQhUKF0dptNIQtT958bo6GhcvHjRtGzDKrV75RXgpZeAl1+2Lflkb38rtFqt2bJara7Xdlyp6jF4YvySZP4X6AafR05SqtdjfXYaktMuIiX9Es6WFJnd/0J8JzzfupPbPgdCCBzMy0fyxVSkXLyMbZnZqPpId/Dzwb+jroaPRuOyGOurKbyOq78OWrZsiQsXLrgoGvfh8M8ZF/CU97jaOOVz5sRaYOntQHnxlYaqj8uVx0zhDUz5Gmg7qkG70mq1WLlShuuvN//iFhwMTJgAJCUBY8cCAQEN2o3TaLVaFGsFEu7IQFpO5V+ijT8O1EgaoEHiAG+0i1a4MMraabVaPLz6FD7dk27W3j5Eg6T2IUhsH4LBrQLgZW8Sp5FotVpsyk/HmMN/mbUHeikxLqglkkJiMC64JYIVqro3NmcCILYA0iDbkk/29q8BP2dq1hQ+a5rCdyH+pnEtrVaLaa/n4Yd1pWbtCXEKJA3SIGmgBld1VkIud9/Rw1WfA3d9/IUQ2JOTh5SLl5F8MRU7s3Oq3guvgHLoUOWzXpIwJDgMSWEtkRTeEm19/Bo/aDvY+1njmsQTYHsyyQFJJ4Bv0u7And+k00u1WJF+CcnpF/FHxmUU6q2XCARcGe0UqFC61XNQqtdjY3omki8aRzadKSquse+XfXtgSkyUW8Vvq6bwOuYPAuuawo8Bd36Ps5XDP2dOrAW+vfFKSV1tQ/plgCQBt/zQoOSTVquFEMDgwUrs2mU9seHlBVx9tTEJlZQEtGlT7905XMXj//4vRfjvJwU19usQ44Wkgd5IGuCNgV1U8HKjHwdarRbn8kvRZdEelBusvwYC1V4Y3zYYSe1DMK5tMII07pNIq3gOxh3+Cxvy0632kUPCoIAw02ioDt61ZDJtTSY5KOkE8HOmNk3hs6YpfBfibxrX0mq1OHJWh153Z9dY8d4iQIYJAzRIHKjB2H5q+Pu41x8L3DXxpNXr8VdqBpKvjGy6UFxSY98Z7SOxOO10jfd39PFHYnhLJIW1xMCgFm73BxvPSTwBdSeVHJR0Avgm7Q7c6U26agldctoFbM/Ngi3RVIx2Alz/HFQtofvjcjoKdHXPp1Ex2kkuSS6Pvz6awuuYPwisawo/BtzpPa6+HPo5U5ILvJ0AlJeg9qRTBRmg0ACPH6p32V1F/NZGPdWkUydjAsodSvIq4rc26qkmQX4yTOivcZuSvIpjsDbqyRq5BLcqyauI39qop5q00/gjMTi65pK8upJKDkw6AfycqU1T+KxpCt+F+JvGtSoef2ujnqxReAFDe6hNo6HcoSTPnRJPVUvo1lxOR7FeX+c6fYICsGpIPyRs/QPp5XU/B8EKJcaHRiEpvKXblOR5VuIJqDm55MCkE8A3aXfg6jfpihK6lDTjyKbqJXS2uCkiBgFexr/Mesmd86Z7d6s26OYfZNFeUUKXcmVUU/USOlv0CQpAn6BAAICXl3N+nPQKCsSMNnFO2XZTeB3zB4F1TeHHgKvf4xzBoZ8zfy8EVj0L2PFOJYSEn4rfxAbtffXape5KAl4IYPFiOcrK7BsJZGtJ3nvL8nHiUnm9YqyNTlf5ZXXT/jIcPGPfBN1VS/KSBnqjbUvrI4m2nMvD9wfqTgrVh+7KiOHLheX47Vi23etXlOQltW+BQa38rf6Ft9Sgx5MndzY4Vmt0VX4wLMk4jSKDfc9BjSV5NSWXHJx0Avg5U5um8FnTFL4L8TdN3db+o8Vvm2quYGiIive5c2l6rPi7zO71O8crkDjQtSV5jZF4eu/0EZwoKrRoFxDILC3DmcIinC4qRrq27sRRdZFqFUJUSlwsL0aO3r7nQAYgUuGNeJUf4lR+CPSynoQa1CIEU+Ni7I7NVp6XeAIsk0wOTjoBfJN2B674UWZrCZ07+bX31bgmIhoAUKY3YEN6hmm+ptO1lNC5iymtovH94H5O2XZTeB3zB4F1TeHHABNPVQgBvN8TyDkDexJPBoOEU7lxaLdgN0zzP7mIlxcwdKhxJFT1krxhj17Ghr32f9FsbB1bKZA4QGNRkvfJv5dwb8oxF0dXt5pK8gr15fDb/K2Lo6ubRUnevJvMk0xOSDoB/JypTVP4rGkK34X4m6Zu877Lx9MLcx2+XUerKMlLGqjBmEYsyWuMxNPQbWuxMds5f6RxKL0E6GRAudz4/yvfn+5pG4dF/Xo5bbf2fta4fpwcUJlceukl4NVXgbIyhyadqOkzXHnDqVpCtzztIrbn2VZC507yysvx1amzSLmYitWX02wqoXMvnvaIE5HDFWebX73ORjKZQNvg0wjW5CC7JNgJgdlOpwP+/NN4e+yxypK8pCTUOCeGuzlyrhxHzpXj/5bmI9hfhvH9jEmoYrVnXEI7V6vD/w6k438H0k0leUntQzC8jb+rQ7OJHgIb89KwMS8NT536B+3G34WUn/PRXr0F4gV/SF6Sw5NORNQ0CA/5Pp2ZZ8DXq4rw9aoiKLyAq7urkDhIg6QBlSV5kmSZpPAEZQbP+KyEXAByPaDSG2c20EmATg6tTmf6jSzB9c+B+8xQNW0aIJcbk05yuXGZyEb3nNgC+ZYv4bX1K/TY/yteTNuJi1IBJBf/xbw+ZJCgkMmgkEmQe+Cb9MUi9x8FQEROVmY5NN0efsqaJ9Z2FYWi8uaBb82QywCFlwSFFyDzwAOQSRIUssqbJ1JIMvyU+AyEThiTTjoBzPjY1WERkRs6dLLueYLcjUwGHEwrxmNfpaHtfWcgn3QC8kknMO+nnLpXdkOe+UkDoIUWiCzC14aDkG/5EvItX+JISZ6ro3KTEU+AcYRTRV29Xm9c/uwz18ZEHu22lvF4om8XrMy4hOS0i1iVcRl5OsfPyeFofgovXBMTjZvjYlBuMGBLRhaSr1yG83hBw37MNYaDOQU4X1iCGF+Nq0MhIldR+jZo9YIy119CWKkERowwjnCaOBGIja1y5/9cFpZdurZWIGmANxIHaNCvo8o0D8cn/7r+C6gtWngrMLFdMBLbh2BMm2D4q4xfWwv17v9ZDhgTTUMDwpF4pdSutcYPeGwgEHAl6eQlAe9MBd7Z6upQiciNGAwCv6/3jD/khgfLjCXdgzQY1UeN6e+mYdkW9/+9YguLC0W4K70ElMsA3ZVSu4BSt8yauUfi6ZVXgM8/N2/7/HPjtzyW21EDBCtVuKVlPG5pGY9ygwGbszOQnH4ByWkXcaLY/jfF2yJbmSZwc9bk3G18Kn+wKWQyDAsPxbDwUMzv1Q3H8guQfGVy8c0ZWdDbWe/RLzgQ/YMDAThncvTCch0+PXABKWfScX+X2LpXIKKmyTsYCIq3f44nISHbEIdp91leYMEWVScX/+QT+ycXDwszJpmSkoDRowHfGvJn/xnqg17tVPWKsTa6KvMQrttdhgN2Ti6uVADDuquRNNCYbIqLsD65eNcwHzx2VXSDYq1JxXNwsaAMPx+1f3LxzqHeSGrfAkkdQtC/pT/kVkY3KSQZHmuZ0OBYrak6ufgX6Sftnlw8xEuFCSHGK9yNCYpCQNVJX+dMAAIOAuu0wMYy4GolMPygsZ3ldkR0xT8HdcjJBq4Z443W0Y7/vVHxWXP6sh4pW+2fXLxHOwWSBmqQOFCDPh2VkHnoKNS6/CcyBr0DrF3wCcguK8PJwiKcKizC5RKtlbVr11KjRqhKifNlxcjS25dklENCtNIHrVV+iFf5mX/OAHi/ZBf0bliq6frEU8VE4nfeaZ58uvNOYzvA5BM5hEImw/AW4RjeIhzzO/XC0aJ80xXuNmdnwGDDCzRG7Y0XWxu/7LpiMsT2/n54wt8PT3Rqh+zSMqy6nIaUi5ex8lIacsvr/gtwTlk53ujaCXJJckr8nxw6h0/LLyPlbBoTT0TNmSQB/e+9clU728kkoMXE+/D2VfX7EqvVGr9Mp6TI8MEHtn3F6datcu6mvn2NpQJ1efA658wxVDHhbpHWgO//yrRpndBAGSZe5Y2kARqM7qOBn3fdBzAgJgADYmq4ZF8DVRzDg6tO2dRfIZMwLM44d1Ni+xDEB9U9WlYlk+Ptts69iMXG/DQsSD1q0zoJ3oFIupJsuso/FHLJynNQMZF4Xmdg4zZj28YyoFdvIGALk09EZJK8oRTQyxHhq8TbMx3/eVPxPnfrq7aNflUpgZG91Ei8kmyKCXd9CqExPBTXwaZ+mdpSrLiUimQ75ucNV/tgdb/+6LR1NWBDVWWoUoWJYS2RFNYSo0Mj4Odl/Q9LALBw6x7oDe5Xqunas6bq1euGDzdPPE2fbhzxxOQTOYEkSejoG4COvgF4sk0nZJeV2lSS98G5E3gopi2CFNYvW9mYglVK3BwXY1dJ3vHCIvxw/hJuatXSKTEln0kDAPx5MQtF5Tr4KJrHBxMRWdH9JuDPV4DyEhhnu6yDJAO8NED3qQ3arRDAa6/V/N5Tawmdm/gkpQQZeTU/ZjWV0LmLs3lafL0/o8b7ayqhcyevXjhQ430VJXRJITFIrCihq03Vq9fd8Bzw7pDK+26YC/z5uvF+Jp+ICEDyBuMopJQNZRAvCKdMCn3wtA4/b6x5pE31EjofjYeUnblAC7UKt7eOxe2tY01XJE+5UqFS0xXJd+Xm4/HD+5BZXvOIs65+gUgKa4mk8JboFxjikfMzVuW6T/qqSacXXwQ2b7bsU/Vqd1WXiRzM1pK8fL0OH5w/YRr15C7sKcl748gJ3BgT5fAYisv1WHvB+Bf6Ur0Bay9k4pr4CIfvh4g8hCYQmPI18O2NgJCh9uSTDIAETFliXK8Bli+XYc8e8y/IYWFAYqLxVlsJnTso0hrwzrIiszalAhjeQ43EAbWX0LmLudsuQWcwH0XcJcwHie1Cai2hcxcb89OwqcA8cVa1hG5sUBT8vWz8A1TVpNOsFda/785aUdmPySeiZu3cZT32Hr1SspxuwO7DOvRKcPx7/hvfFllcobWihC5pkAa9OzTdEjpnUsplGB0ZjtGR4Xi3dzccyitA8sXLSLmUim2ZWaj8aBT4X/o583VlMgwPCUdSWEskhrVErLdP/YJwvyo7AK5KPFVPOtWGySdqZDWV5P2Weh5bczNNo54iXVBqZ6uqJXk5ZWVYdSkNyRcvY+WlVNOopxnt2zh0n39ezIRWX/nDMvlMOhNPRM1d21HALT8AS28Hyiv+6lf1G9GVL7UKjTHp1HZkg3ZXdbRT164GTJoks6uEzh1UjHYKDZBh4gD7SujcQcVop/qU0LmLitFOnTT+mNSiVe0ldLWpnnSqDZNPRAQgZYP5KKTkDWUOTzxVjHZSKYDhPZW4ZogPJg5oPiV0jUWSJHQO9EfnQH8807mDWUlecuZ5lEIgQK7ANWFRuCayVZ0ldLaydw7gxuKas6viqnW2JpEq+undr1aRmraqJXkPtYxHdnkZVmel4mBhPiL9nDPHh6MFKZW4KS4GN8XFoKC4GNuycnC8sKjuFe2UcjbdYtkghMcPCyWiBmo7Cnj8ELD3e2D7x0DO6cr7guKA/vcBPW4C1A2fc+jMGQnTp+sxfnwZWrVyzVx8DSGEgFIBrH87GH3aK+Dj4znJmgpHMkvw9aS2GBkXgLAANx5aVoNLZSW4JjgGi1r3R7zat2HnkNBbJp26dgXWrTNfrmBKPvH7LlFzlbLRvPQqeUMpZt1fz5EvNTh5SY+lswMwoqcSPhrnzPtKlipK8m6Lb4W5x7yhEHL4QIFpcTEOfQ4MQvCqdiazZ9u/Dkc6kRsIVihxU0QrV4dRbwqZDFeHhuDq0BCHblcIgZSzaWZtaSWl+Cc9D/3CAx26LyLyQJpA4Kr7jBOOl+QApQWAyg/QBBknIneQ+HiBe+/13B/tkiThwWsc+wOjsY1tU78rErqLKKUGD0a0d8zGZq+2bAsIAIYNq3kdjnQiaraKigX+2mGeePr3kA6X0vWICnPc1e0mDXL8VVnJdpIk4ZHYdk7ZdrneYBzxVO2r1Zn8YnTyDnTKPm3lPuO2Bw0Cyssrb4MGuToiIrLRrsx8XCqynKCwejKKiJo5SQK8g4GgWOO/HBFJREQEAFjzdxlKrcw1vXxjzRNQE1W16XK21fZ1l7IaORJL7pN4kiTAy6vyxi+jRB6j4mp2Fu3Vyu+IiIiIiMhS8gbrV5mrqZ2oupp+ezHxRERNQk2Jpz2Z+ThfWNLI0RAREREReQ6DQdQ4smnt9jKUaN1zwmhyH0KIGn+T7crIR05peSNHZI6JJyJqkIuFWuzKzK/x/pQzHPVEREQEACgsBHbtqrwVFro6IiJyA/8c1CEty2D1vhIt8Od2lttR7Y7mFuFkfrHV+wxCYNU51/4mY+KJiBpkeR1vYsmc54mIiMhozx6gd+/K2549ro6IiNxAXeV0LLejutQ02qnyftcmnlxzVTtrLl0Cli2rXJ48GYiKcl08RGSTut7k/rqYhaJyHXwU7vN2Q0RERETkLpI31D6iKWVjGYQQkDgPMtWgrrl1V55LR7neAIXcNWOP3OeX4KlTwCOPVC736sXEE5GbKy7XY+2FzFr7lOoNWHshE9fERzRSVEREREREnuHcZT32HtXV2udSugG7D+vQK0HRSFGRJ8nSlmFLqvUr2lXILdNhS2oOhrUMaaSozLHUjojq7c+LmdDqrdejV+XqoZ1ERERERO4oxcYyurpGRVHztfJcOgw2zD/vyilQmHgionpLqWNIZ9V+BsGrcRARERERVZVSw9XsquM8T1QTm3+TuXAwABNPRFQvQgik2Jg1TyspxT/peU6OiIiIiIjIcxQVC/y1w7bE07+HdLiUrndyRORpyvUGrDqXYVPfY3lFOJbrmqupMvFERPWyKzMfl4ps/8sLr25HRERERFRpzd9lKLWjgs7W0VHUfGy6nI28strnCKvKVVOgMPFERPVS19XsLPtzniciIiIiogr2ls8lr2e5HZmr62p2lv1dMxiAiSciqhd7E097s/JxvrDESdEQEREREXkOg0FguZ0jmNZuL0NxCedNJSMhhN2/yTZfzkFOabmTIqqZV31W0mq1jo4DUmkpVFWWS0tLIRy4H41G47BtuYOSEs//AV/f8yizvBQtFCqzNr3est5Zp9NZ7MPaurbiOVTpYpEWuzLz7V7vlxMXcU/H6Hrvt/pz0BReB2SdMz5nGpsnHkNTe5/zdJ74HtfUziFHPwfO/r5L9mkK79Oe/j7hifFXV9/zaOdBPdKy6r46tNm+SoFVmwsxYYiiXvsEHHcOZebr0cJfbtZm7TdZebXfZEIIZBUYLNatL0mSHLIdV6rPc6ATBuzOzsPJ/GK71tMLgZ9OnMekuFD4y+t/HtmLI57I4yzKOIYbT2zC3uIcm9fZWpCBiUf/wi8555wYWfOx6kKW6f9t/TX4fEgCWqgs37j+r397jIsOMS2vOJfZKPEREREREbmzFZsqR510by/Dt29YT9x/+pIaA7pXJmlWbLZ9Ph9nmvdLPm5/JwuHz9s2ekYIgfX7tRj9Ugb+3Od5SV93I4eEqWc2AWGFgMyAToE+WDKsi9W+L/RojWGRQYAkgOBiPJq1FfpGvuJ4vUY8EbnSuIAovHrpAJJzLyApMBrPR1l/gQHGhNNrl/bjrwLjEMSP4/s3VphN2orzmWjrr8Gz3eNxY+tweMlkeO6fExb9erfwx4MJMdiZkYfX95zGuss5KCrXw0fhmL9wEBERERF5ohWbdOjeXobn71Yh8Wov6Gq4YN2wvl64ZaIC63bq8eqnpVixWQchhMtH+ozrqcGElzOwbGsxJg/0xrOT/a32EwJYv1+LV3/Ix5bDpZDLgB//26KRo216JEmCKFIA4bnQRJTi2ohwjAwPAqxc4K5LiA9CWwAHL55Fhl4LbbESvrLGTQUx8UQep6d3MCIUGqSWlyA59wKScy8gwMowwU8yjmNu6iHTcndNIGKUPo0ZapMkhMAtbSMwqVUovGS2DZrsGxqAX0b3wM6MPKRryxCvaFqlGERERDZp0QL6//zHbJmImp8SrcAL9xgTTpUJpJpHoEiShBH9vDC8rxzrd+qRlSfQItC1iadBnVTw95aQXyzw45ZiLNtaDD+NZUzzf81HblHlsQ3sqEKQLwuvGkpnMOCOiHi8lr8bJUKPNy4fxIfpxwArp8XdF7eiwFA5Mu3OyHhkaMsR5V2/KWjqo16JJ7Va7eg4AJWq2qIKcOB+qtdNOuUYnKxqVtsT46+uIceQFByDT9OOmZbz9JZDPHOrtU1qEdugffIcqnRzx1hrW7doUSmVZvsZEuPYx8wTnwOyjSc+t03hPaIq0chDsB2h+jwbnvYceHr8gPnrwBPjd/pz0L078MMPpkWO/3UtTzxHm9pnjafHD9TvGNRq4D9jzdvk5QJAgWVflQpqdeW7xfir7d5dHbHU7zlQq4FxvX3ww6ZCAMaRTfnFlt8dqiadAOCaq/wa/Lx7+mdN9dFq9T2GWV264YPtB5GnN05Sn68vt5p4qpp0AoAn2nZGa01AvfZZX+6TamzdGvjgg8pb69aujojcWFJwTKOsQ0RERERERJaS+tlfTZLUnxUojqKQyTAuqKVd67TX+KN9IyedAHcqtYuKAh580NVRkIcYGRgFtUwOraGGYuhqIhQa9PblcHYiIiIiIiJHGN/bBzIZYLDx4nztWyrQvqXSuUE1M4nBMViaedr2/kGuGYzhPiOeiOzgLffCqIAom/tPDI6GrAlcapOIiIiIiMgdhPjLMbCj7WVi9RkhRbUbH9QSMmv1dTVwVRUQE0/ksRKDo23uyzI7IiIiIiIix7InmZTYl4knRwtRqDHIP8ymvoFyJQb5hzs5IuuYeCKPlWhjMkklyTEq0PbRUUREREROsWcP0Ldv5W3PHldHRETUIEn9fW3qF+gjw6AEXtnaGWwdZDE+OBoKG69K7mjuk3gyGIDS0sqbrYWi1Gy1VPmgl09Inf1GBkbCR65ohIiIiIiIalFYCPzzT+WtsNDVERERNUjHaAXaRNb9W2t8H28ovDj1iTPYmnhyZRWQ+ySetm41XpOx4rZ1q6sjIg9gy4vH1pFRREREREREZDtJkmwqoUvqZ9vIKLJfB00A2qj9au0jh2T3FfAcyX0ST0T1kBRiS+LJ9rmgiIiIiIiIyHZ1zfMklwHjens3UjTNjyRJdQ7IGOwfjiAvVSNFZImJJ/JoPX1CEKmsuVa4h08wYlTMrhMRERERETnDkM4a+HvXnFoYnKBBkK+8ESNqfupKPLn6YltMPJFHk0kSEoNqfhG5+gVGRERERETUlCkVUq0jmuy58h3VzxD/CATIlTXeb0ulkDMx8UQer7bkEhNPREREREREzlVbcimpPxNPzqaQyWqcwylO6Yv2moBGjsgcE0/k8UYGRkEtsxy6GaHQoLdvCxdERERERERE1HyM7+0DmZXsQvuWCrRvWfNIHHKcmi6qNdQvspEjscTEE3k8b7kXRgVEWbRPDI6GTOIlO4mIiIiIiJwpxF+OgR3VFu0ss2s844NaAsKyfTgTT0SOYa1mlWV2RERERER2EALIzATOnDH+K6z8inVnQgBFWUDOWeO/nha/h7OWZHJ04ik9T4fUPJ1Dt9lUhCjUkIoV5o16CT29XV8F5OXqAIgcYWJQtNmySpJjVKDlKCgiIiIiIqomNxf46itgwQLg5MnK9jZtgJkzgWnTgMBAV0VXt5JcYO//gO2LgJzTle1B8UD/e4HuNwGaQFdF12wk9ffFf7/MMi0H+sgwsFPNVyCvD41SQuenzyEu1AsTu/viun5B6NZKDYmVLgAAeaEaOp/yyoYCJRSS68cbuT4CIgdoqfJBL58Q0/KIwAj4yBW1rEFERERERFi9GoiOBh57DDh1yvy+U6eM7dHRxn7u6MRa4O0EYNWzQM4Z8/tyzhjb304w9iOn6hitQOuIyt9g4/t4Q+Hl2ISQn0aOh8cE4p/TpZjzaxZ6PHcCsY8cxQOLL2LlngJoywwO3Z+nkRWozBvyVdY7NjImnqjJqFpalxTcyoWREBERERF5gNWrgYkTgZISY1la9dK0iraSEmM/d0s+nVgLfHsjUF4C4+Q21UvrrrSVlxj7MfnkVJIkmZXWJfXzdcp+7hsRiGCfylTG+axyLFybjQnzzqDFfYdx3Ttn8cX6bKTmlteylaZJKpMDpVcuvCUAFLjHxO5MPFGTUXWep8Tg6Fp6EhEREbnAVVcBeXmVt6uucnVE1Jzl5gI33GBMLBnqGCViMBj73XCDcT13UJILLL39SrKsrlEuV+JfertxPXKaisSTXAaM6+3tlH34aWR4dGyQ1fuKSg349Z983PnpRUQ+eAT9XzqBV39Jx96zJRDNYM4vCVJlsqlIARjcI+XjPnM8eXsDXbuaLxPZoZdPCKKU3ghTqBGjck52nYiIiKjevLwAf39XR0Fk9NVXQHGx7RNwGwzG/l9/DTz8sHNjs8Xe/wHlxbB6GS+rDMb+e78HrrrPmZE1a0M6a+DnLaFttBeOXNY6ZR+lpWXoGauC0ktCma7253/HyRLsOFmCF5elISZEgaSefkjs6Y/hCT5QK90jKeNw+SqgRQlQvezOhdwn8dSrF7Bvn6ujIA8mSRImBkUjQunYCeyIiIiIiJoUIYwTidfH++8bJxx35WTOQhgnEq+P7R8bJxznZNROoVRIGNpNjZTDORg4u8DV4Zg5n1WOj9Zm46O12fBRyTC6qy+SevphYk8/hAc0ofmBixSAXgLy3aPMDnCnxBORAyQFxyCciSciIiIiopplZZlfvc5WQhjXy84GQkLq7u8sxdnmV6+zmTCuV5IDeAc7PCwyGtXdGymHc1wdRq0qSvJ+/ScfkgT0a61BYk9/JPXyawJXyZOATA1Q5j7pHveJhKgBFmUdxLqiS9ALA2SSBClHwrX+cZga2M7VoTUbHw/tAq3OgLTiMoR7G7Pr7QJ86liLiIiIiBpdYWHD1i8ocG3iqayB8ZcWuF3iSS4H/veWsRQ3LVMgvIUx8REc4HnlYBP7+ODR710dhe2EALafLMH2M0V4889LaBehRLsIFWQSEBuswlvXec78wX0H66ATAsU6Jbw76o2NCr1rgwITT9RE7CxJx9K8E2ZtbZT+mOqieJqja+MjAABTft2PxRMT4K2QuzgiIiIiN5OaCqSkVC4nJgIREa6Lh5ov3wbOh+rn55g46kvZwPhVLo7fCplMwtTxagDApDuL8Ntn3h476kaj8pxkmUwCBrTzRlIvf6i9BR796Rz2XNJhz6ViAED3aI1HJZ52Gi5DK/TGy8hVzLnv5fpJ1Zl4IiKHKSnXI/lEJtaeycakdqGuDoeIiMi9nDgB3H135fKmTUw8kWuEhABt2gCnTtk+uThgnBepdWsg2MWjhbyDgaB4IOcMbJ9cHAAkICgO0Fi/Ipo7uHDZgOS1Ouw5aEDPLp75h1yZBIQHODHVcOWczSjQw1CPnIqfWoZx3f2Q2NMPE3r4oYWfMdZf9rh3eaAnc5/E07FjwOuvVy4/9xzQvr3r4iEiu/11NgclOgNSTmQy8URERETkriTJOEH4Y4/Zv+7DD7t+Ym5JMk4QvupZ+9ftf5/r469Fyp/lpn89NfEUGaRA6kednLZ9rVaL46ll6PHCWZvXiQ9VIKmXP5J6+ePqjt5QennOqKymwH0ST+npxkt6VrjrLiaeiDxM8olMAEDKyUwYhIDMjT/UiYiIiJq1adOA558HSkoAg6Hu/jIZoNEAt9/u/Nhs0f0m4M9XgPISVNYU1UKSAV4aoLt7T8aRvFZn/PdPHV58xMXBuLE3U7JrHe1UtYQuqacfOrVUeWzpYlPgPoknIvJoQgiknDQmni4XlmFXagH6RPq7OCoiIiIisiowEPjpJ2DiRGNSqbbkk0xmHCX088/G9dyBJhCY8jXw7Y2AqDqhjTUyABIwZYlxPTdVVCzw51Zj4mnnXj0upxkQGc6ROdUdTy3D938XWLTXVEJHrsezmIgcYndaAS4WlJqWK0Y/EREREZGbGjsWWL7cOJJJkixL0CraNBpgxQpgzBjXxFmTtqOAW34AFBoISDAYzOM3CAmABCg0wC0/Am1HuiZOG63drENp5ddpLP9L57pg3FjV0U7xoQo8PDYEa56NR+aiTvjh4Va4fUhQs0061WfOq8bAxBMROURKtUQTE09EREREHmDsWODCBeDdd4GoKPP7oqKM7Rcvul/SqULbUcDjh7Aj+E2cyo0zu+tSSRww7k3gicNun3QCKud3qpBcbZmAk2mlOJ+twys3hGDXK61w8p0OeO/2KIzq4st5mwDo7blYQCNqnmlAInK46omm3WkFuJCvRbS/2kUREREREZFNAgONk4b37AlcfXVl+//+BwwZ4rKwbKYJxJGA+zB9wb0I1uTAT1mAgjI/dO4ThI1zPWNeH4NBIOVP8xFOazbpUKIV0Kg94xgaQ+swJf54Otq0zHmbzBkMAqg2J31+WTng4p9kTAkSUYNdKijFP6mWddbLT3LUExEREZHHsFZq51EkZJcE42xeLLJLggF4Tvz/7tcjNcN8tEqJFli3leV2VTHRVLOjWUWwNt5p8/ncxg7FAhNPRNRgNSWYWG5HRERERFS3iqvZWbT/ycQT2aam317rzuU2biBWMPFERA1W05vcn2dzUFyub+RoiIiIiIg8S/Ja6/M5pfxZDuGm8/aQe6npN9mm87nQ1XbVykbAxBMRNUhJuR5rz2RbvU+rM9R4HxERERERARcuG7DnkPXEwIXLAnsOujZpQO4vu6QcWy7kWb0vv0yHrTXc11g4uTgRNchfZ3NQoqv5wzD5RCYmtQttxIiIiIiIqF46dAC++858mZyu+tXsqkv+sxw9u8hr7UPN26pTWbVe0S75RCaubhXUiBGZY+KJiBqkrnmcUk5kwiAEZJwIkIiImru4OGDuXPNlIncSGgrcdJOro2h2aprfqer9Lz3SSMGQR6rrN1nyiUzMG9GukaKxxMQTEdWbEAIpdVy5LrWoDLtSC9An0r+RoiIiInJT0dHAU0+5OgoiciNFxQJ/1nHlun/26XE5zYDIcM6UQ5bK9QasPJVVa5+j2cU4nl2MdsHejRSVOfc5c7t1A7Zurbx16+bqiIioDrvTCnCxoLTOfry6HRERERGRpbWbdSit++s0lv/Fq9uRdZsv5CKvtO7zw5W/ydwn8eTvDwwYUHnz5+gIIneXYuObFxNPRERERESW6prfqUKyjf2o+Uk5Uftop8p+TDwRkQeyNaG0O60AF/K1To6GiIiIiBqkrAy4fLnyVlbm6oiaNINBIOVP20YyrdmkQ4m25smjqflKPpFhU79NF3KRq3VNApOJJyKql0sFpfgntcDm/nXNBUVERERELrZjBxAVVXnbscPVETVp/+7XIzXDtmRSiRb4awvL7cjc0awiHM8psamvziCwqo65oJyFiSciqpfldiaSWG5HRETN3ubNgJdX5W3zZldHREQuVNfV7Cz62zg6ipoPe39jueo3mftc1S4/Hzh4sHK5c2fO80Tkxux90/rzTA6KyvTwUcqdFBEREZEH0OtdHQERuYnktfaVPaX8WQ4h1JAkyUkRkaex9zfZylNZ0BkM8JI17hgk9xnxtG8fMHBg5W3fPldHREQ1KCnXY+2ZbLvWKdUb8OdZ+9YhIiIiImqKLlw2YM8hg13rXEwV2HPQvnWo6couKceWC3l2rZOj1WGrnes4Qr1GPGm1jp8kWCotharKcmlpKYQD96PRaBy2LXfgjOegsdX3GD7IOYhIL29c5xsH2ZVsv97KXw91Op1pH+XCgP/lnwQA3B7Qrl775TlUadXpbJToKj/0xsQGYuulfBSWm38Qjo8PwrpzedDqje2/Hk3DmBi/eu+3uqbwOiDrPPG55XuE61V/DkpKbJvzwF00tXOoKXD0OeTs77tkn6YwasTTz9H6ftb88YcMhw5JuPtuPXx8jG3l5TIASrN+BoMBWq1xgnQhgA0bZNiwQYZZsxxXslbfY/hlVeXvF0kCJo2W4bc/LJNKSaNkWLHOYBos+cuqEnRq67jCJU//vK/va2DzySJsPV2E+waHwF9trMgoK7McgSYMwuwx2nKqCCsOFuC1pIh67dea+jwHOmHADcfWQe8jAYXGV21i62CkWOk7NDoQW49pUW4QgEqHRy9txv+CBiBW4dvAyG3nPiOeiGwUq/DFranr0ffcr/ip4DQMouYJ+cqFAV/nHUf3sz/j3vTN6KgKbLxAm7AVp4wjl8bEBmL9lG747brO8FFYltA93Tcah+7ojYd6RkItl2Hlqexany8iIiIiorr07GnAc895ISFBhXfflaOoqOa+QgDr18swerQS48cr4e/vHt9FV6wzQJKAG8bLsPN3BZa8bT2Z9PaLXti3Sonbr5dBLgeWr+OIJ0foEa3Ga6sz0OnVY5i7Nh352trLoLecKsLEj09j1AenoVa4PmntJclwoqgIuPosogZn4bsp8fhxUierfR/uFYW/bktAlyFFwPDTOCBLRysvn8aNt1H3RuQAI7yjoJLkOFSWi1tT1yNBGQiVZJn02FSSiu5nf8bpcuOV18LlGvRRtWjscJscIQT0Alg/pRv6R9Y9einSR4l5Q1vj8T7RePufCzicVYzOLRr3jY6IiIiImo7QUKB/f4G//5bh2WcVePttL/TsaZmQuXgRGD1aiS1bKsdbTJzo+sRNiVYgJAjY+bsCndsbYysvrzkh1rqVhEVvKPDf+wXmLdIhI1sgNNj1yQ9P5quSY1g7H/xxpBCzVqTj3XVZGBDvbdEvo1CHiR+fxl/HKrObEzq7fi5qnUEgVhuCC35ZuBSQhVsKV+OGy/GAZHkefVxyAJvyL0Hrb0yudSgPxbmCUsT6qxst3nolntRqJwSoUlVbVAEO3E/1IXhOOQYnqzoEzxPjr66+x6CGGiN9W2JFwTkAwKGyXKv9tmnTzZYn+sfC24FlDMIDR+446hz6IrGLZaOV4eoqlcq0n3i1GgvGJtR7n9Y0hdcBWeeJzy0/Z9yPpx9Dc/6ccZXq5Q4OPwYnf98l+3j6awzw/HO0IfFfcw3w99/G/2dkSPjjD8s/RJ85I8OZM5XL7doB3bqpLPrZwxGf92o18M175m1yuQBQZtlXpYJabUxOJbQHFs+3e3dmmsL3laoadA51D8YfRwoBADkleqw4VGDR53K+DpfzK0szIwMUGNAmEDJZ/RN/jnoOfrt6EMIOH4cBAgLAssLTVmva1pSdN1t+v3tvdPANrNc+64ulduSRkvziGmUdIiIiIiJyP0lJjbMONV2JXQPsX6dLQIOSTo4U4qXGQO9wu9YJkCkx2Mdx81PZiokn8kiJ/rF29VdJcozyjXZSNERERERE1JgSEoD4ePvWYeKJqmoVrEL3aPsqYpK6BjonmHpK8o+zq/94v1ZQWJmmxtmYeCKPFK3wRU+17fM1DfeJgq9c4cSIiIiIiIiosUgSkJhoe//AQGDQIKeFQx4qsUugzX3VCgkjOzruCt2OkOhn34AMe/s7ChNP5LHsGfVkbyaYiIiIiIjcmz0jmMaNAxT8OzRVk2RHud3IDv7wVjb+aKHadFIFobXStsnO5ZAw3q+VkyOyjokn8lj2zNnkqswuEREREZHHCAgAhg6tvAXYPwdOYxo6FPCzcQAKy+zImr6xPgj3t+2aa+5WZgcAkiQhycbfuoN8IhDs5ZrJ5Jl4Io/VWxOKCC/LS15W110dglZK9xoSSURERM2QWg20aVN58/CrSVET1LUrsH595a1rVxcHVDulEhg7tu5+cjkwfrzz4yHPI5NJmNg50Ka+9ZmMvDHYWt3jyottMfFEHksmSTaNZOLV7IiIiMgt9OkDnDhReevTx9UREXk8W0YyDR4MBAU5PxbyTLaU2/WK8UbLQGUjRGO/Id6R8JfVHVuSnRfociTbxpQ1hrAwYNo082WiOiT5x+KznMO19rH3CnhEREREROQZxo83TjQuRM19WGZHtRnV0R9KLwlluppPIncd7QQASpkcY/1i8GPeyRr7tFUGoL0ysPGCqsZ9Ek/t2wNffunqKMjDjPKNhlqSQyv0Vu8P99Kgr4ZJTCIiIiKipig0FBgwANi6teY+TDxRbXzVcoxo74dVh/Jr7OOO8ztVleQXW2viKckvFpIkNWJE5lhqRx7NW6bACN+WNd4/0S8WMhe+wIiIiIiIyLlqSyy1a2cc40BUm9oSS5EBCvSKqXtuYVea4BcLGWr+3evqq7wz8UQer7Y5nDi/ExERERGRjQ4dAiZNqrwdOuTqiGxSW+KJo53IFrWV0iV2CYBM5t6DGUK81BjoHW71Pj9JgcE+EY0ckTkmnsjj1TSHk1KSYZRvdCNHQ0RERFSDkyeBBx+svJ2suSyCyCWys4Hk5MpbdrarI7JJQgIQF2f9PiaeyBatglXo1lJj9b5ENy+zq5BYw6imwaqWUEjyxg2mGiaeyONFK3zRU93Con2ET0v4yhUuiIiIiIjIisuXgY8+qrxdvuzqiIiaBEmynmAKDAQGDWr0cMhDWSu3UyskjOro1/jB1ENSDVd8H6Z2/WAM90k87doFdOtWedu1y9URkQexdmlIV9exEhERERFR47CWeBo/HlDw79BkoyQr5XYjO/jDW+na0UK26qQKglRc7YQ3AENUNc+J3Fjc56p2xcXA/v3my0Q2SvKLw8vp/5q1JdaQ8W3OZqachdpLwsQOgRjZXgmF3H1yz0RERERE9TV0KODnBxQUVLY5usxOrxe45W6gTTwwYQzQt6djt0+u1TfWB+H+XkjL15naHH01uxJDOSas24Hs8EwkBPjh08jBDtu2JEmQZfhCH5tT2ZijQWBLlcP2UV/81UlNQi9NKCK8Kq800F0dglZKzxgS2ZimdA3GB9vTMf7rYwh9dTum/u8IvtmdjqyicleHRkRERERUb0olMHZs5bJcDowb59h9yOUSksYD896XMDxRQnw3YPr95fjpNz0KCoRjd0aNTiaTMLFzoFlbbZOO2ypVX4TPCw/g2ozf0eLiIqzvvAv7gs/h+2USYv9vD25dehRL92UgT6ure2N1kKX7mjek+zR4m47gPiOeiBpAJklI9IvFZzmHAXC0U00Gx/phWLwf1p8uQJ5Wj6X7MrF0XyZkEjAo1h9JnYKR1DEYHUI1kCT3vnIDEREREVFViYnAsmXG/w8eDAQFOX4f/7kGeONtgWMnJGRkSfjqfwZ89T8DlEpg2GAJSePkSBwrQ1wsv0t7osSuAfhiWyYAoGeMN1oGKu3ehhACe8szkFxyGsklp7CzLM2iT/DFMGTnqpENPb7dk4Fv92TASybh6nh/JHY0/iZr28L6ZOe1keV4A+UyQGEwNqT51r5CI2HiiZqMJP/KxBPnd6rZ80OjsP70UbM2gwA2ncnHpjP5eHrlGbQJVhuTUJ2CMSTOnyV5REREROT2JkwwTjQuhPOuZieXA88+Dsx4wLy9rAz44y+BP/7SYebTQJcECUnjZEgaJ0O/3hLkciaiPMHojv5Qekko0wmrcz7VRCt0+Et7Hiklp5FSchrn9QU19pVBwuyAPngY6WbtOoPAXyfz8NfJPDy+/DQ6hmpMAwMGtPKHlw3nkCQkIMMbiCoEihTGmxtg4omajFG+0VBLcgTIleirCXN1OG6r6qinmpzM1uLdLZfw7pZLCFDLMa59EBI7BmN8+yCE+LjHmxcRERERUVWhocCAAcDWrc5LPAHmo55qcuCQwIFDerzxth6hLYAJo41JqDEjZPDzYxLKXfmq5RjR3g+rDuXXOb9Tqr4Iy6+MalqjPYdiYVup3BRVW9zVJgZfRhZi1+Wa57Y+klGCIxkXMW/jRQRrvDC+QxCSOgVjXPsgBKhrSeWk+xoTT2k+ANzjXGPiiZoMb5kCI32jEe6lgcyDy8Tu/vk41p7Idcq2hTDWnudp9TavU1NJXmLHYHRkSR4RERERuZGkJGDv8XKMnWxwyvavfJ1Gdk7t/arKyIRFSV7iWDmSxrEkzx3ohAGHDZn4V5+Kf/WpyJmYD/XFaPxn6SGzfgICZYFFKGmZg+KobJSFFNZrf0vzTuOHrC9hGInKE6oO2QC+vXLDCUCtkMFbIYO3Qg4vWeU5VDpBC0gCkBuMCSg34b6Jp337jP8OHAjIqpX5XLoEnDpl3/aiooy3qoQAtmyxbzve3kCvXpbtx48DaWmAWg10787rdrpIkl8swqtMMu6J0gvLcSan1NVhWFVbSR44nyIRERE1d+XlwN69gFZreV+rVsZbdVu3AgbbkiRSaSmgVEL07Wt556lTxt9J9khIAIKD7VvHzSUlAW9/KnDmnLP20LBEUdWSvIf/W1mSN34UE1CNoXqS6R99Kvbq01GCytFKXkEyhPi1NP4mkxuAlvlAXB4Qmwv4NvyiTAa1DkDDJhLXXrllCwBVxxRU5JpyVUC2/XNEOYv7Jp4efND4r1YLqKpd/u+XX4CHHrJrc/L/+z/oK7ZZQa8HhgyxL66EBODgQcv2t94CPv/c+P+ePYHt25l8akS7y9JxTlcApRLQSmX4rfgk2ikCkaAIcXVodjPYmPV2B1VL8hS+ekT7qdEx1BveCmOyOKi2IaBERERETUl5OdC/P7B7t/X7X3kFeOEFy/bRo4HimsttqlIBEFFRKD150vLODz4A3nnH9ngBICUFmDjRvC0mBjh/3r7tuJGEBKBFCJCR5epIbFNZkiegDJQhKkJCh3aS6SewWlX7+lQzW5JMVteTDPDpnAsEpAEx+ZUTdXuQ8HJ/9G8TCgDwVcpdHI07JZ7UaldH0DBpVWaq373b+JeOPn1cF08z82HBXnxeZJ4QfM6/L14LHOSiiOpHpxc4meGeo51qEqzxwoQr9cZj66o3JiIiImqq9u6tOenkKdq1A377rbLCwwN/o0mS5bgFdxcZASSOlSNxrAKjhsng7c3RT/aqb5KpJjJfHbAhFmiVZxztFJMHKD0nAXVNfDgW9e7u6jBM3OcXYvfuxpFCnvpmffy4+bK14bVEddh2uhDncspcHUadOoVpTJf5tPUKC0RERERNWlP4/h8eDuTmGv/fs6fxNxo5Rc9uV656N16GXt0lyGT8Pm0zuQzoEAr0aImZJX80OMlkTWFwHqANAo61MN5kBiCqAIjNA+JyAX/3/83mTtwn8aRQGMvTqtdEWytXu+46u98E9dXndwKM18LctMm+OL1rmD/ov/8F7rjDvm0RVZO8LxdFeTJ8Ob09YoKUDt9+WZnxDfLdralYfSLf5vW8ZBKujvdHUkfjpOJtW7hPvTAREZHH6NIFWLPGfJmarg8/BLp1q1y2Nr8TYDwnbJzjqfTKHE9WPfQQcP319sWYkGDZFhMD7Nzp0fPWLnrXC4X1m/e5TmXlxu/Tz78C7Npre7JIrQZGDjVe2W7iGBmiWzLRZAtrI5lwfhbgbXwdfFC2y2H7aisLQm95BHrLIxAR0QIt77I+bYuAwNnyXGyTncc26QIOSekQdjydI3RxGF3eGt/uy8KBtBKb1/OSSegR6YOrWvlhQCt/RPjV/HsxSu5je0CNwH0ST4Dxjc2W8jRrE4XXxdpfICQJGDzYvu3UpF07x2yHmrWUA3mAQYbMXAOm9Ql0+Pa1Wi3Si8qx8Uzdn8QVJXSJnYIxtl0QAjXu9XZBRETkcQIDgVGjXB0FNZZu3Wz7rTFwoM2bFLWNqmrd2nhrKG9vj58ypF9vWd2d6kmrBQ4dAXbvq7tvRDiQONaYbBo5VAYfHyabamNzuZx3w/9AXzXJ1Fsejl7yCARKVUpLI+vaQhDuQDwAIENfjJUlZ5BcchqrtWdRIGofDXVAkYb/Uw/Bi3sKAEPtyd1QHwUmdgxCUsdgjG4XCD+VZ/4m88yoiZqgkxlaHE41fplI3p+LJ0ZFOGU/72xJRYnO+l/VOoZqjFepYwkdEREREZFVb7wDiBqGuLCEzjaOnpOpNnUmmRooVO6N230TcLtvAsqEHhu0F5BcchrJJadwRm9ZZZIuSnDviR3QGfysbq9rhLep0qRfjB/kTeAcYuKJyE0k788z/X/zyULkFOsQ5O3Yl2h6UTkW7cwwLbOEjoiIiIjIdoeOAD/9XrmsUlWW0CWOZQmdNU0pyVQXpSTHaE0sRmti8Z4YikPl2UguOYXkklPYVnYZFdcv3xl2EvDqCujkUMolDGsdYPxN1ikYcUGeN6l/XZh4InITyftzTf/XG4CVB/Nwc1/rdcX19c6WVKi9JFzTKRjXdgllCR0RERERkR3eeAcIDwXGjxaYMAYYP0rFEroqGjPJhJOZmNJxiMuSTHWRJAmdlSHorAzBMwF9kaEvxoqSM5h9fC/O+mWi1+hiPOnXAxMTQj22hM5WTfvoiDxEXokOG4+bz7uUst/xiaf/dAnGK6Oi4SWToPbAy+MSERF5tKIi4OTJyuU2bQAf95oAlhqgfXtgyRLzZWpS9HqBxx4AvloIyK5MI6VWN9+kk6tGMj095mZg7yUgT4vvxf85fF/OEir3xu0+ndA2IBwJ4SocC89Fd0UQ1E086QQw8UTkFlYdzIfOIMzaVh7MQ7neAIXccZMj9oril1siIiKX2b0bGDKkcnnTJsdd6IZcLywMuPVWV0dBTiSXS+hl38XVmwx3Kpd7euMph++zsUiShN5XfpN1l7dwcTSNh4knIjeQciDXoi23RI8tJwsxrL1/4wdERERERETNkjslmahpYOKJyMV0eoEVB/Os3pe8P4+JJyIiIiIicgommagxMPHkKF27GodLV10mssG204XILtJbvS95fy7m3xDTyBEREREREVFToxMGHDBkYrdIwy5DOnaJNOwvzWSSiZyOiSdHCQhgjT7VS/K+3BrvO55eimNpWrQP55s0ERERkVsrLwdycyuXAwMBhcJV0VAzx5FM5E6YeCJyseT91svsKu/PxRPhEY0UDRERERHVy/btnDyeXIJJJnJ3TDwRudCJdC2OpGlr7ZO8PxdPjGLiiYiIiIiouWOSiTwRE09ELpRyoPbRTgCw+WQhcop1CPLmy5WIiIiIqLlgkomaCv6SdZSCAuDIkcrljh0BPz/XxUMeIXl/bp199AZg1cE83NQ3xPkBERERERFRo2vMJFMbKRA9pTD0lMJwlTqaSSZyOiaeHGXvXtZ0k13ySnTYeLzQpr7J+5l4IiIiIiJqClw5kimhPNAsyaT2YsKJnI+JJyIXWXUwHzqDsKnvyoN5KNcboJDLnBwVERERERE5iruVy2l1tc8vS+QMTDwRuYgtZXYVckv02HKyEMPa+zsvICIiIiIiqjd3SzIRuQsmnohcQKcXWHmo7onFq0ren8fEExERkScLCQEmTzZfJiKPpBMGHBHZOFCWzSQTUR2YeCJygW2nC5FdpLdrnZT9uZh/Q4yTIiIiIiKn69QJ+PFHV0dBRHaqOpJpe/lF7BJp2C8yjUmmcsfui0kmaorqlXjSaj2vLlSj0Zgtl5SUOHT7UmkpVFWWS0tLIRz8OFU/Bk9X3/NoQ9lF9PQKhb9MaWrT6y2TODqdzmwfmYYSHNPlYqAysl77ra4hr4NfdmeZLfuqZCgsNZi1KeQSAKBcb5wH6lh6Kfafy0O7MBXqq+o55OjXgCt44nsR2UaSJFeHQE2Ap79HeGL8Te27SlP4rKSaOfo1xt8D9nPLz3u5DOgQCvRoeeUWDXSJALyVda9rr5OZwJ6Lxtvei8DeSziRp8UJAEsdvzerPP19zi3PITt5+nNgC454Io9zRJeDm/L+wCPe3XC/pqtZAsqaTEMJ3iveh4Ul+/GZ34hGirJ2Kw4WAABaBSnwzOhQtAxQ4JpPz5r1iQrwwh8PxmP+n5lYvD0H5XqB5YcK8GgDEk9ERERERHSFi5NMyPO8PzAQ1QcTT+Rxxqti8WjhZswu2on3ivfhEe9uyBdlFv2yDFq8WLgdC0v2o0jooIQMo5SuL1U7mVGKknIDProxCrf0CYTSS4b1xwut9m0VpMR7k6PwxMgWmP9nJv48WohHh7Vo5IiJiIiIiDwck0xELsPEE3mcVnI/dPMKwT5dFnJEKWYX7bTa73PtYbPlocqW8JUpGiPEWgVo5Nj/bDsovWQ2r1ORgLqc7+AiciIiIiJyDH9/GAYMMFsmF2GSicit1CvxpFZ7/uRmDj8Glaraogpw4uMkhHDatp2leh19Q56DSd5tsC8/q+6OVVzj09ahz3t9txVtZTWl0nLEliRJFvuId4P4Xal6/bMnHgPZprm/x7lK1WPw9PgBzzuGpvYex9exFXv3AvfdV7n88cdA9+6O3QfZzOHPb9++wNatpkVnTI7QFN4nHP1ZU3Xi78a4ulwPhKKnFIZesnD0kEIR0SsQ6OXwXTmNp39WAuavA0+Mv/q8VJ54DPbiiCfySEma1ng1f4dd6yRq4p0UDREREZENCgqAv/82XyYimzV2ksna1eU88cIPRK7GxBN5pD7KcITLvJFmKLapf1dFC8R6cbgzEREREZEncIckExE5BhNPjhIaCtxyi/kyOY1MkjBRE48vig7a1D+Jo52IiIiIiNwSk0xETRsTT47SoQPwzTeujqJZSbIr8dTaydEQEREREVFddMKAIyIbu0Ua9pVkMclE1Aww8UQea7Q6FirIUQp9rf3CZN7op4xopKiIiIiIqFk6fBh4/vnK5ddeAzp1cl08boAjmYgIYOKJPJiPTIER6his1J6ptd9ETRxk1a4cQERERETkUFlZwC+/VC4//rjrYnEBJpmIqCZMPJFHS9LE15l4SmSZHRERERGRwzDJRET2YOKJPFqipjUeyFlX4/1KyDFG3aoRIyIiIiIiajqYZCKihmLiyVF27wbuvLNy+fPPgZ49XRdPMxHj5YfuihbYW55p9f7h6mj4ypSNHBURERERkePtMqShsxQCleScn3GNmWRqIwWij1ckk0xEzQATT45SVGRMPlVdpkaRpGldY+KJV7MjIiIiIk93VJ+FF0s3Ya8uDXuV0xyyTVeNZOqqD0YPKRSBkhpqNRNNRM0BE0/k8ZI0rfFq/g6r9yVq4hs5GiIiIiIix7hoKMAc7WZ8Ub4PegjcJ+ter+24U7mcVqt1+D6JyL0x8UQer48yHBEyb6Qais3auypaINbL30VRERERERHVT7ahBG+V/o33y/6FtkpyaJQsts513SnJREQEMPFETYBMkjBRE4/Piw6atSdxtBMRERG5k/79gaysymU/P9fFQm6pSJTh/dJ/8Vbp38hDqdl9XpDhalm0WRuTTETkCZh4okZ1RuRhpeE0bpF1ghqO+6BK0rS2knji/E5ERETkRhQKIDjY1VGQGyoXenxWthcvl25BqrA+V2w/eSTOinzsNqRhlyEdu0Qa9pdmMslERG6Piafmat0bgEwODH3a9nU2zAUMemD4szavohcGbNdfQrLuBH4vO45DIgvXytrifnkP+2OuxSh1K6ggRyn0AIBQmQb9lBEO3QcREREREQCHfZc2CIGl5YfxYulGnDTk1rr6Vv1F9NV/U8+Aa8YkExE5GxNPzZVMDqx7zfh/Wz4wN8w19h/+fJ1d80Up/tCdRnL5CazQnUSmKDG7/zl5//pEXCsfmQIj1DFYqT0DAJioiYdMkhy+HyIiIiKihn6XFkJgte40ntWuxx5DuhMDNcckExG5AhNPzVXFB6QtH5hVPyhr6HfakIvk8hNI0Z3Aet05lMNgtd+1srboKgttSOQ1StLEmxJPLLMjIiIiIqdpwHfpbbqLeFa7Hhv0550aIpNMROQumHhqzmz5wKwh6aQXBvytv4QU3Qkkl5/AQUOmTbt0xminComa1nggZx2UkGOMupXT9kNERERUL2lpwMqVlcvjxwPh4a6Lhxqm+nfpPg8CBw5U3h8XZ/Zd+uDgGXi+6Cf8pjvu8FCYZCIid8bEU3NXW/KpWtKprhK6uoTDG8sMx7DMcAwA4KV1/OkX7q1ED0MkfGVKh2+biIiIqEGOHwdmzKhc3rSJiSdPZ8N36dxhT+DRvgn4uvBzCAfsso0UiJ5SGHpKYbhKHc0kExG5PSaeyPoH5pUPypxhj2PJVSOQXPQ9NtRSQmeLNBRjrn5nZYO+ATHXQOElQ5KcZXZERERE1Ehq+S69YvBUXNdTg7LyAzWvb4cIeGOt4j+IkHwAAGovJpyIyP0x8URGVT4wDRvnQqYvx4KB4/BwTxWgXeva2Owgl2RI1MS7OgwiIiIiak6qfJcWG+dB0pfhlQHD8FLfeDjyr62pKMbt5SuwQnEDvCSZw7ZLRORMTDw5yoABQGFh5bLaA//6MPRpiI3zINOXoVzuhdeuGgyIIldHZRcZJMR6+bs6DLsNbeeHwnd6AgDWHijEqC6+4EX5iIiIiDzI0KeBK0knIVdixMgPkSAKkWoowmVRhFRDIVJFkfFmKEKaKIKuHtUEm8RFvKjfgje8hjjhIIiIHI+JJ0eRywEfH1dH0TAb5kLSlwFyJRT6MlzaVYx/Bt+O5CsTiO9txEu9NjdymQQflRyn0svw7sosXNM7wNUhEREREZE9Vs0B9GWA5AVJX4ZBaz8Hxs2qsbtBCGSJEqReSU5VJqUKLRJVOUJrtu67+n/RT4rATejq7KMiImowJp7IqPrV6zbMhWzda+gnSeg39Gm8or4a5wx5SCk/iRTdCfylO4tSO4cNt4AGibLK+ZfkcrmjjwJKyfHbbEzJu/Kx6WgRcor0CPLx7GMhIiIiajY2zAX+fhtYpwU2lgFXKwG8DWg01q8cDUAmSQiVvBEKb3St42tfqdAhTRThjDYbaaIYaSjCOVEAnTCw5I6I3B4TT2SZdAKsTpLYShaAB1S98ICqFwpFGdbqziC5/ASW604izYaSvGxo8YS8D9rKggAAak8sR3SylN0F0BuA1fsKMHVAoKvDISIiIqK6VHyXbn0rMOcjY9vGMuDOu6xf7a4eVJIXWkkBCJOpzNqZdCIiT8DEU3NnLelUoZbLw/pKSlyraI9rFe1hEAI79ZeRUkdJngECb+p34DPZWGccicfLL9Zjw2FjAi95Vz4TT0RERETurup3aflAAB9V3tf6JiA21mHJJyIiT8XEk6Ncvgz8/nvl8qRJQGSk6+KxRW1Jpwq1JJ8qyCQJ/b2i0N8rqs6SvP8ZjuAZQz/TqCeqtHp/Icr1AgCwcm8hdHoBLzlnGCciIiJyS9W/S2/ebNnHhu/SRERNHRNPjnLyJHDffZXLnTu7d+LJlqRTBTs/MGssySs/gTQUc9RTDZJ35Zv+n1Okx5ZjRRjaydeFERERERGRVU78Lk1E1NQw8dRcGfS2fVBWqOhnsG9C8aolecUlJfhHpOIPwxnki1KowTmeKugNAiv2FJi1pewuYOKJiIiIyB010ndpIqKmgImn5mr4s/av08C/zsgkCf2kSPSTufFIMBfZdrwYWYXmX0SSdxVg3s18rIiIiIjcjgu+SxMReSomnojcQMruAou2o5dLcTy1FO0iVFbWICIiIo8TGwu8/rr5MhERURPHxBORG6g6v1P19scnhDZyNEREROQUMTHAs/UYKUNEROTBZK4OgKi5O5VehkMXS63el7zLciQUERERERERkadg4onIxWoa7QQAm44WIbeIk1ASERERERGRZ2LiicjFaks86Q3Aqn0c9URERERERESeiXM8EblQfrEeG44U1doneVc+pg4IbJyAiIiIiKh+IiOBmTPNl4mIiIknIldavb8Qujoq6VbuLYROL+AllxonKCIiInKOLVuAESMql//6Cxg0yHXxkGO1aQO8/76royAicjsstSNyodrK7CrkFOmx9VhxI0RDRERETiUEUFZWeRPC1RERERE5HRNPRC6iNwis2GPb/E3Ju+tOUBERERERERG5G5baOUp8PDB/vvkyUS22HS9GVqFtV6xL3lWAeTdzngAiIiIiIiLyLEw8OUrLlsDjj7s6CvIgtpTZVTh6uRTHU0vRLkLlxIiIiIiIiIiIHIuldkQukrLbtjK7CvYkqoiIiIioke3cCcTFVd527nRxQERE7oGJJyIXOJVehkMXS+1ax95EFRERERE1otJS4OzZylupfd/1iIiaqnqV2mm1WkfH0eg8/Rg8MX6NRuPqEByqIc/Bz9tz7F5n09EipGYXIdBbXu/9ViVJkkO2Q+QMTeH8LCkpcXUIdmtq79OezhPPoaqawncVRz8HUmkpqhbNl5aWQnjg49RUOPocbYzn19nnaGNoap81nvYc8BxyP574eWkvjngicoEVe4tM/x/aUYOXrg226BMZKMfcqS0Q7m9MNOn0wB/7ixstRiIiIiIiIqKGYuLJQaQtW6DWaEw3acsWV4dEbiqvWI9Nx0owtKMGfzzdEqueisaAtpZZe6WXhJmjg3DozThTAqpqwoqIiIiIiIjI3fGqdkSN7HKuHiueaIkhHbxt6u+tkmHm6CDceXUAfvm30MnRERERERERETlOvRJParXa0XE4XfXaVYcfg0pVbVEFOHgfVY/BE5+D6oQQrg7BLtXnnKnvc9CjteV6SqXO6v6q7kOtBu4cYVuyqiaefg5Vr3/2xGNoCnMXNQZPe38Amsb5yfcI1/L0+KvzxPibwvdFsl1TeH49/XXmifE76jeBqzj9fa6R8TujZ+CIJyIiIiKixqBSAbGx5stERERNHBNPRERERESNoW9f4MwZV0dBRETUqDi5OBEREREREREROQUTT0RERERERERE5BRMPBERERERERERkVNwjiciIiIiIqKGkiRAqTRfJiIiJp6IiIiIiBrFyZPAe+9VLj/yCNCmjeviIccaNAgoLXV1FEREboeJJyIiIiKixnD5MrBgQeXyjTcy8URERE0e53giIiIiIiIiIiKn4IgnR9FogPbtzZeJiIiIiIiIiJoxJp4cpXdv4OhRV0dBREREREREROQ2mHgiIiIiIiJqqPPngW++qVy+9VYgJsZ18RARuQkmnoiIiIiIiBrq7Fnguecql4cMYeKJiAicXJyo2RFC4EyaztVhEBERERERUTPAxBNRM1BWLrB2TzGe+CIHCQ9exsJVBa4OiYiIiIiIiJoBlto5yokTwLx5lctPPQW0beu6eKjZy8zTY8U/RUjeUYTVu4pRUGIAAGiUEh6b5O/i6IiIiIiIiKg5YOLJUVJTgU8+qVy+7TYmnqhRCSFw6FwZUnYak03bjmhhMFj2u3usDyKC5I0fIBERERERETU7TDwRebCycoGNB0uQvL0IyTsKcbqOuZs42omIiIiIiIgaExNPRB6mphI6W4zvrUZ2oQHZhQaolJJT4vP3liEmVOGUbRMREREREZFnYeKJyM3ZWkJni5+3leDnbSWODbCaKUN88f1/I526DyIiasbKy4G9ewGttuY+7dsDYWGW623fXuumpdJS84bQUKBbN8uOhw8DWVk2BnxFz55A587AqlWVbZ0727cNIiIiD8TEE5Gb0pYJPLIow6YSOiIiomahvBzo3x/Yvbv2fkuWALfeat6WmwsMGVLraqrqDYMGAZs3W3Z8/nngl1/qitbcgQPGRNPYsfatR0RE5OGYeCJyAx0iVfjkzpYAgLRcHX7cXIj9Z8rw/rlc1wZWD8Va4eoQiIioqdq7t+6kExEREbkVJp6I3EDLYAXuHhFsWn7h+jBkF+ix6l9jed3Kf4uRV1TP+rpGtu9kGbSlAmqVc+aQIiKiZqy28joiIiJyS0w8EbmpYD85bh7mj5uH+aNcJ7D5UMXV64pw4nJ5vbap8AK8ZFcSQs7ICwngYoYef+3SYsIAjRN2QEREVMWHH1qfg6l9e8u2wEBg06ZaN1dabY4nVWio9Y6vvQY8/riNQV4RF2dffyIioiaCiSciD6DwkjC8mzeGd/PG23eH4uiFMiTvMCahthwqgd7GwVDX9vfG14+FAADUarXD41y9vQTjnsxAytYSJp6IiMj5unUDBg+2ra9CUWdfUX1EVU2flZ062bZPal7atQMWLzZfJiIiJp6IPFGHaCU6RCvx5PVByC7QY+U/RUjZWXdJ3rKtxXh2sj86xSicElfyVuMV81K2luDDxwUkieV2RERE1EyEhwPTp7s6CiIit8PEE5GHC/aT45bh/rhleN0leUIAbyzLN416ciQhBJK3GBNP59P12HuiHD3aKR2+HyIiasZatQJeecV8mYiIiNwaE09ETUjVkrz5d7XA0QvlSNlpTEJtPlQCg6Fy1FPPdo4ttdt/shzn0vSm5eQtJUw8ERGRY7VqBbzwgqujICIiIjsw8eQoXbsC69aZLxO5kCRJ6BijRMeYypK837blYsU/JVi4sgCftPNz6P5SrpTZVUjeWoIXpwc4dB9ERERERETkWZh4cpSAAGDYMFdHQVSjYD85brraBzdd7QO9Xjh8+8nVEk87D5fhcqYekS3kDt8XERERkdspLwcKCiqX/fyMk9oTETVzMlcHQESNTy537KTf6Tl6bD9UZtG+4u8SK72JiIiImqDt24GQkMrb9u2ujoiIyC0w8UREDbZ8awmElUFUFZONExERERERUfPExBMRNVj1MrsKa/7RQlvq+LI+IiJqprZuBXx8Km9bt7o6IiIiIqoD53hylMJC4NixyuX27QFfX9fFQ9RISssE/tiptXpfsVbgr11aTBigaeSoiIioSTIYgOJi82UiIiJyaxzx5Ch79gC9e1fe9uxxdUREjWL9bi2KSmoe1cRyOyIiIiIiouaLiSciapCayuwqpGwrgbA2ARQRERERERE1eUw8EVG9CSHqHNF0IV2PvSfKGykiIiIiIiIicidMPBFRvR04VY5zafo6+7HcjoiIiIiIqHli4omI6s3WhFJd5XhERERERETUNDHxRET1ZmtCaefhMlzOrHtkFBERERERETUtTDwRUb2k5+ix/VCZzf2Xb+OoJyIiIiIiouaGiSciqpflW0tgz8XqUlhu9//t3X10FPW9x/HP7GbzAA0EUKAK4g0PKiopFxAqirZVgZLYFiyttdXaB9vTI1JsRa3CoXK0V9uLFW3t7WnPKfbcKrZor0SU8mwoGMvl4ajFB5IjQpHIBQNoHjaZnfvHuGw2m4fdMJOZ2X2/ztkDv9mZ2e9mkp3dz/5+vwEAAACAnJPndQEAgqkywx5M63Y0qanZUmGB4VJFAAAAHioulqZMSW4DAAieAGSuOWrpb680ZbRNQ5OljTub9PlPF7lUFQAAgIfKyqTt272uAgB8p0fBU1NTZh84/aCoKPnDbmOjs8N+jOZmFbRpNzc3y3L459T2OThdvxeC+HvUlmHkcM+dkmnSRX9MtE/skPpeIIX7Jq9Xv03qf4lk2C81s76xTKq517EysuHvAB0L4utD+/MMvBe01wi336v0Njf+jg3LUv5ZZ51qRy3L0fdb2XYM0LUgnmvaC+Jz4DONt7Lt/UrQfv5S9h2DdNDjCUDmBl5l/3tih/Tuw1L9VumSf6QGT/t/LkWPSMPnSUPmSAM/52jwBADILdakSWquqfG6DAAAkAGCJ6eccYbML385qQ1krbwS6bUb7MCpO80HpH0LpQOP2gFUnzFSw1uulwgAAAAA8F6PgqfCwkKn6+h1jj+HsjLp6adPNcPO7l1ScldUjkHva98VOGj1S8nDA61MLknXRnw7w5iXtHzoFw6q7lgsadm2bdv06YsKkpZZ1o97PEyxfVfaIB4DpCeIx5bXCO9l22sE9XsvG54DOpcNxzfozyHo9UvBew7Z8H6l7fk+iPVnwzHI9PMcPZ4AZOR057bK6bmxAABA9tq7V1q8ONG+7z7pggu8qwcAfILgCQAAAABO19Gj0l/+kmjPn+9dLQDgIwRPAAAACIbaWumxxxLtW2+VSku9qwcAAHSL4AkAAADBcOiQ9PDDifbs2QRPAAD4XMjrArLG7t3SpEmJ2+7dXlcEAAAAAADgKXo8OeXDD6UdO5LbAAAAAAAAOYweTwAAAAAAAHAFwRMAAAAAAABcQfAEAAAAAAAAVxA8AQAAAAAAwBUETwAAAAAAAHAFwRMAAAAAAABcQfAEAAAAAAAAV+R5XQAAAAAABN748dKePYn2yJHe1QIAPkLwBCAwDtTF9EJVqza80qpf/aRQw4Z6XREAAMDH+vaVxo3zugoA8B2CJwC+FYtZ2vF6qypfatbqLVHtfqNVkvS9L0d0RgkjhQEg54wdK1VWJrcBLyxZIoXD0qJF6W+zdKlkmva2AJBDCJ4A+MpHDZbWV0e1enOznq+K6vD/xZLuz49IP76xwKPqAACeGjhQmjXL6yoAO3RavNj+fzrh09Kl9vr33eduXQDgQwRPTpkyRTp+PNHu08e7WoCAOXDYVOUWu1fTxleiao52vu7NX4xo2BB6OwEAAA/Fw6Z0wqe2oVMmPaQAIEsQPDklL0/q18/rKoBAiA+hW72lWZUvJYbQdYfeTgAAwDfah0/z5kk7diTunzhRevRRQicAOY/gCUCv+KjB0rqXo6rc0vEQunSEQ9LsBQ2n2kaooYu1e27X0wMUChmu7BsAAGSRtuHT/v3S73+fuO/b37bbhE4AchzBE7JLS4t9GdumpsSyc86xb+1t2ybF0g8/DMuSNWlS6h21tdKhQ5nVOXasPU9FWw0N0s6dUmGhVFYmRSKZ7dOH6o6aenxlQ1pD6NLR2Cy9uq/tMcs8vAIABFhDg3TgQKI9fDjTG8B77Xs+xRE6AYAkgidkk5YWafJkadeu5OVLl0r33pu6/tVX229g05R/1llqrqlJveOxx6SHH86s1srK1MlRDxyQLr/c/v/48VJ1daDCp0svKtAHJ2OKxaQDdabeP2bpS/NPSLHgzcdkmhY9ngDAj3buTJwrJamqSrrsMu/qAeIWLeq4xxOhEwAQPDnm8OHky/uWl0tDh3pXTy7asyc1dAqSurrE/3ftsp/PxIne1ZOhZ+4/89T/GxotbaiOqvIlew6nQ+8Hq2fS9p2mpk0OXmAGAAA8tHix9Ic/SKaZfNU7AMhxBE9O2bdP+u53E+2qKoKn3tZ2eF0Qvf12cjvAz6dPkaGKKwtUcWWBLMvSzr2tWr3Zvmrdzr3pTSTupcoNLZo2OTi9zQAAgA+sWGGHTvn5UjRqt+nxBAAET8hiv/qVNG5cx/M7SdK6dRnN8RS1rI7vuPVWafbszGobOzZ12fDhme0jIAzD0ISxEU0YG9GSH0j/qjP1fFVUqzc3a311VE3N6e+rpFh6/N4ixUfB5efnO17v/J82qnJDqx76ieO7BgAA2Wrp0uSr18XbEuETgJxH8ITsNW5c1/M+XHppRruzOuuBVFpq305XjkyOevaQsG65rki3XFekhkZLG1+JavWW9Ibk1Z+0v0j84lV2b6TCwgJHa9t/MKZ332mSZKn23ZhKz2G4HQAA6Eb70ElKnXCc8AlADiN4AuCZPkWGyq8oUPkVyUPyKl+K6n//2fGQvAd+16wvfTbPlcm/V69vSfr//G85G2wBAIAs01HoFEf4BACSJL7OB+AL8SF5S37wCe14aqAOrhuk/1pcrPJp+WrbsemftTE9u9GdeaJWb0jst20IBQAAkKKr0Clu0SL7/sWL7fUBIAfR4wmAL3U0JO+vGxu0ZmvrqV5PTjr5oaXNLyeCpy3Vpo6fsNS/n/M9qwAAQMClEzrF0fMJQI4jeALge/EheVdNtmRZlna/GVP9SWenxVpX1apoNNFubZXWvtSiueXOT2AOAAACzjTTC53i4uuZpns1AYBPETwBCBTDMDT+/LDj+129IXVoXeWGVoInAACQasmSzLehpxOAHEXwhOwxZoz0xz8mt4E0mKal5zuYN2rNplaZpqVwmOF2AAAAANATBE/IHoMHS1//utdVIIBe2W3qyFErZfnRDyxt32nqskm8VAIAAABAT/BpCvCLgQOliorkNnpF5YbOr5K3en0LwRMA+AXnSgAAAodPU4BfjB0rPfec11XkpI7mdzp13/pWPXh3LxYDAOgc50oAAAKH4Mkp554rPfRQchuA7+0/GNOrb8Q6vX/vvphq9psaOcL5Cc0BAAAAINsRPDll2DDpjju8riK3tbRI9fWJdkmJFIl4VQ0CYvX6zns7xVVuaNX8bxE8AQAAAECmQl4XADimutqeYDx+q672uiIEQGUHV7NrL51wCgAAAACQiuAJQM46+aGlTdu7D562VJs6fiL1qncAAAAAgK4RPAF+8eqr0pVXJm6vvupxQdlvXVWrotHu12ttlda+RK8nAPAc50oAAAKHOZ4Avzh+XNqyJbkNV3V1NbuUdde3am55vovVAAC6xbkSAIDAoceTU7ZulfLyEretW72uCEAXTNPS82nM7xS3ZlOrTJPhdgAAAACQCYInJ5lm4gbA1/6xx9SRo+kHScfqLW3fyd82AAAAAGSC4AlATlq9Pv3eToltmOcJAAAAADLRozmempqanK6j1zn9HIzmZhW0aTc3N8ty+DGKiooc3Z/XgnYM2v/8GxsbHdu31Du/Q0mPZxiu7bu3nM4xeG5d8qzi+REp2i5Xar/suXUt+umC4P/cgiCI5xleo73HMfAXN+rv7XNl0I8BupYNxzfozyHo9UvBf0/t9Gea3pBt5/sgHoNM0eMJQM7Z/y9Lr71lD7P79wsNrfpNnm75WjhlvZvnhvTsb/M04WL7DcUbNZZq32WeJwAAAABIF8ETgJyzZlPsVOC0dVVEn/9MWB19WWUY0owrwqr6c+RUALVmE/M8AQAAAEC6ejTUDgCCbOYVIX3/hlDaXaMNw9CMK8KaPi2k/QddLg4AAAAAskiPgqfCwkKn63Bd+3GTjj+HgoJ2zQLJ4cdo+xyCeAzaj+EO4jFoK4j18ztkO3906rK8cKMks92yvJTH6GhbOC+Iv5+un2d6Qdu/sSDWH/Rj4Pp5she4fp5x+VwZ9N8hZCaIxzfbfkeDWH/QjwHnGu9lwzHIFD2ekD369ZOmTk1uAwAAAAAAzxA8IXuMGydt3ep1FQAAAAAA4GNMLg4AAAAAAABX0OMJ8ItLLpEOHUq0Bw3yrhYAAPyIcyUAAIFD8OSUwkJp5MjkNpCJ/Hzpk5/0ugoAAPyLcyUAAIFD8OSUiROlffu8rgIAAAAAAMA3mOMJ2WPvXmn27MRt716vKwIAAAAAIKfR4wnZ4+hR6dlnE+3bb/euFgAAAAAAQPAE+MaRI9L69Yn2VVdJZ57pXT0AAPgN50oAAAKH4AnwizfflL72tUS7qoo30wAAtMW5EgCAwCF4ckpNjbRsWaJ9++3JV7kDAAAAAADIMQRPTnnvPenXv060r7+e4AkAAAAAAOQ0rmoHAAAAAAAAVxA8AX4Ri0lFhtTfsP+NxRx/iCefDOmttwzH99tbtr0ibd4qtbR4XQkAwBOW1XUbAAD4DsET4LXD+6UHvyo9e620sFj6YbH977PX2ssP73fsoY4cMVRWVqCLL87Xj34kbd4crBBn2FnStddLwy+UvvE96b+fNnX0GB86ACDr1ddLjzxiT2XQ1vXX28vr672oCgAApIHgCfDSygel5RdLDWuk4nY9nIpj9vLlF9vrOeA73zE1ZIilfftCWrZM+sxnpMGD7fftf/qT9MEHjjyMa84ZJn3zeun4CUN/+R9DX7+lVYNHRTVtZlQ/X96qN96KyeLbbwDILmvXSsOGSQsWSIcOJd936JC9fNgwez0AAOA7BE+AV1Y+KL1+vz3Fv2FIoXZD4EKGvTxP9noOhE99+ki3396atKy+XnrqKemGG+wrUl95pfSLX9hXrPajH98mRSKJcCkWk6q2W1q42NQFl7RozIQWLbi7VRu3xNTSQggFAIG2dq00a5bU2GgPq+toqJ1l2ffPmkX4BACADxE8AV44vF/ac7/9//aBU3vx+/fc78iwu3ivp46YprRli3THHdL550tjxsh3Q/LivZ46s6/W0i8fN/W5L7TozJFRffVbLQzJA4Agqq+X5syxg6Xu5j2Mxez15sxh2B0AAD6T53UBQE5acacUkd2jKR0hQ1bE0lv33KW/jnmyxw/b0hKWJJWWWqqr6/6x335bWrbMvpWUSDNmSBUV0syZ0oABHW+z982YnnvB+YnRpUT4FQqnt/7xE9LKZ2Ja+UxMoZA0dbKhipkhVcwI6bzRhox0f/4AgN63YoXU0JD+BOKxmL3+E09It93mbm0AACBtBE9u6ejbto8+knbtymw/gwZJF1yQunzPHunkycz2NXmyFIkkL6urs9OFTIwYIQ0fnrr873/v8s2h0dycvKBfP2nSpNQVa2qk997LrKYLL5TGj5deey2x7NxzM9tHb4nFpPfXSp/IcDtL+re+L+quu2LqeWfFSPerdCI+JO+pp6RwWLrsMqm83A6izjsvsd6e1yzdtcTs8eN0redBUXxIXtV2UwsXmxpVaqh8uh1CXX4pARQA+IplSY8+2rNtly+X5s1L/8sdAADgKoInt+zYYX8qb6umRrr88sz2c9110p//nLr8+9+XXn45s30dPSoNHJi87IUXpJtvzmw/Dzwg3X136vLPflaKRjvdrKD9ghEjpHfeSV3xkUcyf7P54ovS9Ol2AOV3/9r38UTimb0hNkKG8gfGNLKoVjWNo9ypLU3xIXnxYXmjR9sBVHm51OpW5uSw+JC8Xz5uqn8/acg57vTSAgD0wNGj9vumTFmWvd2xY/aXdwAAwHMET04pLExujx7tTR3wv/ojp7X50Pw6z4On9mpr7c58Z58tFWTak8sHjp+QzmjI0y2zI5p5dUiXTDBkyFCfIr4tBwBPfPjh6W1/8iTBEwAAPkHw5JSyMnuoV3wo3ZAh3tYD/yo587Q2Pxz1x+/WgAH2XE8VFfbcTyUl9vKnVnlaVtrCYemyKYYqZoRUMTOkMaO41gIA+MYnTvNbjOJiZ+oAAACnjeDJKZGIVF1tz73U1CRddFHqOiNHSlVVme23s2/rfvObzOd46uhN2MyZmdc0YkTHyzdu7HKOp+Z2czwV9OvX8Yrz50tz52ZWUxCG2MWdPUo6GZL6mt1f0a4NK2bJPB7WhPJSTehhRxzTtMfBvf66oTfeyDxoOe88O2iqqJAuvVTK6+AVZPjZhuZ+yZ0QJ17/yZPS3zZl/kMo6S/NvNqe12nGVSENKKFHEwD40qBB9vum2tr0JxeX7HmdSktTpxYAAACeIXhyUiQiTZzY+f19+9ozMjuhrMyZ/QwZ4lzvrKlTu7zbampKXtB+eGLcyJH2LVuFQtLg6VLDmow2Mwwp7+wZWvlIz0OdpqYWmaY0cWJ+WuuHw9K0aYn5m9IZQTp1SkhTp7gTPDU12cHTA/8p/W1TetuMGWX3aiqfHtLUKYYiEcImAPA9w7AnCF+wIPNtb7uNicUBAPARgifACzc9KC1fI+VZ6fV6illSq6Qb/+O0H3rVqlCXvZ06G0LnF/XHpUd/2/n9DKEDgCxx003SPfdIjY32pUm7EwpJRUXSjTe6XxsAAEgbwRPghaEjpLJ7pNfvt0OlrsKn2MdDDD61yN7uNJim9LOfpf7ZpzOEzi9+/Tup/njyz4shdACQhUpKpFWrpFmz7FCpq/ApFLJ7OT3zjP++MQEAIMf5+OMlkOW+cqe0UtKe+6WIJVlKDqBilmTI7un0qUXS3DtO+yHjvZ3CYUvTphkZDaHzg7a9nUaPtHTtzDyG0AFANps+XXr+eWnOHKmhwV7Wds6n+JC6oiI7dLrmmt6vEQAAdIngCfDSV+6Urviq9MRdUt2LUnGbb3M/CktDZkjffEgaPNyRh3vnHUMrVkR1zTUxDR3ayRxbPla9Q7rzh9KsayyNHikVFvISBgBZb/p06eBB6YknpOXLpZqaxH2lpfacTjfdJPXv712NAACgU3xqA7w2dIS08El7CMGhWumDOmnAEOmsUnvogIMWLjQd3V9vm/45+wYAyDElJXbANG+edOyYfXnT4mL76nVMJA4AgK8RPAF+EQpJw0bZNwAAkMowpEGD7BsAAAgELvcEAAAAAAAAVxA8AQAAAAAAwBUETwAAAAAAAHAFwRMAAAAAAABcQfAEAAAAAAAAVxA8AQAAAAAAwBUETwAAAAAAAHAFwRMAAAAAAABcQfAEAAAAAAAAVxA8AQAAAAAAwBUETwAAAAAAAHAFwRMAAAAAAABcQfAEAAAAAAAAV+T1ZCPDMJyuAwgc/g4A9/D3BQBwG+ca73EMgNxAjycAAAAAAAC4wrAsy+pupfz8fLW0tPRGPQCQUyKRiKLRqNdleI7zDAC4g/NMAucaAHBHd+eatHo8mabpWEEAgAReX238HADAHby+JvCzAAB3dPf6mtYcT4WFhWpqalI4HNbgwYMdKQwActn7778v0zRVWFjodSm+wHkGAJzFeSYV5xoAcFa655q0htoBAAAAAAAAmWJycQAAAAAAALiC4AkAAAAAAACuIHgCAAAAAACAKwieAAAAAAAA4AqCJwAAAAAAALiC4AkAAAAAAACuIHgCAAAAAACAK/4fLuhFPTo4UBkAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAGxCAYAAAAj0XyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfcklEQVR4nOzdd3xT5f4H8M9JmtU96IC2tGVTlmxZMmTTIioyXID7ur2O60LBLf5wXLwiLlRERXC2LEHZIKBM2RsZ3XukbZLn90do2jRJm7RJk7Sf9+uVF5wnzznne5KTk5xvnyEJIQSIiIiIiIiIiIicTObuAIiIiIiIiIiIqGli4omIiIiIiIiIiFyCiSciIiIiIiIiInIJJp6IiIiIiIiIiMglmHgiIiIiIiIiIiKXYOKJiIiIiIiIiIhcgoknIiIiIiIiIiJyCSaeiIiIiIiIiIjIJZh4IiIiIiIiIiIil2DiiYiIqBZnz56FJEn4/PPPHV5348aNkCQJGzdudHpcjeHzzz+HJEk4e/asw+vOmTMHkiTVWW/YsGHo2rVrPaKzTZIkzJkzx7TckONwB3tfO1c4ceIERo8ejaCgIEiShJ9++qlRXr+GfM4aQ3x8PGbOnOnuMIiIiLySj7sDICIiIiLPMGPGDJw5cwavvvoqgoOD0adPH6xfv97dYREREZEXY+KJiIiIyIM8//zzePrppxt9v6WlpdixYweee+45PPjgg6by2267DdOmTYNKpWr0mDzFsWPHIJOxowAREVF9MPFERERE5EF8fHzg49P4P9EyMzMBAMHBwWblcrkccrm80ePxJM056UZERNRQ/NMNERF5tMrxbo4fP45bb70VQUFBCA8Px+zZsyGEwD///IPrrrsOgYGBiIqKwvz58y22kZGRgTvvvBORkZFQq9Xo0aMHvvjiC4t6eXl5mDlzJoKCghAcHIwZM2YgLy/PalxHjx7F5MmTERoaCrVajT59+uCXX36p83hKSkpw9OhRZGVl1Vm3cvyjAwcOYOjQofD19UW7du2wYsUKAMCmTZvQv39/aDQadOzY0WqXqL1792LcuHEIDAyEv78/rr32Wvzxxx8W9Q4dOoQRI0ZAo9EgJiYGr7zyCgwGg9W4Vq9ejSFDhsDPzw8BAQGYMGECDh06VOfx1Obw4cMYPnw4fH19ER0djXnz5pk9X15ejhdeeAG9e/dGUFAQ/Pz8MGTIEGzYsMHhff373/9GWFgYhBCmsoceegiSJOG///2vqSw9PR2SJGHhwoV2xyCEQHx8PK677jqL/Wq1WgQFBeHee++tNb6aYzx17doVw4cPt6hnMBgQHR2NyZMnm8qsncP79u2rc/ykOXPmIC4uDgDw5JNPQpIkxMfHA7A+RlZ8fDySkpKwdetW9OvXD2q1Gm3atMGXX35ptt2cnBw88cQT6NatG/z9/REYGIhx48Zh//79tb4GtkiSZPNRGd+BAwcwc+ZMtGnTBmq1GlFRUbjjjjuQnZ1tccySJOHkyZOYOXMmgoODERQUhFmzZqGkpMSsLsd4IiIiqj8mnoiIyCtMnToVBoMBb7zxBvr3749XXnkF7777LkaNGoXo6Gi8+eabaNeuHZ544gls3rzZtF5paSmGDRuGJUuW4JZbbsFbb72FoKAgzJw5E++9956pnhAC1113HZYsWYJbb70Vr7zyCi5cuIAZM2ZYxHLo0CFcffXVOHLkCJ5++mnMnz8ffn5+mDRpEn788cdaj2PXrl3o3Lkz3n//fbuOOzc3F0lJSejfvz/mzZsHlUqFadOmYdmyZZg2bRrGjx+PN954A8XFxZg8eTIKCwvN4hwyZAj279+Pp556CrNnz8aZM2cwbNgw7Ny501QvLS0Nw4cPx759+/D000/j0UcfxZdffmn2+lRasmQJJkyYAH9/f7z55puYPXs2Dh8+jMGDB9d78Onc3FyMHTsWPXr0wPz589GpUyf85z//werVq011CgoK8Mknn2DYsGF48803MWfOHGRmZmLMmDHYt2+fQ/sbMmQIcnJyzJJlW7ZsgUwmw5YtW8zKAOCaa66xOwZJknDrrbdi9erVyMnJMdtvSkoKCgoKcOuttzoU79SpU7F582akpaWZlW/duhWXLl3CtGnTADh2Dtd0ww034J133gEATJ8+HUuWLMG7775b6zonT57E5MmTMWrUKMyfPx8hISGYOXOm2et6+vRp/PTTT0hKSsLbb7+NJ598EgcPHsTQoUNx6dIlh14HwHj+1XzExcVBo9HA398fALBu3TqcPn0as2bNwoIFCzBt2jR8++23GD9+vFmysdKUKVNQWFiI119/HVOmTMHnn3+OuXPnOhwbERER2SCIiIg82IsvvigAiHvuucdUptPpRExMjJAkSbzxxhum8tzcXKHRaMSMGTNMZe+++64AIL766itTWXl5uRgwYIDw9/cXBQUFQgghfvrpJwFAzJs3z2w/Q4YMEQDE4sWLTeXXXnut6Natm9BqtaYyg8EgBg4cKNq3b28q27BhgwAgNmzYYFH24osv1nnsQ4cOFQDE119/bSo7evSoACBkMpn4448/TOVr1661iHPSpElCqVSKU6dOmcouXbokAgICxDXXXGMqe/TRRwUAsXPnTlNZRkaGCAoKEgDEmTNnhBBCFBYWiuDgYHH33XebxZmWliaCgoLMyivfN3uP8csvvzSVlZWViaioKHHjjTeaynQ6nSgrKzNbNzc3V0RGRoo77rjDrLzm67t48WKz48jIyBAAxAcffCCEECIvL0/IZDJx0003icjISNN6Dz/8sAgNDRUGg8GhGI4dOyYAiIULF5rVnThxooiPjzdtz5aar13l9hYsWGBW7/777xf+/v6ipKRECOHYOWzNmTNnBADx1ltvmZXXfP2EECIuLk4AEJs3bzaVZWRkCJVKJR5//HFTmVarFXq93mI/KpVKvPTSSxb7rivGmubNm2dx/lS+HtV98803FvFWvs41z5/rr79ehIWFmZXFxcWZXVeIiIjIfmzxREREXuGuu+4y/V8ul6NPnz4QQuDOO+80lQcHB6Njx444ffq0qWzVqlWIiorC9OnTTWUKhQIPP/wwioqKsGnTJlM9Hx8f/Otf/zLbz0MPPWQWR05ODn7//XdTK4msrCxkZWUhOzsbY8aMwYkTJ3Dx4kWbxzFs2DAIITBnzhy7jtvf39/UogUAOnbsiODgYHTu3Bn9+/c3lVf+v/LY9Xo9fv31V0yaNAlt2rQx1WvZsiVuvvlmbN26FQUFBaZjv/rqq9GvXz9TvfDwcNxyyy1msaxbtw55eXmYPn266bizsrIgl8vRv3//enV7qzzG6q2AlEol+vXrZ/Y+yuVyKJVKAMYuZjk5OdDpdOjTpw/27Nnj0P7Cw8PRqVMnU8u4bdu2QS6X48knn0R6ejpOnDgBwNjiafDgwaZub/bG0KFDB/Tv3x9Lly41leXk5GD16tW45ZZbzLrR2aNDhw646qqrsGzZMlOZXq/HihUrkJycDI1GA8D+c9hZEhMTMWTIENNyeHi4xedPpVKZBuXW6/XIzs6Gv78/Onbs6PD7VtOGDRvwzDPP4KGHHsJtt91mKq98PQBj98asrCxcffXVAGB1n/fdd5/Z8pAhQ5CdnW36fBAREVHDMPFEREReoXXr1mbLQUFBUKvVaNGihUV5bm6uafncuXNo3769xYxUnTt3Nj1f+W/Lli1N3XUqdezY0Wz55MmTEEJg9uzZCA8PN3u8+OKLAIxjSjlLTEyMRaIiKCgIsbGxFmUATMeemZmJkpISi/gB47EbDAb8888/AKpeo5pqrluZkBkxYoTFsf/666/1Pm5rxxgSEmL2PgLAF198ge7du0OtViMsLAzh4eFYuXIl8vPzHd7nkCFDTF3ptmzZgj59+qBPnz4IDQ3Fli1bUFBQgP3795slVhyJ4fbbb8e2bdtM59fy5ctRUVFhSpCUl5cjLS3N7KHX623GO3XqVGzbts2U1Ny4cSMyMjIwdepUUx17z2FnqfmZBCzfN4PBgHfeeQft27eHSqVCixYtEB4ejgMHDtTrfat04cIFTJ06FYMGDcLbb79t9lxOTg4eeeQRREZGQqPRIDw8HAkJCQBgdZ81jyMkJAQALM4/IiIiqh/OakdERF7B2qxatmbaElbGcXGWygG3n3jiCYwZM8ZqnXbt2jltf7aO0Z3HvmTJEkRFRVk8X9+Z2Ow5lq+++gozZ87EpEmT8OSTTyIiIgJyuRyvv/46Tp065fA+Bw8ejI8//hinT5/Gli1bMGTIEEiShMGDB2PLli1o1aoVDAaDWeLJkRimTZuGxx57DEuXLsWzzz6Lr776Cn369DElgbZv324xYPiZM2dMA3rXNHXqVDzzzDNYvnw5Hn30UXz33XcICgrC2LFjHT52Z7HnfXvttdcwe/Zs3HHHHXj55ZcRGhoKmUyGRx991Obg9XUpLy/H5MmToVKp8N1331mcd1OmTMH27dvx5JNP4qqrroK/vz8MBgPGjh1rdZ/u+CwRERE1J0w8ERFRkxYXF4cDBw7AYDCYtXo6evSo6fnKf3/77TcUFRWZtRg5duyY2fYqu60pFAqMHDnS1eHXW3h4OHx9fS3iB4zHLpPJTK2m4uLiTK2Zqqu5btu2bQEAERERjX7sK1asQJs2bfDDDz+YtY6qbGXmqMqE0rp167B79248/fTTAIwDiS9cuBCtWrWCn58fevfuXa8YQkNDMWHCBCxduhS33HILtm3bZjZYd48ePbBu3Tqzdawl8yolJCSgX79+WLZsGR588EH88MMPmDRpElQqlamOvedwY1qxYgWGDx+OTz/91Kw8Ly/PorWivR5++GHs27cPmzdvRmRkpNlzubm5+O233zB37ly88MILpnJr5zcRERE1Dna1IyKiJm38+PFIS0szGx9Hp9NhwYIF8Pf3x9ChQ031dDodFi5caKqn1+uxYMECs+1FRERg2LBhWLRoES5fvmyxv8zMzFrjKSkpwdGjR5GVldWQw6qTXC7H6NGj8fPPP5vNNpeeno6vv/4agwcPRmBgIADjsf/xxx/YtWuXqV5mZqbZGEUAMGbMGAQGBuK1115DRUWFxT7rOvbz58+bEn71OR7AvBXKzp07sWPHjnptLyEhAdHR0XjnnXdQUVGBQYMGATAmpE6dOoUVK1bg6quvNmtN42gMt912Gw4fPownn3wScrncbKyukJAQjBw50uyhVqtrjXnq1Kn4448/8NlnnyErK8usmx1g/zkMGLucHT16tEHd3ewhl8stWg4tX7681nHQKlmLcfHixVi0aBH+97//mY1JVn1/gGVrpbpm6CMiIiLXYYsnIiJq0u655x4sWrQIM2fOxF9//YX4+HisWLHC1AIlICAAAJCcnIxBgwbh6aefxtmzZ5GYmIgffvjB6o35//73PwwePBjdunXD3XffjTZt2iA9PR07duzAhQsXsH//fpvx7Nq1C8OHD8eLL75o9wDj9fXKK69g3bp1GDx4MO6//374+Phg0aJFKCsrw7x580z1nnrqKSxZsgRjx47FI488Aj8/P3z00Uem1mKVAgMDsXDhQtx2223o1asXpk2bhvDwcJw/fx4rV67EoEGD8P7779uM5/bbb8emTZvq1YUpKSkJP/zwA66//npMmDABZ86cwYcffojExEQUFRU5vD3AmGT69ttv0a1bN9O4Pr169YKfnx+OHz+Om2++uUExTJgwAWFhYVi+fDnGjRuHiIiIesVZacqUKXjiiSfwxBNPIDQ01KLVmSPn8I8//ohZs2Zh8eLFmDlzZoPiqk1SUhJeeuklzJo1CwMHDsTBgwexdOlSswHvbakZY1ZWFu6//34kJiZCpVLhq6++Mqt//fXXIzAwENdccw3mzZuHiooKREdH49dff8WZM2dcdYhERERUByaeiIioSdNoNNi4cSOefvppfPHFFygoKEDHjh0tbrhlMhl++eUXPProo/jqq68gSRImTpyI+fPno2fPnmbbTExMxJ9//om5c+fi888/R3Z2NiIiItCzZ0+z7j3u1qVLF2zZsgXPPPMMXn/9dRgMBvTv3x9fffWV2Yx4LVu2xIYNG/DQQw/hjTfeQFhYGO677z60atXKbNZAALj55pvRqlUrvPHGG3jrrbdQVlaG6OhoDBkyBLNmzXLZscycORNpaWlYtGgR1q5di8TERHz11VdYvnw5Nm7cWK9tViaeBg8ebCrz8fHBgAEDsH79eouBxR2NQalUYurUqfjggw/MZl2rr5iYGAwcOBDbtm3DXXfdBYVCYfa8I+dwY3n22WdRXFyMr7/+GsuWLUOvXr2wcuVKU9dGRxQVFUGr1eLw4cNWX88zZ87Az88PX3/9NR566CH873//gxACo0ePxurVq9GqVStnHBIRERE5SBIcOZGIiIjIJR577DF8+umnSEtLg6+vr13rzJ49G6+//jp0Op1TYjh79iwSEhJc3rqpKYuNjcWYMWPwySefuDsUIiIir8MxnoiIiIhcQKvV4quvvsKNN95od9IJAC5fvlzvgbfJ+SoqKpCdnc33hIiIqJ7Y1Y6IiIjIiTIyMrB+/XqsWLEC2dnZeOSRR+xa7/Tp0/jxxx+xfPlyJCUluThKssfatWvx7bfforS0FNdee627wyEiIvJKTDwREREROdHhw4dxyy23ICIiAv/9739x1VVX2bXe5s2bMXfuXAwbNgxvv/22a4Mku7zxxhs4efIkXn31VYwaNcrd4RAREXkljvFEREREREREREQuwTGeiIiIiIiIiIjIJZh4IiIiIiIiIiIil2DiiYioiZszZw4kSXJ3GEReJz4+HjNnzjQrO3HiBEaPHo2goCBIkoSffvrJLbF5kmHDhmHYsGFO3aY7r1uV+87KynLL/omIiJoaJp6IiMimDz74AJ9//rm7wwAAXLp0CXPmzMG+ffsaZX9nz56FJEmmh0wmQ2hoKMaNG4cdO3ZY1K+8Wa18+Pr6onXr1khOTsbixYtRVlZmsc7MmTPN1qn+WLNmjanewYMHMXnyZMTFxUGtViM6OhqjRo3CggULnHrMw4YNsxmPQqFw6r7i4+Nt7qt9+/ZO3ZczzZgxAwcPHsSrr76KJUuWoE+fPu4OyWuVlJRgzpw52Lhxo7tDqTdbn5mxY8ea1avtsy5JEi5evGiqW1FRgblz56JNmzZQqVRo06YNXnnlFeh0OrNtHjp0CDfddBPatGkDX19ftGjRAtdccw1SUlIs4rS1/06dOrnmhSEiIqqGs9oREZFNH3zwAVq0aGHR6sMdLl26hLlz5yI+Pt7uWcKcYfr06Rg/fjz0ej2OHz+ODz74AMOHD8fu3bvRrVs3i/oLFy6Ev78/ysrKcPHiRaxduxZ33HEH3n33XaSmpiI2NtasvkqlwieffGKxnR49egAAtm/fjuHDh6N169a4++67ERUVhX/++Qd//PEH3nvvPTz00ENOO9bnnnsOd911l1lZcXEx7rvvPowePdpp+wGAd999F0VFRWZl586dw/PPP+/0fTlLaWkpduzYgeeeew4PPvigu8PxeiUlJZg7dy4AWLSYev755/H000+7ISrHxcTE4PXXXzcra9Wqldnyvffei5EjR5qVCSFw3333IT4+HtHR0abyW2+9FcuXL8cdd9yBPn364I8//sDs2bNx/vx5fPTRR6Z6586dQ2FhIWbMmIFWrVqhpKQE33//PSZOnIhFixbhnnvuMduftWtNUFBQg46diIjIHkw8ERER1aJXr1649dZbTctDhgzBuHHjsHDhQnzwwQcW9SdPnowWLVqYll944QUsXboUt99+O2666Sb88ccfZvV9fHzMtl/Tq6++iqCgIOzevRvBwcFmz2VkZNTzqKyzNl38V199BQC45ZZbnLqvSZMmWZS98sorLtmXs2RmZgKAxfvgTYqLi+Hn5+fuMOrk4+MDHx/v+JkaFBRU62cYAAYMGIABAwaYlW3duhUlJSVm5/vu3bvx3XffYfbs2XjppZcAAPfddx9atGiBt99+Gw8++CC6d+8OABg/fjzGjx9vts0HH3wQvXv3xttvv22ReKrrWkNEROQq7GpHRNSEbN26FX379oVarUbbtm2xaNEiq/UWL16MESNGICIiAiqVComJiVi4cKFZnfj4eBw6dAibNm0ydcuobJWQk5ODJ554At26dYO/vz8CAwMxbtw47N+/32JfCxYsQJcuXeDr64uQkBD06dMHX3/9tVmdixcv4o477kBkZCRUKhW6dOmCzz77zPT8xo0b0bdvXwDArFmzTPFUdgMsKSnB0aNH7RqTZdiwYejatSv++usvDBw4EBqNBgkJCfjwww/rXBcwJp4A4NSpU3bVB4yJlLvuugs7d+7EunXr7F6vcj9dunSxmuyIiIiwaxvZ2dm47bbbEBgYiODgYMyYMQP79+83ew1t+frrr+Hn54frrruuzv1s3LgRkiThu+++w6uvvoqYmBio1Wpce+21OHnyZJ3rf/3110hISMDAgQPrrOvIOVgXIQReeeUVxMTEwNfXF8OHD8ehQ4fM6syZMwdxcXEAgCeffBKSJCE+Ph4AUFhYiEcffRTx8fFQqVSIiIjAqFGjsGfPHrtj+PzzzyFJEjZv3ox7770XYWFhCAwMxO23347c3FyL+qtXr8aQIUPg5+eHgIAATJgwwSLmmTNnwt/fH6dOncL48eMREBBgSnIYDAa899576NatG9RqNcLDwzF27Fj8+eefpvV1Oh1efvlltG3bFiqVCvHx8Xj22Wetdhutrry8HC+88AJ69+6NoKAg+Pn5YciQIdiwYYOpztmzZxEeHg4AmDt3rukzPWfOHNPrXXOMJ3vjiY+PR1JSErZu3Yp+/fpBrVajTZs2+PLLL+t4F8zl5eVh5syZCA4ORlBQEGbNmoWSkhKrdXU6nUULvrp8/fXXkCQJN998s6lsy5YtAIBp06aZ1Z02bRqEEFi2bFmt25TL5YiNjUVeXp7V5/V6PQoKChyKk4iIqKG8409JRERUp4MHD2L06NEIDw/HnDlzoNPp8OKLLyIyMtKi7sKFC9GlSxdMnDgRPj4+SElJwf333w+DwYAHHngAgLEr1EMPPQR/f38899xzAGDa1unTp/HTTz/hpptuQkJCAtLT07Fo0SIMHToUhw8fNnUz+fjjj/Hwww9j8uTJeOSRR6DVanHgwAHs3LnTdLOVnp6Oq6++GpIk4cEHH0R4eDhWr16NO++8EwUFBXj00UfRuXNnvPTSS3jhhRdwzz33mJI/lQmKXbt2Yfjw4XjxxRdNN661yc3Nxfjx4zFlyhRMnz4d3333Hf71r39BqVTijjvuqHXds2fPAgBCQkLq3E91t912Gz766CP8+uuvFi2LaibMFAqFqQtMXFwcduzYgb///htdu3Z1aJ+AMcGQnJyMXbt24V//+hc6deqEn3/+GTNmzKhz3czMTKxbtw5Tp051qJXMG2+8AZlMhieeeAL5+fmYN28ebrnlFuzcudPmOnv37sWRI0dM51pd7D0H7fHCCy/glVdeMbUg2bNnD0aPHo3y8nJTnRtuuAHBwcF47LHHTN0v/f39ARhbpKxYsQIPPvggEhMTkZ2dja1bt+LIkSPo1auX3XEAxhYrwcHBmDNnDo4dO4aFCxfi3LlzpqQeACxZsgQzZszAmDFj8Oabb6KkpAQLFy7E4MGDsXfvXlNCDDAmRMaMGYPBgwfj//7v/+Dr6wsAuPPOO/H5559j3LhxuOuuu6DT6bBlyxb88ccfpnGr7rrrLnzxxReYPHkyHn/8cezcuROvv/46jhw5gh9//NHmMRQUFOCTTz7B9OnTcffdd6OwsBCffvopxowZg127duGqq65CeHg4Fi5ciH/961+4/vrrccMNNwCAqTWPNY7Ec/LkSUyePBl33nknZsyYgc8++wwzZ85E79690aVLF7veiylTpiAhIQGvv/469uzZg08++QQRERF48803zeodP34cfn5+KC8vR2RkJO6++2688MILtY6LVlFRge+++w4DBw40e78qk2gajcasfuX79tdff1lsq7i4GKWlpcjPz8cvv/yC1atXY+rUqRb1SkpKEBgYiJKSEoSEhGD69Ol48803TecxERGRywgiImoSJk2aJNRqtTh37pyp7PDhw0Iul4ual/uSkhKL9ceMGSPatGljVtalSxcxdOhQi7parVbo9XqzsjNnzgiVSiVeeuklU9l1110nunTpUmvcd955p2jZsqXIysoyK582bZoICgoyxbp7924BQCxevNhiGxs2bBAAxIsvvljrvoQQYujQoQKAmD9/vqmsrKxMXHXVVSIiIkKUl5ebjgeAmDt3rsjMzBRpaWliy5Ytom/fvgKAWL58udl2X3zxRQFAZGZmWt1vbm6uACCuv/56U9mMGTMEAItH9df8119/FXK5XMjlcjFgwADx1FNPibVr15rirMv3338vAIh3333XVKbX68WIESNsvp6VFixYIACIVatW2bWvyvehc+fOoqyszFT+3nvvCQDi4MGDNtd9/PHHBQBx+PBhu/Zl7zlYl4yMDKFUKsWECROEwWAwlT/77LMCgJgxY4bZ9gGIt956y2wbQUFB4oEHHrB7n9YsXrxYABC9e/c2e2/nzZsnAIiff/5ZCCFEYWGhCA4OFnfffbfZ+mlpaSIoKMisvPL8evrpp83q/v777wKAePjhhy3iqHwN9u3bJwCIu+66y+z5J554QgAQv//+u6ls6NChZuesTqcze/+FMJ7/kZGR4o477jCVZWZm2vzcVn6eKjkST1xcnAAgNm/ebCrLyMgQKpVKPP744xb7srXv6rEKIcT1118vwsLCzMruuOMOMWfOHPH999+LL7/8UkycOFEAEFOmTKl1HykpKQKA+OCDD8zKKz+vS5YsMSv/8MMPBQDRtWtXi23de++9pmuHTCYTkydPFjk5OWZ1nn76afGf//xHLFu2THzzzTemc2PQoEGioqKizteEiIioIdjVjoioCdDr9Vi7di0mTZqE1q1bm8o7d+6MMWPGWNSv/tf0/Px8ZGVlYejQoTh9+jTy8/Pr3J9KpYJMJjPtOzs7G/7+/ujYsaNZ96Lg4GBcuHABu3fvtrodIQS+//57JCcnQwiBrKws02PMmDHIz8+3q7vSsGHDIISwq7UTYBzr5N577zUtK5VK3HvvvcjIyLBoUfDiiy8iPDwcUVFRGDJkCI4cOYL58+dj8uTJdu2rUmWrgsLCQrNytVqNdevWmT3mz59ven7UqFHYsWMHJk6ciP3792PevHkYM2YMoqOj8csvv9S53zVr1kChUODuu+82lclkMlPLttp8/fXXCA8Ptzr2U21mzZoFpVJpWq5soXb69Gmr9Q0GA7799lv07NkTnTt3tmsf9p6DdVm/fj3Ky8vx0EMPmXXtevTRR+3eRnBwMHbu3IlLly7ZvY4t99xzj1lLmX/961/w8fHBqlWrAADr1q1DXl4epk+fbvZ5kcvl6N+/v1l3turbqO7777+HJEl48cUXLepWvgaV+/v3v/9t9vzjjz8OAFi5cqXNY5DL5ab332AwICcnBzqdDn369HHovanO0XgSExNN5x0AhIeHo2PHjjbPQWvuu+8+s+UhQ4YgOzvbrKvap59+ihdffBE33HADbrvtNvz888+4++678d1331mM51bd119/DYVCgSlTppiVjx8/HnFxcXjiiSfwww8/4Ny5c/juu+/w3HPPwcfHB6WlpRbbevTRR7Fu3Tp88cUXGDduHPR6vVlrPQB4/fXX8cYbb2DKlCmYNm0aPv/8c7z66qvYtm0bVqxYYfdrQkREVB9MPBERNQGZmZkoLS21Og19x44dLcq2bduGkSNHws/PD8HBwQgPD8ezzz4LAHYlngwGA9555x20b98eKpUKLVq0QHh4OA4cOGC2/n/+8x/4+/ujX79+aN++PR544AFs27bNLO68vDx89NFHCA8PN3vMmjULgPMH0AaMM07V7DrWoUMHAFVd6Srdc889WLduHVJSUvDYY4+htLQUer3e4X1Wjv8SEBBgVi6XyzFy5EizR+/evc3q9O3bFz/88ANyc3Oxa9cuPPPMMygsLMTkyZNx+PBhAMYxj9LS0kyPyvfh3LlzaNmypamrTqV27drVGu/p06exY8cOTJ061WKQ58zMTLN91RzbpnryE6jqlmhtrCIA2LRpEy5evGh1UPHq+0lLSzPdeNt7Dtbl3LlzAGDx2QkPD7e7O+W8efPw999/IzY2Fv369cOcOXMcSnBUVzMOf39/tGzZ0nRenjhxAgAwYsQIi8/Mr7/+avF58fHxQUxMjFnZqVOn0KpVK4SGhtqM49y5c5DJZBbnSVRUFIKDg02vmy1ffPEFunfvDrVajbCwMISHh2PlypUOvTcNiafmOQgYz8PKc1Cv11ucWzWTNY6ex5Uqk2Hr16+3+nxRURF+/vlnjBkzBmFhYWbPqdVqrFy5EmFhYbjxxhsRHx+P22+/HS+88AJCQ0Otdovr1KkTRo4cidtvvx2pqakoKioyJfNr89hjj0Emk9mMk4iIyFk4xhMRUTNz6tQpXHvttejUqRPefvttxMbGQqlUYtWqVXjnnXdgMBjq3MZrr72G2bNn44477sDLL7+M0NBQyGQyPProo2brd+7cGceOHUNqairWrFmD77//Hh988AFeeOEFzJ0711T31ltvtTnmUG1jvjSG9u3bm6ZBT0pKglwux9NPP43hw4ebxsKxx99//w2g7oRPbZRKJfr27Yu+ffuiQ4cOmDVrFpYvX25qcbFp0yZT3RkzZtQ5cHhtKgeAt5YM6tu3r9mNfs2xteRyudVt2roRXrp0KWQyGaZPn27xXMuWLc2WFy9ejJkzZ9p9DjaGKVOmYMiQIfjxxx/x66+/4q233sKbb76JH374AePGjXPqviqPbcmSJYiKirJ4vmaSsHrLsPqoOcC3Pb766ivMnDkTkyZNwpNPPomIiAjI5XK8/vrrDg3K35B46joH//nnHyQkJJg9t2HDBtMECvZsw5bY2FgAxmSwNT/99JPFbHbVdenSBX///TcOHz6M3NxcJCYmQqPR4LHHHsPQoUNr3TdgnFnz3nvvxfHjx63+4aGSRqNBWFiYzTiJiIichYknIqImIDw8HBqNxtQaorpjx46ZLaekpKCsrAy//PKL2V/0rXXRsXWTt2LFCgwfPhyffvqpWXleXh5atGhhVubn54epU6di6tSpKC8vxw033IBXX30VzzzzDMLDwxEQEAC9Xm9K7thSnxtgWy5dumQxrfzx48cBwGygX2uee+45fPzxx3j++eexZs0au/e5ZMkSALDa9bE+KpNely9fBgDMnz/frCVG5eDacXFx2LBhA0pKSsxaPdU1y9zXX3+Ntm3b4uqrr7Z4bunSpWZdftq0aVPv4ygrK8P333+PYcOGWR0QvOYsgJUDQztyDtamcqa6EydOmB1HZmZmnS1bqmvZsiXuv/9+3H///cjIyECvXr3w6quvOpx4OnHiBIYPH25aLioqwuXLlzF+/HgAQNu2bQEYZzSs6zNjS9u2bbF27Vrk5OTYbPUUFxcHg8GAEydOmHV/TE9PR15enul1s2bFihVo06YNfvjhB7PPbc2ufY58phsSjzVRUVEW51aPHj0c2oYtla3dKmftq2np0qXw9/fHxIkTbW5DkiSzQdBXrVoFg8Fg13te+dmsq3VZYWEhsrKybMZJRETkLOxqR0TUBMjlcowZMwY//fQTzp8/byo/cuQI1q5da1EXMP+rfX5+PhYvXmyxXT8/P6vTcsvlcou/+i9fvhwXL140K8vOzjZbViqVSExMhBACFRUVkMvluPHGG/H999+bWgRVl5mZaRYLAKvxlJSU4OjRoxazw9mi0+mwaNEi03J5eTkWLVqE8PBwi25uNQUHB+Pee+/F2rVrsW/fPrv29/XXX+OTTz7BgAEDcO2119q1TqUNGzZYbWFROeZNZYuG3r17m3XXS0xMBGBMdFVUVODjjz82rWswGPC///3P5j4rZ5irPs17dYMGDTLbV0MST6tWrUJeXp7N1h81uyFWtoCy9xysy8iRI6FQKLBgwQKz7b377rt2ra/X6y1u8CMiItCqVSvTDGWO+Oijj1BRUWFaXrhwIXQ6nSmBNWbMGAQGBuK1114zq1ep+mfGlhtvvBFCCMydO9fiucrXoDLRVfN1ePvttwEAEyZMsLl9a9eYnTt3YseOHWb1KhOh1j7TNTUkHmvUarXFueXoTJUFBQUW77EQAq+88goA60nmzMxMrF+/Htdff71F91dbSktLMXv2bLRs2dKsVaC1bsgVFRX48ssvodFoTNcArVZrMbYcALz88ssQQmDs2LF2xUFERFRfbPFERNREzJ07F2vWrMGQIUNw//33Q6fTYcGCBejSpQsOHDhgqjd69GgolUokJyfj3nvvRVFRET7++GNERESYWs9U6t27NxYuXIhXXnkF7dq1Q0REBEaMGIGkpCS89NJLmDVrFgYOHIiDBw9i6dKlFgmI0aNHIyoqCoMGDUJkZCSOHDmC999/HxMmTDCNdfTGG29gw4YN6N+/P+6++24kJiYiJycHe/bswfr1603dQNq2bYvg4GB8+OGHCAgIgJ+fH/r374+EhATs2rULw4cPt+jyZUurVq3w5ptv4uzZs+jQoQOWLVuGffv24aOPPqp1CvRKjzzyCN5991288cYb+Pbbb82eW7FiBfz9/VFeXo6LFy9i7dq12LZtG3r06IHly5fXue2aHnroIZSUlOD6669Hp06dUF5eju3bt2PZsmWIj483jYVly6RJk9CvXz88/vjjOHnyJDp16oRffvnF9Lpaa3WydOlSANa72Tnb0qVLoVKpcOONNzq0nr3nYF3Cw8PxxBNP4PXXX0dSUhLGjx+PvXv3YvXq1Xa1nCosLERMTAwmT56MHj16wN/fH+vXr8fu3bvNBom3V3l5Oa699lpMmTIFx44dwwcffIDBgwebWscEBgZi4cKFuO2229CrVy9MmzYN4eHhOH/+PFauXIlBgwbh/fffr3Ufw4cPx2233Yb//ve/OHHiBMaOHQuDwYAtW7Zg+PDhePDBB9GjRw/MmDEDH330EfLy8jB06FDs2rULX3zxBSZNmmTWKqumpKQk/PDDD7j++usxYcIEnDlzBh9++CESExPNxgOrTI4sW7YMHTp0QGhoKLp27YquXbtabLMh8bjKnj17MH36dEyfPh3t2rVDaWkpfvzxR2zbtg333HMPevXqZbHOsmXLoNPpav1sTZkyBa1atUJiYiIKCgrw2Wef4fTp01i5cqXZGHH33nsvCgoKcM011yA6OhppaWlYunQpjh49ivnz55vGg0pLS0PPnj0xffp0dOrUCQCwdu1arFq1CmPHjsV1113n5FeGiIiohsaeRo+IiFxn06ZNonfv3kKpVIo2bdqIDz/80GJaciGE+OWXX0T37t2FWq0W8fHx4s033xSfffaZACDOnDljqpeWliYmTJggAgICBADTlOlarVY8/vjjomXLlkKj0YhBgwaJHTt2WEyrvmjRInHNNdeIsLAwoVKpRNu2bcWTTz4p8vPzzeJJT08XDzzwgIiNjRUKhUJERUWJa6+9Vnz00Udm9X7++WeRmJgofHx8BACxePFiIYQQGzZssDkte01Dhw4VXbp0EX/++acYMGCAUKvVIi4uTrz//vtm9c6cOSMAiLfeesvqdmbOnCnkcrk4efKkEKJqCvbKh1qtFjExMSIpKUl89tlnQqvVWmxjxowZws/Pr9Z4V69eLe644w7RqVMn4e/vL5RKpWjXrp146KGHRHp6ep3HK4Rx2vqbb75ZBAQEiKCgIDFz5kyxbds2AUB8++23ZnX1er2Ijo4WvXr1smvb1VW+D8uXLzcrr3wtK9+vSvn5+UKtVosbbrjB4X3Zew7aQ6/Xi7lz55q2NWzYMPH333+LuLg4MWPGDIvjqH5OlJWViSeffFL06NFDBAQECD8/P9GjRw/xwQcfOBTD4sWLBQCxadMmcc8994iQkBDh7+8vbrnlFpGdnW1Rf8OGDWLMmDEiKChIqNVq0bZtWzFz5kzx559/murUdn7pdDrx1ltviU6dOgmlUinCw8PFuHHjxF9//WWqU1FRIebOnSsSEhKEQqEQsbGx4plnnrE4l2u+5gaDQbz22msiLi5OqFQq0bNnT5GamipmzJgh4uLizNbdvn276ZpV/TNs7bplbzxxcXFiwoQJFsds77lRue/MzEyz8sr3qPIaefr0aXHTTTeJ+Ph4oVarha+vr+jdu7f48MMPhcFgsLrtq6++WkRERAidTmdz/2+++abo1KmTUKvVIiQkREycOFHs3bvXot4333wjRo4cKSIjI4WPj48ICQkRI0eOFD///LNZvdzcXHHrrbeKdu3aCV9fX6FSqUSXLl3Ea6+9JsrLy+t8PYiIiBpKEqKOERKJiIiakGHDhiErK8tq177m5KeffsL111+PrVu3YtCgQe4Op9n7/PPPMWvWLOzevduhQeuJiIiIPB3HeCIiImriqg8EDhjHJVqwYAECAwOtdgciIiIiInIWjvFERETUxD300EMoLS3FgAEDUFZWhh9++AHbt2/Ha6+9Bo1G4+7wXCYzMxN6vd7m80ql0uasbs5SWlpa5+xiro6BiIiIyJ2YeCIiImriRowYgfnz5yM1NRVarRbt2rXDggUL8OCDD7o7NJfq27cvzp07Z/P5oUOHYuPGjS6NYdmyZXUOAL9hwwaXxkBERETkThzjiYiIiJqkbdu2WXQzrC4kJAS9e/d2aQyXL1/GoUOHaq3Tu3dvhISEuDQOIiIiIndh4omIiIiIiIiIiFyCg4sTEREREREREZFLMPFEREREREREREQuwcQTERERERERERG5BBNPRERERERERETkEkw8ERERERERERGRSzDxRERERERERERELsHEExERERERERERuQQTT0RERERERERE5BJMPBERERERERERkUsw8URERERERERERC7BxBMREREREREREbkEE09EREREREREROQSTDwREREREREREZFLMPFEREREREREREQuwcQTERERERERERG5BBNPRERERERERETkEkw8ERERERERERGRSzDxRERERERERERELsHEExERERERERERuQQTT0RERERERERE5BJMPBERERERERERkUsw8URERERERERERC7BxBMREREREREREbkEE09EREREREREROQSTDwREREREREREZFLMPFEREREREREREQuwcQTERERERERERG5BBNPRERERERERETkEkw8ERERERERERGRS/jYU8nPzw9arRZyuRwRERGujomIqMnLyMiAXq+HWq1GcXGxu8NxO37PEBE5F79nLPG7hojIuez9rpGEEKKujcnlchgMBqcGSEREgEwmg16vd3cYbsfvGSIi1+D3TBV+1xARuUZd3zV2dbWTy+VOC4iIiKrw+mrE14GIyDV4fa3C14KIyDXqur7alXhiU1QiItfg9dWIrwMRkWvw+lqFrwURkWvUdX21a4ynmuzonedxtFqt2bJarXZTJPVX/Ri8MX5JksyWve084jnkfk3hPaj5OSDrvO36AHj/NQ7gNcLdvD1+gOeQJ+D3jP28/ToNeOc56u3XCW//vm8K51D198DbXn+g6b0H9uCsdkRERERERERE5BJMPBERERERERERkUsw8URERERERERERC7BxBMREREREREREbkEE09EREREREREROQSTDwREREREREREZFLMPFEREREREREREQuwcQTERERERERERG5BBNPRERERERERETkEkw8ERERERERERGRSzDxRERERERERERELsHEExERERERERERuQQTT0RERERERERE5BJMPBERERERERERkUsw8UTkgIxyLb68dBZbcjPdHUq9lOn1WJ+eiUWnzrk7FCJqjoQAirOB3HPGf4Vw6ubPnJGwYIEcp09LTt1uYxFC4N3vi7H1YDl0eue+No1l9alcLDuchVytzt2h1Mul8lK8c/kojpcWuDsUIiKX+GmLFt9v0qKg2ODuUJolIQT+7+wxzD91Ap+eOe/ucBqNj1v2OmcOIJcDs2fbv87LLwN6vXFdokYihMDfhflIybiIny//g90FOQj0UeDowDHuDs1umdoyrLqUhpSLl7H2cjqKdHp83vcqd4dFRM1JaR6w/xtg5yIg90xVeUgC0P9eoMd0QBPc4N3Exwt8+60cTz2lQKdOBkycCCQlAQMGAD7u+cXjEEmSIJMBo57KQYi/hPFX+yJpgAZj+2kQ7C93d3h26RLui66L9sEgBIbEBSOpfRiSO4ahQ5ivu0OzSyulBmvzLuHZ8/vQTh2A5LBYJIfFYnBQJBQyB/9eO2cMIMmBF1fZv87c8YDQA3PWOrYvIiI7dWrtg15358BHDgzprsB1Q/yRPFCDhFZe8EXpxdJKtUi9eBmpl9KwKusiKlTlCJD7YGtJOia1bI0x4S0RrFC6O0yXkYSo+8+NMTExuHjxomnZjlVq9/LLwAsvAC+9ZF/yydH6Vmi1WrNltVpdr+24U/Vj8Mb4Jcn8L9ANPo9cpEyvx8acdKSkX0RqxiWcKy02e/75hM54rk1nj30PhBA4lF+AlItpSL14GTuyclD9le4Y4Ie/Rl4DP43GbTHWV1P4HNf8HERHR+PChQtuisZzOP17xg285RpXG5d8z5xcDyy7HagouVJQ/XW58popfIGpXwLtRjZoV1qtFqtXy3DDDeY/3EJDgfHjgeRkYMwYICioQbtxGa1WixKtQOIdmUjPrfpLtPHmQI3kARokDfBF+xiFG6OsnVarxcNrT+PjfRlm5R3CNEjuEIakDmEY3DoIPo4mcRqJVqvFloIMjD7yu1l5sI8SY0OikRwWi7Gh0QhVqOre2NzxgNgGSIPsSz45Wt8Gfs/Y1hS+a5rCbyHe07iXVqvFjNfy8d2GMrPyxHgFkgdpkDxQg6u7KCGXe27r4ervgae+/kII7MvNR+rFy0i5mIbdObnVn4VPUAV0qPZdL0kYEhqB5IhoJEdGo51fQOMH7QBHv2vck3gC7E8mOSHpBPAi7Qk8+SKdUabFqoxLSMm4iF8zL6NIb72LQNCV1k7BCqVHvQdlej02Z2Qh5aKxZdPZ4hKbdT/vexWmxrbyqPjt1RQ+x7whsK4p3Ax48jXOXk7/njm5Hlg65UqXutqa9MsASQJu+a5BySetVgshgMGDldizx3piw8cHuOYaYxIqORlo27beu3O6ytf/vz8W4z8fFdqs1zHWB8kDfZE8wBcDu6rg40E3B1qtFucLytB10T5UGKx/BoLVPhjXLhTJHcIwtl0oQjSek0irfA/GHvkdmwoyrNaRQ8KgoAhTa6iOvrVkMu1NJjkp6QTwe6Y2TeG7pin8FuI9jXtptVocPadDr7tzbPZ4bxEkw/gBGiQN1GBMPzUC/TzrjwWemnjS6vX4PS0TKVdaNl0oKbVZd1aHllicfsbm8538ApEUGY3kiGgMDGnhcX+w8Z7EE1B3UslJSSeAF2lP4EkX6epd6FLSL2BnXjbsiaaytRPg/vegehe6Xy9noFBX93gala2d5JLk9vjroyl8jnlDYF1TuBnwpGtcfTn1e6Y0D3g7EagoRe1Jp0oyQKEB/n243t3uKuO31urJls6djQkoT+iSVxm/tVZPtoQEyDC+v8ZjuuRVHoO1Vk/WyCV4VJe8yvittXqypb0mEEmhMba75NWVVHJi0gng90xtmsJ3TVP4LcR7GveqfP2ttXqyRuEDDL1KbWoN5Qld8jwp8VS9C926yxko0evrXKdPSBDWDOmHxO2/IqOi7vcgVKHEuPBWSI6M9pgued6VeAJsJ5ecmHQCeJH2BO6+SFd2oUtNN7ZsqtmFzh7To2IR5GP8y6yP3DUX3btbt0X3wBCL8soudKlXWjXV7EJnjz4hQegTEgwA8PFxzc1Jr5BgzGob75JtN4XPMW8IrGsKNwPuvsY5g1O/Z/5YCKx5BnDgSiWEhO9L3sAm7X312qXuSgJeCGDxYjnKyx1rCWRvl7z3VhTg5KWKesVYG52u6sfqloPlOHTWsQG6q3fJSx7oi3bR1lsSbTufj2//rjspVB+6Ky2GLxdV4OfjOQ6vX9klL7lDCwxqHWj1L7xlBj2eOLW7wbFao6t2w7Ak8wyKDY69Bza75NlKLjk56QTwe6Y2TeG7pin8FuI9Td3W/6nFz1ts92BoiMrr3Pl0PVb9Ue7w+l0SFEga6N4ueY2ReHrvzFGcLC6yKBcQyCorx9miYpwpLkGGtu7EUU0t1SqEqZS4WFGCXL1j74EMQEuFLxJUAYhXBSDYx3oSalCLMEyLj3U4Nnt5X+IJsEwyOTnpBPAi7QnccVNmbxc6T/JT72twXVQMAKBcb8CmjEzTeE1naulC5ymmto7Bt4P7uWTbTeFzzBsC65rCzQATT9UIAfy3J5B7Fo4kngwGCafz4tF+wV6Yxn9yEx8fYOhQY0uoml3yhj16GZv2O/5Ds7F1aq1A0gCNRZe8j/66hHtTj7s5urrZ6pJXpK9AwNalbo6ubhZd8t6abp5kckHSCeD3TG2awndNU/gtxHuaur31dQGeWpjn9O06W2WXvOSBGoxuxC55jZF4GrpjPTbnuOaPNE6llwCdDKiQG/9/5ffTPe3isahfL5ft1tHvGve3kwOqkksvvAC88gpQXu7UpBM1fYYrF5zqXehWpl/Eznz7utB5kvyKCnxx+hxSL6Zh7eV0u7rQeRZve8WJyOlKcsxnr7OTTCbQLvQMQjW5yCkNdUFg9tPpgN9+Mz4ee6yqS15yMmyOieFpjp6vwNHzFfi/ZQUIDZRhXD9jEqpE7R1TaOdpdfjm7wx883eGqUtecocwDG8b6O7Q7KKHwOb8dGzOT8eTp/9E+3F3IfWHAnRQb4N4PhCSj+T0pBMRNQ3CS35PZ+Ub8OWaYny5phgKH+CaHiokDdIgeUBVlzxJskxSeINyg3d8V0IuALkeUOmNIxvoJEAnh1anM90jS3D/e+A5I1TNmAHI5cakk1xuXCay0z0nt0G+7XP4bP8CVx38CbPTd+OiVAjJzX8xrw8ZJChkMihkEuReeJG+WOz5rQCIyMXKLZumOyJAaXtgbXdRKKoeXnhphlwGKHwkKHwAmRcegEySoJBVPbyRQpLh+6SnIXTCmHTSCWDWh+4Oi4g80OFTdY8T5GlkMuBQegke+yId7e47C/nEk5BPPIm3vs+te2UP5J3fNABaaIGWxfjScAjybZ9Dvu1zHC3Nd3dUHtLiCTC2cKrsV6/XG5c/+cS9MZFXuy06AY/37YrVmZeQkn4RazIvI1/n/DE5nC1A4YPrYmNwc3wsKgwGbMvMRsqVaThPFDbsZq4xHMotxD9FpYj117g7FCJyF6V/g1YvLHf/FMJKJTBihLGF04QJQFxctSe/cVtYDunWRoHkAb5IGqBBv04q0zgcH/3l/h+g9mjhq8CE9qFI6hCG0W1DEagy/mwt0nv+dzlgTDQNDYpE0pWudm00AcBjA4GgK0knHwl4ZxrwznZ3h0pEHsRgEPhlo3f8ITcyVGbs0j1Ig5F91Jj5bjpWbPP8+xV7WEwU4an0ElAhA3RXutoFlXlk1swzEk8vvwx8+ql52aefGn/lsbsdNUCoUoVbohNwS3QCKgwGbM3JRErGBaSkX8TJEscvire1bG0awM1Vg3O39au6YVPIZBgWGY5hkeGY36s7jhcUIuXK4OJbM7Ohd7C/R7/QYPQPDQbgmsHRiyp0+PjvC0g9m4F/dY2rewUiapp8Q4GQBMfHeBIScgzxmHGf5QQL9qg+uPhHHzk+uHhEhDHJlJwMjBoF+NvIn9001A+92qvqFWNtdNXGIdywtxx/Ozi4uFIBDOuhRvJAY7IpPsr64OLdIvzw2NUxDYrVlsr34GJhOX445vjg4l3CfZHcoQWSO4ahf3Qg5FZaNykkGR6LTmxwrNZUH1z8s4xTDg8uHuajwvgw4wx3o0NaIaj6oK9zxwNBh4ANWmBzOXCNEhh+yFjO7nZEdMWfh3TIzQGuG+2LNjHOv9+o/K45c1mP1O2ODy5+VXsFkgdqkDRQgz6dlJB5aSvUutzUMha9g6xN+ATklJfjVFExThcV43Kp1sratYvWqBGuUuKf8hJk6x1LMsohIUbphzaqACSoAsy/ZwD8t3QP9B7YVdP9iafKgcTvvNM8+XTnncZygMkncgqFTIbhLSIxvEUk5nfuhWPFBaYZ7rbmZMJgxwc0Vu2L2W2MP3bdMRhih8AAPB4YgMc7t0dOWTnWXE5H6sXLWH0pHXkVdf8FOLe8Aq936wy5JLkk/o8On8fHFZeRei6diSei5kySgP73XpnVzn4yCWgx4T68fXX9fsRqtcYf06mpMrz/vn0/cbp3rxq7qW9fY1eBujxwvWvGGKoccLdYa8C3v2fZtU54sAwTrvZF8gANRvXRIMC37gMYEBuEAbE2puxroMpjeGDNabvqK2QShsUbx25K6hCGhJC6W8uqZHK83c61k1hsLkjHgrRjdq2T6BuM5CvJpqsDwyGXrLwHlQOJ53cBNu8wlm0uB3r1BoK2MflERCYpm8oAvRxR/kq8/ZDzv28qr3O3vmJf61eVEri2lxpJV5JNsZHuTyE0hgfjO9pVL0tbhlWX0pDiwPi8kWo/rO3XH523rwXs6FUZrlRhQkQ0kiOiMSo8CgE+1v+wBAALt++D3uB5XTXde9ZUn71u+HDzxNPMmcYWT0w+kQtIkoRO/kHo5B+EJ9p2Rk55mV1d8t4/fxIPxrZDiML6tJWNKVSlxM3xsQ51yTtRVIzv/rmE6a2jXRJTytl0AMBvF7NRXKGDn6J5fDERkRU9pgO/vQxUlMI42mUdJBngowF6TGvQboUAXn3V9rWn1i50HuKj1FJk5tt+zWx1ofMU5/K1+PJgps3nbXWh8ySvXPjb5nOVXeiSw2KRVNmFrjbVZ6+78Vng3SFVz904D/jtNePzTD4REYCUTcZWSKmbyiGeFy4ZFPrQGR1+2Gy7pU3NLnR+Gi/pduYGLdQq3N4mDre3iTPNSJ56pYeKrRnJ9+QV4N9HDiCrwnaLs24BwUiOiEZyZDT6BYd55fiM1bnvm7560mn2bGDrVss61We7q75M5GT2dskr0Ovw/j8nTa2ePIUjXfJeP3oSU2JbOT2Gkgo91l8w/oW+TG/A+gtZuC4hyun7ISIvoQkGpn4JLJ0CCBlqTz7JAEjA1CXG9Rpg5UoZ9u0z/4EcEQEkJRkftXWh8wTFWgPeWVFsVqZUAMOvUiNpQO1d6DzFvB2XoDOYtyLuGuGHpPZhtXah8xSbC9KxpdA8cVa9C92YkFYI9LHzD1DVk04vrrL+e/fFVVX1mHwiatbOX9Zj/7ErXZYzDNh7RIdeic6/5r++tNhihtbKLnTJgzTo3bHpdqFzJaVchlEtIzGqZSTe7d0dh/MLkXLxMlIvpWFHVjaqvhoFvsk4b76uTIbhYZFIjohGUkQ04nz96heE5/WyA+CuxFPNpFNtmHyiRmarS97Paf9ge16WqdVTSzd0tbNX9S55ueXlWHMpHSkXL2P1pTRTq6dZHdo6dZ+/XcyCVl91Y5lyNoOJJ6Lmrt1I4JbvgGW3AxWVf/Wr/ovoyo9ahcaYdGp3bYN2V721U7duBkycKHOoC50nqGztFB4kw4QBjnWh8wSVrZ3q04XOU1S2duqsCcTEFq1r70JXm5pJp9ow+UREAFI3mbdCStlU7vTEU2VrJ5UCGN5TieuG+GHCgObTha6xSJKELsGB6BIciKe7dDTrkpeS9Q/KIBAkV+C6iFa4rmXrOrvQ2cvRMYAbi3vOrspZ6+xNIlXW03teX0Vq2qp3yXswOgE5FeVYm52GQ0UFaBngmjE+nC1EqcT0+FhMj49FYUkJdmTn4kRRcd0rOij1XIbFskEIr28WSkQN1G4k8O/DwP5vgZ0fArlnqp4LiQf63wdcNR1QN3zMobNnJcycqce4ceVo3do9Y/E1hBACSgWw8e1Q9OmggJ+f9yRrKh3NKsWXE9vh2vggRAR5cNMyGy6Vl+K60FgsatMfCWr/hp1DQm+ZdOrWDdiwwXy5kin5xN+7RM1V6mbzrlcpm8rw4r/q2fLFhlOX9Fg2Jwgjeirhp3HNuK9kqbJL3m0JrTHvuC8UQg4/KDAjPtap74FBCM5qZzJnjuPrsKUTeYBQhRLTo1q7O4x6U8hkuCY8DNeEhzl1u0IIpJ5LNytLLy3Dnxn56BcZ7NR9EZEX0gQDV99nHHC8NBcoKwRUAYAmxDgQuZMkJAjce6/33rRLkoQHrnPuDUZjG9O2fjMSeopWSg0eiOrgnI3NWWtZFhQEDBtmex22dCJqtopLBH7fZZ54+uuwDpcy9GgV4bzZ7SYOcv6srGQ/SZLwSFx7l2y7Qm8wtniq8dPqbEEJOvsGu2Sf9vKcdtuDBgEVFVWPQYPcHRER2WlPVgEuFVsOUFgzGUVEzZwkAb6hQEic8V+2iCQiIgIArPujHGVWxppeudn2ANRE1W25nGO1fMOl7EaOxJLnJJ4kCfDxqXrwxyiR16iczc6ivEb3OyIiIiIispSyyfosc7bKiWqyde/FxBMRNQm2Ek/7sgrwT1FpI0dDREREROQ9DAZhs2XT+p3lKNV65oDR5DmEEDbvyfZkFiC3rKKRIzLHxBMRNcjFIi32ZBXYfD71LFs9ERERAQCKioA9e6oeRUXujoiIPMCfh3RIzzZYfa5UC/y2k93tqHbH8opxqqDE6nMGIbDmvHvvyZh4IqIGWVnHRSyF4zwREREZ7dsH9O5d9di3z90REZEHqKs7HbvbUV1stXaqet69iSf3zGpnzaVLwIoVVcuTJwOtWrkvHiKyS10Xud8vZqO4Qgc/hedcboiIiIiIPEXKptpbNKVuLocQAhLHQSYb6hpbd/X5DFToDVDI3dP2yHPuBE+fBh55pGq5Vy8mnog8XEmFHusvZNVap0xvwPoLWbguIaqRoiIiIiIi8g7nL+ux/5iu1jqXMgzYe0SHXomKRoqKvEm2thzb0qzPaFcpr1yHbWm5GBYd1khRmWNXOyKqt98uZkGrt94fvTp3N+0kIiIiIvJEqXZ2o6urVRQ1X6vPZ8Bgx/jz7hwChYknIqq31DqadFavZxCcjYOIiIiIqLpUG7PZ1cRxnsgWu+/J3NgYgIknIqoXIQRS7cyap5eW4c+MfBdHRERERETkPYpLBH7fZV/i6a/DOlzK0Ls4IvI2FXoD1pzPtKvu8fxiHM9zz2yqTDwRUb3sySrApWL7//LC2e2IiIiIiKqs+6McZQ70oLO3dRQ1H1su5yC/vPYxwqpz1xAoTDwRUb3UNZudZX2O80REREREVMnR7nMpG9ndjszVNZudZX33NAZg4omI6sXRxNP+7AL8U1TqomiIiIiIiLyHwSCw0sEWTOt3lqOklOOmkpEQwuF7sq2Xc5FbVuGiiGzzqc9KWq3W2XFAKiuDqtpyWVkZhBP3o9FonLYtT1Ba6v038PU9j7IqytBCoTIr0+st+zvrdDqLfVhb1148h6pcLNZiT1aBw+v9ePIi7ukUU+/91nwPmsLngKxzxfdMY/PGY2hq1zlv543XuKZ2Djn7PXD1711yTFO4Tnv7dcIb46+pvufR7kN6pGfXPTu02b7KgDVbizB+iKJe+wScdw5lFejRIlBuVmbtnqyixj2ZEALZhQaLdetLkiSnbMed6vMe6IQBe3PycaqgxKH19ELg+5P/YGJ8OALl9T+PHMUWT+R1FmUex5STW7C/JNfudbYXZmLCsd/xY+55F0bWfKy5kG36f7tADT4dkogWKssL1//174CxMWGm5VXnsxolPiIiIiIiT7ZqS1Wrkx4dZFj6uvXE/ccvqDGgR1WSZtVW+8fzcaW3fizA7e9k48g/9rWeEUJg40EtRr2Qid8OeF/S19PIIWHa2S1ARBEgM6BzsB+WDOtqte7zV7XBsJYhgCSA0BI8mr0d+kaecbxeLZ6I3GlsUCu8culvpORdQHJwDJ5rZf0DBhgTTq9eOojfC41NED9M6N9YYTZpq/7JQrtADZ7pkYApbSLhI5Ph2T9PWtTr3SIQDyTGYndmPl7bdwYbLueiuEIPP4Vz/sJBREREROSNVm3RoUcHGZ67W4Wka3ygszFh3bC+PrhlggIbduvxysdlWLVVByGE21v6jO2pwfiXMrFiewkmD/TFM5MDrdYTAth4UItXvivAtiNlkMuA5f9p0cjRNj2SJEEUK4DIPGiiyjApKhLXRoYAVia46xrmh/AWwKGL55Cp10JbooS/rHFTQUw8kdfp6RuKKIUGaRWlSMm7gJS8Cwiy0kzwo8wTmJd22LTcQxOMWKVfY4baJAkhcEu7KExsHQ4fmX2NJvuGB+HHUVdhd2Y+MrTlSFA0ra4YREREdmnRAvqbbjJbJqLmp1Qr8Pw9xoRTVQLJdgsUSZIwop8PhveVY+NuPbLzBVoEuzfxNKizCoG+EgpKBJZvK8GK7SUI0FjGNP+nAuQVVx3bwE4qhPiz41VD6QwG3BGVgFcL9qJU6PH65UP4X8ZxwMppcffF7Sg0VLVMu7NlAjK1FWjlW78haOqjXokntVrt7DgAlarGogpw4n5q9pt0yTG4WPWstjfGX1NDjiE5NBYfpx83LefrLZt45tUom9girkH75DlU5eZOcda2blGiUirN9jMk1rmvmTe+B2Qfb3xvm8I1ojrRyE2wnaHmOBve9h54e/yA+efAG+N3+XvQowfw3XemRbb/dS9vPEeb2neNt8cP1O8Y1GrgpjHmZfIKAaDQsq5KBbW66mox7hqHd1dHLPV7D9RqYGxvP3y3pQiAsWVTQYnlb4fqSScAuO7qgAa/797+XVOztVp9j+HFrt3x/s5DyNcbB6kv0FdYTTxVTzoBwOPtuqCNJqhe+6wvz0k1tmkDvP9+1aNNG3dHRB4sOTS2UdYhIiIiIiIiS8n9HO9NktyfPVCcRSGTYWxItEPrdNAEokMjJ50AT+pq16oV8MAD7o6CvMS1wa2glsmhNdjoDF1DlEKD3v5szk5EREREROQM43r7QSYDDHZOztchWoEO0UrXBtXMJIXGYlnWGfvrh7inMYbntHgicoCv3Acjg1rZXX9CaAxkTWCqTSIiIiIiIk8QFijHwE72dxOrTwspqt24kGjIrPWvs8FdvYCYeCKvlRQaY3dddrMjIiIiIiJyLkeSSUl9mXhytjCFGoMCI+yqGyxXYlBgpIsjso6JJ/JaSXYmk1SSHCOD7W8dRUREROQS+/YBfftWPfbtc3dEREQNktzf3656wX4yDErkzNauYG8ji3GhMVDYOSu5s3lO4slgAMrKqh72dhSlZita5YdefmF11rs2uCX85IpGiIiIiIioFkVFwJ9/Vj2KitwdERFRg3SKUaBty7rvtcb18YXCh0OfuIK9iSd39gLynMTT9u3GORkrH9u3uzsi8gL2fHjsbRlFRERERERE9pMkya4udMn97GsZRY7rqAlCW3VArXXkkByeAc+ZPCfxRFQPyWH2JJ7sHwuKiIiIiIiI7FfXOE9yGTC2t28jRdP8SJJUZ4OMwYGRCPFRNVJElph4Iq/W0y8MLZW2+wpf5ReKWBWz60RERERERK4wpIsGgb62UwuDEzUI8Zc3YkTNT12JJ3dPtsXEE3k1mSQhKcT2h8jdHzAiIiIiIqKmTKmQam3R5MjMd1Q/QwKjECRX2nzenp5CrsTEE3m92pJLTDwRERERERG5Vm3JpeT+TDy5mkImszmGU7zSHx00QY0ckTkmnsjrXRvcCmqZZdPNKIUGvf1buCEiIiIiIiKi5mNcbz/IrGQXOkQr0CHadkscch5bk2oNDWjZyJFYYuKJvJ6v3Acjg1pZlE8IjYFM4pSdRERERERErhQWKMfATmqLcnazazzjQqIBYVk+nIknIuew1meV3eyIiIiIiBwgBJCVBZw9a/xXWLmL9WRCAMXZQO4547/eFr+Xs5ZkcnbiKSNfh7R8nVO32VSEKdSQShTmhXoJPX3d3wvIx90BEDnDhJAYs2WVJMfIYMtWUEREREREVENeHvDFF8CCBcCpU1XlbdsCDz0EzJgBBAe7K7q6leYB+78Bdi4Ccs9UlYckAP3vBXpMBzTB7oqu2Uju74//fJ5tWg72k2FgZ9szkNeHRimhy1PnER/ugwk9/HF9vxB0b62GxJ4uAAB5kRo6v4qqgkIlFJL72xu5PwIiJ4hW+aGXX5hpeURwFPzkilrWICIiIiIirF0LxMQAjz0GnD5t/tzp08bymBhjPU90cj3wdiKw5hkg96z5c7lnjeVvJxrrkUt1ilGgTVTVPdi4Pr5Q+Dg3IRSgkePh0cH480wZ5v6UjauePYm4R47h/sUXsXpfIbTlBqfuz9vIClXmBQUq6xUbGRNP1GRU71qXHNrajZEQEREREXmBtWuBCROA0lJjt7SaXdMqy0pLjfU8Lfl0cj2wdApQUQrj4DY1u9ZdKasoNdZj8smlJEky61qX3M/fJfu5b0QwQv2qUhn/ZFdg4focjH/rLFrcdwTXv3MOn23MQVpeRS1baZqkcjlQdmXiLQGg0DMGdmfiiZqM6uM8JYXG1FKTiIiIyA2uvhrIz696XH21uyOi5iwvD7jxRmNiyVBHKxGDwVjvxhuN63mC0jxg2e1XkmV1tXK5Ev+y243rkctUJp7kMmBsb1+X7CNAI8OjY0KsPldcZsBPfxbgzo8vouUDR9H/hZN45ccM7D9XCtEMxvySIFUlm4oVgMEzUj6eM8aTry/QrZv5MpEDevmFoZXSFxEKNWJVrsmuExEREdWbjw8QGOjuKIiMvvgCKCmxfwBug8FY/8svgYcfdm1s9tj/DVBRAqvTeFllMNbf/y1w9X2ujKxZG9JFgwBfCe1ifHD0stYl+ygrK0fPOBWUPhLKdbW//7tOlWLXqVLMXpGO2DAFknsGIKlnIIYn+kGt9IykjNMVqIAWpUDNbndu5DmJp169gAMH3B0FeTFJkjAhJAZRSucOYEdERERE1KQIYRxIvD7++1/jgOPuHMxZCONA4vWx80PjgOMcjNollAoJQ7urkXokFwPnFLo7HDP/ZFfgg/U5+GB9DvxUMozq5o/kngGY0DMAkUFNaHzgYgWgl4ACz+hmB3hS4onICZJDYxHJxBMRERERkW3Z2eaz19lLCON6OTlAWFjd9V2lJMd89jq7CeN6pbmAb6jTwyKjkT18kXok191h1KqyS95PfxZAkoB+bTRI6hmI5F4BTWCWPAnI0gDlnpPu8ZxIiBpgUfYhbCi+BL0wQCZJkHIlTAqMx7Tg9u4Ordn4cGhXaHUGpJeUI9LXmF1vH+RXx1pERERE1OiKihq2fmGhexNP5Q2Mv6zQ4xJPcjnwzZvGrrjpWQKRLYyJj9Ag7+sONqGPHx791t1R2E8IYOepUuw8W4w3fruE9lFKtI9SQSYBcaEqvHm994wf3HewDjohUKJTwreT3lio0Ls3KDDxRE3E7tIMLMs/aVbWVhmIaW6KpzmalBAFAJj600EsnpAIX4XczRERERF5mLQ0IDW1ajkpCYiKcl881Hz5N3A81IAA58RRX8oGxq9yc/xWyGQSpo1TAwAm3lmMnz/x9dpWNxqV9yTLZBIwoL0vknsFQu0r8Oj357Hvkg77LpUAAHrEaLwq8bTbcBlaoTdOI1c55r6P+wdVZ+KJiJymtEKPlJNZWH82BxPbh7s7HCIiIs9y8iRw991Vy1u2MPFE7hEWBrRtC5w+bf/g4oBxXKQ2bYBQN7cW8g0FQhKA3LOwf3BxAJCAkHhAY31GNE9w4bIBKet12HfIgJ5dvfMPuTIJiAxyYarhyjmbWaiHoR45lQC1DGN7BCCpZwDGXxWAFgHGWH/c59ndA72Z5ySejh8HXnutavnZZ4EOHdwXDxE57PdzuSjVGZB6MouJJyIiIiJPJUnGAcIfe8zxdR9+2P0Dc0uScYDwNc84vm7/+9wffy1Sf6sw/eutiaeWIQqkfdDZZdvXarU4kVaOq54/Z/c6CeEKJPcKRHKvQFzTyRdKH+9pldUUeE7iKSPDOKVnpbvuYuKJyMuknMwCAKSeyoJBCMg8+EudiIiIqFmbMQN47jmgtBQwGOquL5MBGg1w++2uj80ePaYDv70MVJSiqk9RLSQZ4KMBenj2YBwp63XGf3/TYfYjbg7Gg72RmlNra6fqXeiSewagc7TKa7suNgWek3giIq8mhEDqKWPi6XJROfakFaJPy0A3R0VEREREVgUHA99/D0yYYEwq1ZZ8ksmMrYR++MG4nifQBANTvwSWTgFE9QFtrJEBkICpS4zreajiEoHfthsTT7v363E53YCWkWyZU9OJtHJ8+0ehRbmtLnTkfjyLicgp9qYX4mJhmWm5svUTEREREXmoMWOAlSuNLZkkybILWmWZRgOsWgWMHu2eOG1pNxK45TtAoYGABIPBPH6DkABIgEID3LIcaHete+K00/qtOpRV/ZzGyt917gvGg1Vv7ZQQrsDDY8Kw7pkEZC3qjO8ebo3bh4Q026RTfca8agxMPBGRU6TWSDQx8URERETkBcaMAS5cAN59F2jVyvy5Vq2M5Rcvel7SqVK7kcC/D2NX6Bs4nRdv9tSl0nhg7BvA40c8PukEVI3vVCmlxjIBp9LL8E+ODi/fGIY9L7fGqXc64r3bW2FkV3+O2wRA78hkAY2oeaYBicjpaiaa9qYX4kKBFjGBajdFRERERER2CQ42DhresydwzTVV5d98AwwZ4raw7KYJxtGg+zBzwb0I1eQiQFmIwvIAdOkTgs3zvGNcH4NBIPU38xZO67boUKoV0Ki94xgaQ5sIJX59Ksa0zHGbzBkMAqgxJn1BeQXg5lsypgSJqMEuFZbhzzTLftYrT7HVExEREZHXsNbVzqtIyCkNxbn8OOSUhgLwnvj/OqhHWqZ5a5VSLbBhO7vbVcdEk23Hsothrb3T1n/yGjsUC0w8EVGD2UowsbsdEREREVHdKmezsyj/jYknso+te68N5/MaNxArmHgiogazdZH77VwuSir0jRwNEREREZF3SVlvfTyn1N8qIDx03B7yLLbuybb8kwddbbNWNgImnoioQUor9Fh/Nsfqc1qdweZzREREREQEXLhswL7D1hMDFy4L7Dvk3qQBeb6c0gpsu5Bv9bmCch2223iusXBwcSJqkN/P5aJUZ/vLMOVkFia2D2/EiIiIiIioXjp2BL7+2nyZXK7mbHY1pfxWgZ5d5bXWoeZtzensWme0SzmZhWtahzRiROaYeCKiBqlrHKfUk1kwCAEZBwIkIqLmLj4emDfPfJnIk4SHA9OnuzuKZsfW+E7Vn3/hkUYKhrxSXfdkKSez8NaI9o0UjSUmnoio3oQQSK1j5rq04nLsSStEn5aBjRQVERGRh4qJAZ580t1REJEHKS4R+K2Omev+PKDH5XQDWkZypByyVKE3YPXp7FrrHMspwYmcErQP9W2kqMx5zpnbvTuwfXvVo3t3d0dERHXYm16Ii4Vlddbj7HZERERERJbWb9WhrO6f01j5O2e3I+u2XshDflnd54c778k8J/EUGAgMGFD1CGTrCCJPl2rnxYuJJyIiIiIiS3WN71Qpxc561Pyknqy9tVNVPSaeiMgL2ZtQ2pteiAsFWhdHQ0REREQNUl4OXL5c9Sgvd3dETZrBIJD6m30tmdZt0aFUa3vwaGq+Uk5m2lVvy4U85Gndk8Bk4omI6uVSYRn+TCu0u35dY0ERERERkZvt2gW0alX12LXL3RE1aX8d1CMt075kUqkW+H0bu9uRuWPZxTiRW2pXXZ1BYE0dY0G5ChNPRFQvKx1MJLG7HRERNXtbtwI+PlWPrVvdHRERuVFds9lZ1LezdRQ1H47eY7nrnsxzZrUrKAAOHapa7tKF4zwReTBHL1q/nc1Fcbkefkq5iyIiIiLyAnq9uyMgIg+Rst6xbk+pv1VACDUkSXJRRORtHL0nW306GzqDAT6yxm2D5Dktng4cAAYOrHocOODuiIjIhtIKPdafzXFonTK9Ab+dc2wdIiIiIqKm6MJlA/YdNji0zsU0gX2HHFuHmq6c0gpsu5Dv0Dq5Wh22O7iOM9SrxZNW6/xBgqWyMqiqLZeVlUE4cT8ajcZp2/IErngPGlt9j+H93ENo6eOL6/3jIbuS7ddb+euhTqcz7aNCGPBNwSkAwO1B7eu1X55DVdacyUGprupLb3RcMLZfKkBRhfkX4biEEGw4nw+t3lj+07F0jI4NqPd+a2oKnwOyzhvfW14j3K/me1Baat+YB56iqZ1DTYGzzyFX/94lxzSFViPefo7W97vm119lOHxYwt136+HnZyyrqJABUJrVMxgM0GqNA6QLAWzaJMOmTTK8+KLzuqzV9xh+XFN1/yJJwMRRMvz8q2VSKXmkDKs2GEyNJX9cU4rO7ZzXccnbv+/r+xnYeqoY288U477BYQhUG3tklJdbtkATBmH2Gm07XYxVhwrxanJUvfZrTX3eA50w4MbjG6D3k4Ai46c2qU0oUq3UHRoTjO3HtagwCEClw6OXtuKbkAGIU/g3MHL7eU6LJyI7xSn8cWvaRvQ9/xO+LzwDg7A9IF+FMODL/BPoce4H3JuxFZ1UwY0XaBO26rSx5dLouGBsnNodP1/fBX4Kyy50T/WNweE7euPBni2hlsuw+nROre8XEREREVFdevY04NlnfZCYqMK778pRXGy7rhDAxo0yjBqlxLhxSgQGesZv0VUbDJAk4MZxMuz+RYElb1tPJr092wcH1ihx+w0yyOXAyg1s8eQMV8Wo8eraTHR+5Tjmrc9Agbb2btDbThdjwodnMPL9M1Ar3J+09pFkOFlcDFxzDq0GZ+PrqQlYPrGz1boP92qF329LRNchxcDwM/hbloHWPn6NG2+j7o3ICUb4toJKkuNweR5uTduIRGUwVJJl0mNLaRp6nPsBZyqMM69FyjXoo2rR2OE2OUII6AWwcWp39G9Zd+ulln5KvDW0Df7dJwZv/3kBR7JL0KVF417oiIiIiKjpCA8H+vcX+OMPGZ55RoG33/ZBz56WCZmLF4FRo5TYtq2qvcWECe5P3JRqBcJCgN2/KNClgzG2igrbCbE2rSUsel2B//xL4K1FOmTmCISHuj/54c38VXIMa++HX48W4cVVGXh3QzYGJPha1Mss0mHCh2fw+/Gq7Ob4Lu4fi1pnEIjThuFCQDYuBWXjlqK1uPFyAiBZnkcflv6NLQWXoA00Jtc6VoTjfGEZ4gLVjRZvvRJParULAlSpaiyqACfup2YTPJccg4tVb4LnjfHXVN9jUEONa/2jsarwPADgcHme1Xo7tBlmyxMC4+DrxG4Mwgtb7jjrHPosqatloZXm6iqVyrSfBLUaC8Yk1nuf1jSFzwFZ543vLb9nPI+3H0Nz/p5xl5rdHZx+DC7+vUuO8fbPGOD952hD4r/uOuCPP4z/z8yU8Ouvln+IPntWhrNnq5bbtwe6d1dZ1HOEM77v1Wrgq/fMy+RyAaDcsq5KBbXamJxK7AAsnu/w7sw0hd8r1TXoHOoRil+PFgEAckv1WHW40KLO5QIdLhdUdc1sGaTAgLbBkMnqn/hz1nvw8zWDEHHkBAwQEABWFJ2x2qdtXfk/Zsv/7dEbHf2D67XP+mJXO/JKyQHxjbIOERERERF5nuTkxlmHmq6kbkGOr9M1qEFJJ2cK81FjoG+kQ+sEyZQY7Oe88ansxcQTeaWkwDiH6qskOUb6x7goGiIiIiIiakyJiUBCgmPrMPFE1bUOVaFHjGM9YpK7BbsmmHpKDox3qP64gNZQWBmmxtWYeCKvFKPwR0+1/eM1DfdrBX+5woURERERERFRY5EkICnJ/vrBwcCgQS4Lh7xUUtdgu+uqFRKu7eS8GbqdISnAsQYZjtZ3FiaeyGs50urJ0UwwERERERF5NkdaMI0dCyj4d2iqIdmB7nbXdgyEr7LxWwvVprMqBG2U9g12LoeEcQGtXRyRdUw8kddyZMwmd2V2iYiIiIi8RlAQMHRo1SPI8TFwGtPQoUCAnQ1Q2M2OrOkb54fIQPvmXPO0bnYAIEkSku281x3kF4VQH/cMJs/EE3mt3ppwRPlYTnlZUw91GForPatJJBERETVDajXQtm3Vw8tnk6ImqFs3YOPGqke3bm4OqHZKJTBmTN315HJg3DjXx0PeRyaTMKFLsF116zMYeWOwt3ePOyfbYuKJvJZMkuxqycTZ7IiIiMgj9OkDnDxZ9ejTx90REXk9e1oyDR4MhIS4PhbyTvZ0t+sV64voYGUjROO4Ib4tESirO7ZkByfocib72pQ1hogIYMYM82WiOiQHxuGT3CO11nF0BjwiIiIiIvIO48YZBxoXwnYddrOj2ozsFAilj4Ryne2TyFNbOwGAUibHmIBYLM8/ZbNOO2UQOiiDGy+oGjwn8dShA/D55+6OgrzMSP8YqCU5tEJv9flIHw36apjEJCIiIiJqisLDgQEDgO3bbddh4olq46+WY0SHAKw5XGCzjieO71RdckBcrYmn5IA4SJLUiBGZY1c78mq+MgVG+EfbfH5CQBxkbvyAERERERGRa9WWWGrf3tjGgag2tSWWWgYp0Cu27rGF3Wl8QBxksH3f6+5Z3pl4Iq9X2xhOHN+JiIiIiMhOhw8DEydWPQ4fdndEdqkt8cTWTmSP2rrSJXUNgkzm2Y0ZwnzUGOgbafW5AEmBwX5RjRyROSaeyOvZGsNJKckw0j+mkaMhIiIisuHUKeCBB6oep2x3iyByi5wcICWl6pGT4+6I7JKYCMTHW3+OiSeyR+tQFbpHa6w+l+Th3ewqJdlo1TRYFQ2FJG/cYGpg4om8XozCHz3VLSzKR/hFw1+ucENERERERFZcvgx88EHV4/Jld0dE1CRIkvUEU3AwMGhQo4dDXspadzu1QsLITgGNH0w9JNuY8X2Y2v2NMTwn8bRnD9C9e9Vjzx53R0RexNrUkO7ux0pERERERI3DWuJp3DhAwb9Dk52SrXS3u7ZjIHyV7m0tZK/OqhBIJTVOeAMwRGV7TOTG4jmz2pWUAAcPmi8T2Sk5IB4vZfxlVpZkI+PbnD2Ueg5qHwkTOgbj2g5KKOSek3smIiIiIqqvoUOBgACgsLCqzNnd7PR6gVvuBtomAONHA317Onf75F594/wQGeiD9AKdqczZs9mVGiowfsMu5ERmITEoAB+3HOy0bUuSBFmmP/RxuVWFuRoER6ucto/64l0nNQm9NOGI8qmaaaCHOgytld7RJLIxTe0Wivd3ZmDcl8cR/spOTPvmKL7am4Hs4gp3h0ZEREREVG9KJTBmTNWyXA6MHevcfcjlEpLHAW/9V8LwJAkJ3YGZ/6rA9z/rUVgonLszanQymYQJXYLNymobdNxeafpifFr0NyZl/oIWFxdhY5c9OBB6Ht+ukBD3f/tw67JjWHYgE/laXd0bq4Msw9+8IMOvwdt0Bs9p8UTUADJJQlJAHD7JPQKArZ1sGRwXgGEJAdh4phD5Wj2WHcjCsgNZkEnAoLhAJHcORXKnUHQM10CSPHvmBiIiIiKi6pKSgBUrjP8fPBgICXH+Pm66Dnj9bYHjJyVkZkv44hsDvvjGAKUSGDZYQvJYOZLGyBAfx9/S3iipWxA+25EFAOgZ64voYKXD2xBCYH9FJlJKzyCl9DR2l6db1Am9GIGcPDVyoMfSfZlYui8TPjIJ1yQEIqmT8Z6sXQvrg53XRpbrC1TIAIXBWJDuX/sKjYSJJ2oykgOrEk8c38m254a2wsYzx8zKDALYcrYAW84W4KnVZ9E2VG1MQnUOxZD4QHbJIyIiIiKPN368caBxIVw3m51cDjzzb2DW/ebl5eXAr78L/Pq7Dg89BXRNlJA8VobksTL06y1BLmciyhuM6hQIpY+Ecp2wOuaTLVqhw+/af5BaegappWfwj77QZl0ZJMwJ6oOHkWFWrjMI/H4qH7+fyse/V55Bp3CNqWHAgNaB8LHjHJKEBGT6Aq2KgGKF8eEBmHiiJmOkfwzUkhxBciX6aiLcHY7Hqt7qyZZTOVq8u+0S3t12CUFqOcZ2CEFSp1CM6xCCMD/PuHgREREREVUXHg4MGABs3+66xBNg3urJlr8PC/x9WI/X39YjvAUwfpQxCTV6hAwBAUxCeSp/tRwjOgRgzeGCOsd3StMXY+WVVk3rtOdRIuzrKjdV1Q53tY3F5y2LsOey7bGtj2aW4mjmRby1+SJCNT4Y1zEEyZ1DMbZDCILUtaRyMvyNiad0PwCeca4x8URNhq9MgWv9YxDpo4HMi7uJ3f3DCaw/meeSbQth7Huer9XbvY6tLnlJnULRiV3yiIiIiMiDJCcD+09UYMxkg0u2f+XnNHJya69XXWYWLLrkJY2RI3ksu+R5Ap0w4IghC3/p0/CXPg25EwqgvhiDm5YdNqsnIFAeXIzS6FyUtMpBeVhRvfa3LP8Mvsv+HIZrUXVC1SEHwNIrD5wE1AoZfBUy+Crk8JFVnUNl47WAJAC5wZiA8hCem3g6cMD478CBgKxGN59Ll4DTpx3bXqtWxkd1QgDbtjm2HV9foFcvy/ITJ4D0dECtBnr04LydbpIcEIfIaoOMe6OMogqczS1zdxhW1dYlDxxPkYiIiJq7igpg/35Aq7V8rnVr46Om7dsBg31JEqmsDFAqIfr2tXzy9GnjfZIjEhOB0FDH1vFwycnA2x8LnD3vqj00LFFUvUvew/+p6pI3biQTUI2hZpLpT30a9uszUIqq1ko+ITKEBUQb78nkBiC6AIjPB+LyAP+GT8pkUOsANGwgce2VR44AUL1NQWWuKU8F5Dg+RpSreG7i6YEHjP9qtYCqxvR/P/4IPPigQ5uT/9//QV+5zUp6PTBkiGNxJSYChw5Zlr/5JvDpp8b/9+wJ7NzJ5FMj2luegfO6QiiVgFYqx88lp9BeEYxERZi7Q3OYwc6styeo3iVP4a9HTIAancJ94aswJotDamsCSkRERNSUVFQA/fsDe/daf/7ll4Hnn7csHzUKKLHd3aY6FQDRqhXKTp2yfPL994F33rE/XgBITQUmTDAvi40F/vnHse14kMREoEUYkJnt7kjsU9UlT0AZLEOrKAkd20umW2C1qvb1yTZ7kkxW15MM8OuSBwSlA7EFVQN1e5HIikD0bxsOAPBXyt0cjSclntRqd0fQMOnVRqrfu9f4l44+fdwXTzPzv8L9+LTYPCH4bGBfvBo8yE0R1Y9OL3Aq0zNbO9kSqvHB+Cv9jcfU1d+YiIiIqKnav9920slbtG8P/PxzVQ8PL7xHkyTLdguermUUkDRGjqQxCowcJoOvL1s/Oaq+SSZbZP46YFMc0Drf2NopNh9Qek8C6rqESCzq3cPdYZh4zh1ijx7GlkLeerE+ccJ82VrzWqI67DhThPO55e4Oo06dIzSmaT7tnWGBiIiIqElrCr//IyOBvDzj/3v2NN6jkUv07H5l1rtxMvTqIUEm4+9pu8llQMdw4KpoPFT6a4OTTNYUheYD2hDgeAvjQ2YAWhUCcflAfB4Q6Pn3bJ7EcxJPCoWxe1rNPtHWuqtdf73DF0F9zfGdAONcmFu2OBanr43xg/7zH+COOxzbFlENKQfyUJwvw+czOyA2ROn07ZeXGy+Q725Pw9qTBXav5yOTcE1CIJI7GQcVb9fCc/oLExEReY2uXYF168yXqen63/+A7t2rlq2N7wQYzwk7x3gquzLGk1UPPgjccINjMSYmWpbFxgK7d3v1uLWL3vVBUf3Gfa5TeYXx9/RzLwN79tufLFKrgWuHGme2mzBahphoJprsYa0lE/55EfA1fg7eL9/jtH21k4WgtzwKveVRiIpqgei7rA/bIiBwriIPO2T/YId0AYelDAgH3s4RuniMqmiDpQey8Xd6qd3r+cgkXNXSD1e3DsCA1oGICrB9v9hK7md/QI3AcxJPgPHCZk/3NGsDhdfF2l8gJAkYPNix7djSvr1ztkPNWurf+YBBhqw8A2b0CXb69rVaLTKKK7D5bN3fxJVd6JI6h2JM+xAEazzrckFEROR1goOBkSPdHQU1lu7d7bvXGDjQ7k2K2lpVtWljfDSUr6/XDxnSr7es7kr1pNUCh48Cew/UXTcqEkgaY0w2XTtUBj8/JptqY3d3Od+G/4G+epKptzwSveRRCJaqdS1tWdcWQnAHEgAAmfoSrC49i5TSM1irPYdCUXtrqL8V6fg/9RDM3lcIGGpP7ob7KTChUwiSO4ViVPtgBKi8857MO6MmaoJOZWpxJM34YyLlYB4eHxnlkv28sy0NpTrrf1XrFK4xzlLHLnRERERERFa9/g4gbDRxYRc6+zh7TKba1JlkaqBwuS9u90/E7f6JKBd6bNJeQErpGaSUnsZZvWUvkwxRintP7oLOEGB1e92ifE09TfrFBkDeBM4hJp6IPETKwXzT/7eeKkJuiQ4hvs79iGYUV2DR7kzTMrvQERERERHZ7/BR4PtfqpZVqqoudElj2IXOmqaUZKqLUpJjlCYOozRxeE8MxeGKHKSUnkZK6WnsKL+MyvnLd0ecAny6ATo5lHIJw9oEGe/JOociPsT7BvWvCxNPRB4i5WCe6f96A7D6UD5u7mu9X3F9vbMtDWofCdd1DsWkruHsQkdERERE5IDX3wEiw4FxowTGjwbGjVSxC101jZlkwqksTO00xG1JprpIkoQuyjB0UYbh6aC+yNSXYFXpWcw5sR/nArLQa1QJngi4ChMSw722C529mvbREXmJ/FIdNp8wH3cp9aDzE083dQ3FyyNj4COToPbC6XGJiIi8WnExcOpU1XLbtoCfZw0ASw3QoQOwZIn5MjUper3AY/cDXywEZFeGkVKrm2/SyV0tmZ4afTOw/xKQr8W34v+cvi9XCZf74na/zmgXFInESBWOR+ahhyIE6iaedAKYeCLyCGsOFUBnEGZlqw/lo0JvgELuvMERe7Xij1siIiK32bsXGDKkannLFudNdEPuFxEB3Hqru6MgF5LLJfRybHL1JsOTuss9tfm00/fZWCRJQu8r92Q95C3cHE3jYeKJyAOk/p1nUZZXqse2U0UY1iGw8QMiIiIiIqJmyZOSTNQ0MPFE5GY6vcCqQ/lWn0s5mM/EExERERERuQSTTNQYmHhylm7djM2lqy8T2WHHmSLkFOutPpdyMA/zb4xt5IiIiIiIiKip0QkD/jZkYa9Ixx5DBvaIdBwsy2KSiVyOiSdnCQpiH32ql5QDeTafO5FRhuPpWnSI5EWaiIiIyKNVVAB5eVXLwcGAQuGuaKiZY0sm8iRMPBG5WcpB693sqp7Pw+ORUY0UDRERERHVy86dHDye3IJJJvJ0TDwRudHJDC2OpmtrrZNyMA+Pj2TiiYiIiIiouWOSibwRE09EbpT6d+2tnQBg66ki5JboEOLLjysRERERUXPBJBM1FbyTdZbCQuDo0arlTp2AgAD3xUNeIeVgXp119AZgzaF8TO8b5vqAiIiIiIio0TVmkqmtFIyeUgR6ShG4Wh3DJBO5HBNPzrJ/P/t0k0PyS3XYfKLIrropB5l4IiIiIiJqCtzZkimxItgsyaT2YcKJXI+JJyI3WXOoADqDsKvu6kP5qNAboJDLXBwVERERERE5i6d1l9Pqah9flsgVmHgichN7utlVyivVY9upIgzrEOi6gIiIiIiIqN48LclE5CmYeCJyA51eYPXhugcWry7lYD4TT0RERN4sLAyYPNl8mYi8kk4YcFTk4O/yHCaZiOrAxBORG+w4U4ScYr1D66QezMP8G2NdFBERERG5XOfOwPLl7o6CiBxUvSXTzoqL2CPScVBkGZNMFc7dF5NM1BTVK/Gk1Xpfv1CNRmO2XFpa6tTtS2VlUFVbLisrg3Dy61TzGLxdfc+jTeUX0dMnHIEypalMr7dM4uh0OrN9ZBlKcVyXh4HKlvXab00N+Rz8uDfbbNlfJUNRmcGsTCGXAAAVeuM4UMczynDwfD7aR6hQX9XPIWd/BtzBG69FZB9JktwdAjUB3n6N8Mb4m9pvlabwXUm2OfszxvsBx3nk971cBnQMB66KvvKIAbpGAb7Kutd11KksYN9F42P/RWD/JZzM1+IkgGXO35tV3n6d88hzyEHe/h7Ygy2eyOsc1eViev6veMS3O/6l6WaWgLImy1CK90oOYGHpQXwSMKKRoqzdqkOFAIDWIQo8PSoc0UEKXPfxObM6rYJ88OsDCZj/WxYW78xFhV5g5eFCPNqAxBMREREREV3h5iQT8r3vDwxE9cHEE3mdcao4PFq0FXOKd+O9kgN4xLc7CkS5Rb1sgxazi3ZiYelBFAsdlJBhpNL9XdVOZZahtMKAD6a0wi19gqH0kWHjiSKrdVuHKPHe5FZ4/NoWmP9bFn47VoRHh7Vo5IiJiIiIiLwck0xEbsPEE3md1vIAdPcJwwFdNnJFGeYU77Za71PtEbPlocpo+MsUjRFirYI0chx8pj2UPjK716lMQF0ucHInciIiIiJyjsBAGAYMMFsmN2GSicij1CvxpFZ7/+BmTj8GlarGogpw4eskhHDZtl2lZj/6hrwHE33b4kBBdt0Vq7nOr51T3/f6bivGympKpWWLLUmSLPaR4AHxu1PN/s/eeAxkn+Z+jXOX6sfg7fED3ncMTe0ax8+xFfv3A/fdV7X84YdAjx7O3QfZzenvb9++wPbtpkVXDI7QFK4Tzv6uqT7wd2PMLncVwtFTikAvWSSuksIR1SsY6OX0XbmMt39XAuafA2+Mv+a4VN54DI5iiyfySsmaNnilYJdD6yRpElwUDREREZEdCguBP/4wXyYiuzV2ksna7HLeOPEDkbsx8UReqY8yEpEyX6QbSuyq303RAnE+bO5MREREROQNPCHJRETOwcSTs4SHA7fcYr5MLiOTJEzQJOCz4kN21U9mayciIiIiIo/EJBNR08bEk7N07Ah89ZW7o2hWkh1KPLVxcTRERERERFQXnTDgqMjBXpGOA6XZTDIRNQNMPJHXGqWOgwpylEFfa70ImS/6KaMaKSoiIiIiapaOHAGee65q+dVXgc6d3RePB2BLJiICmHgiL+YnU2CEOhartWdrrTdBEw9ZjZkDiIiIiIicKjsb+PHHquV//9t9sbgBk0xEZAsTT+TVkjUJdSaektjNjoiIiIjIaZhkIiJHMPFEXi1J0wb3526w+bwScoxWt27EiIiIiIiImg4mmYiooZh4cpa9e4E776xa/vRToGdP98XTTMT6BKCHogX2V2RZfX64Ogb+MmUjR0VERERE5Hx7DOnoIoVBJbnmNq4xk0xtpWD08WnJJBNRM8DEk7MUFxuTT9WXqVEka9rYTDxxNjsiIiIi8nbH9NmYXbYF+3Xp2K+c4ZRtuqslUzd9KK6SwhEsqaFWM9FE1Bww8UReL1nTBq8U7LL6XJImoZGjISIiIiJyjouGQszVbsVnFQegh8B9sh712o4ndZfTarVO3ycReTYmnsjr9VFGIkrmizRDiVl5N0ULxPkEuikqIiIiIqL6yTGU4s2yP/Df8r+grZYcGimLq3NdT0oyEREBTDxREyCTJEzQJODT4kNm5cls7URERESepH9/IDu7ajkgwH2xkEcqFuX4b9lfeLPsD+SjzOw5H8hwjSzGrIxJJiLyBkw8UaM6K/Kx2nAGt8g6Qw3nfVEla9pYSTxxfCciIiLyIAoFEBrq7ijIA1UIPT4p34+XyrYhTVgfK7afvCXOiQLsNaRjjyEDe0Q6DpZlMclERB6PiafmasPrgEwODH3K/nU2zQMMemD4M3avohcG7NRfQoruJH4pP4HDIhuTZO3wL/lVjsdci5Hq1lBBjjLoAQDhMg36KaOcug8iIiIiIgBO+y1tEALLKo5gdtlmnDLk1br6dv1F9NV/Vc+AbWOSiYhcjYmn5komBza8avy/PV+Ym+YZ6w9/rs6qBaIMv+rOIKXiJFbpTiFLlJo9/6y8f30irpWfTIER6lis1p4FAEzQJEAmSU7fDxERERFRQ39LCyGwVncGz2g3Yp8hw4WBmmOSiYjcgYmn5qryC9KeL8zqX5Q26p0x5CGl4iRSdSexUXceFTBYrTdJ1g7dZOENidymZE2CKfHEbnZERERE5DIN+C29Q3cRz2g3YpP+H5eGyCQTEXkKJp6aM3u+MG0knfTCgD/0l5CqO4mUipM4ZMiya5euaO1UKUnTBvfnboAScoxWt3bZfoiIiIjqJT0dWL26anncOCAy0n3xUMPU/C3d5wHg77+rno