-
Notifications
You must be signed in to change notification settings - Fork 17
/
HarmonicDivergence.py
762 lines (679 loc) · 33.2 KB
/
HarmonicDivergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# flake8: noqa: F401
# --- Do not remove these libs ---
import datetime
from typing import List, Tuple
import numpy as np # noqa
import pandas as pd # noqa
pd.options.mode.chained_assignment = None
from pandas import DataFrame, Series
from technical.util import resample_to_interval, resampled_merge
from freqtrade.strategy import IStrategy, merge_informative_pair
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
from collections import deque
class PlotConfig():
def __init__(self):
self.config = {
'main_plot': {
resample('bollinger_upperband') : {'color': 'rgba(4,137,122,0.7)'},
resample('kc_upperband') : {'color': 'rgba(4,146,250,0.7)'},
resample('kc_middleband') : {'color': 'rgba(4,146,250,0.7)'},
resample('kc_lowerband') : {'color': 'rgba(4,146,250,0.7)'},
resample('bollinger_lowerband') : {
'color': 'rgba(4,137,122,0.7)',
'fill_to': resample('bollinger_upperband'),
'fill_color': 'rgba(4,137,122,0.07)'
},
resample('ema9') : {'color': 'purple'},
resample('ema20') : {'color': 'yellow'},
resample('ema50') : {'color': 'red'},
resample('ema200') : {'color': 'white'},
},
'subplots': {
"ATR" : {
resample('atr'):{'color':'firebrick'}
}
}
}
def add_pivots_in_config(self):
self.config['main_plot']["pivot_lows"] = {
"plotly": {
'mode': 'markers',
'marker': {
'symbol': 'diamond-open',
'size': 11,
'line': {
'width': 2
},
'color': 'olive'
}
}
}
self.config['main_plot']["pivot_highs"] = {
"plotly": {
'mode': 'markers',
'marker': {
'symbol': 'diamond-open',
'size': 11,
'line': {
'width': 2
},
'color': 'violet'
}
}
}
self.config['main_plot']["pivot_highs"] = {
"plotly": {
'mode': 'markers',
'marker': {
'symbol': 'diamond-open',
'size': 11,
'line': {
'width': 2
},
'color': 'violet'
}
}
}
return self
def add_divergence_in_config(self, indicator:str):
# self.config['main_plot']["bullish_divergence_" + indicator + "_occurence"] = {
# "plotly": {
# 'mode': 'markers',
# 'marker': {
# 'symbol': 'diamond',
# 'size': 11,
# 'line': {
# 'width': 2
# },
# 'color': 'orange'
# }
# }
# }
# self.config['main_plot']["bearish_divergence_" + indicator + "_occurence"] = {
# "plotly": {
# 'mode': 'markers',
# 'marker': {
# 'symbol': 'diamond',
# 'size': 11,
# 'line': {
# 'width': 2
# },
# 'color': 'purple'
# }
# }
# }
for i in range(3):
self.config['main_plot']["bullish_divergence_" + indicator + "_line_" + str(i)] = {
"plotly": {
'mode': 'lines',
'line' : {
'color': 'green',
'dash' :'dash'
}
}
}
self.config['main_plot']["bearish_divergence_" + indicator + "_line_" + str(i)] = {
"plotly": {
'mode': 'lines',
'line' : {
"color":'crimson',
'dash' :'dash'
}
}
}
return self
def add_total_divergences_in_config(self, dataframe):
total_bullish_divergences_count = dataframe[resample("total_bullish_divergences_count")]
total_bullish_divergences_names = dataframe[resample("total_bullish_divergences_names")]
self.config['main_plot'][resample("total_bullish_divergences")] = {
"plotly": {
'mode': 'markers+text',
'text': total_bullish_divergences_count,
'hovertext': total_bullish_divergences_names,
'textfont':{'size': 11, 'color':'green'},
'textposition':'bottom center',
'marker': {
'symbol': 'diamond',
'size': 11,
'line': {
'width': 2
},
'color': 'green'
}
}
}
total_bearish_divergences_count = dataframe[resample("total_bearish_divergences_count")]
total_bearish_divergences_names = dataframe[resample("total_bearish_divergences_names")]
self.config['main_plot'][resample("total_bearish_divergences")] = {
"plotly": {
'mode': 'markers+text',
'text': total_bearish_divergences_count,
'hovertext': total_bearish_divergences_names,
'textfont':{'size': 11, 'color':'crimson'},
'textposition':'top center',
'marker': {
'symbol': 'diamond',
'size': 11,
'line': {
'width': 2
},
'color': 'crimson'
}
}
}
return self
class HarmonicDivergence(IStrategy):
"""
This is a strategy template to get you started.
