forked from frankxu2004/TensorFlow-NRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_GRU.py
180 lines (149 loc) · 7.25 KB
/
train_GRU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import tensorflow as tf
import numpy as np
import time
import datetime
import os
import network
import utils
import tqdm
from tensorflow.contrib.tensorboard.plugins import projector
import subprocess
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('summary_dir', '.', 'path to store summary')
def main(_):
my_env = os.environ.copy()
my_env["CUDA_VISIBLE_DEVICES"] = "3"
# the path to save models
save_path = './model/kbp/'
print('reading wordembedding')
wordembedding = np.load('./data/KBP/vec.npy')
print('reading training data')
train_y = np.load('./data/KBP/train_y.npy')
train_word = np.load('./data/KBP/train_word.npy')
train_pos1 = np.load('./data/KBP/train_pos1.npy')
train_pos2 = np.load('./data/KBP/train_pos2.npy')
none_ind = utils.get_none_id('./origin_data/KBP/relation2id.txt')
print("None index: ", none_ind)
settings = network.Settings()
settings.vocab_size = len(wordembedding)
settings.num_classes = len(train_y[0])
print("vocab_size: ", settings.vocab_size)
print("num_classes: ", settings.num_classes)
best_f1 = float('-inf')
best_recall = 0
best_precision = 0
with tf.Graph().as_default():
sess = tf.Session()
with sess.as_default():
initializer = tf.contrib.layers.xavier_initializer()
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = network.GRU(is_training=True, word_embeddings=wordembedding, settings=settings)
global_step = tf.Variable(0, name="global_step", trainable=False)
# optimizer = tf.train.GradientDescentOptimizer(0.001)
optimizer = tf.train.AdamOptimizer(0.001)
# train_op=optimizer.minimize(m.total_loss,global_step=global_step)
train_op = optimizer.minimize(m.final_loss, global_step=global_step)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=None)
# merged_summary = tf.summary.merge_all()
merged_summary = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train_loss', sess.graph)
# summary for embedding
# it's not available in tf 0.11,
# (because there is no embedding panel in 0.11's tensorboard) so I delete it =.=
# you can try it on 0.12 or higher versions but maybe you should change some function name at first.
# summary_embed_writer = tf.train.SummaryWriter('./model',sess.graph)
# config = projector.ProjectorConfig()
# embedding_conf = config.embedding.add()
# embedding_conf.tensor_name = 'word_embedding'
# embedding_conf.metadata_path = './data/metadata.tsv'
# projector.visualize_embeddings(summary_embed_writer, config)
def train_step(word_batch, pos1_batch, pos2_batch, y_batch, big_num):
feed_dict = {}
total_shape = []
total_num = 0
total_word = []
total_pos1 = []
total_pos2 = []
for i in range(len(word_batch)):
total_shape.append(total_num)
total_num += len(word_batch[i])
for word in word_batch[i]:
total_word.append(word)
for pos1 in pos1_batch[i]:
total_pos1.append(pos1)
for pos2 in pos2_batch[i]:
total_pos2.append(pos2)
total_shape.append(total_num)
total_shape = np.array(total_shape)
total_word = np.array(total_word)
total_pos1 = np.array(total_pos1)
total_pos2 = np.array(total_pos2)
feed_dict[m.total_shape] = total_shape
feed_dict[m.input_word] = total_word
feed_dict[m.input_pos1] = total_pos1
feed_dict[m.input_pos2] = total_pos2
feed_dict[m.input_y] = y_batch
temp, step, loss, accuracy, summary, l2_loss, final_loss = sess.run(
[train_op, global_step, m.total_loss, m.accuracy, merged_summary, m.l2_loss, m.final_loss],
feed_dict)
accuracy = np.reshape(np.array(accuracy), big_num)
summary_writer.add_summary(summary, step)
return step, loss, accuracy
# training process
for one_epoch in range(settings.num_epochs):
print("Starting Epoch: ", one_epoch)
epoch_loss = 0
temp_order = list(range(len(train_word)))
np.random.shuffle(temp_order)
all_prob = []
all_true = []
all_accuracy = []
for i in tqdm.tqdm(range(int(len(temp_order) / float(settings.big_num)))):
temp_word = []
temp_pos1 = []
temp_pos2 = []
temp_y = []
temp_input = temp_order[i * settings.big_num:(i + 1) * settings.big_num]
for k in temp_input:
temp_word.append(train_word[k])
temp_pos1.append(train_pos1[k])
temp_pos2.append(train_pos2[k])
temp_y.append(train_y[k])
num = 0
for single_word in temp_word:
num += len(single_word)
if num > 1500:
print('out of range')
continue
temp_word = np.array(temp_word)
temp_pos1 = np.array(temp_pos1)
temp_pos2 = np.array(temp_pos2)
temp_y = np.array(temp_y)
step, loss, accuracy = train_step(temp_word, temp_pos1, temp_pos2, temp_y, settings.big_num)
epoch_loss += loss
all_accuracy.append(accuracy)
all_true.append(temp_y)
accu = np.mean(all_accuracy)
print("Epoch finished, loss:, ", epoch_loss, "accu: ", accu)
# all_prob = np.concatenate(all_prob, axis=0)
# all_true = np.concatenate(all_true, axis=0)
#
# all_pred_inds = utils.calcInd(all_prob)
# entropy = utils.calcEntropy(all_prob)
# all_true_inds = np.argmax(all_true, 1)
# f1score, recall, precision, meanBestF1 = utils.CrossValidation(all_pred_inds, entropy,
# all_true_inds, none_ind)
# print('F1 = %.4f, recall = %.4f, precision = %.4f, val f1 = %.4f)' %
# (f1score,
# recall,
# precision,
# meanBestF1))
print('saving model')
current_step = tf.train.global_step(sess, global_step)
path = saver.save(sess, save_path + 'ATT_GRU_model', global_step=current_step)
print(path)
print("start testing")
subprocess.run(['python3', 'test_GRU.py', str(current_step)], env=my_env)
if __name__ == "__main__":
tf.app.run()