+PN/stfWjwLDxX/D1+1p1weihMMhGRJ2PiqbmrLflUI+lUVxe6ukTCFysMx7HCcBwA4KN1/ukX6avEVYaW8Jcpnb5tIiIiogY5cQKYNatqecsWJp68nR2/pfOGPY5H+ybiy6JPIZywy7ZSMHpKEegpReBqdQyTTETk8Zh4IutfmFe+KHOH/RtLrh6BlOJvsamWLnT2SEcJ5ul3VxXoGxCzDQofGZLl7GZHRERERI2klt/SqwZPw/U9NSiv+Nv2+g6Igi/WK25ClOQHAFD7MOFERJ6PiScyqvaFadg8DzJ9BRYMHIuHe6oA7Xr3xuYAuSRDkibB3WEQERERUXNS7be02PwWJH05Xh4wDC/0TYAz/9qahhLcXrEKqxQ3wkeSOW27RESuxMSTswwYABQVVS2rvfCvD0Ofgtj8FmT6clTIffDq1YMBUezuqBwig4Q4n0B3h+Gwoe0DUPROTwDA+r+LMLKrPzgpHxEREZEXGfoUcCXpJORKjLj2f0gURUgzFOOyKEaaoQhpotj4MBQjXRRDV4/eBFvERczWb8PrPkNccBBERM7HxJOzyOWAn5+7o2iYTfMg6csBuRIKfTku7SnBn4NvR8qVAcT3N+JUr82NXCbBTyXH6YxyvLs6G9f1DnJ3SERERETkiDVzAX05IPlA0pdj0PpPgbEv2qxuEALZohRpV5JTVUmpIotEVa7Qmq37rv4v9JOiMB3dXH1UREQNxsQTGdWcvW7TPMg2vIp+koR+Q5/Cy+prcN6Qj9SKU0jVncTvunMoc7DZcAtokCSrGn9JLpc7+yiglJy/zcaUsqcAW44VI7dYjxA/7z4WIiIiomZj0zzgj7eBDVpgczlwjRLA24BGY33maAAySUK45Itw+KJbHT/7yoQO6aIYZ7U5SBclSEcxzotC6ISBXe6IyOMx8USWSSfA6iCJrWVBuF/VC/ereqFIlGO97ixSKk5ipe4U0u3okpcDLR6X90E7WQgAQO2N3RFdLHVvIfQGYO2BQkwbEOzucIiIiIioLpW/pdvcCsz9wFi2uRy48y7rs93Vg0ryQWspCBEylVk5k05E5A2YeGrurCWdKtUyPay/pMQkRQdMUnSAQQjs1l9Gah1d8gwQeEO/C5/IxrjiSLxeQYkem44YE3gpewqYeCIiIiLydNV/S8sHAvig6rk204G4OKcln4iIvBUTT85y+TLwyy9VyxMnAi1bui8ee9SWdKpUS/KpkkyS0N+nFfr7tKqzS943hqN42tDP1OqJqqw9WIQKvQAArN5fBJ1ewEfOEcaJiIiIPFLN39Jbt1rWseO3NBFRU8fEk7OcOgXcd1/Vcpcunp14sifpVMnBL0ybXfIqTiIdJWz1ZEPKngLT/3OL9dh2vBhDO/u7MSIiIiIissqFv6WJiJoaJp6aK4Pevi/KSpX1DI4NKF69S15JaSn+FGn41XAWBaIManCMp0p6g8CqfYVmZal7C5l4IiIiIvJEjfRbmoioKWDiqbka/ozj6zTwrzMySUI/qSX6yTy4JZib7DhRguwi8x8iKXsK8dbNfK2IiIiIPI4bfksTEXkrJp6IPEDq3kKLsmOXy3AirQzto1RW1iAiIiKvExcHvPaa+TIREVETx8QTkQeoPr5TzfJ/jw9v5GiIiIjIJWJjgWfq0VKGiIjIi8ncHQBRc3c6oxyHL5ZZfS5lj2VLKCIiIiIiIiJvwcQTkZvZau0EAFuOFSOvmINQEhERERERkXdi4onIzWpLPOkNwJoDbPVERERERERE3oljPBG5UUGJHpuOFtdaJ2VPAaYNCG6cgIiIiIioflq2BB56yHyZiIiYeCJyp7UHi6Croyfd6v1F0OkFfORS4wRFRERErrFtGzBiRNXy778Dgwa5Lx5yrrZtgf/+191REBF5HHa1I3Kj2rrZVcot1mP78ZJGiIaIiIhcSgigvLzqIYS7IyIiInI5Jp6I3ERvEFi1z77xm1L21p2gIiIiIiIiIvI07GrnLAkJwPz55stEtdhxogTZRfbNWJeypxBv3cxxAoiIiIiIiMi7MPHkLNHRwL//7e4oyIvY082u0rHLZTiRVob2USoXRkRERERERETkXOxqR+QmqXvt62ZXyZFEFRERERE1st27gfj4qsfu3W4OiIjIMzDxROQGpzPKcfhimUPrOJqoIiIiIqJGVFYGnDtX9Shz7LceEVFTVa+udlqt1tlxNDpvPwZvjF+j0bg7BKdqyHvww85ch9fZcqwYaTnFCPaV13u/1UmS5JTtELlCUzg/S0tL3R2Cw5raddrbeeM5VF1T+K3i7PdAKitD9U7zZWVlEF74OjUVzj5HG+P9dfU52hia2neNt70HPIc8jzd+XzqKLZ6I3GDV/mLT/4d20uCFSaEWdVoGyzFvWgtEBhoTTTo98OvBkkaLkYiIiIiIiKihmHhyEmnbNqg1GtND2rbN3SGRh8ov0WPL8VIM7aTBr09FY82TMRjQzjJrr/SR8NCoEBx+I96UgKqesCIiIiIiIiLydJzVjqiRXc7TY9Xj0RjS0deu+r4qGR4aFYI7rwnCj38VuTg6IiIiIiIiIuepV+JJrVY7Ow6Xq9l31enHoFLVWFQBTt5H9WPwxvegJiGEu0NwSM0xZ+r7HlzVxnI9pVJndX/V96FWA3eOsC9ZZYu3n0M1+z974zE0hbGLGoO3XR+ApnF+8hrhXt4ef03eGH9T+L1I9msK76+3f868MX5n3RO4i8uvc42Mvxm9A1s8ERERERE1BpUKiIszXyYiImrimHgiIiIiImoMffsCZ8+6OwoiIqJGxcHFiYiIiIiIiIjIJZh4IiIiIiIiIiIil2DiiYiIiIiIiIiIXIJjPBERERERETWUJAFKpfkyEREx8URERERE1ChOnQLee69q+ZFHgLZt3RcPOdegQUBZmbujICLyOEw8ERERERE1hsuXgQULqpanTGHiiYiImjyO8URERERERERERC7BFk/OotEAHTqYLxMRERERERERNWNMPDlL797AsWPujoKIiIiIiIiIyGMw8URERERERNRQ//wDfPVV1fKttwKxse6Lh4jIQzDxRERERERE1FDnzgHPPlu1PGQIE09ERODg4kTNjhACZ9N17g6DiIiIiIiImgEmnoiagfIKgfX7SvD4Z7lIfOAyFq4pdHdIRERERERE1Aywq52znDwJvPVW1fKTTwLt2rkvHmr2svL1WPVnMVJ2FWPtnhIUlhoAABqlhMcmBro5OiIiIiIiImoOmHhylrQ04KOPqpZvu42JJ2pUQggcPl+O1N3GZNOOo1oYDJb17h7jh6gQeeMHSERERERERM0OE09EXqy8QmDzoVKk7CxGyq4inKlj7Ca2diIiIiIiIqLGxMQTkZex1YXOHuN6q5FTZEBOkQEqpeSS+AJ9ZYgNV7hk20RERERERORdmHgi8nD2dqGzxw87SvHDjlLnBljD1CH++PY/LV26DyIiasYqKoD9+wGt1nadDh2AiAjL9XburHXTUlmZeUF4ONC9u2XFI0eA7Gw7A76iZ0+gSxdgzZqqsi5dHNsGERGRF2LiichDacsFHlmUaVcXOiIiomahogLo3x/Yu7f2ekuWALfeal6WlwcMGVLraqqaBYMGAVu3WlZ87jngxx/ritbc338bE01jxji2HhERkZdj4onIA3RsqcJHd0YDANLzdFi+tQgHz5bjv+fz3BtYPZRohbtDICKipmr//rqTTkRERORRmHgi8gDRoQrcPSLUtPz8DRHIKdRjzV/G7nWr/ypBfnE9+9c1sgOnyqEtE1CrXDOGFBERNWO1da8jIiIij8TEE5GHCg2Q4+Zhgbh5WCAqdAJbD1fOXleMk5cr6rVNhQ/gI7uSEHJFXkgAFzP1+H2PFuMHaFywAyIiomr+9z/rYzB16GBZFhwMbNlS6+bKaozxpAoPt17x1VeBf//bziCviI93rD4REVETwcQTkRdQ+EgY3t0Xw7v74u27w3HsQjlSdhmTUNsOl0JvZ2OoSf198eVjYQAAtVrt9DjX7izF2Ccykbq9lIknIiJyve7dgcGD7aurUNRZV9RsUWXru7JzZ/v2Sc1L+/bA4sXmy0RExMQTkTfqGKNExxglnrghBDmFeqz+sxipu+vukrdiewmemRyIzrEKl8SVst04Y17q9lL8798CksTudkRERNRMREYCM2e6OwoiIo/DxBORlwsNkOOW4YG4ZXjdXfKEAF5fUWBq9eRMQgikbDMmnv7J0GP/yQpc1V7p9P0QEVEz1ro18PLL5stERETk0Zh4ImpCqnfJm39XCxy7UIHU3cYk1NbDpTAYqlo99Wzv3K52B09V4Hy63rScsq2UiSciInKu1q2B5593dxRERETkACaenKVbN2DDBvNlIjeSJAmdYpXoFFvVJe/nHXlY9WcpFq4uxEftA5y6v9Qr3ewqpWwvxeyZQU7dBxEREREREXkXJp6cJSgIGDbM3VEQ2RQaIMf0a/ww/Ro/6PXC6dtPqZF42n2kHJez9GjZQu70fRERERF5nIoKoLCwajkgwDioPRFRMydzdwBE1PjkcucO+p2Rq8fOw+UW5av+KLVSm4iIiKgJ2rkTCAureuzc6e6IiIg8AhNPRNRgK7eXQlhpRFU52DgRERERERE1T0w8EVGD1exmV2ndn1poy5zfrY+IiJqp7dsBP7+qx/bt7o6IiIiI6sAxnpylqAg4frxquUMHwN/fffEQNZKycoFfd2utPleiFfh9jxbjB2gaOSoiImqSDAagpMR8mYiIiDwaWzw5y759QO/eVY99+9wdEVGj2LhXi+JS262a2N2OiIiIiIio+WLiiYgaxFY3u0qpO0ohrA0ARURERERERE0eE09EVG9CiDpbNF3I0GP/yYpGioiIiIiIiIg8CRNPRFRvf5+uwPl0fZ312N2OiIiIiIioeWLiiYjqzd6EUl3d8YiIiIiIiKhpYuKJiOrN3oTS7iPluJxVd8soIiIiIiIialqYeCKiesnI1WPn4XK766/cwVZPREREREREzQ0TT0RULyu3l8KRyepS2d2OiIiIiIio2fFxdwBE5J1SHWzBtO5PLbRlAmqV5KKIiIiIiNwoIAC4+mrzZSIiYuKJiBxXVi7w6y6tQ+uUaAV+36PF+AEaF0VFRERE5EY9egA7drg7CiIij1OvxJNW69gNpyfQaMxvdktLndvtRyorg6racllZGYSTX6fqx+Ds+N3BG8+j6iSpGbfcCb4G6LqkarngT8CvMyD3M6+Xtx0I6gdIxkvNhNveBk4977QwmsLngKzzxutDze8Zcj9vu0a4+rdKY3PF51gSAspWrUzL5UI49fdWU3sPqHbe+F1TkzceA+9p3Kup/V7xttcfaHrvgT3Y4omIHBc60vhvwZ/A+XeAvK1Av92WiadzbwHlmUDsQ8D/t3f3QVLUdx7HPz2zsw8YcAEFoiDeLqCiQjhAPFE0iQocuyYBQ2LMacyDSaVEgomoMVBEShO9nEY06qWSqmDqopigOVlRwrNL1PU4HkoNPrBbEgiycouL6D7MTE/fH+0wOzv7MLN0b3fPvF9VU+yvp7vnO9vL9Mxnfr9fD58nDfm8o8ETAKCwWFOnqr2+3usyAABADgienHLKKTK//OW0NpC3isql16+1A6fetO+X9i6W9j9kB1ADxkktb7teIgAAAADAe30KnkpLS52uo985/hwmTpSeeup4M+zs3iWld0XlGPS/zl2Bg1a/lD480MrlknQdJLczjAVpy0d84YAajyTSlr300kv6l/NK0pZZ1o/6PEyxc1faIB4DZCeIx5bXCO/l22sE9XsvH54DupcPxzfozyHo9UvBew758H6l4/k+iPXnwzHI9fMcPZ4A5ORE57Yq6LmxAABA/tqzR1q6NNW+6y7pnHO8qwcAfILgCQAAAABOVFOT9Kc/pdoLF3pXCwD4CMETAAAAgqGhQXr44VT7ppukigrv6gEAAL0ieAIAAEAwHDwoPfBAqj13LsETAAA+F/K6gLyxa5c0dWrqtmuX1xUBAAAAAAB4ih5PTvnoI2n79vQ2AAAAAABAAaPHEwAAAAAAAFxB8AQAAAAAAABXEDwBAAAAAADAFQRPAAAAAAAAcAXBEwAAAAAAAFxB8AQAAAAAAABXEDwBAAAAAADAFUVeFwAAAAAAgTdpkrR7d6pdWeldLQDgIwRPAAJjf2NCz9fGtfHVuH7141KNHOF1RQAAAJ846SRpwgSvqwAA3yF4AuBbiYSl7W/EVfNiu9ZsjWrXm3FJ0ne/HNEp5YwUBoCCM368VFOT3ga8sGyZFA5LS5Zkv83y5ZJp2tsCQAEheALgKx+3WNpQF9WaLe16rjaqQ/+XSLu/OCL96LoSj6oDAHhqyBBpzhyvqwDs0GnpUvvnbMKn5cvt9e+6y926AMCHCJ6ccuGF0tGjqfaAAd7VAgTM/kOmarbavZo2vRpVe7T7dW/4YkQjh9PbCQAAeCgZNmUTPnUMnXLpIQUAeYLgySlFRdKgQV5XAQRCcgjdmq3tqnkxNYSuN/R2AgAAvtE5fFqwQNq+PXX/lCnSQw8ROgEoeARPAPrFxy2W1r8SVc3WrofQZSMckuYuajneNkItPazddzufGqxQyHBl3wAAII90DJ/27ZN++9vUfd/6lt0mdAJQ4AiekF9iMfsytm1tqWVnnGHfOnvpJSmRffhhWJasqVMz72hokA4ezK3O8ePteSo6ammRduyQSkuliROlSCS3ffpQY5OpR1e1ZDWELhut7dJrezses9zDKwBAgLW0SPv3p9qjRjG9AbzXuedTEqETAEgieEI+icWkadOknTvTly9fLv3kJ5nrX3GF/QY2S8Wnnab2+vrMOx5+WHrggdxqranJnBx1/37pkkvsnydNkurqAhU+XXReiT44llAiIe1vNPX+EUtfWvihlAjefEymadHjCQD8aMeO1LlSkmprpYsv9q4eIGnJkq57PBE6AQDBk2MOHUq/vG9VlTRihHf1FKLduzNDpyBpbEz9vHOn/XymTPGunhw9ffepx39uabW0sS6qmhftOZwOvh+snkkv7zA1Y1rwAjMAAOChpUul3/1OMs30q94BQIEjeHLK3r3Sd76TatfWEjz1t47D64LonXfS2wF+PgPKDFVfVqLqy0pkWZZ27IlrzRb7qnU79mQ3kbiXajbGNGNacHqbAQAAH1i50g6dioulaNRu0+MJAAiekMd+9StpwoSu53eSpPXrc5rjKWpZXd9x003S3Lm51TZ+fOayUaNy20dAGIahyeMjmjw+omXfl/7RaOq52qjWbGnXhrqo2tqz31f5QOnRn5QpOQquuLjY8XoX/rRVNRvjuu/Hju8aAADkq+XL069el2xLhE8ACh7BE/LXhAk9z/tw0UU57c7qrgdSRYV9O1EFMjnq6cPDuvHqMt14dZlaWi1tejWqNVuzG5LXfMz+IvGLl9u9kUpLSxytbd+BhP7+bpskSw1/T6jiDIbbAQCAXnQOnaTMCccJnwAUMIInAJ4ZUGao6tISVV2aPiSv5sWo/vdvXQ/Ju+c37frS54pcmfx7zYZY2s8Lv+lssAUAAPJMV6FTEuETAEiS+DofgC8kh+Qt+/6ntP3JITqwfqj+c+lAVc0oVseOTX9rSOiZTe7ME7VmY2q/HUMoAACADD2FTklLltj3L11qrw8ABYgeTwB8qasheX/e1KK12+LHez056dhHlra8kgqettaZOvqhpZMHOd+zCgAABFw2oVMSPZ8AFDiCJwC+lxySd/k0S5ZladdbCTUfc3ZarPW1cUWjqXY8Lq17Mab5Vc5PYA4AAALONLMLnZKS65mmezUBgE8RPAEIFMMwNOnssOP7XbMxc2hdzcY4wRMAAMi0bFnu29DTCUCBInhC/hg3Tvr979PbQBZM09JzXcwbtXZzXKZpKRxmuB0AAAAA9AXBE/LHsGHS17/udRUIoFd3mTrcZGUsb/rA0ss7TF08lZdKAAAAAOgLPk0BfjFkiFRdnd5Gv6jZ2P1V8tZsiBE8AYBfcK4EACBw+DQF+MX48dKzz3pdRUHqan6n4/dtiOveO/qxGABA9zhXAgAQOARPTjnzTOm++9LbAHxv34GEXnsz0e39e/YmVL/PVOVo5yc0BwAAAIB8R/DklJEjpVtv9bqKwhaLSc3NqXZ5uRSJeFUNAmLNhu57OyXVbIxr4TcJngAAAAAgVyGvCwAcU1dnTzCevNXVeV0RAqCmi6vZdZZNOAUAAAAAyETwBKBgHfvI0uaXew+ettaZOvph5lXvAAAAAAA9I3gC/OK116TLLkvdXnvN44Ly3/rauKLR3teLx6V1L9LrCQA8x7kSAIDAYY4nwC+OHpW2bk1vw1U9Xc0uY90Ncc2vKnaxGgBArzhXAgAQOPR4csq2bVJRUeq2bZvXFQHogWlaei6L+Z2S1m6OyzQZbgcAAAAAuSB4cpJppm4AfO1/dps63JR9kHSk2dLLO/i/DQAAAAC5IHgCUJDWbMi+t1NqG+Z5AgAAAIBc9GmOp7a2Nqfr6HdOPwejvV0lHdrt7e2yHH6MsrIyR/fntaAdg86//9bWVsf2LfXP31Da4xmGa/vuLydyDJ5dnz6reHFEinbKlTove3Z9TD9dFPzfWxAE8TzDa7T3OAb+4kb9/X2uDPoxQM/y4fgG/TkEvX4p+O+pnf5M0x/y7XwfxGOQK3o8ASg4+/5h6fW37WF2/3yuodWPFenGr4Uz1rthfkjP/LpIk8+331C8WW+p4e/M8wQAAAAA2SJ4AlBw1m5OHA+ctq2O6F8/G1ZXX1YZhjTr0rBq/xg5HkCt3cw8TwAAAACQrT4NtQOAIJt9aUjfuzaUdddowzA069KwZs4Iad8Bl4sDAAAAgDzSp+CptLTU6Tpc13ncpOPPoaSkU7NEcvgxOj6HIB6DzmO4g3gMOgpi/fwN2c4em7msKNwqyey0rCjjMbraFs4L4t+n6+eZftDx/1gQ6w/6MXD9PNkPXD/PuHyuDPrfEHITxOObb3+jQaw/6MeAc4338uEY5IoeT8gfgwZJ06entwEAAAAAgGcInpA/JkyQtm3zugoAAAAAAPAJJhcHAAAAAACAK+jxBPjFBRdIBw+m2kOHelcLAAB+xLkSAIDAIXhySmmpVFmZ3gZyUVwsffrTXlcBAIB/ca4EACBwCJ6cMmWKtHev11UAAAAAAAD4BnM8IX/s2SPNnZu67dnjdUUAAAAAABQ0ejwhfzQ1Sc88k2rfcot3tQAAAAAAAIInwDcOH5Y2bEi1L79cOvVU7+oBAMBvOFcCABA4BE+AX7z1lvS1r6XatbW8mQYAoCPOlQAABA7Bk1Pq66X770+1b7kl/Sp3AAAAAAAABYbgySnvvSc98kiqfc01BE8AAAAAAKCgcVU7AAAAAAAAuILgCfCLREIqM6STDfvfRMLxh3jiiZDefttwfL/95aVXpS3bpFjM60oAAJ6wrJ7bAADAdwieAK8d2ifd+1XpmaukxQOlHwy0/33mKnv5oX2OPdThw4YmTizR+ecX64c/lLZsCVaIM/I06aprpFHnSv/2Xem/njLVdIQPHQCQ95qbpQcftKcy6Oiaa+zlzc1eVAUAALJA8AR4adW90orzpZa10sBOPZwGJuzlK86313PAt79tavhwS3v3hnT//dJnPysNG2a/b//DH6QPPnDkYVxzxkjpG9dIRz809Kf/NvT1G+MaNiaqGbOj+vcVcb35dkIW334DQH5Zt04aOVJatEg6eDD9voMH7eUjR9rrAQAA3yF4Aryy6l7pjbvtKf4NQwp1GgIXMuzlRbLXcyB8GjBAuuWWeNqy5mbpySela6+1r0h92WXSL35hX7Haj350sxSJpMKlREKqfdnS4qWmzrkgpnGTY1p0R1ybtiYUixFCAUCgrVsnzZkjtbbaw+q6GmpnWfb9c+YQPgEA4EMET4AXDu2Tdt9t/9w5cOosef/uux0Zdpfs9dQV05S2bpVuvVU6+2xp3Dj5bkhestdTd/Y2WPrlo6Y+/4WYTq2M6qvfjDEkDwCCqLlZmjfPDpZ6m/cwkbDXmzePYXcAAPhMkdcFAAVp5W1SRHaPpmyEDFkRS2/febv+PO6JPj9sLBaWJFVUWGps7P2x33lHuv9++1ZeLs2aJVVXS7NnS4MHd73NnrcSevZ55ydGl1LhVyic3fpHP5RWPZ3QqqcTCoWk6dMMVc8OqXpWSGeNNWRk+/sHAPS/lSullpbsJxBPJOz1H39cuvlmd2sDAABZI3hyS1fftn38sbRzZ277GTpUOueczOW7d0vHjuW2r2nTpEgkfVljo50u5GL0aGnUqMzlf/1rj28Ojfb29AWDBklTp2auWF8vvfdebjWde640aZL0+uupZWeemds++ksiIb2/TvpUjttZ0j+d9IJuvz2hvndWjPS+SjeSQ/KefFIKh6WLL5aqquwg6qyzUuvtft3S7cvMPj9Oz/oeFCWH5NW+bGrxUlNjKgxVzbRDqEsuIoACAF+xLOmhh/q27YoV0oIF2X+5AwAAXEXw5Jbt2+1P5R3V10uXXJLbfq6+WvrjHzOXf+970iuv5LavpiZpyJD0Zc8/L91wQ277uece6Y47Mpd/7nNSNNrtZiWdF4weLb37buaKDz6Y+5vNF16QZs60Ayi/+8feTyYSz+0NsREyVDwkocqyBtW3jnGntiwlh+Qlh+WNHWsHUFVVUtytzMlhySF5v3zU1MmDpOFnuNNLCwDQB01N9vumXFmWvd2RI/aXdwAAwHMET04pLU1vjx3rTR3wv+bDJ7T5iOJGz4Onzhoa7M58p58uleTak8sHjn4ondJSpBvnRjT7ipAumGzIkKEBZXxbDgCe+OijE9v+2DGCJwAAfILgySkTJ9pDvZJD6YYP97Ye+Ff5qSe0+aGoP/62Bg+253qqrrbnfiovt5c/udrTsrIWDksXX2ioelZI1bNDGjeGay0AgG986gS/xRg40Jk6AADACSN4ckokItXV2XMvtbVJ552XuU5lpVRbm9t+u/u27rHHcp/jqas3YbNn517T6NFdL9+0qcc5nto7zfFUMmhQ1ysuXCjNn59bTUEYYpd0+hjpWEg6yez9inYdWAlL5tGwJldVaHIfO+KYpj0O7o03DL35Zu5By1ln2UFTdbV00UVSURevIKNONzT/S+6EOMn6jx2T/rI5919C+cnS7CvseZ1mXR7S4HJ6NAGALw0dar9vamjIfnJxyZ7XqaIic2oBAADgGYInJ0Ui0pQp3d9/0kn2jMxOmDjRmf0MH+5c76zp03u822prS1/QeXhiUmWlfctXoZA0bKbUsjanzQxDKjp9llY92PdQp60tJtOUpkwpzmr9cFiaMSM1f1M2I0inXxjS9AvdCZ7a2uzg6Z7/kP6yObttxo2xezVVzQxp+oWGIhHCJgDwPcOwJwhftCj3bW++mYnFAQDwEYInwAvX3yutWCsVWdn1ekpYUlzSdT8/4YdevTrUY2+n7obQ+UXzUemhX3d/P0PoACBPXH+9dOedUmurfWnS3oRCUlmZdN117tcGAACyRvAEeGHEaGnindIbd9uhUk/hU+KTIQafWWJvdwJMU/rZzzL/22czhM4vHvmN1Hw0/ffFEDoAyEPl5dLq1dKcOXao1FP4FArZvZyeftp/35gAAFDgfPzxEshzX7lNWiVp991SxJIspQdQCUsyZPd0+swSaf6tJ/yQyd5O4bClGTOMnIbQ+UHH3k5jKy1dNbuIIXQAkM9mzpSee06aN09qabGXdZzzKTmkrqzMDp2uvLL/awQAAD0ieAK89JXbpEu/Kj1+u9T4gjSww7e5H4el4bOkb9wnDRvlyMO9+66hlSujuvLKhEaM6GaOLR+r2y7d9gNpzpWWxlZKpaW8hAFA3ps5UzpwQHr8cWnFCqm+PnVfRYU9p9P110snn+xdjQAAoFt8agO8NmK0tPgJewjBwQbpg0Zp8HDptAp76ICDFi82Hd1ff5v5efsGACgw5eV2wLRggXTkiH1504ED7avXMZE4AAC+RvAE+EUoJI0cY98AAEAmw5CGDrVvAAAgELjcEwAAAAAAAFxB8AQAAAAAAABXEDwBAAAAAADAFQRPAAAAAAAAcAXBEwAAAAAAAFxB8AQAAAAAAABXEDwBAAAAAADAFQRPAAAAAAAAcAXBEwAAAAAAAFxB8AQAAAAAAABXEDwBAAAAAADAFQRPAAAAAAAAcAXBEwAAAAAAAFxR1JeNDMNwug4gcPh/ALiH/18AALdxrvEexwAoDPR4AgAAAAAAgCsMy7Ks3lYqLi5WLBbrj3oAoKBEIhFFo1Gvy/Ac5xkAcAfnmRTONQDgjt7ONVn1eDJN07GCAAApvL7a+D0AgDt4fU3hdwEA7ujt9TWrOZ5KS0vV1tamcDisYcOGOVIYABSy999/X6ZpqrS01OtSfIHzDAA4i/NMJs41AOCsbM81WQ21AwAAAAAAAHLF5OIAAAAAAABwBcETAAAAAAAAXEHwBAAAAAAAAFcQPAEAAAAAAMAVBE8AAAAAAABwBcETAAAAAAAAXEHwBAAAAAAAAFf8P+ELVP6hhVyaAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -486,30 +486,30 @@ "\tpath: ../examples/model.hallway-jvq.final.zanj\n", "\toriginal model name: 'model.zanj_model_config.name = 'hallway_v3'', changing to 'hallway-jvq.final'\n", "\tmodel tensors on devices: {device(type='cpu')}\n", - "evaluating ../examples/model.hallway-jvq.final.zanj on forkless-g6-n6-a_dfs-h71625\n", + "evaluating ../examples/model.hallway-jvq.final.zanj on forkless-g6-n6-a_dfs-h33701\n", "\trunning task evals\n", "\trunning rollout evals\n", - "\t{'model': 'hallway-jvq.final', 'dataset': 'forkless-g6-n6-a_dfs-h71625', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.8333333134651184, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 1.0, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 1.0, 'mean invalid tokens': 0.0, 'percent with invalid tokens': 0.0, 'exactly correct rollouts': 0.16666666666666666, 'valid rollouts': 0.5, 'rollouts with target reached': 1.0}\n", - "evaluating ../examples/model.hallway-jvq.final.zanj on RDFS-g6-n7-a_dfs-h65218\n", + "\t{'model': 'hallway-jvq.final', 'dataset': 'forkless-g6-n6-a_dfs-h33701', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.8333333134651184, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 1.0, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 1.0, 'mean invalid tokens': 0.0, 'percent with invalid tokens': 0.0, 'exactly correct rollouts': 0.16666666666666666, 'valid rollouts': 0.5, 'rollouts with target reached': 1.0}\n", + "evaluating ../examples/model.hallway-jvq.final.zanj on RDFS-g6-n7-a_dfs-h36900\n", "\trunning task evals\n", "\trunning rollout evals\n", - "\t{'model': 'hallway-jvq.final', 'dataset': 'RDFS-g6-n7-a_dfs-h65218', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.2857142984867096, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 0.8571428656578064, 'rand_path_token_non_endpoint': 0.8571428656578064, 'correct EOS': 1.0, 'mean invalid tokens': 0.0, 'percent with invalid tokens': 0.0, 'exactly correct rollouts': 0.0, 'valid rollouts': 0.2857142857142857, 'rollouts with target reached': 1.0}\n", - "evaluating ../examples/model.hallway-jvq.final.zanj on pRDFS-g6-n5-a_dfs_percolation-h15463\n", + "\t{'model': 'hallway-jvq.final', 'dataset': 'RDFS-g6-n7-a_dfs-h36900', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.2857142984867096, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 0.8571428656578064, 'rand_path_token_non_endpoint': 0.8571428656578064, 'correct EOS': 1.0, 'mean invalid tokens': 0.0, 'percent with invalid tokens': 0.0, 'exactly correct rollouts': 0.0, 'valid rollouts': 0.2857142857142857, 'rollouts with target reached': 1.0}\n", + "evaluating ../examples/model.hallway-jvq.final.zanj on pRDFS-g6-n5-a_dfs_percolation-h73517\n", "\trunning task evals\n", "\trunning rollout evals\n", - "\t{'model': 'hallway-jvq.final', 'dataset': 'pRDFS-g6-n5-a_dfs_percolation-h15463', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.20000000298023224, 'path_end': 1.0, 'final_before_path_end': 0.800000011920929, 'rand_path_token': 0.6000000238418579, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 1.0, 'mean invalid tokens': 0.0, 'percent with invalid tokens': 0.0, 'exactly correct rollouts': 0.2, 'valid rollouts': 0.4, 'rollouts with target reached': 1.0}\n", - "evaluating ../examples/model.hallway-jvq.final.zanj on forkless-g7-n5-a_dfs-h10952\n", + "\t{'model': 'hallway-jvq.final', 'dataset': 'pRDFS-g6-n5-a_dfs_percolation-h73517', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.20000000298023224, 'path_end': 1.0, 'final_before_path_end': 0.800000011920929, 'rand_path_token': 0.6000000238418579, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 1.0, 'mean invalid tokens': 0.0, 'percent with invalid tokens': 0.0, 'exactly correct rollouts': 0.2, 'valid rollouts': 0.4, 'rollouts with target reached': 1.0}\n", + "evaluating ../examples/model.hallway-jvq.final.zanj on forkless-g7-n5-a_dfs-h9178\n", "\trunning task evals\n", "\trunning rollout evals\n", - "\t{'model': 'hallway-jvq.final', 'dataset': 'forkless-g7-n5-a_dfs-h10952', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.6000000238418579, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 0.800000011920929, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 0.8, 'mean invalid tokens': 0.2, 'percent with invalid tokens': 0.19999999999999996, 'exactly correct rollouts': 0.0, 'valid rollouts': 0.2, 'rollouts with target reached': 0.8}\n", - "evaluating ../examples/model.hallway-jvq.final.zanj on RDFS-g7-n8-a_dfs-h29762\n", + "\t{'model': 'hallway-jvq.final', 'dataset': 'forkless-g7-n5-a_dfs-h9178', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.6000000238418579, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 0.800000011920929, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 0.8, 'mean invalid tokens': 0.2, 'percent with invalid tokens': 0.19999999999999996, 'exactly correct rollouts': 0.0, 'valid rollouts': 0.2, 'rollouts with target reached': 0.8}\n", + "evaluating ../examples/model.hallway-jvq.final.zanj on RDFS-g7-n8-a_dfs-h93753\n", "\trunning task evals\n", "\trunning rollout evals\n", - "\t{'model': 'hallway-jvq.final', 'dataset': 'RDFS-g7-n8-a_dfs-h29762', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.75, 'path_end': 1.0, 'final_before_path_end': 0.875, 'rand_path_token': 0.875, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 0.75, 'mean invalid tokens': 0.25, 'percent with invalid tokens': 0.25, 'exactly correct rollouts': 0.25, 'valid rollouts': 0.25, 'rollouts with target reached': 0.875}\n", - "evaluating ../examples/model.hallway-jvq.final.zanj on pRDFS-g7-n7-a_dfs_percolation-h90892\n", + "\t{'model': 'hallway-jvq.final', 'dataset': 'RDFS-g7-n8-a_dfs-h93753', 'path_start': 1.0, 'origin_after_path_start': 1.0, 'first_path_choice': 0.75, 'path_end': 1.0, 'final_before_path_end': 0.875, 'rand_path_token': 0.875, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 0.75, 'mean invalid tokens': 0.25, 'percent with invalid tokens': 0.25, 'exactly correct rollouts': 0.25, 'valid rollouts': 0.25, 'rollouts with target reached': 0.875}\n", + "evaluating ../examples/model.hallway-jvq.final.zanj on pRDFS-g7-n7-a_dfs_percolation-h57935\n", "\trunning task evals\n", "\trunning rollout evals\n", - "\t{'model': 'hallway-jvq.final', 'dataset': 'pRDFS-g7-n7-a_dfs_percolation-h90892', 'path_start': 1.0, 'origin_after_path_start': 0.8571428656578064, 'first_path_choice': 0.2857142984867096, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 0.7142857313156128, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 0.5714285714285714, 'mean invalid tokens': 0.42857142857142855, 'percent with invalid tokens': 0.4285714285714286, 'exactly correct rollouts': 0.14285714285714285, 'valid rollouts': 0.7142857142857143, 'rollouts with target reached': 0.5714285714285714}\n" + "\t{'model': 'hallway-jvq.final', 'dataset': 'pRDFS-g7-n7-a_dfs_percolation-h57935', 'path_start': 1.0, 'origin_after_path_start': 0.8571428656578064, 'first_path_choice': 0.2857142984867096, 'path_end': 1.0, 'final_before_path_end': 1.0, 'rand_path_token': 0.7142857313156128, 'rand_path_token_non_endpoint': 1.0, 'correct EOS': 0.5714285714285714, 'mean invalid tokens': 0.42857142857142855, 'percent with invalid tokens': 0.4285714285714286, 'exactly correct rollouts': 0.14285714285714285, 'valid rollouts': 0.7142857142857143, 'rollouts with target reached': 0.5714285714285714}\n" ] } ], @@ -577,7 +577,7 @@ " \n", " 0\n", " hallway-jvq.final\n", - " forkless-g6-n6-a_dfs-h71625\n", + " forkless-g6-n6-a_dfs-h33701\n", " 1.0\n", " 1.000000\n", " 0.833333\n", @@ -595,7 +595,7 @@ " \n", " 1\n", " hallway-jvq.final\n", - " RDFS-g6-n7-a_dfs-h65218\n", + " RDFS-g6-n7-a_dfs-h36900\n", " 1.0\n", " 1.000000\n", " 0.285714\n", @@ -613,7 +613,7 @@ " \n", " 2\n", " hallway-jvq.final\n", - " pRDFS-g6-n5-a_dfs_percolation-h15463\n", + " pRDFS-g6-n5-a_dfs_percolation-h73517\n", " 1.0\n", " 1.000000\n", " 0.200000\n", @@ -631,7 +631,7 @@ " \n", " 3\n", " hallway-jvq.final\n", - " forkless-g7-n5-a_dfs-h10952\n", + " forkless-g7-n5-a_dfs-h9178\n", " 1.0\n", " 1.000000\n", " 0.600000\n", @@ -649,7 +649,7 @@ " \n", " 4\n", " hallway-jvq.final\n", - " RDFS-g7-n8-a_dfs-h29762\n", + " RDFS-g7-n8-a_dfs-h93753\n", " 1.0\n", " 1.000000\n", " 0.750000\n", @@ -667,7 +667,7 @@ " \n", " 5\n", " hallway-jvq.final\n", - " pRDFS-g7-n7-a_dfs_percolation-h90892\n", + " pRDFS-g7-n7-a_dfs_percolation-h57935\n", " 1.0\n", " 0.857143\n", " 0.285714\n", @@ -688,12 +688,12 @@ ], "text/plain": [ " model dataset path_start \\\n", - "0 hallway-jvq.final forkless-g6-n6-a_dfs-h71625 1.0 \n", - "1 hallway-jvq.final RDFS-g6-n7-a_dfs-h65218 1.0 \n", - "2 hallway-jvq.final pRDFS-g6-n5-a_dfs_percolation-h15463 1.0 \n", - "3 hallway-jvq.final forkless-g7-n5-a_dfs-h10952 1.0 \n", - "4 hallway-jvq.final RDFS-g7-n8-a_dfs-h29762 1.0 \n", - "5 hallway-jvq.final pRDFS-g7-n7-a_dfs_percolation-h90892 1.0 \n", + "0 hallway-jvq.final forkless-g6-n6-a_dfs-h33701 1.0 \n", + "1 hallway-jvq.final RDFS-g6-n7-a_dfs-h36900 1.0 \n", + "2 hallway-jvq.final pRDFS-g6-n5-a_dfs_percolation-h73517 1.0 \n", + "3 hallway-jvq.final forkless-g7-n5-a_dfs-h9178 1.0 \n", + "4 hallway-jvq.final RDFS-g7-n8-a_dfs-h93753 1.0 \n", + "5 hallway-jvq.final pRDFS-g7-n7-a_dfs_percolation-h57935 1.0 \n", "\n", " origin_after_path_start first_path_choice path_end \\\n", "0 1.000000 0.833333 1.0 \n", @@ -743,12 +743,12 @@ "metadata": {}, "outputs": [], "source": [ - "RESULTS.to_json(f\"eval_results-n{N_MAZES}.json\", index=True, orient=\"records\", lines=True)" + "RESULTS.to_json(f\"eval_results-n{N_MAZES}.jsonl\", orient=\"records\", lines=True)" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -759,7 +759,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -772,9 +772,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\mivan\\AppData\\Local\\Temp\\ipykernel_30232\\1467154539.py:4: FutureWarning:\n", + "\n", + "DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n", + "\n" + ] + }, { "data": { "text/html": [ @@ -797,12 +807,12 @@ " \n", " model/dataset\n", " Metric\n", - " hallway/RDFS-g6-n7-a_dfs-h65218\n", - " hallway/RDFS-g7-n8-a_dfs-h29762\n", - " hallway/forkless-g6-n6-a_dfs-h71625\n", - " hallway/forkless-g7-n5-a_dfs-h10952\n", - " hallway/pRDFS-g6-n5-a_dfs_percolation-h15463\n", - " hallway/pRDFS-g7-n7-a_dfs_percolation-h90892\n", + " hallway/RDFS-g6-n7-a_dfs-h36900\n", + " hallway/RDFS-g7-n8-a_dfs-h93753\n", + " hallway/forkless-g6-n6-a_dfs-h33701\n", + " hallway/forkless-g7-n5-a_dfs-h9178\n", + " hallway/pRDFS-g6-n5-a_dfs_percolation-h73517\n", + " hallway/pRDFS-g7-n7-a_dfs_percolation-h57935\n", " \n", " \n", " \n", @@ -941,7 +951,7 @@ "" ], "text/plain": [ - "model/dataset Metric hallway/RDFS-g6-n7-a_dfs-h65218 \\\n", + "model/dataset Metric hallway/RDFS-g6-n7-a_dfs-h36900 \\\n", "0 path_start 100.0% \n", "1 origin_after_path_start 100.0% \n", "2 first_path_choice 28.6% \n", @@ -956,7 +966,7 @@ "11 valid rollouts 28.6% \n", "12 rollouts with target reached 100.0% \n", "\n", - "model/dataset hallway/RDFS-g7-n8-a_dfs-h29762 \\\n", + "model/dataset hallway/RDFS-g7-n8-a_dfs-h93753 \\\n", "0 100.0% \n", "1 100.0% \n", "2 75.0% \n", @@ -971,7 +981,7 @@ "11 25.0% \n", "12 87.5% \n", "\n", - "model/dataset hallway/forkless-g6-n6-a_dfs-h71625 \\\n", + "model/dataset hallway/forkless-g6-n6-a_dfs-h33701 \\\n", "0 100.0% \n", "1 100.0% \n", "2 83.3% \n", @@ -986,22 +996,22 @@ "11 50.0% \n", "12 100.0% \n", "\n", - "model/dataset hallway/forkless-g7-n5-a_dfs-h10952 \\\n", - "0 100.0% \n", - "1 100.0% \n", - "2 60.0% \n", - "3 100.0% \n", - "4 100.0% \n", - "5 80.0% \n", - "6 100.0% \n", - "7 80.0% \n", - "8 20.0% \n", - "9 20.0% \n", - "10 0.0% \n", - "11 20.0% \n", - "12 80.0% \n", + "model/dataset hallway/forkless-g7-n5-a_dfs-h9178 \\\n", + "0 100.0% \n", + "1 100.0% \n", + "2 60.0% \n", + "3 100.0% \n", + "4 100.0% \n", + "5 80.0% \n", + "6 100.0% \n", + "7 80.0% \n", + "8 20.0% \n", + "9 20.0% \n", + "10 0.0% \n", + "11 20.0% \n", + "12 80.0% \n", "\n", - "model/dataset hallway/pRDFS-g6-n5-a_dfs_percolation-h15463 \\\n", + "model/dataset hallway/pRDFS-g6-n5-a_dfs_percolation-h73517 \\\n", "0 100.0% \n", "1 100.0% \n", "2 20.0% \n", @@ -1016,7 +1026,7 @@ "11 40.0% \n", "12 100.0% \n", "\n", - "model/dataset hallway/pRDFS-g7-n7-a_dfs_percolation-h90892 \n", + "model/dataset hallway/pRDFS-g7-n7-a_dfs_percolation-h57935 \n", "0 100.0% \n", "1 85.7% \n", "2 28.6% \n", @@ -1032,7 +1042,7 @@ "12 57.1% " ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1059,16 +1069,16 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ - "transposed_df.to_csv(f\"eval_results-n256.csv\", index=False)" + "transposed_df.to_json(f\"eval_results-transposed-n{N_MAZES}.jsonl\", orient=\"records\", lines=True)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1077,35 +1087,25 @@ "text": [ "\\begin{tabular}{lllllll}\n", "\\toprule\n", - " Metric & hallway/RDFS-g6-n7-a\\_dfs-h65218 & hallway/RDFS-g7-n8-a\\_dfs-h29762 & hallway/forkless-g6-n6-a\\_dfs-h71625 & hallway/forkless-g7-n5-a\\_dfs-h10952 & hallway/pRDFS-g6-n5-a\\_dfs\\_percolation-h15463 & hallway/pRDFS-g7-n7-a\\_dfs\\_percolation-h90892 \\\\\n", + "Metric & hallway/RDFS-g6-n7-a_dfs-h36900 & hallway/RDFS-g7-n8-a_dfs-h93753 & hallway/forkless-g6-n6-a_dfs-h33701 & hallway/forkless-g7-n5-a_dfs-h9178 & hallway/pRDFS-g6-n5-a_dfs_percolation-h73517 & hallway/pRDFS-g7-n7-a_dfs_percolation-h57935 \\\\\n", "\\midrule\n", - " path\\_start & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% \\\\\n", - " origin\\_after\\_path\\_start & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 85.7\\% \\\\\n", - " first\\_path\\_choice & 28.6\\% & 75.0\\% & 83.3\\% & 60.0\\% & 20.0\\% & 28.6\\% \\\\\n", - " path\\_end & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% \\\\\n", - " final\\_before\\_path\\_end & 100.0\\% & 87.5\\% & 100.0\\% & 100.0\\% & 80.0\\% & 100.0\\% \\\\\n", - " rand\\_path\\_token & 85.7\\% & 87.5\\% & 100.0\\% & 80.0\\% & 60.0\\% & 71.4\\% \\\\\n", - "rand\\_path\\_token\\_non\\_endpoint & 85.7\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% & 100.0\\% \\\\\n", - " correct EOS & 100.0\\% & 75.0\\% & 100.0\\% & 80.0\\% & 100.0\\% & 57.1\\% \\\\\n", - " mean invalid tokens & 0.0\\% & 25.0\\% & 0.0\\% & 20.0\\% & 0.0\\% & 42.9\\% \\\\\n", - " percent with invalid tokens & 0.0\\% & 25.0\\% & 0.0\\% & 20.0\\% & 0.0\\% & 42.9\\% \\\\\n", - " exactly correct rollouts & 0.0\\% & 25.0\\% & 16.7\\% & 0.0\\% & 20.0\\% & 14.3\\% \\\\\n", - " valid rollouts & 28.6\\% & 25.0\\% & 50.0\\% & 20.0\\% & 40.0\\% & 71.4\\% \\\\\n", - "rollouts with target reached & 100.0\\% & 87.5\\% & 100.0\\% & 80.0\\% & 100.0\\% & 57.1\\% \\\\\n", + "path_start & 100.0% & 100.0% & 100.0% & 100.0% & 100.0% & 100.0% \\\\\n", + "origin_after_path_start & 100.0% & 100.0% & 100.0% & 100.0% & 100.0% & 85.7% \\\\\n", + "first_path_choice & 28.6% & 75.0% & 83.3% & 60.0% & 20.0% & 28.6% \\\\\n", + "path_end & 100.0% & 100.0% & 100.0% & 100.0% & 100.0% & 100.0% \\\\\n", + "final_before_path_end & 100.0% & 87.5% & 100.0% & 100.0% & 80.0% & 100.0% \\\\\n", + "rand_path_token & 85.7% & 87.5% & 100.0% & 80.0% & 60.0% & 71.4% \\\\\n", + "rand_path_token_non_endpoint & 85.7% & 100.0% & 100.0% & 100.0% & 100.0% & 100.0% \\\\\n", + "correct EOS & 100.0% & 75.0% & 100.0% & 80.0% & 100.0% & 57.1% \\\\\n", + "mean invalid tokens & 0.0% & 25.0% & 0.0% & 20.0% & 0.0% & 42.9% \\\\\n", + "percent with invalid tokens & 0.0% & 25.0% & 0.0% & 20.0% & 0.0% & 42.9% \\\\\n", + "exactly correct rollouts & 0.0% & 25.0% & 16.7% & 0.0% & 20.0% & 14.3% \\\\\n", + "valid rollouts & 28.6% & 25.0% & 50.0% & 20.0% & 40.0% & 71.4% \\\\\n", + "rollouts with target reached & 100.0% & 87.5% & 100.0% & 80.0% & 100.0% & 57.1% \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\n" ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\mivan\\AppData\\Local\\Temp\\ipykernel_23456\\3948350809.py:1: FutureWarning:\n", - "\n", - "In future versions `DataFrame.to_latex` is expected to utilise the base implementation of `Styler.to_latex` for formatting and rendering. The arguments signature may therefore change. It is recommended instead to use `DataFrame.style.to_latex` which also contains additional functionality.\n", - "\n" - ] } ], "source": [ @@ -1114,7 +1114,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ diff --git a/notebooks/train_model.ipynb b/notebooks/train_model.ipynb index cb766b39..0ff22795 100644 --- a/notebooks/train_model.ipynb +++ b/notebooks/train_model.ipynb @@ -70,7 +70,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "list(MAZE_DATASET_CONFIGS.keys()) = ['test-g3-n5-a_dfs-h75556', 'demo_small-g3-n100-a_dfs-h88371', 'demo-g6-n10K-a_dfs-h30615']\n" + "list(MAZE_DATASET_CONFIGS.keys()) = ['test-g3-n5-a_dfs-h73257', 'demo_small-g3-n100-a_dfs-h44636', 'demo-g6-n10K-a_dfs-h50618']\n" ] } ], @@ -161,12 +161,12 @@ "source": [ "# this is for training a \"real\" demo model\n", "CFG_DEMO: ConfigHolder = ConfigHolder.get_config_multisource(\n", - " cfg_names=(\"test-g3-n5-a_dfs-h75556\", \"tiny-v1\", \"sweep-v1\"),\n", + " cfg_names=(\"test-g3-n5-a_dfs-h73257\", \"tiny-v1\", \"sweep-v1\"),\n", ")\n", "\n", "# this is smaller, for testing\n", "CFG_TEST: ConfigHolder = ConfigHolder.get_config_multisource(\n", - " cfg_names=(\"demo_small-g3-n100-a_dfs-h88371\", \"nano-v1\", \"test-v1\"),\n", + " cfg_names=(\"demo_small-g3-n100-a_dfs-h44636\", \"nano-v1\", \"test-v1\"),\n", ")" ] }, @@ -190,11 +190,11 @@ "output_type": "stream", "text": [ "{\n", - " \"name\": \"multsrc_demo_small-g3-n100-a_dfs-h88371_nano-v1_test-v1\",\n", + " \"name\": \"multsrc_demo_small-g3-n100-a_dfs-h44636_nano-v1_test-v1\",\n", " \"dataset_cfg\": {\n", " \"name\": \"demo_small\",\n", - " \"fname\": \"demo_small-g3-n100-a_dfs-h88371\",\n", - " \"sdc_hash\": 84259447430412521190944379321942049596003348447446024033060470193755008588371,\n", + " \"fname\": \"demo_small-g3-n100-a_dfs-h44636\",\n", + " \"sdc_hash\": 89724264431769658998652566433510669623512452901670271738715908684739630044636,\n", " \"seed\": 42,\n", " \"seq_len_min\": 1,\n", " \"seq_len_max\": 512,\n", @@ -214,6 +214,7 @@ " \"d_model\": 8,\n", " \"d_head\": 4,\n", " \"n_layers\": 2,\n", + " \"positional_embedding_type\": \"standard\",\n", " \"weight_processing\": {\n", " \"are_layernorms_folded\": false,\n", " \"are_weights_processed\": false\n", @@ -265,10 +266,32 @@ "name": "stdout", "output_type": "stream", "text": [ - "trying to get the dataset 'demo_small-g3-n100-a_dfs-h88371'\n", - "loading dataset from ../data/demo_small-g3-n100-a_dfs-h88371.zanj\n", - "load successful!\n", - "Got dataset demo_small with 100 items. output.cfg.to_fname() = 'demo_small-g3-n100-a_dfs-h88371'\n" + "trying to get the dataset 'demo_small-g3-n100-a_dfs-h44636'\n", + "seeing if we can download the dataset...\n", + "no download found, or download failed\n", + "generating dataset...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "generating & solving mazes: 100%|██████████| 100/100 [00:00<00:00, 1562.52maze/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "saving dataset to ..\\data\\demo_small-g3-n100-a_dfs-h44636.zanj\n", + "Got dataset demo_small with 100 items. output.cfg.to_fname() = 'demo_small-g3-n100-a_dfs-h91156'\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" ] } ], @@ -290,7 +313,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2024-05-13 20:12:16 ERROR Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n" + "2024-07-26 15:12:42 ERROR Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n" ] }, { @@ -303,7 +326,7 @@ { "data": { "text/html": [ - "Tracking run with wandb version 0.17.0" + "Tracking run with wandb version 0.17.5" ], "text/plain": [ "" @@ -315,7 +338,7 @@ { "data": { "text/html": [ - "Run data is saved locally in f:\\KNC\\maze-transformer\\notebooks\\wandb\\run-20240513_201219-780ezh3c" + "Run data is saved locally in f:\\KNC\\maze-transformer\\notebooks\\wandb\\run-20240726_151244-pq9dpsg6" ], "text/plain": [ "" @@ -327,7 +350,7 @@ { "data": { "text/html": [ - "Syncing run zesty-music-17 to Weights & Biases (docs)
" + "Syncing run olive-lake-20 to Weights & Biases (docs)
" ], "text/plain": [ "" @@ -351,7 +374,7 @@ { "data": { "text/html": [ - " View run at https://wandb.ai/miv/understanding-search/runs/780ezh3c" + " View run at https://wandb.ai/miv/understanding-search/runs/pq9dpsg6" ], "text/plain": [ "" @@ -364,21 +387,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "2024-05-13 20:12:21 INFO config ={'__format__': 'ConfigHolder(SerializableDataclass)', 'dataset_cfg': {'__format__': 'MazeDatasetConfig(SerializableDataclass)', 'name': 'demo_small', 'seq_len_min': 1, 'seq_len_max': 512, 'seed': 42, 'applied_filters': [], 'grid_n': 3, 'n_mazes': 100, 'maze_ctor': {'__name__': 'gen_dfs', '__module__': 'maze_dataset.generation.generators', '__doc__': ['generate a lattice maze using depth first search, iterative', '', ' # Arguments', ' - `grid_shape: Coord`: the shape of the grid', ' - `lattice_dim: int`: the dimension of the lattice', ' (default: `2`)', ' - `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells**', ' (default: `None`)', ' - `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape**', ' (default: `None`)', ' - `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway.', ' - `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate.', '', ' # algorithm', ' 1. Choose the initial cell, mark it as visited and push it to the stack', ' 2. While the stack is not empty', ' 1. Pop a cell from the stack and make it a current cell', ' 2. If the current cell has any neighbours which have not been visited', ' 1. Push the current cell to the stack', ' 2. Choose one of the unvisited neighbours', ' 3. Remove the wall between the current cell and the chosen cell', ' 4. Mark the chosen cell as visited and push it to the stack', ' '], 'source_code': [' @staticmethod', ' def gen_dfs(', ' grid_shape: Coord,', ' lattice_dim: int = 2,', ' accessible_cells: int | float | None = None,', ' max_tree_depth: int | float | None = None,', ' do_forks: bool = True,', ' randomized_stack: bool = False,', ' start_coord: Coord | None = None,', ' ) -> LatticeMaze:', ' \"\"\"generate a lattice maze using depth first search, iterative', '', ' # Arguments', ' - `grid_shape: Coord`: the shape of the grid', ' - `lattice_dim: int`: the dimension of the lattice', ' (default: `2`)', ' - `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells**', ' (default: `None`)', ' - `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape**', ' (default: `None`)', ' - `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway.', ' - `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate.', '', ' # algorithm', ' 1. Choose the initial cell, mark it as visited and push it to the stack', ' 2. While the stack is not empty', ' 1. Pop a cell from the stack and make it a current cell', ' 2. If the current cell has any neighbours which have not been visited', ' 1. Push the current cell to the stack', ' 2. Choose one of the unvisited neighbours', ' 3. Remove the wall between the current cell and the chosen cell', ' 4. Mark the chosen cell as visited and push it to the stack', ' \"\"\"', '', ' # Default values if no constraints have been passed', ' grid_shape: Coord = np.array(grid_shape)', ' n_total_cells: int = int(np.prod(grid_shape))', '', ' n_accessible_cells: int', ' if accessible_cells is None:', ' n_accessible_cells = n_total_cells', ' elif isinstance(accessible_cells, float):', ' assert (', ' accessible_cells <= 1', ' ), f\"accessible_cells must be an int (count) or a float in the range [0, 1] (proportion), got {accessible_cells}\"', '', ' n_accessible_cells = int(accessible_cells * n_total_cells)', ' else:', ' assert isinstance(accessible_cells, int)', ' n_accessible_cells = accessible_cells', '', ' if max_tree_depth is None:', ' max_tree_depth = (', ' 2 * n_total_cells', ' ) # We define max tree depth counting from the start coord in two directions. Therefore we divide by two in the if clause for neighboring sites later and multiply by two here.', ' elif isinstance(max_tree_depth, float):', ' assert (', ' max_tree_depth <= 1', ' ), f\"max_tree_depth must be an int (count) or a float in the range [0, 1] (proportion), got {max_tree_depth}\"', '', ' max_tree_depth = int(max_tree_depth * np.sum(grid_shape))', '', ' # choose a random start coord', ' start_coord = _random_start_coord(grid_shape, start_coord)', '', ' # initialize the maze with no connections', ' connection_list: ConnectionList = np.zeros(', ' (lattice_dim, grid_shape[0], grid_shape[1]), dtype=np.bool_', ' )', '', ' # initialize the stack with the target coord', ' visited_cells: set[tuple[int, int]] = set()', ' visited_cells.add(tuple(start_coord)) # this wasnt a bug after all lol', ' stack: list[Coord] = [start_coord]', '', ' # initialize tree_depth_counter', ' current_tree_depth: int = 1', '', ' # loop until the stack is empty or n_connected_cells is reached', ' while stack and (len(visited_cells) < n_accessible_cells):', ' # get the current coord from the stack', ' current_coord: Coord', ' if randomized_stack:', ' current_coord = stack.pop(random.randint(0, len(stack) - 1))', ' else:', ' current_coord = stack.pop()', '', ' # filter neighbors by being within grid bounds and being unvisited', ' unvisited_neighbors_deltas: list[tuple[Coord, Coord]] = [', ' (neighbor, delta)', ' for neighbor, delta in zip(', ' current_coord + NEIGHBORS_MASK, NEIGHBORS_MASK', ' )', ' if (', ' (tuple(neighbor) not in visited_cells)', ' and (0 <= neighbor[0] < grid_shape[0])', ' and (0 <= neighbor[1] < grid_shape[1])', ' )', ' ]', '', \" # don't continue if max_tree_depth/2 is already reached (divide by 2 because we can branch to multiple directions)\", ' if unvisited_neighbors_deltas and (', ' current_tree_depth <= max_tree_depth / 2', ' ):', \" # if we want a maze without forks, simply don't add the current coord back to the stack\", ' if do_forks and (len(unvisited_neighbors_deltas) > 1):', ' stack.append(current_coord)', '', ' # choose one of the unvisited neighbors', ' chosen_neighbor, delta = random.choice(unvisited_neighbors_deltas)', '', ' # add connection', ' dim: int = np.argmax(np.abs(delta))', ' # if positive, down/right from current coord', ' # if negative, up/left from current coord (down/right from neighbor)', ' clist_node: Coord = (', ' current_coord if (delta.sum() > 0) else chosen_neighbor', ' )', ' connection_list[dim, clist_node[0], clist_node[1]] = True', '', ' # add to visited cells and stack', ' visited_cells.add(tuple(chosen_neighbor))', ' stack.append(chosen_neighbor)', '', ' # Update