More information in https://www.freqtrade.io/en/latest/strategy-customization/
You can:
:return: a Dataframe with all mandatory indicators for the strategies
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy
You must keep:
- the lib in the section "Do not remove these libs"
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend
You should keep:
- timeframe, minimal_roi, stoploss, trailing_*
"""
# Strategy interface version - allow new iterations of the strategy interface.
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
minimal_roi = {
# "300" : 0.01,
# "60": 0.02,
# "30": 0.08,
# "0": 0.05s
# "420" : 0.005,
# "300" : 0.007,
# "240" : 0.009,
# "0": 0.018
"0": 0.007
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
stoploss = -0.02
use_custom_stoploss = False
# Trailing stoploss
trailing_stop = False
# trailing_stop_positive = 0.007
# trailing_stop_positive_offset = 0.015 # Disabled / not configured
# trailing_only_offset_is_reached = True
# Optimal timeframe for the strategy.
timeframe = '15m'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = False
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
# Optional order type mapping.
order_types = {
'buy': 'market',
'sell': 'market',
'stoploss': 'limit',
'stoploss_on_exchange': False
}
# Optional order time in force.
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc'
}
plot_config = None
def get_ticker_indicator(self):
return int(self.timeframe[:-1])
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Get the informative pair
# informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='15m')
# informative = resample_to_interval(dataframe, self.get_ticker_indicator() * 15)
informative = dataframe
# Momentum Indicators
# ------------------------------------
# RSI
informative['rsi'] = ta.RSI(informative)
# Stochastic Slow
informative['stoch'] = ta.STOCH(informative)['slowk']
# ROC
informative['roc'] = ta.ROC(informative)
# Ultimate Oscillator
informative['uo'] = ta.ULTOSC(informative)
# Awesome Oscillator
informative['ao'] = qtpylib.awesome_oscillator(informative)
# MACD
informative['macd'] = ta.MACD(informative)['macd']
# Commodity Channel Index
informative['cci'] = ta.CCI(informative)
# CMF
informative['cmf'] = chaikin_money_flow(informative, 20)
# OBV
informative['obv'] = ta.OBV(informative)
# MFI
informative['mfi'] = ta.MFI(informative)
# ADX
informative['adx'] = ta.ADX(informative)
# ATR
informative['atr'] = qtpylib.atr(informative, window=14, exp=False)
# Keltner Channel
# keltner = qtpylib.keltner_channel(dataframe, window=20, atrs=1)
keltner = emaKeltner(informative)
informative["kc_upperband"] = keltner["upper"]
informative["kc_middleband"] = keltner["mid"]
informative["kc_lowerband"] = keltner["lower"]
# Bollinger Bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative), window=20, stds=2)
informative['bollinger_upperband'] = bollinger['upper']
informative['bollinger_lowerband'] = bollinger['lower']
# EMA - Exponential Moving Average
informative['ema9'] = ta.EMA(informative, timeperiod=9)
informative['ema20'] = ta.EMA(informative, timeperiod=20)
informative['ema50'] = ta.EMA(informative, timeperiod=50)
informative['ema200'] = ta.EMA(informative, timeperiod=200)
pivots = pivot_points(informative)
informative['pivot_lows'] = pivots['pivot_lows']
informative['pivot_highs'] = pivots['pivot_highs']
