-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
45 lines (38 loc) · 1.43 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from flask import Flask, render_template, request, jsonify
import torch
from model import SimpleCNN
from torchvision import transforms
from PIL import Image
import io
app = Flask(__name__)
# Load the trained model
model = SimpleCNN()
model.load_state_dict(torch.load('./mnist_cnn.pth', map_location=torch.device('cpu')))
model.eval()
def transform_image(image_bytes):
my_transforms = transforms.Compose([
transforms.Grayscale(num_output_channels=1),
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)) # Match this with your training
])
image = Image.open(io.BytesIO(image_bytes))
return my_transforms(image).unsqueeze(0)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if request.method == 'POST':
# Ensure you're extracting the image correctly
file = request.files.get('image') # Use .get to avoid KeyError
if not file:
return jsonify({'error': 'No file provided'}), 400
img_bytes = file.read()
tensor = transform_image(img_bytes)
outputs = model(tensor)
_, predicted = torch.max(outputs.data, 1)
prediction = predicted.item()
return jsonify({'digit': prediction})
if __name__ == '__main__':
app.run(debug=True, port=5000) # Consider specifying a port if 5000 is often in use