current tree depth', ' current_tree_depth += 1', ' else:', ' current_tree_depth -= 1', '', ' output = LatticeMaze(', ' connection_list=connection_list,', ' generation_meta=dict(', ' func_name=\"gen_dfs\",', ' grid_shape=grid_shape,', ' start_coord=start_coord,', ' n_accessible_cells=int(n_accessible_cells),', ' max_tree_depth=int(max_tree_depth),', \" # oh my god this took so long to track down. its almost 5am and I've spent like 2 hours on this bug\", ' # it was checking that len(visited_cells) == n_accessible_cells, but this means that the maze is', ' # treated as fully connected even when it is most certainly not, causing solving the maze to break', ' fully_connected=bool(len(visited_cells) == n_total_cells),', ' visited_cells={tuple(int(x) for x in coord) for coord in visited_cells},', ' ),', ' )', '', ' return output']}, 'maze_ctor_kwargs': {}, 'grid_shape': (3, 3)}, 'model_cfg': {'__format__': 'BaseGPTConfig(SerializableDataclass)', 'name': 'nano-v1', 'act_fn': 'gelu', 'd_model': 8, 'd_head': 4, 'n_layers': 2, 'weight_processing': {'are_layernorms_folded': False, 'are_weights_processed': False}, 'n_heads': 2}, 'train_cfg': {'__format__': 'TrainConfig(SerializableDataclass)', 'name': 'test-v1', 'evals_max_new_tokens': 8, 'validation_dataset_cfg': 1, 'optimizer': 'RMSprop', 'optimizer_kwargs': {'lr': 0.0001}, 'batch_size': 16, 'dataloader_cfg': {'shuffle': True, 'num_workers': 0, 'drop_last': False}, 'intervals': None, 'intervals_count': {'print_loss': 100, 'checkpoint': 2, 'eval_fast': 4, 'eval_slow': 2}}, 'name': 'multsrc_demo_small-g3-n100-a_dfs-h88371_nano-v1_test-v1', 'pretrainedtokenizer_kwargs': None, 'maze_tokenizer': {'__format__': 'MazeTokenizer(SerializableDataclass)', 'tokenization_mode': 'AOTP_UT_uniform', 'max_grid_size': 3, 'name': 'maze_tokenizer-AOTP_UT_uniform-g3', 'token_arr': ['', '', '', '', '', '', '', '', '<-->', ';', '', '(0,0)', '(0,1)', '(1,0)', '(1,1)', '(0,2)', '(2,0)', '(1,2)', '(2,1)', '(2,2)'], 'tokenizer_map': {'': 0, '': 1, '': 2, '': 3, '': 4, '': 5, '': 6, '': 7, '<-->': 8, ';': 9, '': 10, '(0,0)': 11, '(0,1)': 12, '(1,0)': 13, '(1,1)': 14, '(0,2)': 15, '(2,0)': 16, '(1,2)': 17, '(2,1)': 18, '(2,2)': 19}, 'vocab_size': 20, 'padding_token_index': 10}, '_tokenizer': 'None'}\n", - "2024-05-13 20:12:21 INFO Initialized logger\n", - "2024-05-13 20:12:21 INFO Summary logged, getting dataset\n", - "2024-05-13 20:12:21 INFO passed dataset has matching config, using that\n", - "2024-05-13 20:12:21 INFO finished getting training dataset with 100 samples\n", - "2024-05-13 20:12:21 INFO got validation dataset by splitting training dataset into 99 train and 1 validation samples\n", - "2024-05-13 20:12:21 INFO Loaded 99 sequences\n", - "2024-05-13 20:12:21 INFO Creating dataloader\n", - "2024-05-13 20:12:21 INFO finished dataloader, passing to train()\n", - "2024-05-13 20:12:21 INFO Initializing model\n", + "2024-07-26 15:12:46 INFO config ={'__format__': 'ConfigHolder(SerializableDataclass)', 'dataset_cfg': {'__format__': 'MazeDatasetConfig(SerializableDataclass)', 'name': 'demo_small', 'seq_len_min': 1, 'seq_len_max': 512, 'seed': 42, 'applied_filters': [], 'grid_n': 3, 'n_mazes': 100, 'maze_ctor': {'__name__': 'gen_dfs', '__module__': 'maze_dataset.generation.generators', '__doc__': ['generate a lattice maze using depth first search, iterative', '', ' # Arguments', ' - `grid_shape: Coord`: the shape of the grid', ' - `lattice_dim: int`: the dimension of the lattice', ' (default: `2`)', ' - `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells**', ' (default: `None`)', ' - `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape**', ' (default: `None`)', ' - `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway.', ' - `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate.', '', ' # algorithm', ' 1. Choose the initial cell, mark it as visited and push it to the stack', ' 2. While the stack is not empty', ' 1. Pop a cell from the stack and make it a current cell', ' 2. If the current cell has any neighbours which have not been visited', ' 1. Push the current cell to the stack', ' 2. Choose one of the unvisited neighbours', ' 3. Remove the wall between the current cell and the chosen cell', ' 4. Mark the chosen cell as visited and push it to the stack', ' '], 'source_code': [' @staticmethod', ' def gen_dfs(', ' grid_shape: Coord,', ' lattice_dim: int = 2,', ' accessible_cells: int | float | None = None,', ' max_tree_depth: int | float | None = None,', ' do_forks: bool = True,', ' randomized_stack: bool = False,', ' start_coord: Coord | None = None,', ' ) -> LatticeMaze:', ' \"\"\"generate a lattice maze using depth first search, iterative', '', ' # Arguments', ' - `grid_shape: Coord`: the shape of the grid', ' - `lattice_dim: int`: the dimension of the lattice', ' (default: `2`)', ' - `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells**', ' (default: `None`)', ' - `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape**', ' (default: `None`)', ' - `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway.', ' - `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate.', '', ' # algorithm', ' 1. Choose the initial cell, mark it as visited and push it to the stack', ' 2. While the stack is not empty', ' 1. Pop a cell from the stack and make it a current cell', ' 2. If the current cell has any neighbours which have not been visited', ' 1. Push the current cell to the stack', ' 2. Choose one of the unvisited neighbours', ' 3. Remove the wall between the current cell and the chosen cell', ' 4. Mark the chosen cell as visited and push it to the stack', ' \"\"\"', '', ' # Default values if no constraints have been passed', ' grid_shape: Coord = np.array(grid_shape)', ' n_total_cells: int = int(np.prod(grid_shape))', '', ' n_accessible_cells: int', ' if accessible_cells is None:', ' n_accessible_cells = n_total_cells', ' elif isinstance(accessible_cells, float):', ' assert (', ' accessible_cells <= 1', ' ), f\"accessible_cells must be an int (count) or a float in the range [0, 1] (proportion), got {accessible_cells}\"', '', ' n_accessible_cells = int(accessible_cells * n_total_cells)', ' else:', ' assert isinstance(accessible_cells, int)', ' n_accessible_cells = accessible_cells', '', ' if max_tree_depth is None:', ' max_tree_depth = (', ' 2 * n_total_cells', ' ) # We define max tree depth counting from the start coord in two directions. Therefore we divide by two in the if clause for neighboring sites later and multiply by two here.', ' elif isinstance(max_tree_depth, float):', ' assert (', ' max_tree_depth <= 1', ' ), f\"max_tree_depth must be an int (count) or a float in the range [0, 1] (proportion), got {max_tree_depth}\"', '', ' max_tree_depth = int(max_tree_depth * np.sum(grid_shape))', '', ' # choose a random start coord', ' start_coord = _random_start_coord(grid_shape, start_coord)', '', ' # initialize the maze with no connections', ' connection_list: ConnectionList = np.zeros(', ' (lattice_dim, grid_shape[0], grid_shape[1]), dtype=np.bool_', ' )', '', ' # initialize the stack with the target coord', ' visited_cells: set[tuple[int, int]] = set()', ' visited_cells.add(tuple(start_coord)) # this wasnt a bug after all lol', ' stack: list[Coord] = [start_coord]', '', ' # initialize tree_depth_counter', ' current_tree_depth: int = 1', '', ' # loop until the stack is empty or n_connected_cells is reached', ' while stack and (len(visited_cells) < n_accessible_cells):', ' # get the current coord from the stack', ' current_coord: Coord', ' if randomized_stack:', ' current_coord = stack.pop(random.randint(0, len(stack) - 1))', ' else:', ' current_coord = stack.pop()', '', ' # filter neighbors by being within grid bounds and being unvisited', ' unvisited_neighbors_deltas: list[tuple[Coord, Coord]] = [', ' (neighbor, delta)', ' for neighbor, delta in zip(', ' current_coord + NEIGHBORS_MASK, NEIGHBORS_MASK', ' )', ' if (', ' (tuple(neighbor) not in visited_cells)', ' and (0 <= neighbor[0] < grid_shape[0])', ' and (0 <= neighbor[1] < grid_shape[1])', ' )', ' ]', '', \" # don't continue if max_tree_depth/2 is already reached (divide by 2 because we can branch to multiple directions)\", ' if unvisited_neighbors_deltas and (', ' current_tree_depth <= max_tree_depth / 2', ' ):', \" # if we want a maze without forks, simply don't add the current coord back to the stack\", ' if do_forks and (len(unvisited_neighbors_deltas) > 1):', ' stack.append(current_coord)', '', ' # choose one of the unvisited neighbors', ' chosen_neighbor, delta = random.choice(unvisited_neighbors_deltas)', '', ' # add connection', ' dim: int = np.argmax(np.abs(delta))', ' # if positive, down/right from current coord', ' # if negative, up/left from current coord (down/right from neighbor)', ' clist_node: Coord = (', ' current_coord if (delta.sum() > 0) else chosen_neighbor', ' )', ' connection_list[dim, clist_node[0], clist_node[1]] = True', '', ' # add to visited cells and stack', ' visited_cells.add(tuple(chosen_neighbor))', ' stack.append(chosen_neighbor)', '', ' # Update current tree depth', ' current_tree_depth += 1', ' else:', ' current_tree_depth -= 1', '', ' output = LatticeMaze(', ' connection_list=connection_list,', ' generation_meta=dict(', ' func_name=\"gen_dfs\",', ' grid_shape=grid_shape,', ' start_coord=start_coord,', ' n_accessible_cells=int(n_accessible_cells),', ' max_tree_depth=int(max_tree_depth),', \" # oh my god this took so long to track down. its almost 5am and I've spent like 2 hours on this bug\", ' # it was checking that len(visited_cells) == n_accessible_cells, but this means that the maze is', ' # treated as fully connected even when it is most certainly not, causing solving the maze to break', ' fully_connected=bool(len(visited_cells) == n_total_cells),', ' visited_cells={tuple(int(x) for x in coord) for coord in visited_cells},', ' ),', ' )', '', ' return output']}, 'maze_ctor_kwargs': {}, 'endpoint_kwargs': {}, 'grid_shape': (3, 3)}, 'model_cfg': {'__format__': 'BaseGPTConfig(SerializableDataclass)', 'name': 'nano-v1', 'act_fn': 'gelu', 'd_model': 8, 'd_head': 4, 'n_layers': 2, 'positional_embedding_type': 'standard', 'weight_processing': {'are_layernorms_folded': False, 'are_weights_processed': False}, 'n_heads': 2}, 'train_cfg': {'__format__': 'TrainConfig(SerializableDataclass)', 'name': 'test-v1', 'evals_max_new_tokens': 8, 'validation_dataset_cfg': 1, 'optimizer': 'RMSprop', 'optimizer_kwargs': {'lr': 0.0001}, 'batch_size': 16, 'dataloader_cfg': {'shuffle': True, 'num_workers': 0, 'drop_last': False}, 'intervals': None, 'intervals_count': {'print_loss': 100, 'checkpoint': 2, 'eval_fast': 4, 'eval_slow': 2}}, 'name': 'multsrc_demo_small-g3-n100-a_dfs-h44636_nano-v1_test-v1', 'pretrainedtokenizer_kwargs': None, 'maze_tokenizer': {'__format__': 'MazeTokenizer(SerializableDataclass)', 'tokenization_mode': 'AOTP_UT_uniform', 'max_grid_size': 3, 'name': 'maze_tokenizer-AOTP_UT_uniform-g3', 'token_arr': ['', '', '', '', '', '', '', '', '<-->', ';', '', '(0,0)', '(0,1)', '(1,0)', '(1,1)', '(0,2)', '(2,0)', '(1,2)', '(2,1)', '(2,2)'], 'tokenizer_map': {'': 0, '': 1, '': 2, '': 3, '': 4, '': 5, '': 6, '': 7, '<-->': 8, ';': 9, '': 10, '(0,0)': 11, '(0,1)': 12, '(1,0)': 13, '(1,1)': 14, '(0,2)': 15, '(2,0)': 16, '(1,2)': 17, '(2,1)': 18, '(2,2)': 19}, 'vocab_size': 20, 'padding_token_index': 10}, '_tokenizer': 'None'}\n", + "2024-07-26 15:12:46 INFO Initialized logger\n", + "2024-07-26 15:12:46 INFO Summary logged, getting dataset\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "F:\\KNC\\maze-transformer\\maze_transformer\\training\\train_model.py:139: UserWarning:\n", + "\n", + "dataset has different config than cfg.dataset_cfg, but the only difference is in applied_filters, so using passed dataset. This is due to fast dataset loading collecting generation metadata for performance reasons\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2024-07-26 15:12:46 INFO finished getting training dataset with 100 samples\n", + "2024-07-26 15:12:46 INFO got validation dataset by splitting training dataset into 99 train and 1 validation samples\n", + "2024-07-26 15:12:46 INFO Loaded 99 sequences\n", + "2024-07-26 15:12:46 INFO Creating dataloader\n", + "2024-07-26 15:12:46 INFO finished dataloader, passing to train()\n", + "2024-07-26 15:12:46 INFO Initializing model\n", "Moving model to device: cpu\n", - "2024-05-13 20:12:21 INFO Initializing optimizer\n", - "2024-05-13 20:12:21 INFO will train for 7 batches, evals_enabled=True, with intervals: {'print_loss': inf, 'checkpoint': 3, 'eval_fast': 1, 'eval_slow': 3}\n", - "2024-05-13 20:12:21 INFO Starting training\n", - "2024-05-13 20:12:21 INFO Running evals: eval_fast\n" + "2024-07-26 15:12:46 INFO Initializing optimizer\n", + "2024-07-26 15:12:47 INFO will train for 7 batches, evals_enabled=True, with intervals: {'print_loss': inf, 'checkpoint': 3, 'eval_fast': 1, 'eval_slow': 3}\n", + "2024-07-26 15:12:47 INFO Starting training\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n" ] }, { @@ -396,21 +434,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "2024-05-13 20:12:21 INFO Running evals: eval_slow\n", - "2024-05-13 20:12:21 INFO iteration 0/7: loss=3.198\n", - "2024-05-13 20:12:21 INFO Saving model checkpoint to ../data/multsrc_demo_small-g3-n100-a_dfs-h88371_nano-v1_test-v1_2024-05-13-20-12-13/checkpoints/model.iter_0.zanj\n", - "2024-05-13 20:12:22 INFO Running evals: eval_fast\n", - "2024-05-13 20:12:22 INFO Running evals: eval_fast\n", - "2024-05-13 20:12:22 INFO Running evals: eval_fast\n", - "2024-05-13 20:12:22 INFO Running evals: eval_slow\n", - "2024-05-13 20:12:22 INFO Saving model checkpoint to ../data/multsrc_demo_small-g3-n100-a_dfs-h88371_nano-v1_test-v1_2024-05-13-20-12-13/checkpoints/model.iter_3.zanj\n", - "2024-05-13 20:12:23 INFO Running evals: eval_fast\n", - "2024-05-13 20:12:23 INFO Running evals: eval_fast\n", - "2024-05-13 20:12:23 INFO Running evals: eval_fast\n", - "2024-05-13 20:12:23 INFO Running evals: eval_slow\n", - "2024-05-13 20:12:23 INFO Saving model checkpoint to ../data/multsrc_demo_small-g3-n100-a_dfs-h88371_nano-v1_test-v1_2024-05-13-20-12-13/checkpoints/model.iter_6.zanj\n", - "2024-05-13 20:12:23 INFO Saving final model to ../data/multsrc_demo_small-g3-n100-a_dfs-h88371_nano-v1_test-v1_2024-05-13-20-12-13/model.final.zanj\n", - "2024-05-13 20:12:24 INFO Done training!\n" + "2024-07-26 15:12:47 INFO Running evals: eval_slow\n", + "2024-07-26 15:12:47 INFO iteration 0/7: loss=3.198\n", + "2024-07-26 15:12:47 INFO Saving model checkpoint to ../data/multsrc_demo_small-g3-n100-a_dfs-h44636_nano-v1_test-v1_2024-07-26-15-12-39/checkpoints/model.iter_0.zanj\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n", + "2024-07-26 15:12:47 INFO Running evals: eval_slow\n", + "2024-07-26 15:12:47 INFO Saving model checkpoint to ../data/multsrc_demo_small-g3-n100-a_dfs-h44636_nano-v1_test-v1_2024-07-26-15-12-39/checkpoints/model.iter_3.zanj\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n", + "2024-07-26 15:12:47 INFO Running evals: eval_fast\n", + "2024-07-26 15:12:47 INFO Running evals: eval_slow\n", + "2024-07-26 15:12:47 INFO Saving model checkpoint to ../data/multsrc_demo_small-g3-n100-a_dfs-h44636_nano-v1_test-v1_2024-07-26-15-12-39/checkpoints/model.iter_6.zanj\n", + "2024-07-26 15:12:48 INFO Saving final model to ../data/multsrc_demo_small-g3-n100-a_dfs-h44636_nano-v1_test-v1_2024-07-26-15-12-39/model.final.zanj\n", + "2024-07-26 15:12:48 INFO Done training!\n" ] } ], diff --git a/poetry.lock b/poetry.lock index 5e0400ca..ba4758cd 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,19 +1,19 @@ -# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "accelerate" -version = "0.30.1" +version = "0.33.0" description = "Accelerate" optional = false python-versions = ">=3.8.0" files = [ - {file = "accelerate-0.30.1-py3-none-any.whl", hash = "sha256:8dd4edd532a4dac72558c5fe6fe8cb70d0c8ec9e8733f48db97d51ee41cbe763"}, - {file = "accelerate-0.30.1.tar.gz", hash = "sha256:96779c618889646b86dc928c9e55e86e50a7ccab59e1692e22096481977ae682"}, + {file = "accelerate-0.33.0-py3-none-any.whl", hash = "sha256:0a7f33d60ba09afabd028d4f0856dd19c5a734b7a596d637d9dd6e3d0eadbaf3"}, + {file = "accelerate-0.33.0.tar.gz", hash = "sha256:11ba481ed6ea09191775df55ce464aeeba67a024bd0261a44b77b30fb439e26a"}, ] [package.dependencies] -huggingface-hub = "*" -numpy = ">=1.17" +huggingface-hub = ">=0.21.0" +numpy = ">=1.17,<2.0.0" packaging = ">=20.0" psutil = "*" pyyaml = "*" @@ -143,13 +143,13 @@ frozenlist = ">=1.1.0" [[package]] name = "anyio" -version = "4.3.0" +version = "4.4.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false python-versions = ">=3.8" files = [ - {file = "anyio-4.3.0-py3-none-any.whl", hash = "sha256:048e05d0f6caeed70d731f3db756d35dcc1f35747c8c403364a8332c630441b8"}, - {file = "anyio-4.3.0.tar.gz", hash = "sha256:f75253795a87df48568485fd18cdd2a3fa5c4f7c5be8e5e36637733fce06fed6"}, + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] @@ -442,13 +442,13 @@ css = ["tinycss2 (>=1.1.0,<1.3)"] [[package]] name = "certifi" -version = "2024.2.2" +version = "2024.7.4" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, + {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, + {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, ] [[package]] @@ -616,34 +616,19 @@ files = [ [[package]] name = "circuitsvis" -version = "1.43.2" +version = "1.41.0" description = "Mechanistic Interpretability Visualizations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7,<4.0" files = [ - {file = "circuitsvis-1.43.2-py3-none-any.whl", hash = "sha256:1128fde5de8b738dd3c932d0b0ec4ee5556387b4405592fdf37f617e647183fb"}, - {file = "circuitsvis-1.43.2.tar.gz", hash = "sha256:388c1a6ea1bcf308da51fa6f67be761483ba361321d2e111f4c28faaea458287"}, + {file = "circuitsvis-1.41.0-py3-none-any.whl", hash = "sha256:53dc12c955c160b8108a0eb17ed14a34ba9f53b218457d29f351cba3db31acb7"}, + {file = "circuitsvis-1.41.0.tar.gz", hash = "sha256:386385f38d8b9de1bbef125fa282afc9157027bc2dcdc4c04feafbc22bc71d17"}, ] [package.dependencies] -importlib-metadata = ">=5.1.0" -numpy = [ - {version = ">=1.24", markers = "python_version >= \"3.9\" and python_version < \"3.12\""}, - {version = ">=1.26", markers = "python_version >= \"3.12\" and python_version < \"3.13\""}, -] -nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -torch = ">=1.10" -triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +importlib-metadata = ">=5.1.0,<6.0.0" +numpy = {version = ">=1.23,<2.0", markers = "python_version >= \"3.10\""} +torch = {version = ">=1.10", markers = "python_version >= \"3.8\""} [[package]] name = "click" @@ -752,63 +737,63 @@ test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] [[package]] name = "coverage" -version = "7.5.1" +version = "7.6.0" description = "Code coverage measurement for Python" optional = false python-versions = ">=3.8" files = [ - {file = "coverage-7.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0884920835a033b78d1c73b6d3bbcda8161a900f38a488829a83982925f6c2e"}, - {file = "coverage-7.5.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:39afcd3d4339329c5f58de48a52f6e4e50f6578dd6099961cf22228feb25f38f"}, - {file = "coverage-7.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a7b0ceee8147444347da6a66be737c9d78f3353b0681715b668b72e79203e4a"}, - {file = "coverage-7.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a9ca3f2fae0088c3c71d743d85404cec8df9be818a005ea065495bedc33da35"}, - {file = "coverage-7.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd215c0c7d7aab005221608a3c2b46f58c0285a819565887ee0b718c052aa4e"}, - {file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4bf0655ab60d754491004a5efd7f9cccefcc1081a74c9ef2da4735d6ee4a6223"}, - {file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:61c4bf1ba021817de12b813338c9be9f0ad5b1e781b9b340a6d29fc13e7c1b5e"}, - {file = "coverage-7.5.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:db66fc317a046556a96b453a58eced5024af4582a8dbdc0c23ca4dbc0d5b3146"}, - {file = "coverage-7.5.1-cp310-cp310-win32.whl", hash = "sha256:b016ea6b959d3b9556cb401c55a37547135a587db0115635a443b2ce8f1c7228"}, - {file = "coverage-7.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:df4e745a81c110e7446b1cc8131bf986157770fa405fe90e15e850aaf7619bc8"}, - {file = "coverage-7.5.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:796a79f63eca8814ca3317a1ea443645c9ff0d18b188de470ed7ccd45ae79428"}, - {file = "coverage-7.5.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4fc84a37bfd98db31beae3c2748811a3fa72bf2007ff7902f68746d9757f3746"}, - {file = "coverage-7.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6175d1a0559986c6ee3f7fccfc4a90ecd12ba0a383dcc2da30c2b9918d67d8a3"}, - {file = "coverage-7.5.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fc81d5878cd6274ce971e0a3a18a8803c3fe25457165314271cf78e3aae3aa2"}, - {file = "coverage-7.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:556cf1a7cbc8028cb60e1ff0be806be2eded2daf8129b8811c63e2b9a6c43bca"}, - {file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9981706d300c18d8b220995ad22627647be11a4276721c10911e0e9fa44c83e8"}, - {file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:d7fed867ee50edf1a0b4a11e8e5d0895150e572af1cd6d315d557758bfa9c057"}, - {file = "coverage-7.5.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:ef48e2707fb320c8f139424a596f5b69955a85b178f15af261bab871873bb987"}, - {file = "coverage-7.5.1-cp311-cp311-win32.whl", hash = "sha256:9314d5678dcc665330df5b69c1e726a0e49b27df0461c08ca12674bcc19ef136"}, - {file = "coverage-7.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:5fa567e99765fe98f4e7d7394ce623e794d7cabb170f2ca2ac5a4174437e90dd"}, - {file = "coverage-7.5.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b6cf3764c030e5338e7f61f95bd21147963cf6aa16e09d2f74f1fa52013c1206"}, - {file = "coverage-7.5.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ec92012fefebee89a6b9c79bc39051a6cb3891d562b9270ab10ecfdadbc0c34"}, - {file = "coverage-7.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:16db7f26000a07efcf6aea00316f6ac57e7d9a96501e990a36f40c965ec7a95d"}, - {file = "coverage-7.5.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:beccf7b8a10b09c4ae543582c1319c6df47d78fd732f854ac68d518ee1fb97fa"}, - {file = "coverage-7.5.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8748731ad392d736cc9ccac03c9845b13bb07d020a33423fa5b3a36521ac6e4e"}, - {file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7352b9161b33fd0b643ccd1f21f3a3908daaddf414f1c6cb9d3a2fd618bf2572"}, - {file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7a588d39e0925f6a2bff87154752481273cdb1736270642aeb3635cb9b4cad07"}, - {file = "coverage-7.5.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:68f962d9b72ce69ea8621f57551b2fa9c70509af757ee3b8105d4f51b92b41a7"}, - {file = "coverage-7.5.1-cp312-cp312-win32.whl", hash = "sha256:f152cbf5b88aaeb836127d920dd0f5e7edff5a66f10c079157306c4343d86c19"}, - {file = "coverage-7.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:5a5740d1fb60ddf268a3811bcd353de34eb56dc24e8f52a7f05ee513b2d4f596"}, - {file = "coverage-7.5.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2213def81a50519d7cc56ed643c9e93e0247f5bbe0d1247d15fa520814a7cd7"}, - {file = "coverage-7.5.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5037f8fcc2a95b1f0e80585bd9d1ec31068a9bcb157d9750a172836e98bc7a90"}, - {file = "coverage-7.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3721c2c9e4c4953a41a26c14f4cef64330392a6d2d675c8b1db3b645e31f0e"}, - {file = "coverage-7.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca498687ca46a62ae590253fba634a1fe9836bc56f626852fb2720f334c9e4e5"}, - {file = "coverage-7.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cdcbc320b14c3e5877ee79e649677cb7d89ef588852e9583e6b24c2e5072661"}, - {file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:57e0204b5b745594e5bc14b9b50006da722827f0b8c776949f1135677e88d0b8"}, - {file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8fe7502616b67b234482c3ce276ff26f39ffe88adca2acf0261df4b8454668b4"}, - {file = "coverage-7.5.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9e78295f4144f9dacfed4f92935fbe1780021247c2fabf73a819b17f0ccfff8d"}, - {file = "coverage-7.5.1-cp38-cp38-win32.whl", hash = "sha256:1434e088b41594baa71188a17533083eabf5609e8e72f16ce8c186001e6b8c41"}, - {file = "coverage-7.5.1-cp38-cp38-win_amd64.whl", hash = "sha256:0646599e9b139988b63704d704af8e8df7fa4cbc4a1f33df69d97f36cb0a38de"}, - {file = "coverage-7.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4cc37def103a2725bc672f84bd939a6fe4522310503207aae4d56351644682f1"}, - {file = "coverage-7.5.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fc0b4d8bfeabd25ea75e94632f5b6e047eef8adaed0c2161ada1e922e7f7cece"}, - {file = "coverage-7.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d0a0f5e06881ecedfe6f3dd2f56dcb057b6dbeb3327fd32d4b12854df36bf26"}, - {file = "coverage-7.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9735317685ba6ec7e3754798c8871c2f49aa5e687cc794a0b1d284b2389d1bd5"}, - {file = "coverage-7.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d21918e9ef11edf36764b93101e2ae8cc82aa5efdc7c5a4e9c6c35a48496d601"}, - {file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c3e757949f268364b96ca894b4c342b41dc6f8f8b66c37878aacef5930db61be"}, - {file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:79afb6197e2f7f60c4824dd4b2d4c2ec5801ceb6ba9ce5d2c3080e5660d51a4f"}, - {file = "coverage-7.5.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d1d0d98d95dd18fe29dc66808e1accf59f037d5716f86a501fc0256455219668"}, - {file = "coverage-7.5.1-cp39-cp39-win32.whl", hash = "sha256:1cc0fe9b0b3a8364093c53b0b4c0c2dd4bb23acbec4c9240b5f284095ccf7981"}, - {file = "coverage-7.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:dde0070c40ea8bb3641e811c1cfbf18e265d024deff6de52c5950677a8fb1e0f"}, - {file = "coverage-7.5.1-pp38.pp39.pp310-none-any.whl", hash = "sha256:6537e7c10cc47c595828b8a8be04c72144725c383c4702703ff4e42e44577312"}, - {file = "coverage-7.5.1.tar.gz", hash = "sha256:54de9ef3a9da981f7af93eafde4ede199e0846cd819eb27c88e2b712aae9708c"}, + {file = "coverage-7.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dff044f661f59dace805eedb4a7404c573b6ff0cdba4a524141bc63d7be5c7fd"}, + {file = "coverage-7.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8659fd33ee9e6ca03950cfdcdf271d645cf681609153f218826dd9805ab585c"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7792f0ab20df8071d669d929c75c97fecfa6bcab82c10ee4adb91c7a54055463"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4b3cd1ca7cd73d229487fa5caca9e4bc1f0bca96526b922d61053ea751fe791"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7e128f85c0b419907d1f38e616c4f1e9f1d1b37a7949f44df9a73d5da5cd53c"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a94925102c89247530ae1dab7dc02c690942566f22e189cbd53579b0693c0783"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dcd070b5b585b50e6617e8972f3fbbee786afca71b1936ac06257f7e178f00f6"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d50a252b23b9b4dfeefc1f663c568a221092cbaded20a05a11665d0dbec9b8fb"}, + {file = "coverage-7.6.0-cp310-cp310-win32.whl", hash = "sha256:0e7b27d04131c46e6894f23a4ae186a6a2207209a05df5b6ad4caee6d54a222c"}, + {file = "coverage-7.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dece71673b3187c86226c3ca793c5f891f9fc3d8aa183f2e3653da18566169"}, + {file = "coverage-7.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7b525ab52ce18c57ae232ba6f7010297a87ced82a2383b1afd238849c1ff933"}, + {file = "coverage-7.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4bea27c4269234e06f621f3fac3925f56ff34bc14521484b8f66a580aacc2e7d"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed8d1d1821ba5fc88d4a4f45387b65de52382fa3ef1f0115a4f7a20cdfab0e94"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01c322ef2bbe15057bc4bf132b525b7e3f7206f071799eb8aa6ad1940bcf5fb1"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03cafe82c1b32b770a29fd6de923625ccac3185a54a5e66606da26d105f37dac"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0d1b923fc4a40c5832be4f35a5dab0e5ff89cddf83bb4174499e02ea089daf57"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4b03741e70fb811d1a9a1d75355cf391f274ed85847f4b78e35459899f57af4d"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a73d18625f6a8a1cbb11eadc1d03929f9510f4131879288e3f7922097a429f63"}, + {file = "coverage-7.6.0-cp311-cp311-win32.whl", hash = "sha256:65fa405b837060db569a61ec368b74688f429b32fa47a8929a7a2f9b47183713"}, + {file = "coverage-7.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:6379688fb4cfa921ae349c76eb1a9ab26b65f32b03d46bb0eed841fd4cb6afb1"}, + {file = "coverage-7.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f7db0b6ae1f96ae41afe626095149ecd1b212b424626175a6633c2999eaad45b"}, + {file = "coverage-7.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bbdf9a72403110a3bdae77948b8011f644571311c2fb35ee15f0f10a8fc082e8"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc44bf0315268e253bf563f3560e6c004efe38f76db03a1558274a6e04bf5d5"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da8549d17489cd52f85a9829d0e1d91059359b3c54a26f28bec2c5d369524807"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0086cd4fc71b7d485ac93ca4239c8f75732c2ae3ba83f6be1c9be59d9e2c6382"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fad32ee9b27350687035cb5fdf9145bc9cf0a094a9577d43e909948ebcfa27b"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:044a0985a4f25b335882b0966625270a8d9db3d3409ddc49a4eb00b0ef5e8cee"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:76d5f82213aa78098b9b964ea89de4617e70e0d43e97900c2778a50856dac605"}, + {file = "coverage-7.6.0-cp312-cp312-win32.whl", hash = "sha256:3c59105f8d58ce500f348c5b56163a4113a440dad6daa2294b5052a10db866da"}, + {file = "coverage-7.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:ca5d79cfdae420a1d52bf177de4bc2289c321d6c961ae321503b2ca59c17ae67"}, + {file = "coverage-7.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d39bd10f0ae453554798b125d2f39884290c480f56e8a02ba7a6ed552005243b"}, + {file = "coverage-7.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:beb08e8508e53a568811016e59f3234d29c2583f6b6e28572f0954a6b4f7e03d"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2e16f4cd2bc4d88ba30ca2d3bbf2f21f00f382cf4e1ce3b1ddc96c634bc48ca"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6616d1c9bf1e3faea78711ee42a8b972367d82ceae233ec0ac61cc7fec09fa6b"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad4567d6c334c46046d1c4c20024de2a1c3abc626817ae21ae3da600f5779b44"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d17c6a415d68cfe1091d3296ba5749d3d8696e42c37fca5d4860c5bf7b729f03"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:9146579352d7b5f6412735d0f203bbd8d00113a680b66565e205bc605ef81bc6"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:cdab02a0a941af190df8782aafc591ef3ad08824f97850b015c8c6a8b3877b0b"}, + {file = "coverage-7.6.0-cp38-cp38-win32.whl", hash = "sha256:df423f351b162a702c053d5dddc0fc0ef9a9e27ea3f449781ace5f906b664428"}, + {file = "coverage-7.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:f2501d60d7497fd55e391f423f965bbe9e650e9ffc3c627d5f0ac516026000b8"}, + {file = "coverage-7.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7221f9ac9dad9492cecab6f676b3eaf9185141539d5c9689d13fd6b0d7de840c"}, + {file = "coverage-7.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ddaaa91bfc4477d2871442bbf30a125e8fe6b05da8a0015507bfbf4718228ab2"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4cbe651f3904e28f3a55d6f371203049034b4ddbce65a54527a3f189ca3b390"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:831b476d79408ab6ccfadaaf199906c833f02fdb32c9ab907b1d4aa0713cfa3b"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46c3d091059ad0b9c59d1034de74a7f36dcfa7f6d3bde782c49deb42438f2450"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4d5fae0a22dc86259dee66f2cc6c1d3e490c4a1214d7daa2a93d07491c5c04b6"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:07ed352205574aad067482e53dd606926afebcb5590653121063fbf4e2175166"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:49c76cdfa13015c4560702574bad67f0e15ca5a2872c6a125f6327ead2b731dd"}, + {file = "coverage-7.6.0-cp39-cp39-win32.whl", hash = "sha256:482855914928c8175735a2a59c8dc5806cf7d8f032e4820d52e845d1f731dca2"}, + {file = "coverage-7.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:543ef9179bc55edfd895154a51792b01c017c87af0ebaae092720152e19e42ca"}, + {file = "coverage-7.6.0-pp38.pp39.pp310-none-any.whl", hash = "sha256:6fe885135c8a479d3e37a7aae61cbd3a0fb2deccb4dda3c25f92a49189f766d6"}, + {file = "coverage-7.6.0.tar.gz", hash = "sha256:289cc803fa1dc901f84701ac10c9ee873619320f2f9aff38794db4a4a0268d51"}, ] [package.dependencies] @@ -848,77 +833,75 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "datasets" -version = "2.19.1" +version = "2.14.4" description = "HuggingFace community-driven open-source library of datasets" optional = false python-versions = ">=3.8.0" files = [ - {file = "datasets-2.19.1-py3-none-any.whl", hash = "sha256:f7a78d15896f45004ccac1c298f3c7121f92f91f6f2bfbd4e4f210f827e6e411"}, - {file = "datasets-2.19.1.tar.gz", hash = "sha256:0df9ef6c5e9138cdb996a07385220109ff203c204245578b69cca905eb151d3a"}, + {file = "datasets-2.14.4-py3-none-any.whl", hash = "sha256:29336bd316a7d827ccd4da2236596279b20ca2ac78f64c04c9483da7cbc2459b"}, + {file = "datasets-2.14.4.tar.gz", hash = "sha256:ef29c2b5841de488cd343cfc26ab979bff77efa4d2285af51f1ad7db5c46a83b"}, ] [package.dependencies] aiohttp = "*" -dill = ">=0.3.0,<0.3.9" -filelock = "*" -fsspec = {version = ">=2023.1.0,<=2024.3.1", extras = ["http"]} -huggingface-hub = ">=0.21.2" +dill = ">=0.3.0,<0.3.8" +fsspec = {version = ">=2021.11.1", extras = ["http"]} +huggingface-hub = ">=0.14.0,<1.0.0" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" -pyarrow = ">=12.0.0" -pyarrow-hotfix = "*" +pyarrow = ">=8.0.0" pyyaml = ">=5.1" requests = ">=2.19.0" tqdm = ">=4.62.1" xxhash = "*" [package.extras] -apache-beam = ["apache-beam (>=2.26.0)"] +apache-beam = ["apache-beam (>=2.26.0,<2.44.0)"] audio = ["librosa", "soundfile (>=0.12.1)"] benchmarks = ["tensorflow (==2.12.0)", "torch (==2.0.1)", "transformers (==4.30.1)"] -dev = ["Pillow (>=6.2.1)", "absl-py", "apache-beam (>=2.26.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] -docs = ["s3fs", "tensorflow (>=2.6.0)", "torch", "transformers"] -jax = ["jax (>=0.3.14)", "jaxlib (>=0.3.14)"] +dev = ["Pillow (>=6.2.1)", "absl-py", "apache-beam (>=2.26.0,<2.44.0)", "black (>=23.1,<24.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "pyyaml (>=5.3.1)", "rarfile (>=4.0)", "ruff (>=0.0.241)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy (<2.0.0)", "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "tensorflow-macos", "tiktoken", "torch", "transformers", "zstandard"] +docs = ["s3fs", "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)", "tensorflow-macos", "torch", "transformers"] +jax = ["jax (>=0.2.8,!=0.3.2,<=0.3.25)", "jaxlib (>=0.1.65,<=0.3.25)"] metrics-tests = ["Werkzeug (>=1.0.1)", "accelerate", "bert-score (>=0.3.6)", "jiwer", "langdetect", "mauve-text", "nltk", "requests-file (>=1.5.1)", "rouge-score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "spacy (>=3.0.0)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "typer (<0.5.0)"] -quality = ["ruff (>=0.3.0)"] +quality = ["black (>=23.1,<24.0)", "pyyaml (>=5.3.1)", "ruff (>=0.0.241)"] s3 = ["s3fs"] -tensorflow = ["tensorflow (>=2.6.0)"] -tensorflow-gpu = ["tensorflow (>=2.6.0)"] -tests = ["Pillow (>=6.2.1)", "absl-py", "apache-beam (>=2.26.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] +tensorflow = ["tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)", "tensorflow-macos"] +tensorflow-gpu = ["tensorflow-gpu (>=2.2.0,!=2.6.0,!=2.6.1)"] +tests = ["Pillow (>=6.2.1)", "absl-py", "apache-beam (>=2.26.0,<2.44.0)", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy (<2.0.0)", "tensorflow (>=2.3,!=2.6.0,!=2.6.1)", "tensorflow-macos", "tiktoken", "torch", "transformers", "zstandard"] torch = ["torch"] vision = ["Pillow (>=6.2.1)"] [[package]] name = "debugpy" -version = "1.8.1" +version = "1.8.2" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741"}, - {file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e"}, - {file = "debugpy-1.8.1-cp310-cp310-win32.whl", hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0"}, - {file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd"}, - {file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb"}, - {file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099"}, - {file = "debugpy-1.8.1-cp311-cp311-win32.whl", hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146"}, - {file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8"}, - {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"}, - {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"}, - {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"}, - {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"}, - {file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39"}, - {file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7"}, - {file = "debugpy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9"}, - {file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234"}, - {file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42"}, - {file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703"}, - {file = "debugpy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23"}, - {file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3"}, - {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"}, - {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"}, + {file = "debugpy-1.8.2-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7ee2e1afbf44b138c005e4380097d92532e1001580853a7cb40ed84e0ef1c3d2"}, + {file = "debugpy-1.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f8c3f7c53130a070f0fc845a0f2cee8ed88d220d6b04595897b66605df1edd6"}, + {file = "debugpy-1.8.2-cp310-cp310-win32.whl", hash = "sha256:f179af1e1bd4c88b0b9f0fa153569b24f6b6f3de33f94703336363ae62f4bf47"}, + {file = "debugpy-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:0600faef1d0b8d0e85c816b8bb0cb90ed94fc611f308d5fde28cb8b3d2ff0fe3"}, + {file = "debugpy-1.8.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:8a13417ccd5978a642e91fb79b871baded925d4fadd4dfafec1928196292aa0a"}, + {file = "debugpy-1.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acdf39855f65c48ac9667b2801234fc64d46778021efac2de7e50907ab90c634"}, + {file = "debugpy-1.8.2-cp311-cp311-win32.whl", hash = "sha256:2cbd4d9a2fc5e7f583ff9bf11f3b7d78dfda8401e8bb6856ad1ed190be4281ad"}, + {file = "debugpy-1.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:d3408fddd76414034c02880e891ea434e9a9cf3a69842098ef92f6e809d09afa"}, + {file = "debugpy-1.8.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:5d3ccd39e4021f2eb86b8d748a96c766058b39443c1f18b2dc52c10ac2757835"}, + {file = "debugpy-1.8.