-
Notifications
You must be signed in to change notification settings - Fork 285
/
tool_add_anytext.py
69 lines (56 loc) · 1.97 KB
/
tool_add_anytext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
'''
AnyText: Multilingual Visual Text Generation And Editing
Paper: https://arxiv.org/abs/2311.03054
Code: https://github.com/tyxsspa/AnyText
Copyright (c) Alibaba, Inc. and its affiliates.
'''
import sys
import os
import torch
from cldm.model import create_model
add_ocr = True # merge OCR model
ocr_path = './ocr_weights/ppv3_rec.pth'
if len(sys.argv) == 3:
input_path = sys.argv[1]
output_path = sys.argv[2]
else:
print('Args are wrong, using default input and output path!')
input_path = './models/v1-5-pruned.ckpt' # sd1.5
output_path = './models/anytext_sd15_scratch.ckpt'
assert os.path.exists(input_path), 'Input model does not exist.'
assert os.path.exists(os.path.dirname(output_path)), 'Output path is not valid.'
def get_node_name(name, parent_name):
if len(name) <= len(parent_name):
return False, ''
p = name[:len(parent_name)]
if p != parent_name:
return False, ''
return True, name[len(parent_name):]
model = create_model(config_path='./models_yaml/anytext_sd15.yaml')
pretrained_weights = torch.load(input_path)
if 'state_dict' in pretrained_weights:
pretrained_weights = pretrained_weights['state_dict']
scratch_dict = model.state_dict()
target_dict = {}
for k in scratch_dict.keys():
is_control, name = get_node_name(k, 'control_')
if is_control:
copy_k = 'model.diffusion_' + name
else:
copy_k = k
if copy_k in pretrained_weights:
target_dict[k] = pretrained_weights[copy_k].clone()
else:
target_dict[k] = scratch_dict[k].clone()
print(f'These weights are newly added: {k}')
if add_ocr:
ocr_weights = torch.load(ocr_path)
if 'state_dict' in ocr_weights:
ocr_weights = ocr_weights['state_dict']
for key in ocr_weights:
new_key = 'text_predictor.' + key
target_dict[new_key] = ocr_weights[key]
print('ocr weights are added!')
model.load_state_dict(target_dict, strict=True)
torch.save(model.state_dict(), output_path)
print('Done.')