-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovement_cost.py
110 lines (79 loc) · 2.79 KB
/
movement_cost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import random
import math
def linear_cost(scale=1):
"""
Manhattan distance, only linear movement is allowed
Args:
start (int, int): x and y coordinates of start point
end (int, int): x and y coordinates of end point
scale (int): scale of one step
Returns:
Returns linear cost function between start and end point
"""
def cost(start, end):
delta_x = abs(start.x - end.x)
delta_y = abs(start.y - end.y)
return (delta_x + delta_y) * scale
return cost
def euclidean_cost(scale=1):
"""
Euclidean distance, linear and diagonal movement is allowed,
cost of diagonal movement is calculated using square root method
Args:
start (int, int): x and y coordinates of start point
end (int, int): x and y coordinates of end point
scale (int): scale of one step
Returns:
Returns euclidean cost function between start and end point
"""
def cost(start, end):
delta_x = abs(start.x - end.x)
delta_y = abs(start.y - end.y)
return math.sqrt(delta_x * delta_x + delta_y * delta_y) * scale
return cost
def diagonal_cost(lin=1, diag=1):
"""
Diagonal distance, 8 directions.
Linear and diagonal movement is allowed at same cost
For lin = 1 and diag = 1, gives octile distance
For lin = 1 and diag = root 2, gives triangle distance
Args:
start (int, int): x and y coordinates of start point
end (int, int): x and y coordinates of end point
lin int: scale of one linear step
diag int: scale of one diagonal step
Returns:
Returns diagonal cost function between start and end point
"""
def cost(start, end):
delta_x = abs(start.x - end.x)
delta_y = abs(start.y - end.y)
return (delta_x + delta_y) * lin + min(delta_x, delta_y) * (diag - 2 * lin)
return cost
def scaled_cost(h_func, p_scale):
"""
Scales cost function based on given parameter
Args:
h_func: cost function
p_scale: scales cost function multiple times
Returns:
Scaled cost function
"""
def cost(start, end):
return h_func(start, end) * p_scale
return cost
def randomized_cost(sigma, mu, h_func):
"""
Generates random number with normal distribution based on given sigma and mu.
Scales cost function by generated random number. Suggested values are
mu = 1 and 0.2 < mu < 0.3, for realistic paths.
Args:
sigma: standard deviation in normal distribution
mu: average value in normal distribution
h_func: cost function
Returns:
Randomly scaled cost function
"""
def cost(start, end):
return h_func(start, end) * random.normalvariate(mu, sigma)
return cost