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62658aefe289598680193ff655ff3940e2a601765259b123dc7f89c0239b8cd3"}, + {file = "debugpy-1.8.2-cp312-cp312-win32.whl", hash = "sha256:bd11fe35d6fd3431f1546d94121322c0ac572e1bfb1f6be0e9b8655fb4ea941e"}, + {file = "debugpy-1.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:15bc2f4b0f5e99bf86c162c91a74c0631dbd9cef3c6a1d1329c946586255e859"}, + {file = "debugpy-1.8.2-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:5a019d4574afedc6ead1daa22736c530712465c0c4cd44f820d803d937531b2d"}, + {file = "debugpy-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40f062d6877d2e45b112c0bbade9a17aac507445fd638922b1a5434df34aed02"}, + {file = "debugpy-1.8.2-cp38-cp38-win32.whl", hash = "sha256:c78ba1680f1015c0ca7115671fe347b28b446081dada3fedf54138f44e4ba031"}, + {file = "debugpy-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:cf327316ae0c0e7dd81eb92d24ba8b5e88bb4d1b585b5c0d32929274a66a5210"}, + {file = "debugpy-1.8.2-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:1523bc551e28e15147815d1397afc150ac99dbd3a8e64641d53425dba57b0ff9"}, + {file = "debugpy-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e24ccb0cd6f8bfaec68d577cb49e9c680621c336f347479b3fce060ba7c09ec1"}, + {file = "debugpy-1.8.2-cp39-cp39-win32.whl", hash = "sha256:7f8d57a98c5a486c5c7824bc0b9f2f11189d08d73635c326abef268f83950326"}, + {file = "debugpy-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:16c8dcab02617b75697a0a925a62943e26a0330da076e2a10437edd9f0bf3755"}, + {file = "debugpy-1.8.2-py2.py3-none-any.whl", hash = "sha256:16e16df3a98a35c63c3ab1e4d19be4cbc7fdda92d9ddc059294f18910928e0ca"}, + {file = "debugpy-1.8.2.zip", hash = "sha256:95378ed08ed2089221896b9b3a8d021e642c24edc8fef20e5d4342ca8be65c00"}, ] [[package]] @@ -945,18 +928,17 @@ files = [ [[package]] name = "dill" -version = "0.3.8" +version = "0.3.7" description = "serialize all of Python" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "dill-0.3.8-py3-none-any.whl", hash = "sha256:c36ca9ffb54365bdd2f8eb3eff7d2a21237f8452b57ace88b1ac615b7e815bd7"}, - {file = "dill-0.3.8.tar.gz", hash = "sha256:3ebe3c479ad625c4553aca177444d89b486b1d84982eeacded644afc0cf797ca"}, + {file = "dill-0.3.7-py3-none-any.whl", hash = "sha256:76b122c08ef4ce2eedcd4d1abd8e641114bfc6c2867f49f3c41facf65bf19f5e"}, + {file = "dill-0.3.7.tar.gz", hash = "sha256:cc1c8b182eb3013e24bd475ff2e9295af86c1a38eb1aff128dac8962a9ce3c03"}, ] [package.extras] graph = ["objgraph (>=1.7.2)"] -profile = ["gprof2dot (>=2022.7.29)"] [[package]] name = "docker-pycreds" @@ -985,13 +967,13 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.2.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, - {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -1024,13 +1006,13 @@ files = [ [[package]] name = "fastjsonschema" -version = "2.19.1" +version = "2.20.0" description = "Fastest Python implementation of JSON schema" optional = false python-versions = "*" files = [ - {file = "fastjsonschema-2.19.1-py3-none-any.whl", hash = "sha256:3672b47bc94178c9f23dbb654bf47440155d4db9df5f7bc47643315f9c405cd0"}, - {file = "fastjsonschema-2.19.1.tar.gz", hash = "sha256:e3126a94bdc4623d3de4485f8d468a12f02a67921315ddc87836d6e456dc789d"}, + {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, + {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, ] [package.extras] @@ -1038,28 +1020,28 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "filelock" -version = "3.14.0" +version = "3.15.4" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.14.0-py3-none-any.whl", hash = "sha256:43339835842f110ca7ae60f1e1c160714c5a6afd15a2873419ab185334975c0f"}, - {file = "filelock-3.14.0.tar.gz", hash = "sha256:6ea72da3be9b8c82afd3edcf99f2fffbb5076335a5ae4d03248bb5b6c3eae78a"}, + {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, + {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, ] [package.extras] docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] typing = ["typing-extensions (>=4.8)"] [[package]] name = "fire" -version = "0.5.0" +version = "0.6.0" description = "A library for automatically generating command line interfaces." optional = false python-versions = "*" files = [ - {file = "fire-0.5.0.tar.gz", hash = "sha256:a6b0d49e98c8963910021f92bba66f65ab440da2982b78eb1bbf95a0a34aacc6"}, + {file = "fire-0.6.0.tar.gz", hash = "sha256:54ec5b996ecdd3c0309c800324a0703d6da512241bc73b553db959d98de0aa66"}, ] [package.dependencies] @@ -1068,53 +1050,53 @@ termcolor = "*" [[package]] name = "fonttools" -version = "4.51.0" +version = "4.53.1" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:84d7751f4468dd8cdd03ddada18b8b0857a5beec80bce9f435742abc9a851a74"}, - {file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8b4850fa2ef2cfbc1d1f689bc159ef0f45d8d83298c1425838095bf53ef46308"}, - {file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5b48a1121117047d82695d276c2af2ee3a24ffe0f502ed581acc2673ecf1037"}, - {file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:180194c7fe60c989bb627d7ed5011f2bef1c4d36ecf3ec64daec8302f1ae0716"}, - {file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:96a48e137c36be55e68845fc4284533bda2980f8d6f835e26bca79d7e2006438"}, - {file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:806e7912c32a657fa39d2d6eb1d3012d35f841387c8fc6cf349ed70b7c340039"}, - {file = "fonttools-4.51.0-cp310-cp310-win32.whl", hash = "sha256:32b17504696f605e9e960647c5f64b35704782a502cc26a37b800b4d69ff3c77"}, - {file = "fonttools-4.51.0-cp310-cp310-win_amd64.whl", hash = "sha256:c7e91abdfae1b5c9e3a543f48ce96013f9a08c6c9668f1e6be0beabf0a569c1b"}, - {file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a8feca65bab31479d795b0d16c9a9852902e3a3c0630678efb0b2b7941ea9c74"}, - {file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ac27f436e8af7779f0bb4d5425aa3535270494d3bc5459ed27de3f03151e4c2"}, - {file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e19bd9e9964a09cd2433a4b100ca7f34e34731e0758e13ba9a1ed6e5468cc0f"}, - {file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2b92381f37b39ba2fc98c3a45a9d6383bfc9916a87d66ccb6553f7bdd129097"}, - {file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5f6bc991d1610f5c3bbe997b0233cbc234b8e82fa99fc0b2932dc1ca5e5afec0"}, - {file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9696fe9f3f0c32e9a321d5268208a7cc9205a52f99b89479d1b035ed54c923f1"}, - {file = "fonttools-4.51.0-cp311-cp311-win32.whl", hash = "sha256:3bee3f3bd9fa1d5ee616ccfd13b27ca605c2b4270e45715bd2883e9504735034"}, - {file = "fonttools-4.51.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f08c901d3866a8905363619e3741c33f0a83a680d92a9f0e575985c2634fcc1"}, - {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4060acc2bfa2d8e98117828a238889f13b6f69d59f4f2d5857eece5277b829ba"}, - {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1250e818b5f8a679ad79660855528120a8f0288f8f30ec88b83db51515411fcc"}, - {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76f1777d8b3386479ffb4a282e74318e730014d86ce60f016908d9801af9ca2a"}, - {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b5ad456813d93b9c4b7ee55302208db2b45324315129d85275c01f5cb7e61a2"}, - {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68b3fb7775a923be73e739f92f7e8a72725fd333eab24834041365d2278c3671"}, - {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e2f1a4499e3b5ee82c19b5ee57f0294673125c65b0a1ff3764ea1f9db2f9ef5"}, - {file = "fonttools-4.51.0-cp312-cp312-win32.whl", hash = "sha256:278e50f6b003c6aed19bae2242b364e575bcb16304b53f2b64f6551b9c000e15"}, - {file = "fonttools-4.51.0-cp312-cp312-win_amd64.whl", hash = "sha256:b3c61423f22165541b9403ee39874dcae84cd57a9078b82e1dce8cb06b07fa2e"}, - {file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1621ee57da887c17312acc4b0e7ac30d3a4fb0fec6174b2e3754a74c26bbed1e"}, - {file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e9d9298be7a05bb4801f558522adbe2feea1b0b103d5294ebf24a92dd49b78e5"}, - {file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee1af4be1c5afe4c96ca23badd368d8dc75f611887fb0c0dac9f71ee5d6f110e"}, - {file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c18b49adc721a7d0b8dfe7c3130c89b8704baf599fb396396d07d4aa69b824a1"}, - {file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de7c29bdbdd35811f14493ffd2534b88f0ce1b9065316433b22d63ca1cd21f14"}, - {file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cadf4e12a608ef1d13e039864f484c8a968840afa0258b0b843a0556497ea9ed"}, - {file = "fonttools-4.51.0-cp38-cp38-win32.whl", hash = "sha256:aefa011207ed36cd280babfaa8510b8176f1a77261833e895a9d96e57e44802f"}, - {file = "fonttools-4.51.0-cp38-cp38-win_amd64.whl", hash = "sha256:865a58b6e60b0938874af0968cd0553bcd88e0b2cb6e588727117bd099eef836"}, - {file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:60a3409c9112aec02d5fb546f557bca6efa773dcb32ac147c6baf5f742e6258b"}, - {file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f7e89853d8bea103c8e3514b9f9dc86b5b4120afb4583b57eb10dfa5afbe0936"}, - {file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56fc244f2585d6c00b9bcc59e6593e646cf095a96fe68d62cd4da53dd1287b55"}, - {file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d145976194a5242fdd22df18a1b451481a88071feadf251221af110ca8f00ce"}, - {file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c5b8cab0c137ca229433570151b5c1fc6af212680b58b15abd797dcdd9dd5051"}, - {file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:54dcf21a2f2d06ded676e3c3f9f74b2bafded3a8ff12f0983160b13e9f2fb4a7"}, - {file = "fonttools-4.51.0-cp39-cp39-win32.whl", hash = "sha256:0118ef998a0699a96c7b28457f15546815015a2710a1b23a7bf6c1be60c01636"}, - {file = "fonttools-4.51.0-cp39-cp39-win_amd64.whl", hash = "sha256:599bdb75e220241cedc6faebfafedd7670335d2e29620d207dd0378a4e9ccc5a"}, - {file = "fonttools-4.51.0-py3-none-any.whl", hash = "sha256:15c94eeef6b095831067f72c825eb0e2d48bb4cea0647c1b05c981ecba2bf39f"}, - {file = "fonttools-4.51.0.tar.gz", hash = "sha256:dc0673361331566d7a663d7ce0f6fdcbfbdc1f59c6e3ed1165ad7202ca183c68"}, + {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, + {file = "fonttools-4.53.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8bf06b94694251861ba7fdeea15c8ec0967f84c3d4143ae9daf42bbc7717fe3"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b96cd370a61f4d083c9c0053bf634279b094308d52fdc2dd9a22d8372fdd590d"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c7c5aa18dd3b17995898b4a9b5929d69ef6ae2af5b96d585ff4005033d82f0"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e013aae589c1c12505da64a7d8d023e584987e51e62006e1bb30d72f26522c41"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9efd176f874cb6402e607e4cc9b4a9cd584d82fc34a4b0c811970b32ba62501f"}, + {file = "fonttools-4.53.1-cp310-cp310-win32.whl", hash = "sha256:c8696544c964500aa9439efb6761947393b70b17ef4e82d73277413f291260a4"}, + {file = "fonttools-4.53.1-cp310-cp310-win_amd64.whl", hash = "sha256:8959a59de5af6d2bec27489e98ef25a397cfa1774b375d5787509c06659b3671"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"}, + {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"}, + {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"}, + {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"}, + {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c818c058404eb2bba05e728d38049438afd649e3c409796723dfc17cd3f08749"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:651390c3b26b0c7d1f4407cad281ee7a5a85a31a110cbac5269de72a51551ba2"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54f1bba2f655924c1138bbc7fa91abd61f45c68bd65ab5ed985942712864bbb"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9cd19cf4fe0595ebdd1d4915882b9440c3a6d30b008f3cc7587c1da7b95be5f"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2af40ae9cdcb204fc1d8f26b190aa16534fcd4f0df756268df674a270eab575d"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:35250099b0cfb32d799fb5d6c651220a642fe2e3c7d2560490e6f1d3f9ae9169"}, + {file = "fonttools-4.53.1-cp38-cp38-win32.whl", hash = "sha256:f08df60fbd8d289152079a65da4e66a447efc1d5d5a4d3f299cdd39e3b2e4a7d"}, + {file = "fonttools-4.53.1-cp38-cp38-win_amd64.whl", hash = "sha256:7b6b35e52ddc8fb0db562133894e6ef5b4e54e1283dff606fda3eed938c36fc8"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75a157d8d26c06e64ace9df037ee93a4938a4606a38cb7ffaf6635e60e253b7a"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4824c198f714ab5559c5be10fd1adf876712aa7989882a4ec887bf1ef3e00e31"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:becc5d7cb89c7b7afa8321b6bb3dbee0eec2b57855c90b3e9bf5fb816671fa7c"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ec3fb43befb54be490147b4a922b5314e16372a643004f182babee9f9c3407"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:73379d3ffdeecb376640cd8ed03e9d2d0e568c9d1a4e9b16504a834ebadc2dfb"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:02569e9a810f9d11f4ae82c391ebc6fb5730d95a0657d24d754ed7763fb2d122"}, + {file = "fonttools-4.53.1-cp39-cp39-win32.whl", hash = "sha256:aae7bd54187e8bf7fd69f8ab87b2885253d3575163ad4d669a262fe97f0136cb"}, + {file = "fonttools-4.53.1-cp39-cp39-win_amd64.whl", hash = "sha256:e5b708073ea3d684235648786f5f6153a48dc8762cdfe5563c57e80787c29fbb"}, + {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"}, + {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"}, ] [package.extras] @@ -1230,13 +1212,13 @@ files = [ [[package]] name = "fsspec" -version = "2024.3.1" +version = "2024.6.1" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ - {file = "fsspec-2024.3.1-py3-none-any.whl", hash = "sha256:918d18d41bf73f0e2b261824baeb1b124bcf771767e3a26425cd7dec3332f512"}, - {file = "fsspec-2024.3.1.tar.gz", hash = "sha256:f39780e282d7d117ffb42bb96992f8a90795e4d0fb0f661a70ca39fe9c43ded9"}, + {file = "fsspec-2024.6.1-py3-none-any.whl", hash = "sha256:3cb443f8bcd2efb31295a5b9fdb02aee81d8452c80d28f97a6d0959e6cee101e"}, + {file = "fsspec-2024.6.1.tar.gz", hash = "sha256:fad7d7e209dd4c1208e3bbfda706620e0da5142bebbd9c384afb95b07e798e49"}, ] [package.dependencies] @@ -1247,7 +1229,8 @@ abfs = ["adlfs"] adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] -devel = ["pytest", "pytest-cov"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] @@ -1264,6 +1247,9 @@ s3 = ["s3fs"] sftp = ["paramiko"] smb = ["smbprotocol"] ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] tqdm = ["tqdm"] [[package]] @@ -1356,13 +1342,13 @@ socks = ["socksio (==1.*)"] [[package]] name = "huggingface-hub" -version = "0.23.0" +version = "0.24.2" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.23.0-py3-none-any.whl", hash = "sha256:075c30d48ee7db2bba779190dc526d2c11d422aed6f9044c5e2fdc2c432fdb91"}, - {file = "huggingface_hub-0.23.0.tar.gz", hash = "sha256:7126dedd10a4c6fac796ced4d87a8cf004efc722a5125c2c09299017fa366fa9"}, + {file = "huggingface_hub-0.24.2-py3-none-any.whl", hash = "sha256:abdf3244d3a274c4b1fbc5c4a1ef700032b3f60ba93cc63e4f036fd082aa2805"}, + {file = "huggingface_hub-0.24.2.tar.gz", hash = "sha256:92be892405d2f6a7a8479016f9a5662354f202b2c6c1ff499609621aed1fae10"}, ] [package.dependencies] @@ -1375,17 +1361,17 @@ tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] -all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] cli = ["InquirerPy (==0.3.4)"] -dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] hf-transfer = ["hf-transfer (>=0.1.4)"] inference = ["aiohttp", "minijinja (>=1.0)"] -quality = ["mypy (==1.5.1)", "ruff (>=0.3.0)"] +quality = ["mypy (==1.5.1)", "ruff (>=0.5.0)"] tensorflow = ["graphviz", "pydot", "tensorflow"] tensorflow-testing = ["keras (<3.0)", "tensorflow"] -testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] -torch = ["safetensors", "torch"] +testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] +torch = ["safetensors[torch]", "torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] [[package]] @@ -1401,22 +1387,22 @@ files = [ [[package]] name = "importlib-metadata" -version = "7.1.0" +version = "5.2.0" description = "Read metadata from Python packages" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"}, - {file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"}, + {file = "importlib_metadata-5.2.0-py3-none-any.whl", hash = "sha256:0eafa39ba42bf225fc00e67f701d71f85aead9f878569caf13c3724f704b970f"}, + {file = "importlib_metadata-5.2.0.tar.gz", hash = "sha256:404d48d62bba0b7a77ff9d405efd91501bef2e67ff4ace0bed40a0cf28c3c7cd"}, ] [package.dependencies] zipp = ">=0.5" [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] perf = ["ipython"] -testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +testing = ["flake8 (<5)", "flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf (>=0.9.2)"] [[package]] name = "iniconfig" @@ -1431,13 +1417,13 @@ files = [ [[package]] name = "ipykernel" -version = "6.29.4" +version = "6.29.5" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, - {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, ] [package.dependencies] @@ -1464,13 +1450,13 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.24.0" +version = "8.26.0" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.10" files = [ - {file = "ipython-8.24.0-py3-none-any.whl", hash = "sha256:d7bf2f6c4314984e3e02393213bab8703cf163ede39672ce5918c51fe253a2a3"}, - {file = "ipython-8.24.0.tar.gz", hash = "sha256:010db3f8a728a578bb641fdd06c063b9fb8e96a9464c63aec6310fbcb5e80501"}, + {file = "ipython-8.26.0-py3-none-any.whl", hash = "sha256:e6b347c27bdf9c32ee9d31ae85defc525755a1869f14057e900675b9e8d6e6ff"}, + {file = "ipython-8.26.0.tar.gz", hash = "sha256:1cec0fbba8404af13facebe83d04436a7434c7400e59f47acf467c64abd0956c"}, ] [package.dependencies] @@ -1489,7 +1475,7 @@ typing-extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} [package.extras] all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] black = ["black"] -doc = ["docrepr", "exceptiongroup", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "stack-data", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "intersphinx-registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing-extensions"] kernel = ["ipykernel"] matplotlib = ["matplotlib"] nbconvert = ["nbconvert"] @@ -1497,26 +1483,26 @@ nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] [[package]] name = "ipywidgets" -version = "8.1.2" +version = "8.1.3" description = "Jupyter interactive widgets" optional = false python-versions = ">=3.7" files = [ - {file = "ipywidgets-8.1.2-py3-none-any.whl", hash = "sha256:bbe43850d79fb5e906b14801d6c01402857996864d1e5b6fa62dd2ee35559f60"}, - {file = "ipywidgets-8.1.2.tar.gz", hash = "sha256:d0b9b41e49bae926a866e613a39b0f0097745d2b9f1f3dd406641b4a57ec42c9"}, + {file = "ipywidgets-8.1.3-py3-none-any.whl", hash = "sha256:efafd18f7a142248f7cb0ba890a68b96abd4d6e88ddbda483c9130d12667eaf2"}, + {file = "ipywidgets-8.1.3.tar.gz", hash = "sha256:f5f9eeaae082b1823ce9eac2575272952f40d748893972956dc09700a6392d9c"}, ] [package.dependencies] comm = ">=0.1.3" ipython = ">=6.1.0" -jupyterlab-widgets = ">=3.0.10,<3.1.0" +jupyterlab-widgets = ">=3.0.11,<3.1.0" traitlets = ">=4.3.1" -widgetsnbextension = ">=4.0.10,<4.1.0" +widgetsnbextension = ">=4.0.11,<4.1.0" [package.extras] test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] @@ -1551,17 +1537,16 @@ colors = ["colorama (>=0.4.6)"] [[package]] name = "jaxtyping" -version = "0.2.28" +version = "0.2.33" description = "Type annotations and runtime checking for shape and dtype of JAX arrays, and PyTrees." optional = false python-versions = "~=3.9" files = [ - {file = "jaxtyping-0.2.28-py3-none-any.whl", hash = "sha256:4a54eb964087cd46463d9a86c805b4e4f5c20cce5f22049d6f35a26d9f105bd3"}, - {file = "jaxtyping-0.2.28.tar.gz", hash = "sha256:cd20bf1558a90c6d77c589354e35670ecc5b94925ef45bf1c020fde7b44fac8d"}, + {file = "jaxtyping-0.2.33-py3-none-any.whl", hash = "sha256:918d6094c73f28d3196185ef55d1832cbcd2804d1d388f180060c4366a9e2107"}, + {file = "jaxtyping-0.2.33.tar.gz", hash = "sha256:9a9cfccae4fe05114b9fb27a5ea5440be4971a5a075bbd0526f6dd7d2730f83e"}, ] [package.dependencies] -numpy = ">=1.20.0" typeguard = "2.13.3" [[package]] @@ -1624,24 +1609,24 @@ files = [ [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, - {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "jsonschema" -version = "4.22.0" +version = "4.23.0" description = "An implementation of JSON Schema validation for Python" optional = false python-versions = ">=3.8" files = [ - {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"}, - {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"}, + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, ] [package.dependencies] @@ -1656,11 +1641,11 @@ rfc3339-validator = {version = "*", optional = true, markers = "extra == \"forma rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} rpds-py = ">=0.7.1" uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} [package.extras] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] -format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] [[package]] name = "jsonschema-specifications" @@ -1698,13 +1683,13 @@ qtconsole = "*" [[package]] name = "jupyter-client" -version = "8.6.1" +version = "8.6.2" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.1-py3-none-any.whl", hash = "sha256:3b7bd22f058434e3b9a7ea4b1500ed47de2713872288c0d511d19926f99b459f"}, - {file = "jupyter_client-8.6.1.tar.gz", hash = "sha256:e842515e2bab8e19186d89fdfea7abd15e39dd581f94e399f00e2af5a1652d3f"}, + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, ] [package.dependencies] @@ -1716,7 +1701,7 @@ traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-console" @@ -1803,13 +1788,13 @@ jupyter-server = ">=1.1.2" [[package]] name = "jupyter-server" -version = "2.14.0" +version = "2.14.2" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_server-2.14.0-py3-none-any.whl", hash = "sha256:fb6be52c713e80e004fac34b35a0990d6d36ba06fd0a2b2ed82b899143a64210"}, - {file = "jupyter_server-2.14.0.tar.gz", hash = "sha256:659154cea512083434fd7c93b7fe0897af7a2fd0b9dd4749282b42eaac4ae677"}, + {file = "jupyter_server-2.14.2-py3-none-any.whl", hash = "sha256:47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd"}, + {file = "jupyter_server-2.14.2.tar.gz", hash = "sha256:66095021aa9638ced276c248b1d81862e4c50f292d575920bbe960de1c56b12b"}, ] [package.dependencies] @@ -1834,7 +1819,7 @@ traitlets = ">=5.6.0" websocket-client = ">=1.7" [package.extras] -docs = ["ipykernel", "jinja2", "jupyter-client", "jupyter-server", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] [[package]] @@ -1858,13 +1843,13 @@ test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (> [[package]] name = "jupyterlab" -version = "4.1.8" +version = "4.2.4" description = "JupyterLab computational environment" optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.1.8-py3-none-any.whl", hash = "sha256:c3baf3a2f91f89d110ed5786cd18672b9a357129d4e389d2a0dead15e11a4d2c"}, - {file = "jupyterlab-4.1.8.tar.gz", hash = "sha256:3384aded8680e7ce504fd63b8bb89a39df21c9c7694d9e7dc4a68742cdb30f9b"}, + {file = "jupyterlab-4.2.4-py3-none-any.whl", hash = "sha256:807a7ec73637744f879e112060d4b9d9ebe028033b7a429b2d1f4fc523d00245"}, + {file = "jupyterlab-4.2.4.tar.gz", hash = "sha256:343a979fb9582fd08c8511823e320703281cd072a0049bcdafdc7afeda7f2537"}, ] [package.dependencies] @@ -1878,16 +1863,17 @@ jupyter-server = ">=2.4.0,<3" jupyterlab-server = ">=2.27.1,<3" notebook-shim = ">=0.2" packaging = "*" +setuptools = ">=40.1.0" tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} tornado = ">=6.2.0" traitlets = "*" [package.extras] -dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.2.0)"] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] -docs-screenshots = ["altair (==5.2.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.1)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.0.post6)", "matplotlib (==3.8.2)", "nbconvert (>=7.0.0)", "pandas (==2.2.0)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] +docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] -upgrade-extension = ["copier (>=8.0,<9.0)", "jinja2-time (<0.3)", "pydantic (<2.0)", "pyyaml-include (<2.0)", "tomli-w (<2.0)"] +upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] [[package]] name = "jupyterlab-pygments" @@ -1902,13 +1888,13 @@ files = [ [[package]] name = "jupyterlab-server" -version = "2.27.1" +version = "2.27.3" description = "A set of server components for JupyterLab and JupyterLab like applications." optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab_server-2.27.1-py3-none-any.whl", hash = "sha256:f5e26156e5258b24d532c84e7c74cc212e203bff93eb856f81c24c16daeecc75"}, - {file = "jupyterlab_server-2.27.1.tar.gz", hash = "sha256:097b5ac709b676c7284ac9c5e373f11930a561f52cd5a86e4fc7e5a9c8a8631d"}, + {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, + {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, ] [package.dependencies] @@ -1927,13 +1913,13 @@ test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-v [[package]] name = "jupyterlab-widgets" -version = "3.0.10" +version = "3.0.11" description = "Jupyter interactive widgets for JupyterLab" optional = false python-versions = ">=3.7" files = [ - {file = "jupyterlab_widgets-3.0.10-py3-none-any.whl", hash = "sha256:dd61f3ae7a5a7f80299e14585ce6cf3d6925a96c9103c978eda293197730cb64"}, - {file = "jupyterlab_widgets-3.0.10.tar.gz", hash = "sha256:04f2ac04976727e4f9d0fa91cdc2f1ab860f965e504c29dbd6a65c882c9d04c0"}, + {file = "jupyterlab_widgets-3.0.11-py3-none-any.whl", hash = "sha256:78287fd86d20744ace330a61625024cf5521e1c012a352ddc0a3cdc2348becd0"}, + {file = "jupyterlab_widgets-3.0.11.tar.gz", hash = "sha256:dd5ac679593c969af29c9bed054c24f26842baa51352114736756bc035deee27"}, ] [[package]] @@ -2051,43 +2037,43 @@ files = [ [[package]] name = "libcst" -version = "1.3.1" +version = "1.4.0" description = "A concrete syntax tree with AST-like properties for Python 3.0 through 3.12 programs." optional = false python-versions = ">=3.9" files = [ - {file = "libcst-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:de93193cba6d54f2a4419e94ba2de642b111f52e4fa01bb6e2c655914585f65b"}, - {file = "libcst-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2d64d86dcd6c80a5dac2e243c5ed7a7a193242209ac33bad4b0639b24f6d131"}, - {file = "libcst-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db084f7bbf825c7bd5ed256290066d0336df6a7dc3a029c9870a64cd2298b87f"}, - {file = "libcst-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:16880711be03a1f5da7028fe791ba5b482a50d830225a70272dc332dfd927652"}, - {file = "libcst-1.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:189bb28c19c5dd3c64583f969b72f7732dbdb1dee9eca3acc85099e4cef9148b"}, - {file = "libcst-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:181372386c986e3de07d7a93f269214cd825adc714f1f9da8252b44f05e181c4"}, - {file = "libcst-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8c2020f7449270e3ff0bdc481ae244d812f2d9a8b7dbff0ea66b830f4b350f54"}, - {file = "libcst-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:be3bf9aaafebda6a21e241e819f0ab67e186e898c3562704e41241cf8738353a"}, - {file = "libcst-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a0d250fb6a2c1d158f30d25ba5e33e3ed3672d2700d480dd47beffd1431a008"}, - {file = "libcst-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ad5741b251d901f3da1819ac539192230cc6f8f81aaf04eb4ec0009c1c97285"}, - {file = "libcst-1.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b740dc0c3d1adbd91442fb878343d5a11e23a0e3ac5484be301fd8d148bcb085"}, - {file = "libcst-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:9e6bc95fa7dde79cde63a34a0412cd4a3d9fcc27be781a590f8c45c840c83658"}, - {file = "libcst-1.3.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4186076ce12141609ce950d61867b2a73ea199a7a9870dbafa76ad600e075b3c"}, - {file = "libcst-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4ed52a1a2fe4d8603de51649db5e438317b8116ebb9fc09ec68703535fe6c1c8"}, - {file = "libcst-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0886a9963597367b227345f19b24931b3ed6a4703fff237760745f90f0e6a20"}, - {file = "libcst-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:904c4cc5c801a5747e64b43e0accc87c67a4c804842d977ee215872c4cf8cf88"}, - {file = "libcst-1.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7cdb7e8a118b60e064a02f6cbfa4d328212a3a115d125244495190f405709d5f"}, - {file = "libcst-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:431badf0e544b79c0ac9682dbd291ff63ddbc3c3aca0d13d3cc7a10c3a9db8a2"}, - {file = "libcst-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:701f5335e4fd566871497b9af1e871c98e1ef10c30b3b244f39343d709213401"}, - {file = "libcst-1.3.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7c6e709623b68ca9148e8ecbdc145f7b83befb26032e4bf6a8122500ba558b17"}, - {file = "libcst-1.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ede0f026a82b03b33a559ec566860085ece2e76d8f9bc21cb053eedf9cde8c79"}, - {file = "libcst-1.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c12b7b01d8745f82dd86a82acd2a9f8e8e7d6c94ddcfda996896e83d1a8d5c42"}, - {file = "libcst-1.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2995ca687118a9d3d41876f7270bc29305a2d402f4b8c81a3cff0aeee6d4c81"}, - {file = "libcst-1.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:2dbac1ac0a9d59ea7bbc3f87cdcca5bfe98835e31c668e95cb6f3d907ffc53fc"}, - {file = "libcst-1.3.1.tar.gz", hash = "sha256:03b1df1ae02456f1d465fcd5ead1d0d454bb483caefd8c8e6bde515ffdb53d1b"}, + {file = "libcst-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:279b54568ea1f25add50ea4ba3d76d4f5835500c82f24d54daae4c5095b986aa"}, + {file = "libcst-1.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3401dae41fe24565387a65baee3887e31a44e3e58066b0250bc3f3ccf85b1b5a"}, + {file = "libcst-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1989fa12d3cd79118ebd29ebe2a6976d23d509b1a4226bc3d66fcb7cb50bd5d"}, + {file = "libcst-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:addc6d585141a7677591868886f6bda0577529401a59d210aa8112114340e129"}, + {file = "libcst-1.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:17d71001cb25e94cfe8c3d997095741a8c4aa7a6d234c0f972bc42818c88dfaf"}, + {file = "libcst-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2d47de16d105e7dd5f4e01a428d9f4dc1e71efd74f79766daf54528ce37f23c3"}, + {file = "libcst-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e6227562fc5c9c1efd15dfe90b0971ae254461b8b6b23c1b617139b6003de1c1"}, + {file = "libcst-1.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3399e6c95df89921511b44d8c5bf6a75bcbc2d51f1f6429763609ba005c10f6b"}, + {file = "libcst-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48601e3e590e2d6a7ab8c019cf3937c70511a78d778ab3333764531253acdb33"}, + {file = "libcst-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f42797309bb725f0f000510d5463175ccd7155395f09b5e7723971b0007a976d"}, + {file = "libcst-1.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb4e42ea107a37bff7f9fdbee9532d39f9ea77b89caa5c5112b37057b12e0838"}, + {file = "libcst-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:9d0cc3c5a2a51fa7e1d579a828c0a2e46b2170024fd8b1a0691c8a52f3abb2d9"}, + {file = "libcst-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7ece51d935bc9bf60b528473d2e5cc67cbb88e2f8146297e40ee2c7d80be6f13"}, + {file = "libcst-1.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:81653dea1cdfa4c6520a7c5ffb95fa4d220cbd242e446c7a06d42d8636bfcbba"}, + {file = "libcst-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6abce0e66bba2babfadc20530fd3688f672d565674336595b4623cd800b91ef"}, + {file = "libcst-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5da9d7dc83801aba3b8d911f82dc1a375db0d508318bad79d9fb245374afe068"}, + {file = "libcst-1.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c54aa66c86d8ece9c93156a2cf5ca512b0dce40142fe9e072c86af2bf892411"}, + {file = "libcst-1.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:62e2682ee1567b6a89c91853865372bf34f178bfd237853d84df2b87b446e654"}, + {file = "libcst-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b8ecdba8934632b4dadacb666cd3816627a6ead831b806336972ccc4ba7ca0e9"}, + {file = "libcst-1.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8e54c777b8d27339b70f304d16fc8bc8674ef1bd34ed05ea874bf4921eb5a313"}, + {file = "libcst-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:061d6855ef30efe38b8a292b7e5d57c8e820e71fc9ec9846678b60a934b53bbb"}, + {file = "libcst-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb0abf627ee14903d05d0ad9b2c6865f1b21eb4081e2c7bea1033f85db2b8bae"}, + {file = "libcst-1.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d024f44059a853b4b852cfc04fec33e346659d851371e46fc8e7c19de24d3da9"}, + {file = "libcst-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:3c6a8faab9da48c5b371557d0999b4ca51f4f2cbd37ee8c2c4df0ac01c781465"}, + {file = "libcst-1.4.0.tar.gz", hash = "sha256:449e0b16604f054fa7f27c3ffe86ea7ef6c409836fe68fe4e752a1894175db00"}, ] [package.dependencies] pyyaml = ">=5.2" [package.extras] -dev = ["Sphinx (>=5.1.1)", "black (==23.12.1)", "build (>=0.10.0)", "coverage (>=4.5.4)", "fixit (==2.1.0)", "flake8 (==7.0.0)", "hypothesis (>=4.36.0)", "hypothesmith (>=0.0.4)", "jinja2 (==3.1.3)", "jupyter (>=1.0.0)", "maturin (>=0.8.3,<1.5)", "nbsphinx (>=0.4.2)", "prompt-toolkit (>=2.0.9)", "pyre-check (==0.9.18)", "setuptools-rust (>=1.5.2)", "setuptools-scm (>=6.0.1)", "slotscheck (>=0.7.1)", "sphinx-rtd-theme (>=0.4.3)", "ufmt (==2.5.1)", "usort (==1.0.8.post1)"] +dev = ["Sphinx (>=5.1.1)", "black (==23.12.1)", "build (>=0.10.0)", "coverage (>=4.5.4)", "fixit (==2.1.0)", "flake8 (==7.0.0)", "hypothesis (>=4.36.0)", "hypothesmith (>=0.0.4)", "jinja2 (==3.1.4)", "jupyter (>=1.0.0)", "maturin (>=0.8.3,<1.6)", "nbsphinx (>=0.4.2)", "prompt-toolkit (>=2.0.9)", "pyre-check (==0.9.18)", "setuptools-rust (>=1.5.2)", "setuptools-scm (>=6.0.1)", "slotscheck (>=0.7.1)", "sphinx-rtd-theme (>=0.4.3)", "ufmt (==2.6.0)", "usort (==1.0.8.post1)"] [[package]] name = "markdown-it-py" @@ -2184,39 +2170,40 @@ files = [ [[package]] name = "matplotlib" -version = "3.8.4" +version = "3.9.1" description = "Python plotting package" optional = false python-versions = ">=3.9" files = [ - {file = "matplotlib-3.8.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:abc9d838f93583650c35eca41cfcec65b2e7cb50fd486da6f0c49b5e1ed23014"}, - {file = "matplotlib-3.8.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f65c9f002d281a6e904976007b2d46a1ee2bcea3a68a8c12dda24709ddc9106"}, - {file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce1edd9f5383b504dbc26eeea404ed0a00656c526638129028b758fd43fc5f10"}, - {file = "matplotlib-3.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecd79298550cba13a43c340581a3ec9c707bd895a6a061a78fa2524660482fc0"}, - {file = "matplotlib-3.8.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:90df07db7b599fe7035d2f74ab7e438b656528c68ba6bb59b7dc46af39ee48ef"}, - {file = "matplotlib-3.8.4-cp310-cp310-win_amd64.whl", hash = "sha256:ac24233e8f2939ac4fd2919eed1e9c0871eac8057666070e94cbf0b33dd9c338"}, - {file = "matplotlib-3.8.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:72f9322712e4562e792b2961971891b9fbbb0e525011e09ea0d1f416c4645661"}, - {file = "matplotlib-3.8.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:232ce322bfd020a434caaffbd9a95333f7c2491e59cfc014041d95e38ab90d1c"}, - {file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6addbd5b488aedb7f9bc19f91cd87ea476206f45d7116fcfe3d31416702a82fa"}, - {file = "matplotlib-3.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc4ccdc64e3039fc303defd119658148f2349239871db72cd74e2eeaa9b80b71"}, - {file = "matplotlib-3.8.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b7a2a253d3b36d90c8993b4620183b55665a429da8357a4f621e78cd48b2b30b"}, - {file = "matplotlib-3.8.4-cp311-cp311-win_amd64.whl", hash = "sha256:8080d5081a86e690d7688ffa542532e87f224c38a6ed71f8fbed34dd1d9fedae"}, - {file = "matplotlib-3.8.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6485ac1f2e84676cff22e693eaa4fbed50ef5dc37173ce1f023daef4687df616"}, - {file = "matplotlib-3.8.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c89ee9314ef48c72fe92ce55c4e95f2f39d70208f9f1d9db4e64079420d8d732"}, - {file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50bac6e4d77e4262c4340d7a985c30912054745ec99756ce213bfbc3cb3808eb"}, - {file = "matplotlib-3.8.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f51c4c869d4b60d769f7b4406eec39596648d9d70246428745a681c327a8ad30"}, - {file = "matplotlib-3.8.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b12ba985837e4899b762b81f5b2845bd1a28f4fdd1a126d9ace64e9c4eb2fb25"}, - {file = "matplotlib-3.8.4-cp312-cp312-win_amd64.whl", hash = "sha256:7a6769f58ce51791b4cb8b4d7642489df347697cd3e23d88266aaaee93b41d9a"}, - {file = "matplotlib-3.8.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:843cbde2f0946dadd8c5c11c6d91847abd18ec76859dc319362a0964493f0ba6"}, - {file = "matplotlib-3.8.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1c13f041a7178f9780fb61cc3a2b10423d5e125480e4be51beaf62b172413b67"}, - {file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb44f53af0a62dc80bba4443d9b27f2fde6acfdac281d95bc872dc148a6509cc"}, - {file = "matplotlib-3.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:606e3b90897554c989b1e38a258c626d46c873523de432b1462f295db13de6f9"}, - {file = "matplotlib-3.8.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9bb0189011785ea794ee827b68777db3ca3f93f3e339ea4d920315a0e5a78d54"}, - {file = "matplotlib-3.8.4-cp39-cp39-win_amd64.whl", hash = "sha256:6209e5c9aaccc056e63b547a8152661324404dd92340a6e479b3a7f24b42a5d0"}, - {file = "matplotlib-3.8.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7064120a59ce6f64103c9cefba8ffe6fba87f2c61d67c401186423c9a20fd35"}, - {file = "matplotlib-3.8.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0e47eda4eb2614300fc7bb4657fced3e83d6334d03da2173b09e447418d499f"}, - {file = "matplotlib-3.8.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:493e9f6aa5819156b58fce42b296ea31969f2aab71c5b680b4ea7a3cb5c07d94"}, - {file = "matplotlib-3.8.4.tar.gz", hash = "sha256:8aac397d5e9ec158960e31c381c5ffc52ddd52bd9a47717e2a694038167dffea"}, + {file = "matplotlib-3.9.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7ccd6270066feb9a9d8e0705aa027f1ff39f354c72a87efe8fa07632f30fc6bb"}, + {file = "matplotlib-3.9.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:591d3a88903a30a6d23b040c1e44d1afdd0d778758d07110eb7596f811f31842"}, + {file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd2a59ff4b83d33bca3b5ec58203cc65985367812cb8c257f3e101632be86d92"}, + {file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fc001516ffcf1a221beb51198b194d9230199d6842c540108e4ce109ac05cc0"}, + {file = "matplotlib-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:83c6a792f1465d174c86d06f3ae85a8fe36e6f5964633ae8106312ec0921fdf5"}, + {file = "matplotlib-3.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:421851f4f57350bcf0811edd754a708d2275533e84f52f6760b740766c6747a7"}, + {file = "matplotlib-3.9.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b3fce58971b465e01b5c538f9d44915640c20ec5ff31346e963c9e1cd66fa812"}, + {file = "matplotlib-3.