Skip to content

Latest commit

 

History

History
executable file
·
109 lines (51 loc) · 4.74 KB

README.md

File metadata and controls

executable file
·
109 lines (51 loc) · 4.74 KB

Author: Ali Nouina
Contact: [email protected]
Secondary contributor: Jason Glover
Contact: [email protected]
Last Updated: 03/19/2024

#Requirements

This script requires the use of a PySpark cluster. Before running the script, make sure you have set up a PySpark cluster environment.

Setting Up a PySpark Cluster

The Onefl_cluster info/repository can be found in this link: https://bitbucket.org/bmi-ufl/onefl_cluster/src/master/

Running the formatters, the mappers, and the uploaders scripts

Before running your scripts:

  1. Rename your /data_example subfolder to /data

     cp -r partners/[site_name]/data_example  partners/[site_name]/data
    
  2. Rename spark_secrets_example.py to secrets.py

     cp common/spark_secrets_example.py  common/spark_secrets.py
    
  3. In spark_secrets.py, assign OneFlorida encryption key value to SEED

     SEED = "Change me"
    
  4. Change to permission all the folders and the files in the repository to 777 by simply go to the upper folder and run the following command:

     chmod -R 777 .
    

To run the individual formatter/ or multiple formatters:

    cluster run -d /path/to/data/parent/folder/ -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j format

            e.g.   cluster run -d /data/processing/ -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j format

To run the individual table mapping gap/ or multiple tables mapping gap:

    cluster run  -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j mapping_gap

            e.g.   cluster run  -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j mapping_gap

To run the mapping report:

    cluster run -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j mapping_report

            e.g.   cluster run -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j mapping_report

To run the individual deduplication/ or multiple deduplications:

    cluster run  -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j deduplicate

            e.g.   cluster run -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j deduplicate                            

To run the individual formatter/ or multiple formatters:

    cluster run -d /path/to/data/parent/folder/ -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j format

            e.g.   cluster run -d /data/processing/ -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j format

To run the individual mapper/ or multiple mappers:

    cluster run  -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j map

            e.g.   cluster run -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j map

To run the individual uploader/ or multiple uploaders:

    cluster run -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t [table_name_1 table_name_1 ... ]     -j upload -s [server_name] -db [db_name]

            e.g.   cluster run -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t demographic     -j upload -s [email protected] -db partnerA_db

to run the all the jobs on all the tables at once:

    cluster run -d /path/to/data/parent/folder/ -a --  onefl_converter.py      -p [partner_name]     -f [folder_name1 folder_name_2 ... ]     -t all     -j all -s [server_name] -db [db_name]

            e.g.   cluster run -d /data/processing/ -a --  onefl_converter.py      -p partnerA     -f q2_2023     -t all     -j all -s [email protected] -db partnerA_db

The parameters definitions:

                -j: the running job and the options are: all, format,  map,  upload, deduplicate, mapping_gap,fix,  and mapping_report
                -p: the partner or site. Used to pull the partner/site custom dictionaries. e.g. partner_1, partner_2, etc
                -t: the table name to run the job on and the options are all, demographic, encounter, etc 
                -f: the folder of where the input raw data resides
                -d: the path to the data parent folder
                -a: some custom configurations