From 1aa6274634f8d637fc750a98e8cf2d53a02e0844 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anna=20Hedstr=C3=B6m?= Date: Thu, 29 Feb 2024 10:12:02 +0100 Subject: [PATCH] Update attribution_localisation.py --- quantus/metrics/localisation/attribution_localisation.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/quantus/metrics/localisation/attribution_localisation.py b/quantus/metrics/localisation/attribution_localisation.py index 0cdad737..b7322e7a 100644 --- a/quantus/metrics/localisation/attribution_localisation.py +++ b/quantus/metrics/localisation/attribution_localisation.py @@ -57,6 +57,7 @@ def __init__( self, weighted: bool = False, max_size: float = 1.0, + positive_attributions: bool = False, abs: bool = True, normalise: bool = True, normalise_func: Optional[Callable] = None, @@ -76,6 +77,9 @@ def __init__( default=False. max_size: float The maximum ratio for the size of the bounding box to image, default=1.0. + positive_attributions: boolean + Indicates whether only positive attributions should be used, i.e., clipping, + default=False. abs: boolean Indicates whether absolute operation is applied on the attribution, default=True. normalise: boolean @@ -118,6 +122,7 @@ def __init__( # Save metric-specific attributes. self.weighted = weighted self.max_size = max_size + self.positive_attributions = positive_attributions if not self.disable_warnings: warn.warn_parameterisation( metric_name=self.__class__.__name__, @@ -270,6 +275,8 @@ def evaluate_instance( # Prepare shapes. a = a.flatten() + if self.positive_attributions: + a = np.clip(a, 0, None) s = s.flatten().astype(bool) # Compute ratio.