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a973c53ad0668c53e0ed76b27d2eeeae8799836fd0d0caaa4ecc66bf4e6676c0"}, + {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82cd5acf8f3ef43f7532c2f230249720f5dc5dd40ecafaf1c60ac8200d46d7eb"}, + {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab38a4f3772523179b2f772103d8030215b318fef6360cb40558f585bf3d017f"}, + {file = "matplotlib-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2315837485ca6188a4b632c5199900e28d33b481eb083663f6a44cfc8987ded3"}, + {file = "matplotlib-3.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:a0c977c5c382f6696caf0bd277ef4f936da7e2aa202ff66cad5f0ac1428ee15b"}, + {file = "matplotlib-3.9.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:565d572efea2b94f264dd86ef27919515aa6d629252a169b42ce5f570db7f37b"}, + {file = "matplotlib-3.9.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d397fd8ccc64af2ec0af1f0efc3bacd745ebfb9d507f3f552e8adb689ed730a"}, + {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26040c8f5121cd1ad712abffcd4b5222a8aec3a0fe40bc8542c94331deb8780d"}, + {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d12cb1837cffaac087ad6b44399d5e22b78c729de3cdae4629e252067b705e2b"}, + {file = "matplotlib-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0e835c6988edc3d2d08794f73c323cc62483e13df0194719ecb0723b564e0b5c"}, + {file = "matplotlib-3.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:44a21d922f78ce40435cb35b43dd7d573cf2a30138d5c4b709d19f00e3907fd7"}, + {file = "matplotlib-3.9.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0c584210c755ae921283d21d01f03a49ef46d1afa184134dd0f95b0202ee6f03"}, + {file = "matplotlib-3.9.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:11fed08f34fa682c2b792942f8902e7aefeed400da71f9e5816bea40a7ce28fe"}, + {file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0000354e32efcfd86bda75729716b92f5c2edd5b947200be9881f0a671565c33"}, + {file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db17fea0ae3aceb8e9ac69c7e3051bae0b3d083bfec932240f9bf5d0197a049"}, + {file = "matplotlib-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:208cbce658b72bf6a8e675058fbbf59f67814057ae78165d8a2f87c45b48d0ff"}, + {file = "matplotlib-3.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:dc23f48ab630474264276be156d0d7710ac6c5a09648ccdf49fef9200d8cbe80"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3fda72d4d472e2ccd1be0e9ccb6bf0d2eaf635e7f8f51d737ed7e465ac020cb3"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:84b3ba8429935a444f1fdc80ed930babbe06725bcf09fbeb5c8757a2cd74af04"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b918770bf3e07845408716e5bbda17eadfc3fcbd9307dc67f37d6cf834bb3d98"}, + {file = "matplotlib-3.9.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f1f2e5d29e9435c97ad4c36fb6668e89aee13d48c75893e25cef064675038ac9"}, + {file = "matplotlib-3.9.1.tar.gz", hash = "sha256:de06b19b8db95dd33d0dc17c926c7c9ebed9f572074b6fac4f65068a6814d010"}, ] [package.dependencies] @@ -2224,12 +2211,15 @@ contourpy = ">=1.0.1" cycler = ">=0.10" fonttools = ">=4.22.0" kiwisolver = ">=1.3.1" -numpy = ">=1.21" +numpy = ">=1.23" packaging = ">=20.0" pillow = ">=8" pyparsing = ">=2.3.1" python-dateutil = ">=2.7" +[package.extras] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] + [[package]] name = "matplotlib-inline" version = "0.1.7" @@ -2246,13 +2236,13 @@ traitlets = "*" [[package]] name = "maze-dataset" -version = "0.5.2" +version = "0.5.6" description = "" optional = false python-versions = "<4.0,>=3.10" files = [ - {file = "maze_dataset-0.5.2-py3-none-any.whl", hash = "sha256:cd971df82d23e1c49f8b07f1da06f8f8b2de651dab9dce8285d91dcb7191a2ec"}, - {file = "maze_dataset-0.5.2.tar.gz", hash = "sha256:32ad68274ed52a714a98b5ad851307b7a78b2cbae36a22f702b18c6a7b405113"}, + {file = "maze_dataset-0.5.6-py3-none-any.whl", hash = "sha256:6013198a6efc253db04f9f39241bdfbbcc0b9724fad91d5bf06611790893985d"}, + {file = "maze_dataset-0.5.6.tar.gz", hash = "sha256:ffdd559f843c5f77d37421edd94f88c6bd43569cd5b3162a7b98de60b26e376b"}, ] [package.dependencies] @@ -2260,10 +2250,10 @@ ipykernel = ">=6.22.0,<7.0.0" jaxtyping = ">=0.2.19,<0.3.0" jupyter = ">=1.0.0,<2.0.0" matplotlib = ">=3.7.0,<4.0.0" -muutils = ">=0.5.8,<0.6.0" +muutils = ">=0.6.7,<0.7.0" torch = ">=1.13.1" tqdm = ">=4.65.0,<5.0.0" -zanj = ">=0.2.0,<0.3.0" +zanj = ">=0.3.1,<0.4.0" [[package]] name = "mdurl" @@ -2405,46 +2395,54 @@ files = [ [[package]] name = "multiprocess" -version = "0.70.16" +version = "0.70.15" description = "better multiprocessing and multithreading in Python" optional = false -python-versions = ">=3.8" +python-versions = ">=3.7" files = [ - {file = "multiprocess-0.70.16-pp310-pypy310_pp73-macosx_10_13_x86_64.whl", hash = "sha256:476887be10e2f59ff183c006af746cb6f1fd0eadcfd4ef49e605cbe2659920ee"}, - {file = "multiprocess-0.70.16-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d951bed82c8f73929ac82c61f01a7b5ce8f3e5ef40f5b52553b4f547ce2b08ec"}, - {file = "multiprocess-0.70.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:37b55f71c07e2d741374998c043b9520b626a8dddc8b3129222ca4f1a06ef67a"}, - {file = "multiprocess-0.70.16-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:ba8c31889abf4511c7308a8c52bb4a30b9d590e7f58523302ba00237702ca054"}, - {file = "multiprocess-0.70.16-pp39-pypy39_pp73-macosx_10_13_x86_64.whl", hash = "sha256:0dfd078c306e08d46d7a8d06fb120313d87aa43af60d66da43ffff40b44d2f41"}, - {file = "multiprocess-0.70.16-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e7b9d0f307cd9bd50851afaac0dba2cb6c44449efff697df7c7645f7d3f2be3a"}, - {file = "multiprocess-0.70.16-py310-none-any.whl", hash = "sha256:c4a9944c67bd49f823687463660a2d6daae94c289adff97e0f9d696ba6371d02"}, - {file = "multiprocess-0.70.16-py311-none-any.whl", hash = "sha256:af4cabb0dac72abfb1e794fa7855c325fd2b55a10a44628a3c1ad3311c04127a"}, - {file = "multiprocess-0.70.16-py312-none-any.whl", hash = "sha256:fc0544c531920dde3b00c29863377f87e1632601092ea2daca74e4beb40faa2e"}, - {file = "multiprocess-0.70.16-py38-none-any.whl", hash = "sha256:a71d82033454891091a226dfc319d0cfa8019a4e888ef9ca910372a446de4435"}, - {file = "multiprocess-0.70.16-py39-none-any.whl", hash = "sha256:a0bafd3ae1b732eac64be2e72038231c1ba97724b60b09400d68f229fcc2fbf3"}, - {file = "multiprocess-0.70.16.tar.gz", hash = "sha256:161af703d4652a0e1410be6abccecde4a7ddffd19341be0a7011b94aeb171ac1"}, + {file = "multiprocess-0.70.15-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:aa36c7ed16f508091438687fe9baa393a7a8e206731d321e443745e743a0d4e5"}, + {file = "multiprocess-0.70.15-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:20e024018c46d0d1602024c613007ac948f9754659e3853b0aa705e83f6931d8"}, + {file = "multiprocess-0.70.15-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:e576062981c91f0fe8a463c3d52506e598dfc51320a8dd8d78b987dfca91c5db"}, + {file = "multiprocess-0.70.15-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:e73f497e6696a0f5433ada2b3d599ae733b87a6e8b008e387c62ac9127add177"}, + {file = "multiprocess-0.70.15-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:73db2e7b32dcc7f9b0f075c2ffa45c90b6729d3f1805f27e88534c8d321a1be5"}, + {file = "multiprocess-0.70.15-pp38-pypy38_pp73-manylinux_2_24_i686.whl", hash = "sha256:4271647bd8a49c28ecd6eb56a7fdbd3c212c45529ad5303b40b3c65fc6928e5f"}, + {file = "multiprocess-0.70.15-pp38-pypy38_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:cf981fb998d6ec3208cb14f0cf2e9e80216e834f5d51fd09ebc937c32b960902"}, + {file = "multiprocess-0.70.15-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:18f9f2c7063346d1617bd1684fdcae8d33380ae96b99427260f562e1a1228b67"}, + {file = "multiprocess-0.70.15-pp39-pypy39_pp73-manylinux_2_24_i686.whl", hash = "sha256:0eac53214d664c49a34695e5824872db4006b1a465edd7459a251809c3773370"}, + {file = "multiprocess-0.70.15-pp39-pypy39_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:1a51dd34096db47fb21fa2b839e615b051d51b97af9a67afbcdaa67186b44883"}, + {file = "multiprocess-0.70.15-py310-none-any.whl", hash = "sha256:7dd58e33235e83cf09d625e55cffd7b0f0eede7ee9223cdd666a87624f60c21a"}, + {file = "multiprocess-0.70.15-py311-none-any.whl", hash = "sha256:134f89053d82c9ed3b73edd3a2531eb791e602d4f4156fc92a79259590bd9670"}, + {file = "multiprocess-0.70.15-py37-none-any.whl", hash = "sha256:f7d4a1629bccb433114c3b4885f69eccc200994323c80f6feee73b0edc9199c5"}, + {file = "multiprocess-0.70.15-py38-none-any.whl", hash = "sha256:bee9afba476c91f9ebee7beeee0601face9eff67d822e893f9a893725fbd6316"}, + {file = "multiprocess-0.70.15-py39-none-any.whl", hash = "sha256:3e0953f5d52b4c76f1c973eaf8214554d146f2be5decb48e928e55c7a2d19338"}, + {file = "multiprocess-0.70.15.tar.gz", hash = "sha256:f20eed3036c0ef477b07a4177cf7c1ba520d9a2677870a4f47fe026f0cd6787e"}, ] [package.dependencies] -dill = ">=0.3.8" +dill = ">=0.3.7" [[package]] name = "muutils" -version = "0.5.8" -description = "A collection of miscellaneous python utilities" +version = "0.6.7" +description = "miscellaneous python utilities" optional = false -python-versions = ">=3.10,<4.0" +python-versions = "<4.0,>=3.8" files = [ - {file = "muutils-0.5.8-py3-none-any.whl", hash = "sha256:70db0a9aef0cb4f56ef832818bf79ecf36e50dce030b2d980a3ca64ed924cfcf"}, - {file = "muutils-0.5.8.tar.gz", hash = "sha256:a9fbc18a6303266671cd0e41b3e9994e00cf3814397d5a7204467596c861b751"}, + {file = "muutils-0.6.7-py3-none-any.whl", hash = "sha256:91cc352a16f701f00b476fd53d9d3f858d785cc6275faabd620d34150940712c"}, + {file = "muutils-0.6.7.tar.gz", hash = "sha256:06d40f6e6c5390418b091a7326f7d78bc4470cc5741a13f4a4160c382f8c1eae"}, ] [package.dependencies] -jaxtyping = {version = ">=0.2.12,<0.3.0", optional = true, markers = "extra == \"array\""} -numpy = {version = ">=1.22.4,<2.0.0", optional = true, markers = "extra == \"array\""} -torch = {version = ">=1.13.1", optional = true, markers = "extra == \"array\""} +jaxtyping = {version = ">=0.2.12,<0.3.0", optional = true, markers = "extra == \"array-nb-zanj\" or extra == \"array\" or extra == \"array-no-torch\""} +numpy = {version = ">=1.26.4,<2.0.0", optional = true, markers = "python_version >= \"3.9\" and (extra == \"array-nb-zanj\" or extra == \"array\" or extra == \"array-no-torch\")"} +torch = {version = ">=1.13.1", optional = true, markers = "extra == \"array-nb-zanj\" or extra == \"array\""} [package.extras] -array = ["jaxtyping (>=0.2.12,<0.3.0)", "numpy (>=1.22.4,<2.0.0)", "torch (>=1.13.1)"] +array = ["jaxtyping (>=0.2.12,<0.3.0)", "numpy (>=1.24.4,<2.0.0)", "numpy (>=1.26.4,<2.0.0)", "torch (>=1.13.1)"] +array-nb-zanj = ["ipython (>=8.20.0,<9.0.0)", "jaxtyping (>=0.2.12,<0.3.0)", "numpy (>=1.24.4,<2.0.0)", "numpy (>=1.26.4,<2.0.0)", "torch (>=1.13.1)", "zanj (>=0.3.0,<0.4.0)"] +array-no-torch = ["jaxtyping (>=0.2.12,<0.3.0)", "numpy (>=1.24.4,<2.0.0)", "numpy (>=1.26.4,<2.0.0)"] +notebook = ["ipython (>=8.20.0,<9.0.0)"] +zanj = ["zanj (>=0.3.0,<0.4.0)"] [[package]] name = "mypy-extensions" @@ -2568,26 +2566,26 @@ test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "notebook" -version = "7.1.3" +version = "7.2.1" description = "Jupyter Notebook - A web-based notebook environment for interactive computing" optional = false python-versions = ">=3.8" files = [ - {file = "notebook-7.1.3-py3-none-any.whl", hash = "sha256:919b911e59f41f6e3857ce93c9d93535ba66bb090059712770e5968c07e1004d"}, - {file = "notebook-7.1.3.tar.gz", hash = "sha256:41fcebff44cf7bb9377180808bcbae066629b55d8c7722f1ebbe75ca44f9cfc1"}, + {file = "notebook-7.2.1-py3-none-any.whl", hash = "sha256:f45489a3995746f2195a137e0773e2130960b51c9ac3ce257dbc2705aab3a6ca"}, + {file = "notebook-7.2.1.tar.gz", hash = "sha256:4287b6da59740b32173d01d641f763d292f49c30e7a51b89c46ba8473126341e"}, ] [package.dependencies] jupyter-server = ">=2.4.0,<3" -jupyterlab = ">=4.1.1,<4.2" -jupyterlab-server = ">=2.22.1,<3" +jupyterlab = ">=4.2.0,<4.3" +jupyterlab-server = ">=2.27.1,<3" notebook-shim = ">=0.2,<0.3" tornado = ">=6.2.0" [package.extras] dev = ["hatch", "pre-commit"] docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.22.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] [[package]] name = "notebook-shim" @@ -2697,12 +2695,13 @@ files = [ [[package]] name = "nvidia-cudnn-cu12" -version = "8.9.2.26" +version = "9.1.0.70" description = "cuDNN runtime libraries" optional = false python-versions = ">=3" files = [ - {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, + {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f"}, + {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-win_amd64.whl", hash = "sha256:6278562929433d68365a07a4a1546c237ba2849852c0d4b2262a486e805b977a"}, ] [package.dependencies] @@ -2762,23 +2761,24 @@ nvidia-nvjitlink-cu12 = "*" [[package]] name = "nvidia-nccl-cu12" -version = "2.18.1" +version = "2.20.5" description = "NVIDIA Collective Communication Library (NCCL) Runtime" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:1a6c4acefcbebfa6de320f412bf7866de856e786e0462326ba1bac40de0b5e71"}, + {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"}, + {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"}, ] [[package]] name = "nvidia-nvjitlink-cu12" -version = "12.4.127" +version = "12.5.82" description = "Nvidia JIT LTO Library" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57"}, - {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:fd9020c501d27d135f983c6d3e244b197a7ccad769e34df53a42e276b0e25fa1"}, + {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f9b37bc5c8cf7509665cb6ada5aaa0ce65618f2332b7d3e78e9790511f111212"}, + {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-win_amd64.whl", hash = "sha256:e782564d705ff0bf61ac3e1bf730166da66dd2fe9012f111ede5fc49b64ae697"}, ] [[package]] @@ -2805,61 +2805,87 @@ files = [ [[package]] name = "packaging" -version = "24.0" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"}, - {file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] name = "pandas" -version = "1.5.3" +version = "2.2.2" description = "Powerful data structures for data analysis, time series, and statistics" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pandas-1.5.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3749077d86e3a2f0ed51367f30bf5b82e131cc0f14260c4d3e499186fccc4406"}, - {file = "pandas-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:972d8a45395f2a2d26733eb8d0f629b2f90bebe8e8eddbb8829b180c09639572"}, - {file = "pandas-1.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:50869a35cbb0f2e0cd5ec04b191e7b12ed688874bd05dd777c19b28cbea90996"}, - {file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3ac844a0fe00bfaeb2c9b51ab1424e5c8744f89860b138434a363b1f620f354"}, - {file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23"}, - {file = "pandas-1.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:478ff646ca42b20376e4ed3fa2e8d7341e8a63105586efe54fa2508ee087f328"}, - {file = "pandas-1.5.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6973549c01ca91ec96199e940495219c887ea815b2083722821f1d7abfa2b4dc"}, - {file = "pandas-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c39a8da13cede5adcd3be1182883aea1c925476f4e84b2807a46e2775306305d"}, - {file = "pandas-1.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f76d097d12c82a535fda9dfe5e8dd4127952b45fea9b0276cb30cca5ea313fbc"}, - {file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e474390e60ed609cec869b0da796ad94f420bb057d86784191eefc62b65819ae"}, - {file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f2b952406a1588ad4cad5b3f55f520e82e902388a6d5a4a91baa8d38d23c7f6"}, - {file = "pandas-1.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:bc4c368f42b551bf72fac35c5128963a171b40dce866fb066540eeaf46faa003"}, - {file = "pandas-1.5.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:14e45300521902689a81f3f41386dc86f19b8ba8dd5ac5a3c7010ef8d2932813"}, - {file = "pandas-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9842b6f4b8479e41968eced654487258ed81df7d1c9b7b870ceea24ed9459b31"}, - {file = "pandas-1.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26d9c71772c7afb9d5046e6e9cf42d83dd147b5cf5bcb9d97252077118543792"}, - {file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fbcb19d6fceb9e946b3e23258757c7b225ba450990d9ed63ccceeb8cae609f7"}, - {file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:565fa34a5434d38e9d250af3c12ff931abaf88050551d9fbcdfafca50d62babf"}, - {file = "pandas-1.5.3-cp38-cp38-win32.whl", hash = "sha256:87bd9c03da1ac870a6d2c8902a0e1fd4267ca00f13bc494c9e5a9020920e1d51"}, - {file = "pandas-1.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:41179ce559943d83a9b4bbacb736b04c928b095b5f25dd2b7389eda08f46f373"}, - {file = "pandas-1.5.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c74a62747864ed568f5a82a49a23a8d7fe171d0c69038b38cedf0976831296fa"}, - {file = "pandas-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4c00e0b0597c8e4f59e8d461f797e5d70b4d025880516a8261b2817c47759ee"}, - {file = "pandas-1.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a50d9a4336a9621cab7b8eb3fb11adb82de58f9b91d84c2cd526576b881a0c5a"}, - {file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd05f7783b3274aa206a1af06f0ceed3f9b412cf665b7247eacd83be41cf7bf0"}, - {file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f69c4029613de47816b1bb30ff5ac778686688751a5e9c99ad8c7031f6508e5"}, - {file = "pandas-1.5.3-cp39-cp39-win32.whl", hash = "sha256:7cec0bee9f294e5de5bbfc14d0573f65526071029d036b753ee6507d2a21480a"}, - {file = "pandas-1.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:dfd681c5dc216037e0b0a2c821f5ed99ba9f03ebcf119c7dac0e9a7b960b9ec9"}, - {file = "pandas-1.5.3.tar.gz", hash = "sha256:74a3fd7e5a7ec052f183273dc7b0acd3a863edf7520f5d3a1765c04ffdb3b0b1"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, + {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, + {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, + {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, + {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, + {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, ] [package.dependencies] numpy = [ - {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, ] -python-dateutil = ">=2.8.1" +python-dateutil = ">=2.8.2" pytz = ">=2020.1" +tzdata = ">=2022.7" [package.extras] -test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] [[package]] name = "pandocfilters" @@ -2914,84 +2940,95 @@ ptyprocess = ">=0.5" [[package]] name = "pillow" -version = "10.3.0" +version = "10.4.0" description = "Python Imaging Library (Fork)" optional = false python-versions = ">=3.8" files = [ - {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"}, - {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"}, - {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"}, - {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"}, - {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"}, - {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"}, - {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"}, - {file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"}, - {file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"}, - {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"}, - {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"}, - {file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"}, - {file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"}, - {file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"}, - {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"}, - {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"}, - {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"}, - {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"}, - {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"}, - {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"}, - {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"}, - {file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"}, - {file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"}, - {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"}, - {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"}, - {file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"}, - {file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"}, - {file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"}, - {file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"}, - {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"}, - {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"}, - {file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"}, - {file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"}, - {file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"}, - {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, ] [package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] fpx = ["olefile"] mic = ["olefile"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] @@ -3000,13 +3037,13 @@ xmp = ["defusedxml"] [[package]] name = "platformdirs" -version = "4.2.1" +version = "4.2.2" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.1-py3-none-any.whl", hash = "sha256:17d5a1161b3fd67b390023cb2d3b026bbd40abde6fdb052dfbd3a29c3ba22ee1"}, - {file = "platformdirs-4.2.1.tar.gz", hash = "sha256:031cd18d4ec63ec53e82dceaac0417d218a6863f7745dfcc9efe7793b7039bdf"}, + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, ] [package.extras] @@ -3016,13 +3053,13 @@ type = ["mypy (>=1.8)"] [[package]] name = "plotly" -version = "5.22.0" +version = "5.23.0" description = "An open-source, interactive data visualization library for Python" optional = false python-versions = ">=3.8" files = [ - {file = "plotly-5.22.0-py3-none-any.whl", hash = "sha256:68fc1901f098daeb233cc3dd44ec9dc31fb3ca4f4e53189344199c43496ed006"}, - {file = "plotly-5.22.0.tar.gz", hash = "sha256:859fdadbd86b5770ae2466e542b761b247d1c6b49daed765b95bb8c7063e7469"}, + {file = "plotly-5.23.0-py3-none-any.whl", hash = "sha256:76cbe78f75eddc10c56f5a4ee3e7ccaade7c0a57465546f02098c0caed6c2d1a"}, + {file = "plotly-5.23.0.tar.gz", hash = "sha256:89e57d003a116303a34de6700862391367dd564222ab71f8531df70279fc0193"}, ] [package.dependencies] @@ -3060,13 +3097,13 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.43" +version = "3.0.47" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, - {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, ] [package.dependencies] @@ -3074,47 +3111,48 @@ wcwidth = "*" [[package]] name = "protobuf" -version = "4.25.3" +version = "5.27.2" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-4.25.3-cp310-abi3-win32.whl", hash = "sha256:d4198877797a83cbfe9bffa3803602bbe1625dc30d8a097365dbc762e5790faa"}, - {file = "protobuf-4.25.3-cp310-abi3-win_amd64.whl", hash = "sha256:209ba4cc916bab46f64e56b85b090607a676f66b473e6b762e6f1d9d591eb2e8"}, - {file = "protobuf-4.25.3-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:f1279ab38ecbfae7e456a108c5c0681e4956d5b1090027c1de0f934dfdb4b35c"}, - {file = "protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:e7cb0ae90dd83727f0c0718634ed56837bfeeee29a5f82a7514c03ee1364c019"}, - {file = "protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:7c8daa26095f82482307bc717364e7c13f4f1c99659be82890dcfc215194554d"}, - {file = "protobuf-4.25.3-cp38-cp38-win32.whl", hash = "sha256:f4f118245c4a087776e0a8408be33cf09f6c547442c00395fbfb116fac2f8ac2"}, - {file = "protobuf-4.25.3-cp38-cp38-win_amd64.whl", hash = "sha256:c053062984e61144385022e53678fbded7aea14ebb3e0305ae3592fb219ccfa4"}, - {file = "protobuf-4.25.3-cp39-cp39-win32.whl", hash = "sha256:19b270aeaa0099f16d3ca02628546b8baefe2955bbe23224aaf856134eccf1e4"}, - {file = "protobuf-4.25.3-cp39-cp39-win_amd64.whl", hash = "sha256:e3c97a1555fd6388f857770ff8b9703083de6bf1f9274a002a332d65fbb56c8c"}, - {file = "protobuf-4.25.3-py3-none-any.whl", hash = "sha256:f0700d54bcf45424477e46a9f0944155b46fb0639d69728739c0e47bab83f2b9"}, - {file = "protobuf-4.25.3.tar.gz", hash = "sha256:25b5d0b42fd000320bd7830b349e3b696435f3b329810427a6bcce6a5492cc5c"}, + {file = "protobuf-5.27.2-cp310-abi3-win32.whl", hash = "sha256:354d84fac2b0d76062e9b3221f4abbbacdfd2a4d8af36bab0474f3a0bb30ab38"}, + {file = "protobuf-5.27.2-cp310-abi3-win_amd64.whl", hash = "sha256:0e341109c609749d501986b835f667c6e1e24531096cff9d34ae411595e26505"}, + {file = "protobuf-5.27.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a109916aaac42bff84702fb5187f3edadbc7c97fc2c99c5ff81dd15dcce0d1e5"}, + {file = "protobuf-5.27.2-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:176c12b1f1c880bf7a76d9f7c75822b6a2bc3db2d28baa4d300e8ce4cde7409b"}, + {file = "protobuf-5.27.2-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:b848dbe1d57ed7c191dfc4ea64b8b004a3f9ece4bf4d0d80a367b76df20bf36e"}, + {file = "protobuf-5.27.2-cp38-cp38-win32.whl", hash = "sha256:4fadd8d83e1992eed0248bc50a4a6361dc31bcccc84388c54c86e530b7f58863"}, + {file = "protobuf-5.27.2-cp38-cp38-win_amd64.whl", hash = "sha256:610e700f02469c4a997e58e328cac6f305f649826853813177e6290416e846c6"}, + {file = "protobuf-5.27.2-cp39-cp39-win32.whl", hash = "sha256:9e8f199bf7f97bd7ecebffcae45ebf9527603549b2b562df0fbc6d4d688f14ca"}, + {file = "protobuf-5.27.2-cp39-cp39-win_amd64.whl", hash = "sha256:7fc3add9e6003e026da5fc9e59b131b8f22b428b991ccd53e2af8071687b4fce"}, + {file = "protobuf-5.27.2-py3-none-any.whl", hash = "sha256:54330f07e4949d09614707c48b06d1a22f8ffb5763c159efd5c0928326a91470"}, + {file = "protobuf-5.27.2.tar.gz", hash = "sha256:f3ecdef226b9af856075f28227ff2c90ce3a594d092c39bee5513573f25e2714"}, ] [[package]] name = "psutil" -version = "5.9.8" +version = "6.0.0" description = "Cross-platform lib for process and system monitoring in Python." optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "psutil-5.9.8-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:26bd09967ae00920df88e0352a91cff1a78f8d69b3ecabbfe733610c0af486c8"}, - {file = "psutil-5.9.8-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:05806de88103b25903dff19bb6692bd2e714ccf9e668d050d144012055cbca73"}, - {file = "psutil-5.9.8-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:611052c4bc70432ec770d5d54f64206aa7203a101ec273a0cd82418c86503bb7"}, - {file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:50187900d73c1381ba1454cf40308c2bf6f34268518b3f36a9b663ca87e65e36"}, - {file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:02615ed8c5ea222323408ceba16c60e99c3f91639b07da6373fb7e6539abc56d"}, - {file = "psutil-5.9.8-cp27-none-win32.whl", hash = "sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e"}, - {file = "psutil-5.9.8-cp27-none-win_amd64.whl", hash = "sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631"}, - {file = "psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81"}, - {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421"}, - {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4"}, - {file = "psutil-5.9.8-cp36-cp36m-win32.whl", hash = "sha256:7d79560ad97af658a0f6adfef8b834b53f64746d45b403f225b85c5c2c140eee"}, - {file = "psutil-5.9.8-cp36-cp36m-win_amd64.whl", hash = "sha256:27cc40c3493bb10de1be4b3f07cae4c010ce715290a5be22b98493509c6299e2"}, - {file = "psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0"}, - {file = "psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf"}, - {file = "psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8"}, - {file = "psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c"}, +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, ] [package.extras] @@ -3133,13 +3171,13 @@ files = [ [[package]] name = "pure-eval" -version = "0.2.2" +version = "0.2.3" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, ] [package.extras] @@ -3147,62 +3185,54 @@ tests = ["pytest"] [[package]] name = "pyarrow" -version = "16.0.0" +version = "17.0.0" description = "Python library for Apache Arrow" optional = false python-versions = ">=3.8" files = [ - {file = "pyarrow-16.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:22a1fdb1254e5095d629e29cd1ea98ed04b4bbfd8e42cc670a6b639ccc208b60"}, - {file = "pyarrow-16.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:574a00260a4ed9d118a14770edbd440b848fcae5a3024128be9d0274dbcaf858"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0815d0ddb733b8c1b53a05827a91f1b8bde6240f3b20bf9ba5d650eb9b89cdf"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df0080339387b5d30de31e0a149c0c11a827a10c82f0c67d9afae3981d1aabb7"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:edf38cce0bf0dcf726e074159c60516447e4474904c0033f018c1f33d7dac6c5"}, - {file = "pyarrow-16.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:91d28f9a40f1264eab2af7905a4d95320ac2f287891e9c8b0035f264fe3c3a4b"}, - {file = "pyarrow-16.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:99af421ee451a78884d7faea23816c429e263bd3618b22d38e7992c9ce2a7ad9"}, - {file = "pyarrow-16.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d22d0941e6c7bafddf5f4c0662e46f2075850f1c044bf1a03150dd9e189427ce"}, - {file = "pyarrow-16.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:266ddb7e823f03733c15adc8b5078db2df6980f9aa93d6bb57ece615df4e0ba7"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cc23090224b6594f5a92d26ad47465af47c1d9c079dd4a0061ae39551889efe"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56850a0afe9ef37249d5387355449c0f94d12ff7994af88f16803a26d38f2016"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:705db70d3e2293c2f6f8e84874b5b775f690465798f66e94bb2c07bab0a6bb55"}, - {file = "pyarrow-16.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:5448564754c154997bc09e95a44b81b9e31ae918a86c0fcb35c4aa4922756f55"}, - {file = "pyarrow-16.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:729f7b262aa620c9df8b9967db96c1575e4cfc8c25d078a06968e527b8d6ec05"}, - {file = "pyarrow-16.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:fb8065dbc0d051bf2ae2453af0484d99a43135cadabacf0af588a3be81fbbb9b"}, - {file = "pyarrow-16.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:20ce707d9aa390593ea93218b19d0eadab56390311cb87aad32c9a869b0e958c"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5823275c8addbbb50cd4e6a6839952682a33255b447277e37a6f518d6972f4e1"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ab8b9050752b16a8b53fcd9853bf07d8daf19093533e990085168f40c64d978"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:42e56557bc7c5c10d3e42c3b32f6cff649a29d637e8f4e8b311d334cc4326730"}, - {file = "pyarrow-16.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2a7abdee4a4a7cfa239e2e8d721224c4b34ffe69a0ca7981354fe03c1328789b"}, - {file = "pyarrow-16.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:ef2f309b68396bcc5a354106741d333494d6a0d3e1951271849787109f0229a6"}, - {file = "pyarrow-16.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:ed66e5217b4526fa3585b5e39b0b82f501b88a10d36bd0d2a4d8aa7b5a48e2df"}, - {file = "pyarrow-16.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc8814310486f2a73c661ba8354540f17eef51e1b6dd090b93e3419d3a097b3a"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c2f5e239db7ed43e0ad2baf46a6465f89c824cc703f38ef0fde927d8e0955f7"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f293e92d1db251447cb028ae12f7bc47526e4649c3a9924c8376cab4ad6b98bd"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:dd9334a07b6dc21afe0857aa31842365a62eca664e415a3f9536e3a8bb832c07"}, - {file = "pyarrow-16.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d91073d1e2fef2c121154680e2ba7e35ecf8d4969cc0af1fa6f14a8675858159"}, - {file = "pyarrow-16.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:71d52561cd7aefd22cf52538f262850b0cc9e4ec50af2aaa601da3a16ef48877"}, - {file = "pyarrow-16.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b93c9a50b965ee0bf4fef65e53b758a7e8dcc0c2d86cebcc037aaaf1b306ecc0"}, - {file = "pyarrow-16.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d831690844706e374c455fba2fb8cfcb7b797bfe53ceda4b54334316e1ac4fa4"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35692ce8ad0b8c666aa60f83950957096d92f2a9d8d7deda93fb835e6053307e"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dd3151d098e56f16a8389c1247137f9e4c22720b01c6f3aa6dec29a99b74d80"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:bd40467bdb3cbaf2044ed7a6f7f251c8f941c8b31275aaaf88e746c4f3ca4a7a"}, - {file = "pyarrow-16.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:00a1dcb22ad4ceb8af87f7bd30cc3354788776c417f493089e0a0af981bc8d80"}, - {file = "pyarrow-16.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:fda9a7cebd1b1d46c97b511f60f73a5b766a6de4c5236f144f41a5d5afec1f35"}, - {file = "pyarrow-16.0.0.tar.gz", hash = "sha256:59bb1f1edbbf4114c72415f039f1359f1a57d166a331c3229788ccbfbb31689a"}, + {file = "pyarrow-17.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a5c8b238d47e48812ee577ee20c9a2779e6a5904f1708ae240f53ecbee7c9f07"}, + {file = "pyarrow-17.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db023dc4c6cae1015de9e198d41250688383c3f9af8f565370ab2b4cb5f62655"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da1e060b3876faa11cee287839f9cc7cdc00649f475714b8680a05fd9071d545"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75c06d4624c0ad6674364bb46ef38c3132768139ddec1c56582dbac54f2663e2"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:fa3c246cc58cb5a4a5cb407a18f193354ea47dd0648194e6265bd24177982fe8"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:f7ae2de664e0b158d1607699a16a488de3d008ba99b3a7aa5de1cbc13574d047"}, + {file = "pyarrow-17.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5984f416552eea15fd9cee03da53542bf4cddaef5afecefb9aa8d1010c335087"}, + {file = "pyarrow-17.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:1c8856e2ef09eb87ecf937104aacfa0708f22dfeb039c363ec99735190ffb977"}, + {file = "pyarrow-17.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e19f569567efcbbd42084e87f948778eb371d308e137a0f97afe19bb860ccb3"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b244dc8e08a23b3e352899a006a26ae7b4d0da7bb636872fa8f5884e70acf15"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b72e87fe3e1db343995562f7fff8aee354b55ee83d13afba65400c178ab2597"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dc5c31c37409dfbc5d014047817cb4ccd8c1ea25d19576acf1a001fe07f5b420"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e3343cb1e88bc2ea605986d4b94948716edc7a8d14afd4e2c097232f729758b4"}, + {file = "pyarrow-17.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:a27532c38f3de9eb3e90ecab63dfda948a8ca859a66e3a47f5f42d1e403c4d03"}, + {file = "pyarrow-17.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9b8a823cea605221e61f34859dcc03207e52e409ccf6354634143e23af7c8d22"}, + {file = "pyarrow-17.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1e70de6cb5790a50b01d2b686d54aaf73da01266850b05e3af2a1bc89e16053"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0071ce35788c6f9077ff9ecba4858108eebe2ea5a3f7cf2cf55ebc1dbc6ee24a"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:757074882f844411fcca735e39aae74248a1531367a7c80799b4266390ae51cc"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ba11c4f16976e89146781a83833df7f82077cdab7dc6232c897789343f7891a"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b0c6ac301093b42d34410b187bba560b17c0330f64907bfa4f7f7f2444b0cf9b"}, + {file = "pyarrow-17.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:392bc9feabc647338e6c89267635e111d71edad5fcffba204425a7c8d13610d7"}, + {file = "pyarrow-17.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:af5ff82a04b2171415f1410cff7ebb79861afc5dae50be73ce06d6e870615204"}, + {file = "pyarrow-17.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:edca18eaca89cd6382dfbcff3dd2d87633433043650c07375d095cd3517561d8"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c7916bff914ac5d4a8fe25b7a25e432ff921e72f6f2b7547d1e325c1ad9d155"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f553ca691b9e94b202ff741bdd40f6ccb70cdd5fbf65c187af132f1317de6145"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0cdb0e627c86c373205a2f94a510ac4376fdc523f8bb36beab2e7f204416163c"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d7d192305d9d8bc9082d10f361fc70a73590a4c65cf31c3e6926cd72b76bc35c"}, + {file = "pyarrow-17.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:02dae06ce212d8b3244dd3e7d12d9c4d3046945a5933d28026598e9dbbda1fca"}, + {file = "pyarrow-17.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:13d7a460b412f31e4c0efa1148e1d29bdf18ad1411eb6757d38f8fbdcc8645fb"}, + {file = "pyarrow-17.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9b564a51fbccfab5a04a80453e5ac6c9954a9c5ef2890d1bcf63741909c3f8df"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32503827abbc5aadedfa235f5ece8c4f8f8b0a3cf01066bc8d29de7539532687"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a155acc7f154b9ffcc85497509bcd0d43efb80d6f733b0dc3bb14e281f131c8b"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:dec8d129254d0188a49f8a1fc99e0560dc1b85f60af729f47de4046015f9b0a5"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:a48ddf5c3c6a6c505904545c25a4ae13646ae1f8ba703c4df4a1bfe4f4006bda"}, + {file = "pyarrow-17.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:42bf93249a083aca230ba7e2786c5f673507fa97bbd9725a1e2754715151a204"}, + {file = "pyarrow-17.0.0.tar.gz", hash = "sha256:4beca9521ed2c0921c1023e68d097d0299b62c362639ea315572a58f3f50fd28"}, ] [package.dependencies] numpy = ">=1.16.6" -[[package]] -name = "pyarrow-hotfix" -version = "0.6" -description = "" -optional = false -python-versions = ">=3.5" -files = [ - {file = "pyarrow_hotfix-0.6-py3-none-any.whl", hash = "sha256:dcc9ae2d220dff0083be6a9aa8e0cdee5182ad358d4931fce825c545e5c89178"}, - {file = "pyarrow_hotfix-0.6.tar.gz", hash = "sha256:79d3e030f7ff890d408a100ac16d6f00b14d44a502d7897cd9fc3e3a534e9945"}, -] +[package.extras] +test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] [[package]] name = "pycln" @@ -3610,101 +3640,101 @@ rpds-py = ">=0.7.0" [[package]] name = "regex" -version = "2024.5.10" +version = "2024.7.24" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.5.10-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:eda3dd46df535da787ffb9036b5140f941ecb91701717df91c9daf64cabef953"}, - {file = "regex-2024.5.10-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1d5bd666466c8f00a06886ce1397ba8b12371c1f1c6d1bef11013e9e0a1464a8"}, - {file = "regex-2024.5.10-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:32e5f3b8e32918bfbdd12eca62e49ab3031125c454b507127ad6ecbd86e62fca"}, - {file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:534efd2653ebc4f26fc0e47234e53bf0cb4715bb61f98c64d2774a278b58c846"}, - {file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:193b7c6834a06f722f0ce1ba685efe80881de7c3de31415513862f601097648c"}, - {file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:160ba087232c5c6e2a1e7ad08bd3a3f49b58c815be0504d8c8aacfb064491cd8"}, - {file = "regex-2024.5.