# Use the helper function merge_informative_pair to safely merge the pair
# Automatically renames the columns and merges a shorter timeframe dataframe and a longer timeframe informative pair
# use ffill to have the 1d value available in every row throughout the day.
# Without this, comparisons between columns of the original and the informative pair would only work once per day.
# Full documentation of this method, see below
initialize_divergences_lists(informative)
add_divergences(informative, 'rsi')
add_divergences(informative, 'stoch')
add_divergences(informative, 'roc')
add_divergences(informative, 'uo')
add_divergences(informative, 'ao')
add_divergences(informative, 'macd')
add_divergences(informative, 'cci')
add_divergences(informative, 'cmf')
add_divergences(informative, 'obv')
add_divergences(informative, 'mfi')
add_divergences(informative, 'adx')
# print("-------------------informative-------------------")
# print(informative)
# print("-------------------dataframe-------------------")
# print(dataframe)
# dataframe = merge_informative_pair(dataframe, informative, self.timeframe, '15m', ffill=True)
# dataframe = resampled_merge(dataframe, informative)
# print(dataframe[resample("total_bullish_divergences_count")])
# for index, value in enumerate(dataframe[resample("total_bullish_divergences_count")]):
# if value < 0.5:
# dataframe[resample("total_bullish_divergences_count")][index] = None
# dataframe[resample("total_bullish_divergences")][index] = None
# dataframe[resample("total_bullish_divergences_names")][index] = None
# else:
# print(value)
# print(dataframe[resample("total_bullish_divergences")][index])
# print(dataframe[resample("total_bullish_divergences_names")][index])
HarmonicDivergence.plot_config = (
PlotConfig()
# .add_pivots_in_config()
# .add_divergence_in_config('rsi')
# .add_divergence_in_config('stoch')
# .add_divergence_in_config('roc')
# .add_divergence_in_config('uo')
# .add_divergence_in_config('ao')
# .add_divergence_in_config('macd')
# .add_divergence_in_config('cci')
# .add_divergence_in_config('cmf')
# .add_divergence_in_config('obv')
# .add_divergence_in_config('mfi')
# .add_divergence_in_config('adx')
.add_total_divergences_in_config(dataframe)
.config)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe[resample('total_bullish_divergences')].shift() > 0)
# # & (dataframe['high'] > dataframe['high'].shift())
# & (
# (keltner_middleband_check(dataframe) & (ema_check(dataframe)) & (green_candle(dataframe)))
# # (keltner_middleband_check(dataframe) & (green_candle(dataframe)))
# | (keltner_lowerband_check(dataframe) & (ema_check(dataframe)))
# # | keltner_lowerband_check(dataframe)
# # | (keltner_lowerband_check(dataframe) & (green_candle(dataframe)))
# | (bollinger_lowerband_check(dataframe) & (ema_check(dataframe)))
# )
& two_bands_check(dataframe)
# # & bollinger_keltner_check(dataframe)
# & ema_cross_check(dataframe)
& (dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'sell'] = 0
return dataframe
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
takeprofit = 999999
# self.trailing_stop = False
for i in range(1,len(dataframe['close'])):
if dataframe.iloc[-i]['date'].to_pydatetime().replace(tzinfo=datetime.timezone.utc) == trade.open_date_utc:
buy_candle = dataframe.iloc[-i-1].squeeze()
takeprofit = buy_candle[resample('high')] + buy_candle[resample('atr')]
break
# if takeprofit < current_rate:
# self.trailing_stop = True
# return True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
stoploss = 999999
for i in range(1,len(dataframe['close'])):
if dataframe.iloc[-i]['date'].to_pydatetime().replace(tzinfo=datetime.timezone.utc) == trade.open_date_utc:
buy_candle = dataframe.iloc[-i-1].squeeze()
stoploss = buy_candle[resample('low')] - buy_candle[resample('atr')]
# stoploss = buy_candle[resample('high')] - buy_candle[resample('atr')]
break
# Convert absolute price to percentage relative to current_rate
if stoploss < current_rate:
return (stoploss / current_rate) - 1
# return maximum stoploss value, keeping current stoploss price unchanged
return 1
def resample(indicator):
# return "resample_15_" + indicator
return indicator
def two_bands_check(dataframe):
check = (