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951be1eae7b47660412dc4938777a975ebc41936d64e28081bf2e584b47ec246"}, - {file = "regex-2024.5.10-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8a0f0ab5453e409586b11ebe91c672040bc804ca98d03a656825f7890cbdf88"}, - {file = "regex-2024.5.10-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9e6d4d6ae1827b2f8c7200aaf7501c37cf3f3896c86a6aaf2566448397c823dd"}, - {file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:161a206c8f3511e2f5fafc9142a2cc25d7fe9a1ec5ad9b4ad2496a7c33e1c5d2"}, - {file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:44b3267cea873684af022822195298501568ed44d542f9a2d9bebc0212e99069"}, - {file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:560278c9975694e1f0bc50da187abf2cdc1e4890739ea33df2bc4a85eeef143e"}, - {file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:70364a097437dd0a90b31cd77f09f7387ad9ac60ef57590971f43b7fca3082a5"}, - {file = "regex-2024.5.10-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:42be5de7cc8c1edac55db92d82b68dc8e683b204d6f5414c5a51997a323d7081"}, - {file = "regex-2024.5.10-cp310-cp310-win32.whl", hash = "sha256:9a8625849387b9d558d528e263ecc9c0fbde86cfa5c2f0eef43fff480ae24d71"}, - {file = "regex-2024.5.10-cp310-cp310-win_amd64.whl", hash = "sha256:903350bf44d7e4116b4d5898b30b15755d61dcd3161e3413a49c7db76f0bee5a"}, - {file = "regex-2024.5.10-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bf9596cba92ce7b1fd32c7b07c6e3212c7eed0edc271757e48bfcd2b54646452"}, - {file = "regex-2024.5.10-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:45cc13d398b6359a7708986386f72bd156ae781c3e83a68a6d4cee5af04b1ce9"}, - {file = "regex-2024.5.10-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ad45f3bccfcb00868f2871dce02a755529838d2b86163ab8a246115e80cfb7d6"}, - {file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33d19f0cde6838c81acffff25c7708e4adc7dd02896c9ec25c3939b1500a1778"}, - {file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0a9f89d7db5ef6bdf53e5cc8e6199a493d0f1374b3171796b464a74ebe8e508a"}, - {file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8c6c71cf92b09e5faa72ea2c68aa1f61c9ce11cb66fdc5069d712f4392ddfd00"}, - {file = "regex-2024.5.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7467ad8b0eac0b28e52679e972b9b234b3de0ea5cee12eb50091d2b68145fe36"}, - {file = "regex-2024.5.10-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc0db93ad039fc2fe32ccd3dd0e0e70c4f3d6e37ae83f0a487e1aba939bd2fbd"}, - {file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:fa9335674d7c819674467c7b46154196c51efbaf5f5715187fd366814ba3fa39"}, - {file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7dda3091838206969c2b286f9832dff41e2da545b99d1cfaea9ebd8584d02708"}, - {file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:504b5116e2bd1821efd815941edff7535e93372a098e156bb9dffde30264e798"}, - {file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:91b53dea84415e8115506cc62e441a2b54537359c63d856d73cb1abe05af4c9a"}, - {file = "regex-2024.5.10-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1a3903128f9e17a500618e80c68165c78c741ebb17dd1a0b44575f92c3c68b02"}, - {file = "regex-2024.5.10-cp311-cp311-win32.whl", hash = "sha256:236cace6c1903effd647ed46ce6dd5d76d54985fc36dafc5256032886736c85d"}, - {file = "regex-2024.5.10-cp311-cp311-win_amd64.whl", hash = "sha256:12446827f43c7881decf2c126762e11425de5eb93b3b0d8b581344c16db7047a"}, - {file = "regex-2024.5.10-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:14905ed75c7a6edf423eb46c213ed3f4507c38115f1ed3c00f4ec9eafba50e58"}, - {file = "regex-2024.5.10-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4fad420b14ae1970a1f322e8ae84a1d9d89375eb71e1b504060ab2d1bfe68f3c"}, - {file = "regex-2024.5.10-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c46a76a599fcbf95f98755275c5527304cc4f1bb69919434c1e15544d7052910"}, - {file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0faecb6d5779753a6066a3c7a0471a8d29fe25d9981ca9e552d6d1b8f8b6a594"}, - {file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aab65121229c2ecdf4a31b793d99a6a0501225bd39b616e653c87b219ed34a49"}, - {file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:50e7e96a527488334379e05755b210b7da4a60fc5d6481938c1fa053e0c92184"}, - {file = "regex-2024.5.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba034c8db4b264ef1601eb33cd23d87c5013b8fb48b8161debe2e5d3bd9156b0"}, - {file = "regex-2024.5.10-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:031219782d97550c2098d9a68ce9e9eaefe67d2d81d8ff84c8354f9c009e720c"}, - {file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:62b5f7910b639f3c1d122d408421317c351e213ca39c964ad4121f27916631c6"}, - {file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:cd832bd9b6120d6074f39bdfbb3c80e416848b07ac72910f1c7f03131a6debc3"}, - {file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:e91b1976358e17197157b405cab408a5f4e33310cda211c49fc6da7cffd0b2f0"}, - {file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:571452362d552de508c37191b6abbbb660028b8b418e2d68c20779e0bc8eaaa8"}, - {file = "regex-2024.5.10-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5253dcb0bfda7214523de58b002eb0090cb530d7c55993ce5f6d17faf953ece7"}, - {file = "regex-2024.5.10-cp312-cp312-win32.whl", hash = "sha256:2f30a5ab8902f93930dc6f627c4dd5da2703333287081c85cace0fc6e21c25af"}, - {file = "regex-2024.5.10-cp312-cp312-win_amd64.whl", hash = "sha256:3799e36d60a35162bb35b2246d8bb012192b7437dff807ef79c14e7352706306"}, - {file = "regex-2024.5.10-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:bbdc5db2c98ac2bf1971ffa1410c87ca7a15800415f788971e8ba8520fc0fda9"}, - {file = "regex-2024.5.10-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6ccdeef4584450b6f0bddd5135354908dacad95425fcb629fe36d13e48b60f32"}, - {file = "regex-2024.5.10-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:29d839829209f3c53f004e1de8c3113efce6d98029f044fa5cfee666253ee7e6"}, - {file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0709ba544cf50bd5cb843df4b8bb6701bae2b70a8e88da9add8386cbca5c1385"}, - {file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:972b49f2fe1047b9249c958ec4fa1bdd2cf8ce305dc19d27546d5a38e57732d8"}, - {file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9cdbb1998da94607d5eec02566b9586f0e70d6438abf1b690261aac0edda7ab6"}, - {file = "regex-2024.5.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7c8ee4861d9ef5b1120abb75846828c811f932d63311596ad25fa168053e00"}, - {file = "regex-2024.5.10-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d35d4cc9270944e95f9c88af757b0c9fc43f396917e143a5756608462c5223b"}, - {file = "regex-2024.5.10-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8722f72068b3e1156a4b2e1afde6810f1fc67155a9fa30a4b9d5b4bc46f18fb0"}, - {file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:696639a73ca78a380acfaa0a1f6dd8220616a99074c05bba9ba8bb916914b224"}, - {file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea057306ab469130167014b662643cfaed84651c792948891d003cf0039223a5"}, - {file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:b43b78f9386d3d932a6ce5af4b45f393d2e93693ee18dc4800d30a8909df700e"}, - {file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:c43395a3b7cc9862801a65c6994678484f186ce13c929abab44fb8a9e473a55a"}, - {file = "regex-2024.5.10-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0bc94873ba11e34837bffd7e5006703abeffc4514e2f482022f46ce05bd25e67"}, - {file = "regex-2024.5.10-cp38-cp38-win32.whl", hash = "sha256:1118ba9def608250250f4b3e3f48c62f4562ba16ca58ede491b6e7554bfa09ff"}, - {file = "regex-2024.5.10-cp38-cp38-win_amd64.whl", hash = "sha256:458d68d34fb74b906709735c927c029e62f7d06437a98af1b5b6258025223210"}, - {file = "regex-2024.5.10-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:15e593386ec6331e0ab4ac0795b7593f02ab2f4b30a698beb89fbdc34f92386a"}, - {file = "regex-2024.5.10-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ca23b41355ba95929e9505ee04e55495726aa2282003ed9b012d86f857d3e49b"}, - {file = "regex-2024.5.10-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2c8982ee19ccecabbaeac1ba687bfef085a6352a8c64f821ce2f43e6d76a9298"}, - {file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7117cb7d6ac7f2e985f3d18aa8a1728864097da1a677ffa69e970ca215baebf1"}, - {file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b66421f8878a0c82fc0c272a43e2121c8d4c67cb37429b764f0d5ad70b82993b"}, - {file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:224a9269f133564109ce668213ef3cb32bc72ccf040b0b51c72a50e569e9dc9e"}, - {file = "regex-2024.5.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab98016541543692a37905871a5ffca59b16e08aacc3d7d10a27297b443f572d"}, - {file = "regex-2024.5.10-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:51d27844763c273a122e08a3e86e7aefa54ee09fb672d96a645ece0454d8425e"}, - {file = "regex-2024.5.10-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:853cc36e756ff673bf984e9044ccc8fad60b95a748915dddeab9488aea974c73"}, - {file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4e7eaf9df15423d07b6050fb91f86c66307171b95ea53e2d87a7993b6d02c7f7"}, - {file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:169fd0acd7a259f58f417e492e93d0e15fc87592cd1e971c8c533ad5703b5830"}, - {file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:334b79ce9c08f26b4659a53f42892793948a613c46f1b583e985fd5a6bf1c149"}, - {file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:f03b1dbd4d9596dd84955bb40f7d885204d6aac0d56a919bb1e0ff2fb7e1735a"}, - {file = "regex-2024.5.10-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cfa6d61a76c77610ba9274c1a90a453062bdf6887858afbe214d18ad41cf6bde"}, - {file = "regex-2024.5.10-cp39-cp39-win32.whl", hash = "sha256:249fbcee0a277c32a3ce36d8e36d50c27c968fdf969e0fbe342658d4e010fbc8"}, - {file = "regex-2024.5.10-cp39-cp39-win_amd64.whl", hash = "sha256:0ce56a923f4c01d7568811bfdffe156268c0a7aae8a94c902b92fe34c4bde785"}, - {file = "regex-2024.5.10.tar.gz", hash = "sha256:304e7e2418146ae4d0ef0e9ffa28f881f7874b45b4994cc2279b21b6e7ae50c8"}, + {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, + {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, + {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, + {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, + {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, + {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, + {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, + {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, + {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, + {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, + {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, + {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, + {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, + {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, + {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, + {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, + {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, + {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, + {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, + {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, + {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, + {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, + {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, + {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, + {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, + {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, + {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, + {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, + {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, + {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, + {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, + {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, + {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, + {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, + {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, + {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, + {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, + {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, + {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, + {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, + {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, + {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, + {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, + {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, + {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, + {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, + {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, + {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, + {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, + {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, + {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, + {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, + {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, + {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, + {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, + {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, + {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, + {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, + {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, + {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, + {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, + {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, + {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, + {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, + {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, + {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, + {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, + {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, + {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, + {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, + {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, + {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, + {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, + {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, + {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, + {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, + {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, + {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, + {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, ] [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -3762,110 +3792,114 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rpds-py" -version = "0.18.1" +version = "0.19.1" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false python-versions = ">=3.8" files = [ - {file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"}, - {file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"}, - {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"}, - {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"}, - {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"}, - {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"}, - {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"}, - {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"}, - {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"}, - {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"}, - {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"}, - {file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"}, - {file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"}, - {file = "rpds_py-0.18.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6b5ff7e1d63a8281654b5e2896d7f08799378e594f09cf3674e832ecaf396ce8"}, - {file = "rpds_py-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8927638a4d4137a289e41d0fd631551e89fa346d6dbcfc31ad627557d03ceb6d"}, - {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:154bf5c93d79558b44e5b50cc354aa0459e518e83677791e6adb0b039b7aa6a7"}, - {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07f2139741e5deb2c5154a7b9629bc5aa48c766b643c1a6750d16f865a82c5fc"}, - {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c7672e9fba7425f79019db9945b16e308ed8bc89348c23d955c8c0540da0a07"}, - {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:489bdfe1abd0406eba6b3bb4fdc87c7fa40f1031de073d0cfb744634cc8fa261"}, - {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c20f05e8e3d4fc76875fc9cb8cf24b90a63f5a1b4c5b9273f0e8225e169b100"}, - {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:967342e045564cef76dfcf1edb700b1e20838d83b1aa02ab313e6a497cf923b8"}, - {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2cc7c1a47f3a63282ab0f422d90ddac4aa3034e39fc66a559ab93041e6505da7"}, - {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f7afbfee1157e0f9376c00bb232e80a60e59ed716e3211a80cb8506550671e6e"}, - {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e6934d70dc50f9f8ea47081ceafdec09245fd9f6032669c3b45705dea096b88"}, - {file = "rpds_py-0.18.1-cp311-none-win32.whl", hash = "sha256:c69882964516dc143083d3795cb508e806b09fc3800fd0d4cddc1df6c36e76bb"}, - {file = "rpds_py-0.18.1-cp311-none-win_amd64.whl", hash = "sha256:70a838f7754483bcdc830444952fd89645569e7452e3226de4a613a4c1793fb2"}, - {file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"}, - {file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"}, - {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"}, - {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"}, - {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"}, - {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"}, - {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"}, - {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"}, - {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"}, - {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"}, - {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"}, - {file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"}, - {file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"}, - {file = "rpds_py-0.18.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c827576e2fa017a081346dce87d532a5310241648eb3700af9a571a6e9fc7e74"}, - {file = "rpds_py-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa3679e751408d75a0b4d8d26d6647b6d9326f5e35c00a7ccd82b78ef64f65f8"}, - {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0abeee75434e2ee2d142d650d1e54ac1f8b01e6e6abdde8ffd6eeac6e9c38e20"}, - {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed402d6153c5d519a0faf1bb69898e97fb31613b49da27a84a13935ea9164dfc"}, - {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:338dee44b0cef8b70fd2ef54b4e09bb1b97fc6c3a58fea5db6cc083fd9fc2724"}, - {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7750569d9526199c5b97e5a9f8d96a13300950d910cf04a861d96f4273d5b104"}, - {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:607345bd5912aacc0c5a63d45a1f73fef29e697884f7e861094e443187c02be5"}, - {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:207c82978115baa1fd8d706d720b4a4d2b0913df1c78c85ba73fe6c5804505f0"}, - {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6d1e42d2735d437e7e80bab4d78eb2e459af48c0a46e686ea35f690b93db792d"}, - {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5463c47c08630007dc0fe99fb480ea4f34a89712410592380425a9b4e1611d8e"}, - {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:06d218939e1bf2ca50e6b0ec700ffe755e5216a8230ab3e87c059ebb4ea06afc"}, - {file = "rpds_py-0.18.1-cp38-none-win32.whl", hash = "sha256:312fe69b4fe1ffbe76520a7676b1e5ac06ddf7826d764cc10265c3b53f96dbe9"}, - {file = "rpds_py-0.18.1-cp38-none-win_amd64.whl", hash = "sha256:9437ca26784120a279f3137ee080b0e717012c42921eb07861b412340f85bae2"}, - {file = "rpds_py-0.18.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:19e515b78c3fc1039dd7da0a33c28c3154458f947f4dc198d3c72db2b6b5dc93"}, - {file = "rpds_py-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7b28c5b066bca9a4eb4e2f2663012debe680f097979d880657f00e1c30875a0"}, - {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:673fdbbf668dd958eff750e500495ef3f611e2ecc209464f661bc82e9838991e"}, - {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d960de62227635d2e61068f42a6cb6aae91a7fe00fca0e3aeed17667c8a34611"}, - {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:352a88dc7892f1da66b6027af06a2e7e5d53fe05924cc2cfc56495b586a10b72"}, - {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4e0ee01ad8260184db21468a6e1c37afa0529acc12c3a697ee498d3c2c4dcaf3"}, - {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab"}, - {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aaa71ee43a703c321906813bb252f69524f02aa05bf4eec85f0c41d5d62d0f4c"}, - {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6cd8098517c64a85e790657e7b1e509b9fe07487fd358e19431cb120f7d96338"}, - {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4adec039b8e2928983f885c53b7cc4cda8965b62b6596501a0308d2703f8af1b"}, - {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:32b7daaa3e9389db3695964ce8e566e3413b0c43e3394c05e4b243a4cd7bef26"}, - {file = "rpds_py-0.18.1-cp39-none-win32.whl", hash = "sha256:2625f03b105328729f9450c8badda34d5243231eef6535f80064d57035738360"}, - {file = "rpds_py-0.18.1-cp39-none-win_amd64.whl", hash = "sha256:bf18932d0003c8c4d51a39f244231986ab23ee057d235a12b2684ea26a353590"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"}, - {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"}, - {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"}, - {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"}, - {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"}, + {file = "rpds_py-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:aaf71f95b21f9dc708123335df22e5a2fef6307e3e6f9ed773b2e0938cc4d491"}, + {file = "rpds_py-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ca0dda0c5715efe2ab35bb83f813f681ebcd2840d8b1b92bfc6fe3ab382fae4a"}, + {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81db2e7282cc0487f500d4db203edc57da81acde9e35f061d69ed983228ffe3b"}, + {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1a8dfa125b60ec00c7c9baef945bb04abf8ac772d8ebefd79dae2a5f316d7850"}, + {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:271accf41b02687cef26367c775ab220372ee0f4925591c6796e7c148c50cab5"}, + {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9bc4161bd3b970cd6a6fcda70583ad4afd10f2750609fb1f3ca9505050d4ef3"}, + {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0cf2a0dbb5987da4bd92a7ca727eadb225581dd9681365beba9accbe5308f7d"}, + {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b5e28e56143750808c1c79c70a16519e9bc0a68b623197b96292b21b62d6055c"}, + {file = "rpds_py-0.19.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c7af6f7b80f687b33a4cdb0a785a5d4de1fb027a44c9a049d8eb67d5bfe8a687"}, + {file = "rpds_py-0.19.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e429fc517a1c5e2a70d576077231538a98d59a45dfc552d1ac45a132844e6dfb"}, + {file = "rpds_py-0.19.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d2dbd8f4990d4788cb122f63bf000357533f34860d269c1a8e90ae362090ff3a"}, + {file = "rpds_py-0.19.1-cp310-none-win32.whl", hash = "sha256:e0f9d268b19e8f61bf42a1da48276bcd05f7ab5560311f541d22557f8227b866"}, + {file = "rpds_py-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:df7c841813f6265e636fe548a49664c77af31ddfa0085515326342a751a6ba51"}, + {file = "rpds_py-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:902cf4739458852fe917104365ec0efbea7d29a15e4276c96a8d33e6ed8ec137"}, + {file = "rpds_py-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f3d73022990ab0c8b172cce57c69fd9a89c24fd473a5e79cbce92df87e3d9c48"}, + {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3837c63dd6918a24de6c526277910e3766d8c2b1627c500b155f3eecad8fad65"}, + {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cdb7eb3cf3deb3dd9e7b8749323b5d970052711f9e1e9f36364163627f96da58"}, + {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26ab43b6d65d25b1a333c8d1b1c2f8399385ff683a35ab5e274ba7b8bb7dc61c"}, + {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75130df05aae7a7ac171b3b5b24714cffeabd054ad2ebc18870b3aa4526eba23"}, + {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c34f751bf67cab69638564eee34023909380ba3e0d8ee7f6fe473079bf93f09b"}, + {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2671cb47e50a97f419a02cd1e0c339b31de017b033186358db92f4d8e2e17d8"}, + {file = "rpds_py-0.19.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3c73254c256081704dba0a333457e2fb815364018788f9b501efe7c5e0ada401"}, + {file = "rpds_py-0.19.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4383beb4a29935b8fa28aca8fa84c956bf545cb0c46307b091b8d312a9150e6a"}, + {file = "rpds_py-0.19.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:dbceedcf4a9329cc665452db1aaf0845b85c666e4885b92ee0cddb1dbf7e052a"}, + {file = "rpds_py-0.19.1-cp311-none-win32.whl", hash = "sha256:f0a6d4a93d2a05daec7cb885157c97bbb0be4da739d6f9dfb02e101eb40921cd"}, + {file = "rpds_py-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:c149a652aeac4902ecff2dd93c3b2681c608bd5208c793c4a99404b3e1afc87c"}, + {file = "rpds_py-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:56313be667a837ff1ea3508cebb1ef6681d418fa2913a0635386cf29cff35165"}, + {file = "rpds_py-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d1d7539043b2b31307f2c6c72957a97c839a88b2629a348ebabe5aa8b626d6b"}, + {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e1dc59a5e7bc7f44bd0c048681f5e05356e479c50be4f2c1a7089103f1621d5"}, + {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b8f78398e67a7227aefa95f876481485403eb974b29e9dc38b307bb6eb2315ea"}, + {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ef07a0a1d254eeb16455d839cef6e8c2ed127f47f014bbda64a58b5482b6c836"}, + {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8124101e92c56827bebef084ff106e8ea11c743256149a95b9fd860d3a4f331f"}, + {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08ce9c95a0b093b7aec75676b356a27879901488abc27e9d029273d280438505"}, + {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0b02dd77a2de6e49078c8937aadabe933ceac04b41c5dde5eca13a69f3cf144e"}, + {file = "rpds_py-0.19.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4dd02e29c8cbed21a1875330b07246b71121a1c08e29f0ee3db5b4cfe16980c4"}, + {file = "rpds_py-0.19.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9c7042488165f7251dc7894cd533a875d2875af6d3b0e09eda9c4b334627ad1c"}, + {file = "rpds_py-0.19.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f809a17cc78bd331e137caa25262b507225854073fd319e987bd216bed911b7c"}, + {file = "rpds_py-0.19.1-cp312-none-win32.whl", hash = "sha256:3ddab996807c6b4227967fe1587febade4e48ac47bb0e2d3e7858bc621b1cace"}, + {file = "rpds_py-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:32e0db3d6e4f45601b58e4ac75c6f24afbf99818c647cc2066f3e4b192dabb1f"}, + {file = "rpds_py-0.19.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:747251e428406b05fc86fee3904ee19550c4d2d19258cef274e2151f31ae9d38"}, + {file = "rpds_py-0.19.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:dc733d35f861f8d78abfaf54035461e10423422999b360966bf1c443cbc42705"}, + {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbda75f245caecff8faa7e32ee94dfaa8312a3367397975527f29654cd17a6ed"}, + {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bd04d8cab16cab5b0a9ffc7d10f0779cf1120ab16c3925404428f74a0a43205a"}, + {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2d66eb41ffca6cc3c91d8387509d27ba73ad28371ef90255c50cb51f8953301"}, + {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fdf4890cda3b59170009d012fca3294c00140e7f2abe1910e6a730809d0f3f9b"}, + {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1fa67ef839bad3815124f5f57e48cd50ff392f4911a9f3cf449d66fa3df62a5"}, + {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b82c9514c6d74b89a370c4060bdb80d2299bc6857e462e4a215b4ef7aa7b090e"}, + {file = "rpds_py-0.19.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c7b07959866a6afb019abb9564d8a55046feb7a84506c74a6f197cbcdf8a208e"}, + {file = "rpds_py-0.19.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4f580ae79d0b861dfd912494ab9d477bea535bfb4756a2269130b6607a21802e"}, + {file = "rpds_py-0.19.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c6d20c8896c00775e6f62d8373aba32956aa0b850d02b5ec493f486c88e12859"}, + {file = "rpds_py-0.19.1-cp313-none-win32.whl", hash = "sha256:afedc35fe4b9e30ab240b208bb9dc8938cb4afe9187589e8d8d085e1aacb8309"}, + {file = "rpds_py-0.19.1-cp313-none-win_amd64.whl", hash = "sha256:1d4af2eb520d759f48f1073ad3caef997d1bfd910dc34e41261a595d3f038a94"}, + {file = "rpds_py-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:34bca66e2e3eabc8a19e9afe0d3e77789733c702c7c43cd008e953d5d1463fde"}, + {file = "rpds_py-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:24f8ae92c7fae7c28d0fae9b52829235df83f34847aa8160a47eb229d9666c7b"}, + {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71157f9db7f6bc6599a852852f3389343bea34315b4e6f109e5cbc97c1fb2963"}, + {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1d494887d40dc4dd0d5a71e9d07324e5c09c4383d93942d391727e7a40ff810b"}, + {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7b3661e6d4ba63a094138032c1356d557de5b3ea6fd3cca62a195f623e381c76"}, + {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97fbb77eaeb97591efdc654b8b5f3ccc066406ccfb3175b41382f221ecc216e8"}, + {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cc4bc73e53af8e7a42c8fd7923bbe35babacfa7394ae9240b3430b5dcf16b2a"}, + {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:35af5e4d5448fa179fd7fff0bba0fba51f876cd55212f96c8bbcecc5c684ae5c"}, + {file = "rpds_py-0.19.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3511f6baf8438326e351097cecd137eb45c5f019944fe0fd0ae2fea2fd26be39"}, + {file = "rpds_py-0.19.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:57863d16187995c10fe9cf911b897ed443ac68189179541734502353af33e693"}, + {file = "rpds_py-0.19.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9e318e6786b1e750a62f90c6f7fa8b542102bdcf97c7c4de2a48b50b61bd36ec"}, + {file = "rpds_py-0.19.1-cp38-none-win32.whl", hash = "sha256:53dbc35808c6faa2ce3e48571f8f74ef70802218554884787b86a30947842a14"}, + {file = "rpds_py-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:8df1c283e57c9cb4d271fdc1875f4a58a143a2d1698eb0d6b7c0d7d5f49c53a1"}, + {file = "rpds_py-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:e76c902d229a3aa9d5ceb813e1cbcc69bf5bda44c80d574ff1ac1fa3136dea71"}, + {file = "rpds_py-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:de1f7cd5b6b351e1afd7568bdab94934d656abe273d66cda0ceea43bbc02a0c2"}, + {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fc5a84777cb61692d17988989690d6f34f7f95968ac81398d67c0d0994a897"}, + {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:74129d5ffc4cde992d89d345f7f7d6758320e5d44a369d74d83493429dad2de5"}, + {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e360188b72f8080fefa3adfdcf3618604cc8173651c9754f189fece068d2a45"}, + {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13e6d4840897d4e4e6b2aa1443e3a8eca92b0402182aafc5f4ca1f5e24f9270a"}, + {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f09529d2332264a902688031a83c19de8fda5eb5881e44233286b9c9ec91856d"}, + {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0d4b52811dcbc1aba08fd88d475f75b4f6db0984ba12275d9bed1a04b2cae9b5"}, + {file = "rpds_py-0.19.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dd635c2c4043222d80d80ca1ac4530a633102a9f2ad12252183bcf338c1b9474"}, + {file = "rpds_py-0.19.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f35b34a5184d5e0cc360b61664c1c06e866aab077b5a7c538a3e20c8fcdbf90b"}, + {file = "rpds_py-0.19.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d4ec0046facab83012d821b33cead742a35b54575c4edfb7ed7445f63441835f"}, + {file = "rpds_py-0.19.1-cp39-none-win32.whl", hash = "sha256:f5b8353ea1a4d7dfb59a7f45c04df66ecfd363bb5b35f33b11ea579111d4655f"}, + {file = "rpds_py-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:1fb93d3486f793d54a094e2bfd9cd97031f63fcb5bc18faeb3dd4b49a1c06523"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:7d5c7e32f3ee42f77d8ff1a10384b5cdcc2d37035e2e3320ded909aa192d32c3"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:89cc8921a4a5028d6dd388c399fcd2eef232e7040345af3d5b16c04b91cf3c7e"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bca34e913d27401bda2a6f390d0614049f5a95b3b11cd8eff80fe4ec340a1208"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5953391af1405f968eb5701ebbb577ebc5ced8d0041406f9052638bafe52209d"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:840e18c38098221ea6201f091fc5d4de6128961d2930fbbc96806fb43f69aec1"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6d8b735c4d162dc7d86a9cf3d717f14b6c73637a1f9cd57fe7e61002d9cb1972"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce757c7c90d35719b38fa3d4ca55654a76a40716ee299b0865f2de21c146801c"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a9421b23c85f361a133aa7c5e8ec757668f70343f4ed8fdb5a4a14abd5437244"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:3b823be829407393d84ee56dc849dbe3b31b6a326f388e171555b262e8456cc1"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:5e58b61dcbb483a442c6239c3836696b79f2cd8e7eec11e12155d3f6f2d886d1"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39d67896f7235b2c886fb1ee77b1491b77049dcef6fbf0f401e7b4cbed86bbd4"}, + {file = "rpds_py-0.19.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:8b32cd4ab6db50c875001ba4f5a6b30c0f42151aa1fbf9c2e7e3674893fb1dc4"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1c32e41de995f39b6b315d66c27dea3ef7f7c937c06caab4c6a79a5e09e2c415"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1a129c02b42d46758c87faeea21a9f574e1c858b9f358b6dd0bbd71d17713175"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:346557f5b1d8fd9966059b7a748fd79ac59f5752cd0e9498d6a40e3ac1c1875f"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:31e450840f2f27699d014cfc8865cc747184286b26d945bcea6042bb6aa4d26e"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01227f8b3e6c8961490d869aa65c99653df80d2f0a7fde8c64ebddab2b9b02fd"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69084fd29bfeff14816666c93a466e85414fe6b7d236cfc108a9c11afa6f7301"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d2b88efe65544a7d5121b0c3b003ebba92bfede2ea3577ce548b69c5235185"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ea961a674172ed2235d990d7edf85d15d8dfa23ab8575e48306371c070cda67"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:5beffdbe766cfe4fb04f30644d822a1080b5359df7db3a63d30fa928375b2720"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:720f3108fb1bfa32e51db58b832898372eb5891e8472a8093008010911e324c5"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:c2087dbb76a87ec2c619253e021e4fb20d1a72580feeaa6892b0b3d955175a71"}, + {file = "rpds_py-0.19.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2ddd50f18ebc05ec29a0d9271e9dbe93997536da3546677f8ca00b76d477680c"}, + {file = "rpds_py-0.19.1.tar.gz", hash = "sha256:31dd5794837f00b46f4096aa8ccaa5972f73a938982e32ed817bb520c465e520"}, ] [[package]] @@ -3992,87 +4026,90 @@ torch = ["safetensors[numpy]", "torch (>=1.10)"] [[package]] name = "scikit-learn" -version = "1.4.2" +version = "1.5.1" description = "A set of python modules for machine learning and data mining" optional = false python-versions = ">=3.9" files = [ - {file = "scikit-learn-1.4.2.tar.gz", hash = "sha256:daa1c471d95bad080c6e44b4946c9390a4842adc3082572c20e4f8884e39e959"}, - {file = "scikit_learn-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8539a41b3d6d1af82eb629f9c57f37428ff1481c1e34dddb3b9d7af8ede67ac5"}, - {file = "scikit_learn-1.4.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:68b8404841f944a4a1459b07198fa2edd41a82f189b44f3e1d55c104dbc2e40c"}, - {file = "scikit_learn-1.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81bf5d8bbe87643103334032dd82f7419bc8c8d02a763643a6b9a5c7288c5054"}, - {file = "scikit_learn-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36f0ea5d0f693cb247a073d21a4123bdf4172e470e6d163c12b74cbb1536cf38"}, - {file = "scikit_learn-1.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:87440e2e188c87db80ea4023440923dccbd56fbc2d557b18ced00fef79da0727"}, - {file = "scikit_learn-1.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:45dee87ac5309bb82e3ea633955030df9bbcb8d2cdb30383c6cd483691c546cc"}, - {file = "scikit_learn-1.4.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1d0b25d9c651fd050555aadd57431b53d4cf664e749069da77f3d52c5ad14b3b"}, - {file = "scikit_learn-1.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0203c368058ab92efc6168a1507d388d41469c873e96ec220ca8e74079bf62e"}, - {file = "scikit_learn-1.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44c62f2b124848a28fd695db5bc4da019287abf390bfce602ddc8aa1ec186aae"}, - {file = "scikit_learn-1.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:5cd7b524115499b18b63f0c96f4224eb885564937a0b3477531b2b63ce331904"}, - {file = "scikit_learn-1.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:90378e1747949f90c8f385898fff35d73193dfcaec3dd75d6b542f90c4e89755"}, - {file = "scikit_learn-1.4.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ff4effe5a1d4e8fed260a83a163f7dbf4f6087b54528d8880bab1d1377bd78be"}, - {file = "scikit_learn-1.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:671e2f0c3f2c15409dae4f282a3a619601fa824d2c820e5b608d9d775f91780c"}, - {file = "scikit_learn-1.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d36d0bc983336bbc1be22f9b686b50c964f593c8a9a913a792442af9bf4f5e68"}, - {file = "scikit_learn-1.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:d762070980c17ba3e9a4a1e043ba0518ce4c55152032f1af0ca6f39b376b5928"}, - {file = "scikit_learn-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d9993d5e78a8148b1d0fdf5b15ed92452af5581734129998c26f481c46586d68"}, - {file = "scikit_learn-1.4.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:426d258fddac674fdf33f3cb2d54d26f49406e2599dbf9a32b4d1696091d4256"}, - {file = "scikit_learn-1.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5460a1a5b043ae5ae4596b3126a4ec33ccba1b51e7ca2c5d36dac2169f62ab1d"}, - {file = "scikit_learn-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49d64ef6cb8c093d883e5a36c4766548d974898d378e395ba41a806d0e824db8"}, - {file = "scikit_learn-1.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:c97a50b05c194be9146d61fe87dbf8eac62b203d9e87a3ccc6ae9aed2dfaf361"}, + {file = "scikit_learn-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:781586c414f8cc58e71da4f3d7af311e0505a683e112f2f62919e3019abd3745"}, + {file = "scikit_learn-1.5.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5b213bc29cc30a89a3130393b0e39c847a15d769d6e59539cd86b75d276b1a7"}, + {file = "scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ff4ba34c2abff5ec59c803ed1d97d61b036f659a17f55be102679e88f926fac"}, + {file = "scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:161808750c267b77b4a9603cf9c93579c7a74ba8486b1336034c2f1579546d21"}, + {file = "scikit_learn-1.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:10e49170691514a94bb2e03787aa921b82dbc507a4ea1f20fd95557862c98dc1"}, + {file = "scikit_learn-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:154297ee43c0b83af12464adeab378dee2d0a700ccd03979e2b821e7dd7cc1c2"}, + {file = "scikit_learn-1.5.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:b5e865e9bd59396220de49cb4a57b17016256637c61b4c5cc81aaf16bc123bbe"}, + {file = "scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:909144d50f367a513cee6090873ae582dba019cb3fca063b38054fa42704c3a4"}, + {file = "scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689b6f74b2c880276e365fe84fe4f1befd6a774f016339c65655eaff12e10cbf"}, + {file = "scikit_learn-1.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:9a07f90846313a7639af6a019d849ff72baadfa4c74c778821ae0fad07b7275b"}, + {file = "scikit_learn-1.5.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5944ce1faada31c55fb2ba20a5346b88e36811aab504ccafb9f0339e9f780395"}, + {file = "scikit_learn-1.5.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0828673c5b520e879f2af6a9e99eee0eefea69a2188be1ca68a6121b809055c1"}, + {file = "scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:508907e5f81390e16d754e8815f7497e52139162fd69c4fdbd2dfa5d6cc88915"}, + {file = "scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97625f217c5c0c5d0505fa2af28ae424bd37949bb2f16ace3ff5f2f81fb4498b"}, + {file = "scikit_learn-1.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:da3f404e9e284d2b0a157e1b56b6566a34eb2798205cba35a211df3296ab7a74"}, + {file = "scikit_learn-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:88e0672c7ac21eb149d409c74cc29f1d611d5158175846e7a9c2427bd12b3956"}, + {file = "scikit_learn-1.5.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:7b073a27797a283187a4ef4ee149959defc350b46cbf63a84d8514fe16b69855"}, + {file = "scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b59e3e62d2be870e5c74af4e793293753565c7383ae82943b83383fdcf5cc5c1"}, + {file = "scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd8d3a19d4bd6dc5a7d4f358c8c3a60934dc058f363c34c0ac1e9e12a31421d"}, + {file = "scikit_learn-1.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:5f57428de0c900a98389c4a433d4a3cf89de979b3aa24d1c1d251802aa15e44d"}, + {file = "scikit_learn-1.5.1.tar.gz", hash = "sha256:0ea5d40c0e3951df445721927448755d3fe1d80833b0b7308ebff5d2a45e6414"}, ] [package.dependencies] joblib = ">=1.2.0" numpy = ">=1.19.5" scipy = ">=1.6.0" -threadpoolctl = ">=2.0.0" +threadpoolctl = ">=3.1.0" [package.extras] -benchmark = ["matplotlib (>=3.3.4)", "memory-profiler (>=0.57.0)", "pandas (>=1.1.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.15.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.19.12)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.17.2)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] [[package]] name = "scipy" -version = "1.13.0" +version = "1.14.0" description = "Fundamental algorithms for scientific computing in Python" optional = false -python-versions = ">=3.9" +python-versions = ">=3.10" files = [ - {file = "scipy-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ba419578ab343a4e0a77c0ef82f088238a93eef141b2b8017e46149776dfad4d"}, - {file = "scipy-1.13.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:22789b56a999265431c417d462e5b7f2b487e831ca7bef5edeb56efe4c93f86e"}, - {file = "scipy-1.13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05f1432ba070e90d42d7fd836462c50bf98bd08bed0aa616c359eed8a04e3922"}, - {file = "scipy-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8434f6f3fa49f631fae84afee424e2483289dfc30a47755b4b4e6b07b2633a4"}, - {file = "scipy-1.13.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:dcbb9ea49b0167de4167c40eeee6e167caeef11effb0670b554d10b1e693a8b9"}, - {file = "scipy-1.13.0-cp310-cp310-win_amd64.whl", hash = "sha256:1d2f7bb14c178f8b13ebae93f67e42b0a6b0fc50eba1cd8021c9b6e08e8fb1cd"}, - {file = "scipy-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fbcf8abaf5aa2dc8d6400566c1a727aed338b5fe880cde64907596a89d576fa"}, - {file = "scipy-1.13.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5e4a756355522eb60fcd61f8372ac2549073c8788f6114449b37e9e8104f15a5"}, - {file = "scipy-1.13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5acd8e1dbd8dbe38d0004b1497019b2dbbc3d70691e65d69615f8a7292865d7"}, - {file = "scipy-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ff7dad5d24a8045d836671e082a490848e8639cabb3dbdacb29f943a678683d"}, - {file = "scipy-1.13.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4dca18c3ffee287ddd3bc8f1dabaf45f5305c5afc9f8ab9cbfab855e70b2df5c"}, - {file = "scipy-1.13.0-cp311-cp311-win_amd64.whl", hash = "sha256:a2f471de4d01200718b2b8927f7d76b5d9bde18047ea0fa8bd15c5ba3f26a1d6"}, - {file = "scipy-1.13.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d0de696f589681c2802f9090fff730c218f7c51ff49bf252b6a97ec4a5d19e8b"}, - {file = "scipy-1.13.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:b2a3ff461ec4756b7e8e42e1c681077349a038f0686132d623fa404c0bee2551"}, - {file = "scipy-1.13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf9fe63e7a4bf01d3645b13ff2aa6dea023d38993f42aaac81a18b1bda7a82a"}, - {file = "scipy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e7626dfd91cdea5714f343ce1176b6c4745155d234f1033584154f60ef1ff42"}, - {file = "scipy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:109d391d720fcebf2fbe008621952b08e52907cf4c8c7efc7376822151820820"}, - {file = "scipy-1.13.0-cp312-cp312-win_amd64.whl", hash = "sha256:8930ae3ea371d6b91c203b1032b9600d69c568e537b7988a3073dfe4d4774f21"}, - {file = "scipy-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5407708195cb38d70fd2d6bb04b1b9dd5c92297d86e9f9daae1576bd9e06f602"}, - {file = "scipy-1.13.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:ac38c4c92951ac0f729c4c48c9e13eb3675d9986cc0c83943784d7390d540c78"}, - {file = "scipy-1.13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09c74543c4fbeb67af6ce457f6a6a28e5d3739a87f62412e4a16e46f164f0ae5"}, - {file = "scipy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28e286bf9ac422d6beb559bc61312c348ca9b0f0dae0d7c5afde7f722d6ea13d"}, - {file = "scipy-1.13.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:33fde20efc380bd23a78a4d26d59fc8704e9b5fd9b08841693eb46716ba13d86"}, - {file = "scipy-1.13.0-cp39-cp39-win_amd64.whl", hash = "sha256:45c08bec71d3546d606989ba6e7daa6f0992918171e2a6f7fbedfa7361c2de1e"}, - {file = "scipy-1.13.0.tar.gz", hash = "sha256:58569af537ea29d3f78e5abd18398459f195546bb3be23d16677fb26616cc11e"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7e911933d54ead4d557c02402710c2396529540b81dd554fc1ba270eb7308484"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:687af0a35462402dd851726295c1a5ae5f987bd6e9026f52e9505994e2f84ef6"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:07e179dc0205a50721022344fb85074f772eadbda1e1b3eecdc483f8033709b7"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a9c9a9b226d9a21e0a208bdb024c3982932e43811b62d202aaf1bb59af264b1"}, + {file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076c27284c768b84a45dcf2e914d4000aac537da74236a0d45d82c6fa4b7b3c0"}, + {file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42470ea0195336df319741e230626b6225a740fd9dce9642ca13e98f667047c0"}, + {file = "scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:176c6f0d0470a32f1b2efaf40c3d37a24876cebf447498a4cefb947a79c21e9d"}, + {file = "scipy-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:ad36af9626d27a4326c8e884917b7ec321d8a1841cd6dacc67d2a9e90c2f0359"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6d056a8709ccda6cf36cdd2eac597d13bc03dba38360f418560a93050c76a16e"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:f0a50da861a7ec4573b7c716b2ebdcdf142b66b756a0d392c236ae568b3a93fb"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:94c164a9e2498e68308e6e148646e486d979f7fcdb8b4cf34b5441894bdb9caf"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a7d46c3e0aea5c064e734c3eac5cf9eb1f8c4ceee756262f2c7327c4c2691c86"}, + {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9eee2989868e274aae26125345584254d97c56194c072ed96cb433f32f692ed8"}, + {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3154691b9f7ed73778d746da2df67a19d046a6c8087c8b385bc4cdb2cfca74"}, + {file = "scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c40003d880f39c11c1edbae8144e3813904b10514cd3d3d00c277ae996488cdb"}, + {file = "scipy-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:5b083c8940028bb7e0b4172acafda6df762da1927b9091f9611b0bcd8676f2bc"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff2438ea1330e06e53c424893ec0072640dac00f29c6a43a575cbae4c99b2b9"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:bbc0471b5f22c11c389075d091d3885693fd3f5e9a54ce051b46308bc787e5d4"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:64b2ff514a98cf2bb734a9f90d32dc89dc6ad4a4a36a312cd0d6327170339eb0"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:7d3da42fbbbb860211a811782504f38ae7aaec9de8764a9bef6b262de7a2b50f"}, + {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d91db2c41dd6c20646af280355d41dfa1ec7eead235642178bd57635a3f82209"}, + {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a01cc03bcdc777c9da3cfdcc74b5a75caffb48a6c39c8450a9a05f82c4250a14"}, + {file = "scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:65df4da3c12a2bb9ad52b86b4dcf46813e869afb006e58be0f516bc370165159"}, + {file = "scipy-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:4c4161597c75043f7154238ef419c29a64ac4a7c889d588ea77690ac4d0d9b20"}, + {file = "scipy-1.14.0.tar.gz", hash = "sha256:b5923f48cb840380f9854339176ef21763118a7300a88203ccd0bdd26e58527b"}, ] [package.dependencies] -numpy = ">=1.22.4,<2.3" +numpy = ">=1.23.5,<2.3" [package.extras] -dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] -doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] -test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "seaborn" @@ -4175,13 +4212,13 @@ files = [ [[package]] name = "sentry-sdk" -version = "2.1.1" +version = "2.11.0" description = "Python client for Sentry (https://sentry.io)" optional = false python-versions = ">=3.6" files = [ - {file = "sentry_sdk-2.1.1-py2.py3-none-any.whl", hash = "sha256:99aeb78fb76771513bd3b2829d12613130152620768d00cd3e45ac00cb17950f"}, - {file = "sentry_sdk-2.1.1.tar.gz", hash = "sha256:95d8c0bb41c8b0bc37ab202c2c4a295bb84398ee05f4cdce55051cd75b926ec1"}, + {file = "sentry_sdk-2.11.0-py2.py3-none-any.whl", hash = "sha256:d964710e2dbe015d9dc4ff0ad16225d68c3b36936b742a6fe0504565b760a3b7"}, + {file = "sentry_sdk-2.11.0.tar.gz", hash = "sha256:4ca16e9f5c7c6bc2fb2d5c956219f4926b148e511fffdbbde711dc94f1e0468f"}, ] [package.dependencies] @@ -4203,7 +4240,7 @@ django = ["django (>=1.8)"] falcon = ["falcon (>=1.4)"] fastapi = ["fastapi (>=0.79.0)"] flask = ["blinker (>=1.1)", "flask (>=0.11)", "markupsafe"] -grpcio = ["grpcio (>=1.21.1)"] +grpcio = ["grpcio (>=1.21.1)", "protobuf (>=3.8.0)"] httpx = ["httpx (>=0.16.0)"] huey = ["huey (>=2)"] huggingface-hub = ["huggingface-hub (>=0.22)"] @@ -4211,7 +4248,7 @@ langchain = ["langchain (>=0.0.210)"] loguru = ["loguru (>=0.5)"] openai = ["openai (>=1.0.0)", "tiktoken (>=0.3.0)"] opentelemetry = ["opentelemetry-distro (>=0.35b0)"] -opentelemetry-experimental = ["opentelemetry-distro (>=0.40b0,<1.0)", "opentelemetry-instrumentation-aiohttp-client (>=0.40b0,<1.0)", "opentelemetry-instrumentation-django (>=0.40b0,<1.0)", "opentelemetry-instrumentation-fastapi (>=0.40b0,<1.0)", "opentelemetry-instrumentation-flask (>=0.40b0,<1.0)", "opentelemetry-instrumentation-requests (>=0.40b0,<1.0)", "opentelemetry-instrumentation-sqlite3 (>=0.40b0,<1.0)", "opentelemetry-instrumentation-urllib (>=0.40b0,<1.0)"] +opentelemetry-experimental = ["opentelemetry-instrumentation-aio-pika (==0.46b0)", "opentelemetry-instrumentation-aiohttp-client (==0.46b0)", "opentelemetry-instrumentation-aiopg (==0.46b0)", "opentelemetry-instrumentation-asgi (==0.46b0)", "opentelemetry-instrumentation-asyncio (==0.46b0)", "opentelemetry-instrumentation-asyncpg (==0.46b0)", "opentelemetry-instrumentation-aws-lambda (==0.46b0)", "opentelemetry-instrumentation-boto (==0.46b0)", "opentelemetry-instrumentation-boto3sqs (==0.46b0)", "opentelemetry-instrumentation-botocore (==0.46b0)", "opentelemetry-instrumentation-cassandra (==0.46b0)", "opentelemetry-instrumentation-celery (==0.46b0)", "opentelemetry-instrumentation-confluent-kafka (==0.46b0)", "opentelemetry-instrumentation-dbapi (==0.46b0)", "opentelemetry-instrumentation-django (==0.46b0)", "opentelemetry-instrumentation-elasticsearch (==0.46b0)", "opentelemetry-instrumentation-falcon (==0.46b0)", "opentelemetry-instrumentation-fastapi (==0.46b0)", "opentelemetry-instrumentation-flask (==0.46b0)", "opentelemetry-instrumentation-grpc (==0.46b0)", "opentelemetry-instrumentation-httpx (==0.46b0)", "opentelemetry-instrumentation-jinja2 (==0.46b0)", "opentelemetry-instrumentation-kafka-python (==0.46b0)", "opentelemetry-instrumentation-logging (==0.46b0)", "opentelemetry-instrumentation-mysql (==0.46b0)", "opentelemetry-instrumentation-mysqlclient (==0.46b0)", "opentelemetry-instrumentation-pika (==0.46b0)", "opentelemetry-instrumentation-psycopg (==0.46b0)", "opentelemetry-instrumentation-psycopg2 (==0.46b0)", "opentelemetry-instrumentation-pymemcache (==0.46b0)", "opentelemetry-instrumentation-pymongo (==0.46b0)", "opentelemetry-instrumentation-pymysql (==0.46b0)", "opentelemetry-instrumentation-pyramid (==0.46b0)", "opentelemetry-instrumentation-redis (==0.46b0)", "opentelemetry-instrumentation-remoulade (==0.46b0)", "opentelemetry-instrumentation-requests (==0.46b0)", "opentelemetry-instrumentation-sklearn (==0.46b0)", "opentelemetry-instrumentation-sqlalchemy (==0.46b0)", "opentelemetry-instrumentation-sqlite3 (==0.46b0)", "opentelemetry-instrumentation-starlette (==0.46b0)", "opentelemetry-instrumentation-system-metrics (==0.46b0)", "opentelemetry-instrumentation-threading (==0.46b0)", "opentelemetry-instrumentation-tornado (==0.46b0)", "opentelemetry-instrumentation-tortoiseorm (==0.46b0)", "opentelemetry-instrumentation-urllib (==0.46b0)", "opentelemetry-instrumentation-urllib3 (==0.46b0)", "opentelemetry-instrumentation-wsgi (==0.46b0)"] pure-eval = ["asttokens", "executing", "pure-eval"] pymongo = ["pymongo (>=3.1)"] pyspark = ["pyspark (>=2.4.4)"] @@ -4221,7 +4258,7 @@ sanic = ["sanic (>=0.8)"] sqlalchemy = ["sqlalchemy (>=1.2)"] starlette = ["starlette (>=0.19.1)"] starlite = ["starlite (>=1.48)"] -tornado = ["tornado (>=5)"] +tornado = ["tornado (>=6)"] [[package]] name = "setproctitle" @@ -4325,19 +4362,19 @@ test = ["pytest"] [[package]] name = "setuptools" -version = "69.5.1" +version = "71.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"}, - {file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"}, + {file = "setuptools-71.1.0-py3-none-any.whl", hash = "sha256:33874fdc59b3188304b2e7c80d9029097ea31627180896fb549c578ceb8a0855"}, + {file = "setuptools-71.1.0.tar.gz", hash = "sha256:032d42ee9fb536e33087fb66cac5f840eb9391ed05637b3f2a76a7c8fb477936"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] [[package]] name = "shellingham" @@ -4415,27 +4452,30 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "sympy" -version = "1.12" +version = "1.13.1" description = "Computer algebra system (CAS) in Python" optional = false python-versions = ">=3.8" files = [ - {file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"}, - {file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"}, + {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, + {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, ] [package.dependencies] -mpmath = ">=0.19" +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] [[package]] name = "tenacity" -version = "8.3.0" +version = "8.5.0" description = "Retry code until it succeeds" optional = false python-versions = ">=3.8" files = [ - {file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"}, - {file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"}, + {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, + {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, ] [package.extras] @@ -4636,42 +4676,42 @@ files = [ [[package]] name = "tomlkit" -version = "0.12.5" +version = "0.13.0" description = "Style preserving TOML library" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomlkit-0.12.5-py3-none-any.whl", hash = "sha256:af914f5a9c59ed9d0762c7b64d3b5d5df007448eb9cd2edc8a46b1eafead172f"}, - {file = "tomlkit-0.12.5.tar.gz", hash = "sha256:eef34fba39834d4d6b73c9ba7f3e4d1c417a4e56f89a7e96e090dd0d24b8fb3c"}, + {file = "tomlkit-0.13.0-py3-none-any.whl", hash = "sha256:7075d3042d03b80f603482d69bf0c8f345c2b30e41699fd8883227f89972b264"}, + {file = "tomlkit-0.13.0.tar.gz", hash = "sha256:08ad192699734149f5b97b45f1f18dad7eb1b6d16bc72ad0c2335772650d7b72"}, ] [[package]] name = "torch" -version = "2.1.2" +version = "2.4.0" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3a871edd6c02dae77ad810335c0833391c1a4ce49af21ea8cf0f6a5d2096eea8"}, - {file = "torch-2.1.2-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:bef6996c27d8f6e92ea4e13a772d89611da0e103b48790de78131e308cf73076"}, - {file = "torch-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:0e13034fd5fb323cbbc29e56d0637a3791e50dd589616f40c79adfa36a5a35a1"}, - {file = "torch-2.1.2-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:d9b535cad0df3d13997dbe8bd68ac33e0e3ae5377639c9881948e40794a61403"}, - {file = "torch-2.1.2-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:f9a55d55af02826ebfbadf4e9b682f0f27766bc33df8236b48d28d705587868f"}, - {file = "torch-2.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:a6ebbe517097ef289cc7952783588c72de071d4b15ce0f8b285093f0916b1162"}, - {file = "torch-2.1.2-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:8f32ce591616a30304f37a7d5ea80b69ca9e1b94bba7f308184bf616fdaea155"}, - {file = "torch-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:e0ee6cf90c8970e05760f898d58f9ac65821c37ffe8b04269ec787aa70962b69"}, - {file = "torch-2.1.2-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:76d37967c31c99548ad2c4d3f2cf191db48476f2e69b35a0937137116da356a1"}, - {file = "torch-2.1.2-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:e2d83f07b4aac983453ea5bf8f9aa9dacf2278a8d31247f5d9037f37befc60e4"}, - {file = "torch-2.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:f41fe0c7ecbf903a568c73486139a75cfab287a0f6c17ed0698fdea7a1e8641d"}, - {file = "torch-2.1.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:e3225f47d50bb66f756fe9196a768055d1c26b02154eb1f770ce47a2578d3aa7"}, - {file = "torch-2.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:33d59cd03cb60106857f6c26b36457793637512998666ee3ce17311f217afe2b"}, - {file = "torch-2.1.2-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:8e221deccd0def6c2badff6be403e0c53491805ed9915e2c029adbcdb87ab6b5"}, - {file = "torch-2.1.2-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:05b18594f60a911a0c4f023f38a8bda77131fba5fd741bda626e97dcf5a3dd0a"}, - {file = "torch-2.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:9ca96253b761e9aaf8e06fb30a66ee301aecbf15bb5a303097de1969077620b6"}, - {file = "torch-2.1.2-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:d93ba70f67b08c2ae5598ee711cbc546a1bc8102cef938904b8c85c2089a51a0"}, - {file = "torch-2.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:255b50bc0608db177e6a3cc118961d77de7e5105f07816585fa6f191f33a9ff3"}, - {file = "torch-2.1.2-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6984cd5057c0c977b3c9757254e989d3f1124f4ce9d07caa6cb637783c71d42a"}, - {file = "torch-2.1.2-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:bc195d7927feabc0eb7c110e457c955ed2ab616f3c7c28439dd4188cf589699f"}, + {file = "torch-2.4.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:4ed94583e244af51d6a8d28701ca5a9e02d1219e782f5a01dd401f90af17d8ac"}, + {file = "torch-2.4.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c4ca297b7bd58b506bfd6e78ffd14eb97c0e7797dcd7965df62f50bb575d8954"}, + {file = "torch-2.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2497cbc7b3c951d69b276ca51fe01c2865db67040ac67f5fc20b03e41d16ea4a"}, + {file = "torch-2.4.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:685418ab93730efbee71528821ff54005596970dd497bf03c89204fb7e3f71de"}, + {file = "torch-2.4.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e743adadd8c8152bb8373543964551a7cb7cc20ba898dc8f9c0cdbe47c283de0"}, + {file = "torch-2.4.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:7334325c0292cbd5c2eac085f449bf57d3690932eac37027e193ba775703c9e6"}, + {file = "torch-2.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:97730014da4c57ffacb3c09298c6ce05400606e890bd7a05008d13dd086e46b1"}, + {file = "torch-2.4.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:f169b4ea6dc93b3a33319611fcc47dc1406e4dd539844dcbd2dec4c1b96e166d"}, + {file = "torch-2.4.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:997084a0f9784d2a89095a6dc67c7925e21bf25dea0b3d069b41195016ccfcbb"}, + {file = "torch-2.4.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:bc3988e8b36d1e8b998d143255d9408d8c75da4ab6dd0dcfd23b623dfb0f0f57"}, + {file = "torch-2.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:3374128bbf7e62cdaed6c237bfd39809fbcfaa576bee91e904706840c3f2195c"}, + {file = "torch-2.4.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:91aaf00bfe1ffa44dc5b52809d9a95129fca10212eca3ac26420eb11727c6288"}, + {file = "torch-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cc30457ea5489c62747d3306438af00c606b509d78822a88f804202ba63111ed"}, + {file = "torch-2.4.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a046491aaf96d1215e65e1fa85911ef2ded6d49ea34c8df4d0638879f2402eef"}, + {file = "torch-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:688eec9240f3ce775f22e1e1a5ab9894f3d5fe60f3f586deb7dbd23a46a83916"}, + {file = "torch-2.4.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:3af4de2a618fb065e78404c4ba27a818a7b7957eaeff28c6c66ce7fb504b68b8"}, + {file = "torch-2.4.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:618808d3f610d5f180e47a697d4ec90b810953bb1e020f424b2ac7fb0884b545"}, + {file = "torch-2.4.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed765d232d23566052ba83632ec73a4fccde00b4c94ad45d63b471b09d63b7a7"}, + {file = "torch-2.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:a2feb98ac470109472fb10dfef38622a7ee08482a16c357863ebc7bc7db7c8f7"}, + {file = "torch-2.4.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8940fc8b97a4c61fdb5d46a368f21f4a3a562a17879e932eb51a5ec62310cb31"}, ] [package.dependencies] @@ -4683,39 +4723,39 @@ nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linu nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "9.1.0.70", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.18.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} sympy = "*" -triton = {version = "2.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -typing-extensions = "*" +triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} +typing-extensions = ">=4.8.0" [package.extras] -dynamo = ["jinja2"] opt-einsum = ["opt-einsum (>=3.3)"] +optree = ["optree (>=0.11.0)"] [[package]] name = "tornado" -version = "6.4" +version = "6.4.1" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0"}, - {file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579"}, - {file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl", hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78"}, - {file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f"}, - {file = "tornado-6.4-cp38-abi3-win32.whl", hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052"}, - {file = "tornado-6.4-cp38-abi3-win_amd64.whl", hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63"}, - {file = "tornado-6.4.tar.gz", hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, ] [[package]] @@ -4755,13 +4795,13 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0, [[package]] name = "transformer-lens" -version = "1.17.0" +version = "2.2.2" description = "An implementation of transformers tailored for mechanistic interpretability." optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "transformer_lens-1.17.0-py3-none-any.whl", hash = "sha256:25e3817bc9d2ec6145ce709c2d5839340d187a1c229f0cf8b571568d8ee7851f"}, - {file = "transformer_lens-1.17.0.tar.gz", hash = "sha256:0513efb359405f56264da6c68881decc083279b8f6131629066d6c1c6647fb5a"}, + {file = "transformer_lens-2.2.2-py3-none-any.whl", hash = "sha256:81b091d23b914481dd40a6db05d5adff29202000159bcf1a0db0d68e07e6b1a9"}, + {file = "transformer_lens-2.2.2.tar.gz", hash = "sha256:08682b80c051807ac10fb7590942a18ec7f9392c8b58c7debeaee3bec5975fbc"}, ] [package.dependencies] @@ -4780,8 +4820,8 @@ pandas = ">=1.1.5" rich = ">=12.6.0" sentencepiece = "*" torch = [ - {version = ">=1.10", markers = "sys_platform == \"linux\""}, {version = ">=1.10,<2.0 || >2.0,<2.1.0 || >2.1.0", markers = "sys_platform != \"linux\""}, + {version = ">=1.10", markers = "sys_platform == \"linux\""}, ] tqdm = ">=4.64.1" transformers = ">=4.37.2" @@ -4790,18 +4830,18 @@ wandb = ">=0.13.5" [[package]] name = "transformers" -version = "4.40.2" +version = "4.43.3" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.8.0" files = [ - {file = "transformers-4.40.2-py3-none-any.whl", hash = "sha256:71cb94301ec211a2e1d4b8c8d18dcfaa902dfa00a089dceca167a8aa265d6f2d"}, - {file = "transformers-4.40.2.tar.gz", hash = "sha256:657b6054a2097671398d976ad46e60836e7e15f9ea9551631a96e33cb9240649"}, + {file = "transformers-4.43.3-py3-none-any.whl", hash = "sha256:6552beada5d826c25ff9b79139d237ab9050c6ea96b73d7fd2f8a8ba23ee76a4"}, + {file = "transformers-4.43.3.tar.gz", hash = "sha256:820c5b192bb1bf47250802901a8f0bf581e06b8fded89179d4ef08a1e903ee1c"}, ] [package.dependencies] filelock = "*" -huggingface-hub = ">=0.19.3,<1.0" +huggingface-hub = ">=0.23.2,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" @@ -4814,17 +4854,16 @@ tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.21.0)"] agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +benchmark = ["optimum-benchmark (>=0.2.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] -deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -docs = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] -docs-specific = ["hf-doc-builder"] -flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"] +deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"] @@ -4834,51 +4873,54 @@ natten = ["natten (>=0.14.6,<0.15.0)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] -quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<2.0.0)"] +quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.4.4)", "urllib3 (<2.0.0)"] ray = ["ray[tune] (>=2.7.0)"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] +ruff = ["ruff (==0.4.4)"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] -tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -timm = ["timm"] +timm = ["timm (<=0.9.16)"] tokenizers = ["tokenizers (>=0.19,<0.20)"] torch = ["accelerate (>=0.21.0)", "torch"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.19.3,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] +torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"] [[package]] name = "triton" -version = "2.1.0" +version = "3.0.0" description = "A language and compiler for custom Deep Learning operations" optional = false python-versions = "*" files = [ - {file = "triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:66439923a30d5d48399b08a9eae10370f6c261a5ec864a64983bae63152d39d7"}, - {file = "triton-2.1.0-0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:919b06453f0033ea52c13eaf7833de0e57db3178d23d4e04f9fc71c4f2c32bf8"}, - {file = "triton-2.1.0-0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ae4bb8a91de790e1866405211c4d618379781188f40d5c4c399766914e84cd94"}, - {file = "triton-2.1.0-0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:39f6fb6bdccb3e98f3152e3fbea724f1aeae7d749412bbb1fa9c441d474eba26"}, - {file = "triton-2.1.0-0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:21544e522c02005a626c8ad63d39bdff2f31d41069592919ef281e964ed26446"}, - {file = "triton-2.1.0-0-pp37-pypy37_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:143582ca31dd89cd982bd3bf53666bab1c7527d41e185f9e3d8a3051ce1b663b"}, - {file = "triton-2.1.0-0-pp38-pypy38_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82fc5aeeedf6e36be4e4530cbdcba81a09d65c18e02f52dc298696d45721f3bd"}, - {file = "triton-2.1.0-0-pp39-pypy39_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:81a96d110a738ff63339fc892ded095b31bd0d205e3aace262af8400d40b6fa8"}, + {file = "triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a"}, + {file = "triton-3.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5ce8520437c602fb633f1324cc3871c47bee3b67acf9756c1a66309b60e3216c"}, + {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, + {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, + {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, + {file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"}, + {file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"}, + {file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"}, + {file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"}, + {file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"}, ] [package.dependencies] filelock = "*" [package.extras] -build = ["cmake (>=3.18)", "lit"] -tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)"] +build = ["cmake (>=3.20)", "lit"] +tests = ["autopep8", "flake8", "isort", "llnl-hatchet", "numpy", "pytest", "scipy (>=1.7.1)"] tutorials = ["matplotlib", "pandas", "tabulate"] [[package]] @@ -4926,13 +4968,24 @@ files = [ [[package]] name = "typing-extensions" -version = "4.11.0" +version = "4.12.2" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"}, - {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, ] [[package]] @@ -4951,13 +5004,13 @@ dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake [[package]] name = "urllib3" -version = "2.2.1" +version = "2.2.2" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, - {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, ] [package.extras] @@ -4968,18 +5021,18 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "wandb" -version = "0.17.0" +version = "0.17.5" description = "A CLI and library for interacting with the Weights & Biases API." optional = false python-versions = ">=3.7" files = [ - {file = "wandb-0.17.0-py3-none-any.whl", hash = "sha256:b1b056b4cad83b00436cb76049fd29ecedc6045999dcaa5eba40db6680960ac2"}, - {file = "wandb-0.17.0-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:e1e6f04e093a6a027dcb100618ca23b122d032204b2ed4c62e4e991a48041a6b"}, - {file = "wandb-0.17.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:feeb60d4ff506d2a6bc67f953b310d70b004faa789479c03ccd1559c6f1a9633"}, - {file = "wandb-0.17.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7bed8a3dd404a639e6bf5fea38c6efe2fb98d416ff1db4fb51be741278ed328"}, - {file = "wandb-0.17.0-py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56a1dd6e0e635cba3f6ed30b52c71739bdc2a3e57df155619d2d80ee952b4201"}, - {file = "wandb-0.17.0-py3-none-win32.whl", hash = "sha256:1f692d3063a0d50474022cfe6668e1828260436d1cd40827d1e136b7f730c74c"}, - {file = "wandb-0.17.0-py3-none-win_amd64.whl", hash = "sha256:ab582ca0d54d52ef5b991de0717350b835400d9ac2d3adab210022b68338d694"}, + {file = "wandb-0.17.5-py3-none-any.whl", hash = "sha256:1c0f60446b51561b67280a060388ffad2a6078fcfdf5024b9998252d237b4639"}, + {file = "wandb-0.17.5-py3-none-macosx_10_14_x86_64.whl", hash = "sha256:653252c57df550edc70607da827bc68c670932d6775e2f6556909575e17c544b"}, + {file = "wandb-0.17.5-py3-none-macosx_11_0_arm64.whl", hash = "sha256:233b02d3643142cce8c0ae7986c233fe976b3f7ec0f7aded7478dad0d5a74d43"}, + {file = "wandb-0.17.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca55edb64f0256a4d4961c3d9dd281a5928037827a21315a8ca67e92ccc60d06"}, + {file = "wandb-0.17.5-py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10e4b954ce7ff8615ee64b2dd5a04e51e8c64568d47ec39f5995dbbc9df172db"}, + {file = "wandb-0.17.5-py3-none-win32.whl", hash = "sha256:04013a6974dd5ff8d69cff79efdbad625db9873e3049bffe85cf39d81f5207cb"}, + {file = "wandb-0.17.5-py3-none-win_amd64.whl", hash = "sha256:c90e80df09c47e3e0432b2e4e90a4eff34f15e891467ec2f3c284834a33cd6c4"}, ] [package.dependencies] @@ -4987,7 +5040,7 @@ click = ">=7.1,<8.0.0 || >8.0.0" docker-pycreds = ">=0.4.0" gitpython = ">=1.0.0,<3.1.29 || >3.1.29" platformdirs = "*" -protobuf = {version = ">=3.19.0,<4.21.0 || >4.21.0,<5", markers = "python_version > \"3.9\" or sys_platform != \"linux\""} +protobuf = {version = ">=3.19.0,<4.21.0 || >4.21.0,<6", markers = "python_version > \"3.9\" or sys_platform != \"linux\""} psutil = ">=5.0.0" pyyaml = "*" requests = ">=2.0.0,<3" @@ -5005,8 +5058,8 @@ launch = ["awscli", "azure-containerregistry", "azure-identity", "azure-storage- media = ["bokeh", "moviepy", "numpy", "pillow", "plotly (>=5.18.0)", "rdkit-pypi", "soundfile"] models = ["cloudpickle"] perf = ["orjson"] -reports = ["pydantic (>=2.0.0)"] sweeps = ["sweeps (>=0.2.0)"] +workspaces = ["wandb-workspaces"] [[package]] name = "wcwidth" @@ -5021,18 +5074,18 @@ files = [ [[package]] name = "webcolors" -version = "1.13" +version = "24.6.0" description = "A library for working with the color formats defined by HTML and CSS." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, - {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, + {file = "webcolors-24.6.0-py3-none-any.whl", hash = "sha256:8cf5bc7e28defd1d48b9e83d5fc30741328305a8195c29a8e668fa45586568a1"}, + {file = "webcolors-24.6.0.tar.gz", hash = "sha256:1d160d1de46b3e81e58d0a280d0c78b467dc80f47294b91b1ad8029d2cedb55b"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["pytest", "pytest-cov"] +tests = ["coverage[toml]"] [[package]] name = "webencodings" @@ -5063,13 +5116,13 @@ test = ["websockets"] [[package]] name = "widgetsnbextension" -version = "4.0.10" +version = "4.0.11" description = "Jupyter interactive widgets for Jupyter Notebook" optional = false python-versions = ">=3.7" files = [ - {file = "widgetsnbextension-4.0.10-py3-none-any.whl", hash = "sha256:d37c3724ec32d8c48400a435ecfa7d3e259995201fbefa37163124a9fcb393cc"}, - {file = "widgetsnbextension-4.0.10.tar.gz", hash = "sha256:64196c5ff3b9a9183a8e699a4227fb0b7002f252c814098e66c4d1cd0644688f"}, + {file = "widgetsnbextension-4.0.11-py3-none-any.whl", hash = "sha256:55d4d6949d100e0d08b94948a42efc3ed6dfdc0e9468b2c4b128c9a2ce3a7a36"}, + {file = "widgetsnbextension-4.0.11.tar.gz", hash = "sha256:8b22a8f1910bfd188e596fe7fc05dcbd87e810c8a4ba010bdb3da86637398474"}, ] [[package]] @@ -5294,35 +5347,38 @@ multidict = ">=4.0" [[package]] name = "zanj" -version = "0.2.1" +version = "0.3.1" description = "save and load complex objects to disk without pickling" optional = false -python-versions = "<4.0,>=3.10" +python-versions = "<4.0,>=3.8" files = [ - {file = "zanj-0.2.1-py3-none-any.whl", hash = "sha256:9a2695a71a1c7d87a4f483e90c49795d589582f97cb1b75cce44ad97ee3c4bc3"}, - {file = "zanj-0.2.1.tar.gz", hash = "sha256:9b0a31e49ce30f74b08cef052185e20717851f0dbabf62904bd8619e0081246f"}, + {file = "zanj-0.3.1-py3-none-any.whl", hash = "sha256:9a8ea449f95c49ee8823499e79311332c5fcc05e9a2ab46d413db8593a554e3f"}, + {file = "zanj-0.3.1.tar.gz", hash = "sha256:caedd60fc66174efb0dab5f757612114fb6157cd7c44200a4488bb65b0c8d9b1"}, ] [package.dependencies] -muutils = {version = ">=0.5.1,<0.6.0", extras = ["array"]} -pandas = ">=1.5.3,<2.0.0" +muutils = {version = ">=0.6.1,<0.7.0", extras = ["array"]} +numpy = {version = ">=1.26.4,<2.0.0", markers = "python_version >= \"3.9\""} + +[package.extras] +pandas = ["pandas (>=1.5.3)"] [[package]] name = "zipp" -version = "3.18.1" +version = "3.19.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"}, - {file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"}, + {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, + {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.13" -content-hash = "a36995e68d2b809182cc7fd00c13c4df7066f0aab71a30edf24a837822fb1ed6" +content-hash = "2f39a218130a10deefead7ff01f8083e876fabb201e9edca27354b41a20dabcb" diff --git a/pyproject.toml b/pyproject.toml index 413fd846..3c04b6e2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "maze-transformer" -version = "0.1.0" +version = "0.2.0" description = "" authors = ["Michael Ivanitskiy ", "Dan Valentine ", "Rusheb Shah ", "Lucia Quirke ", "Can Rager ", "Alex Spies ", "Chris Mathwin ", "Tilman Rauker ", "Guillaume Corlouer "] readme = "README.md" @@ -10,18 +10,18 @@ repository = "https://github.com/understanding-search/maze-transformer" [tool.poetry.dependencies] python = ">=3.10,<3.13" # dataset -maze-dataset = "^0.5.2" +maze-dataset = "^0.5.6" # transformers -torch = ">=1.13.1" -transformer-lens = "^1.14.0" -transformers = ">=4.34" # Dependency in transformer-lens 1.14.0 +torch = "^2.4.0" +transformer-lens = "^2.2.2" +# transformers = ">=4.34" # Dependency in transformer-lens 1.14.0 # utils -muutils = "^0.5.5" -zanj = "^0.2.0" +muutils = "^0.6.7" +zanj = "^0.3.1" # wandb = "^0.13.5" # note: TransformerLens forces us to use 0.13.5 -wandb = "^0.17.0" -fire = "^0.5.0" -typing-extensions = "^4.8.0" +wandb = "^0.17.5" +fire = "^0.6.0" +typing-extensions = "^4.12.2" # plotting matplotlib = "^3.7.0" plotly = "^5.13.1" @@ -36,9 +36,9 @@ scikit-learn = "^1.3.1" [tool.poetry.group.dev.dependencies] pytest = "^7.3.1" -pycln = "^2.1.3" -isort = "^5.12.0" -black = "^24.2.0" +pycln = "^2.4.0" +isort = "^5.13.2" +black = "^24.4.2" pytest-mock = "^3.10.0" pytest-cov = "^4.1.0" coverage-badge = "^1.1.0" diff --git a/tests/integration/test_eval_model.py b/tests/integration/test_eval_model.py index b97ed9e4..474faac3 100644 --- a/tests/integration/test_eval_model.py +++ b/tests/integration/test_eval_model.py @@ -34,7 +34,7 @@ def test_model_loading(): ) # get config cfg: ConfigHolder = ConfigHolder.get_config_multisource( - cfg_names=("test-g3-n5-a_dfs-h75556", "nano-v1", "test-v1"), + cfg_names=("test-g3-n5-a_dfs-h73257", "nano-v1", "test-v1"), ) # train model result: TrainingResult = train_model( diff --git a/tests/integration/test_train_model.py b/tests/integration/test_train_model.py index c690db4f..2652ee08 100644 --- a/tests/integration/test_train_model.py +++ b/tests/integration/test_train_model.py @@ -5,7 +5,7 @@ def test_train_model(): cfg: ConfigHolder = ConfigHolder.get_config_multisource( - cfg_names=("test-g3-n5-a_dfs-h75556", "nano-v1", "test-v1"), + cfg_names=("test-g3-n5-a_dfs-h73257", "nano-v1", "test-v1"), ) cfg.dataset_cfg.n_mazes = 10 result: TrainingResult = train_model( diff --git a/tests/integration/test_training.py b/tests/integration/test_training.py index 0e01022a..c839b7ef 100644 --- a/tests/integration/test_training.py +++ b/tests/integration/test_training.py @@ -14,6 +14,11 @@ from maze_transformer.training.wandb_logger import WandbJobType, WandbProject +def test_train_save_files_frozen(): + with pytest.raises(AttributeError): + TRAIN_SAVE_FILES.data_cfg = "new" + + @pytest.mark.usefixtures("temp_dir") def test_train_model_without_evals(temp_dir: Path): dataset = _create_dataset() diff --git a/tests/unit/maze_transformer/training/test_model_loading_old.py b/tests/unit/maze_transformer/training/test_model_loading_old.py index 0e32ca72..9ed58938 100644 --- a/tests/unit/maze_transformer/training/test_model_loading_old.py +++ b/tests/unit/maze_transformer/training/test_model_loading_old.py @@ -33,7 +33,7 @@ def test_model_loading_notrain(temp_dir): # Load model manually without folding with open(temp_dir / "config.json", "r") as f: cfgholder_loaded = ConfigHolder.load(json.load(f)) - model_state_dict = torch.load(temp_dir / "model.pt") + model_state_dict = torch.load(temp_dir / "model.pt", weights_only=True) model_loaded = cfgholder_loaded.create_model() model_loaded.load_state_dict(model_state_dict)