# ((dataframe['low'] < dataframe['bollinger_lowerband']) & (dataframe['high'] > dataframe['kc_lowerband'])) |
((dataframe[resample('low')] < dataframe[resample('kc_lowerband')]) & (dataframe[resample('high')] > dataframe[resample('kc_upperband')])) # 1
# ((dataframe['low'] < dataframe['kc_lowerband']) & (dataframe['high'] > dataframe['kc_middleband'])) # 2
# | ((dataframe['low'] < dataframe['kc_middleband']) & (dataframe['high'] > dataframe['kc_upperband'])) # 2
)
return ~check
def ema_cross_check(dataframe):
dataframe['ema20_50_cross'] = qtpylib.crossed_below(dataframe[resample('ema20')],dataframe[resample('ema50')])
dataframe['ema20_200_cross'] = qtpylib.crossed_below(dataframe[resample('ema20')],dataframe[resample('ema200')])
dataframe['ema50_200_cross'] = qtpylib.crossed_below(dataframe[resample('ema50')],dataframe[resample('ema200')])
return ~(
dataframe['ema20_50_cross']
| dataframe['ema20_200_cross']
| dataframe['ema50_200_cross']
)
def green_candle(dataframe):
return dataframe[resample('open')] < dataframe[resample('close')]
def keltner_middleband_check(dataframe):
return (dataframe[resample('low')] < dataframe[resample('kc_middleband')]) & (dataframe[resample('high')] > dataframe[resample('kc_middleband')])
def keltner_lowerband_check(dataframe):
return (dataframe[resample('low')] < dataframe[resample('kc_lowerband')]) & (dataframe[resample('high')] > dataframe[resample('kc_lowerband')])
def bollinger_lowerband_check(dataframe):
return (dataframe[resample('low')] < dataframe[resample('bollinger_lowerband')]) & (dataframe[resample('high')] > dataframe[resample('bollinger_lowerband')])
def bollinger_keltner_check(dataframe):
return (dataframe[resample('bollinger_lowerband')] < dataframe[resample('kc_lowerband')]) & (dataframe[resample('bollinger_upperband')] > dataframe[resample('kc_upperband')])
def ema_check(dataframe):
check = (
(dataframe[resample('ema9')] < dataframe[resample('ema20')])
& (dataframe[resample('ema20')] < dataframe[resample('ema50')])
& (dataframe[resample('ema50')] < dataframe[resample('ema200')]))
return ~check
def initialize_divergences_lists(dataframe: DataFrame):
dataframe["total_bullish_divergences"] = np.empty(len(dataframe['close'])) * np.nan
dataframe["total_bullish_divergences_count"] = np.empty(len(dataframe['close'])) * np.nan
dataframe["total_bullish_divergences_count"] = [0 if x != x else x for x in dataframe["total_bullish_divergences_count"]]
dataframe["total_bullish_divergences_names"] = np.empty(len(dataframe['close'])) * np.nan
dataframe["total_bullish_divergences_names"] = ['' if x != x else x for x in dataframe["total_bullish_divergences_names"]]
dataframe["total_bearish_divergences"] = np.empty(len(dataframe['close'])) * np.nan
dataframe["total_bearish_divergences_count"] = np.empty(len(dataframe['close'])) * np.nan
dataframe["total_bearish_divergences_count"] = [0 if x != x else x for x in dataframe["total_bearish_divergences_count"]]
dataframe["total_bearish_divergences_names"] = np.empty(len(dataframe['close'])) * np.nan
dataframe["total_bearish_divergences_names"] = ['' if x != x else x for x in dataframe["total_bearish_divergences_names"]]
def add_divergences(dataframe: DataFrame, indicator: str):
(bearish_divergences, bearish_lines, bullish_divergences, bullish_lines) = divergence_finder_dataframe(dataframe, indicator)
dataframe['bearish_divergence_' + indicator + '_occurence'] = bearish_divergences
# for index, bearish_line in enumerate(bearish_lines):
# dataframe['bearish_divergence_' + indicator + '_line_'+ str(index)] = bearish_line
dataframe['bullish_divergence_' + indicator + '_occurence'] = bullish_divergences
# for index, bullish_line in enumerate(bullish_lines):
# dataframe['bullish_divergence_' + indicator + '_line_'+ str(index)] = bullish_line
def divergence_finder_dataframe(dataframe: DataFrame, indicator_source: str) -> Tuple[pd.Series, pd.Series]:
bearish_lines = [np.empty(len(dataframe['close'])) * np.nan]
bearish_divergences = np.empty(len(dataframe['close'])) * np.nan
bullish_lines = [np.empty(len(dataframe['close'])) * np.nan]
bullish_divergences = np.empty(len(dataframe['close'])) * np.nan
low_iterator = []
high_iterator = []
for index, row in enumerate(dataframe.itertuples(index=True, name='Pandas')):
if np.isnan(row.pivot_lows):
low_iterator.append(0 if len(low_iterator) == 0 else low_iterator[-1])
else:
low_iterator.append(index)
if np.isnan(row.pivot_highs):
high_iterator.append(0 if len(high_iterator) == 0 else high_iterator[-1])
else:
high_iterator.append(index)
for index, row in enumerate(dataframe.itertuples(index=True, name='Pandas')):
bearish_occurence = bearish_divergence_finder(dataframe,
dataframe[indicator_source],
high_iterator,
index)
if bearish_occurence != None:
(prev_pivot , current_pivot) = bearish_occurence
bearish_prev_pivot = dataframe['close'][prev_pivot]
bearish_current_pivot = dataframe['close'][current_pivot]
bearish_ind_prev_pivot = dataframe[indicator_source][prev_pivot]
bearish_ind_current_pivot = dataframe[indicator_source][current_pivot]
length = current_pivot - prev_pivot
bearish_lines_index = 0
can_exist = True
while(True):
can_draw = True
if bearish_lines_index <= len(bearish_lines):
bearish_lines.append(np.empty(len(dataframe['close'])) * np.nan)
actual_bearish_lines = bearish_lines[bearish_lines_index]
for i in range(length + 1):
point = bearish_prev_pivot + (bearish_current_pivot - bearish_prev_pivot) * i / length
indicator_point = bearish_ind_prev_pivot + (bearish_ind_current_pivot - bearish_ind_prev_pivot) * i / length
if i != 0 and i != length:
if (point <= dataframe['close'][prev_pivot + i]
or indicator_point <= dataframe[indicator_source][prev_pivot + i]):
can_exist = False
if not np.isnan(actual_bearish_lines[prev_pivot + i]):
can_draw = False
if not can_exist:
break
if can_draw:
for i in range(length + 1):
actual_bearish_lines[prev_pivot + i] = bearish_prev_pivot + (bearish_current_pivot - bearish_prev_pivot) * i / length
break
bearish_lines_index = bearish_lines_index + 1
if can_exist:
bearish_divergences[index] = row.close
dataframe["total_bearish_divergences"][index] = row.close
if index > 30:
dataframe["total_bearish_divergences_count"][index-30] = dataframe["total_bearish_divergences_count"][index-30] + 1
dataframe["total_bearish_divergences_names"][index-30] = dataframe["total_bearish_divergences_names"][index-30] + indicator_source.upper() + '<br>'
bullish_occurence = bullish_divergence_finder(dataframe,
dataframe[indicator_source],
low_iterator,
index)
if bullish_occurence != None:
(prev_pivot , current_pivot) = bullish_occurence
bullish_prev_pivot = dataframe['close'][prev_pivot]
bullish_current_pivot = dataframe['close'][current_pivot]
bullish_ind_prev_pivot = dataframe[indicator_source][prev_pivot]
bullish_ind_current_pivot = dataframe[indicator_source][current_pivot]
length = current_pivot - prev_pivot
bullish_lines_index = 0
can_exist = True
while(True):
can_draw = True
if bullish_lines_index <= len(bullish_lines):
bullish_lines.append(np.empty(len(dataframe['close'])) * np.nan)
actual_bullish_lines = bullish_lines[bullish_lines_index]
for i in range(length + 1):
point = bullish_prev_pivot + (bullish_current_pivot - bullish_prev_pivot) * i / length
indicator_point = bullish_ind_prev_pivot + (bullish_ind_current_pivot - bullish_ind_prev_pivot) * i / length
if i != 0 and i != length:
if (point >= dataframe['close'][prev_pivot + i]
or indicator_point >= dataframe[indicator_source][prev_pivot + i]):
can_exist = False
if not np.isnan(actual_bullish_lines[prev_pivot + i]):
can_draw = False
if not can_exist:
break
if can_draw:
for i in range(length + 1):
actual_bullish_lines[prev_pivot + i] = bullish_prev_pivot + (bullish_current_pivot - bullish_prev_pivot) * i / length
break
bullish_lines_index = bullish_lines_index + 1
if can_exist:
bullish_divergences[index] = row.close
dataframe["total_bullish_divergences"][index] = row.close
if index > 30:
dataframe["total_bullish_divergences_count"][index-30] = dataframe["total_bullish_divergences_count"][index-30] + 1
dataframe["total_bullish_divergences_names"][index-30] = dataframe["total_bullish_divergences_names"][index-30] + indicator_source.upper() + '<br>'
return (bearish_divergences, bearish_lines, bullish_divergences, bullish_lines)
def bearish_divergence_finder(dataframe, indicator, high_iterator, index):
if high_iterator[index] == index:
current_pivot = high_iterator[index]
occurences = list(dict.fromkeys(high_iterator))
current_index = occurences.index(high_iterator[index])
for i in range(current_index-1,current_index-6,-1):
prev_pivot = occurences[i]
if np.isnan(prev_pivot):
return
if ((dataframe['pivot_highs'][current_pivot] < dataframe['pivot_highs'][prev_pivot] and indicator[current_pivot] > indicator[prev_pivot])
or (dataframe['pivot_highs'][current_pivot] > dataframe['pivot_highs'][prev_pivot] and indicator[current_pivot] < indicator[prev_pivot])):
return (prev_pivot , current_pivot)
return None
def bullish_divergence_finder(dataframe, indicator, low_iterator, index):
if low_iterator[index] == index:
current_pivot = low_iterator[index]
occurences = list(dict.fromkeys(low_iterator))
current_index = occurences.index(low_iterator[index])
for i in range(current_index-1,current_index-6,-1):
prev_pivot = occurences[i]
if np.isnan(prev_pivot):
return
if ((dataframe['pivot_lows'][current_pivot] < dataframe['pivot_lows'][prev_pivot] and indicator[current_pivot] > indicator[prev_pivot])
or (dataframe['pivot_lows'][current_pivot] > dataframe['pivot_lows'][prev_pivot] and indicator[current_pivot] < indicator[prev_pivot])):
return (prev_pivot, current_pivot)
return None
from enum import Enum
class PivotSource(Enum):
HighLow = 0
Close = 1
def pivot_points(dataframe: DataFrame, window: int = 5, pivot_source: PivotSource = PivotSource.Close) -> DataFrame:
high_source = None
low_source = None
if pivot_source == PivotSource.Close:
high_source = 'close'
low_source = 'close'
elif pivot_source == PivotSource.HighLow:
high_source = 'high'
low_source = 'low'
pivot_points_lows = np.empty(len(dataframe['close'])) * np.nan
pivot_points_highs = np.empty(len(dataframe['close'])) * np.nan
last_values = deque()
# find pivot points
for index, row in enumerate(dataframe.itertuples(index=True, name='Pandas')):
last_values.append(row)
if len(last_values) >= window * 2 + 1:
current_value = last_values[window]
is_greater = True
is_less = True
for window_index in range(0, window):
left = last_values[window_index]
right = last_values[2 * window - window_index]
local_is_greater, local_is_less = check_if_pivot_is_greater_or_less(current_value, high_source, low_source, left, right)
is_greater &= local_is_greater
is_less &= local_is_less
if is_greater:
pivot_points_highs[index - window] = getattr(current_value, high_source)
if is_less:
pivot_points_lows[index - window] = getattr(current_value, low_source)
last_values.popleft()
# find last one
if len(last_values) >= window + 2:
current_value = last_values[-2]
is_greater = True
is_less = True
for window_index in range(0, window):
left = last_values[-2 - window_index - 1]
right = last_values[-1]
local_is_greater, local_is_less = check_if_pivot_is_greater_or_less(current_value, high_source, low_source, left, right)
is_greater &= local_is_greater
is_less &= local_is_less
if is_greater:
pivot_points_highs[index - 1] = getattr(current_value, high_source)
if is_less:
pivot_points_lows[index - 1] = getattr(current_value, low_source)
return pd.DataFrame(index=dataframe.index, data={
'pivot_lows': pivot_points_lows,
'pivot_highs': pivot_points_highs
})
def check_if_pivot_is_greater_or_less(current_value, high_source: str, low_source: str, left, right) -> Tuple[bool, bool]:
is_greater = True
is_less = True
if (getattr(current_value, high_source) < getattr(left, high_source) or
getattr(current_value, high_source) < getattr(right, high_source)):
is_greater = False
if (getattr(current_value, low_source) > getattr(left, low_source) or
getattr(current_value, low_source) > getattr(right, low_source)):
is_less = False
return (is_greater, is_less)
def emaKeltner(dataframe):
keltner = {}
atr = qtpylib.atr(dataframe, window=10)
ema20 = ta.EMA(dataframe, timeperiod=20)
keltner['upper'] = ema20 + atr
keltner['mid'] = ema20
keltner['lower'] = ema20 - atr
return keltner
def chaikin_money_flow(dataframe, n=20, fillna=False) -> Series:
"""Chaikin Money Flow (CMF)
It measures the amount of Money Flow Volume over a specific period.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf
Args:
dataframe(pandas.Dataframe): dataframe containing ohlcv
n(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
df = dataframe.copy()
mfv = ((df['close'] - df['low']) - (df['high'] - df['close'])) / (df['high'] - df['low'])
mfv = mfv.fillna(0.0) # float division by zero
mfv *= df['volume']
cmf = (mfv.rolling(n, min_periods=0).sum()
/ df['volume'].rolling(n, min_periods=0).sum())
if fillna:
cmf = cmf.replace([np.inf, -np.inf], np.nan).fillna(0)
return Series(cmf, name='cmf')