-
Notifications
You must be signed in to change notification settings - Fork 17
/
BB_RPB_TSL_BI.py
993 lines (812 loc) · 44.2 KB
/
BB_RPB_TSL_BI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
# --- Do not remove these libs ---
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
import talib.abstract as ta
import pandas_ta as pta
from freqtrade.persistence import Trade
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame, Series, DatetimeIndex, merge
from datetime import datetime, timedelta
from freqtrade.strategy import merge_informative_pair, CategoricalParameter, DecimalParameter, IntParameter, stoploss_from_open
from freqtrade.exchange import timeframe_to_prev_date
from functools import reduce
from technical.indicators import RMI, zema, ichimoku
# --------------------------------
def ha_typical_price(bars):
res = (bars['ha_high'] + bars['ha_low'] + bars['ha_close']) / 3.
return Series(index=bars.index, data=res)
def EWO(dataframe, ema_length=5, ema2_length=35):
df = dataframe.copy()
ema1 = ta.EMA(df, timeperiod=ema_length)
ema2 = ta.EMA(df, timeperiod=ema2_length)
emadif = (ema1 - ema2) / df['low'] * 100
return emadif
def SROC(dataframe, roclen=21, emalen=13, smooth=21):
df = dataframe.copy()
roc = ta.ROC(df, timeperiod=roclen)
ema = ta.EMA(df, timeperiod=emalen)
sroc = ta.ROC(ema, timeperiod=smooth)
return sroc
def range_percent_change(dataframe: DataFrame, method, length: int) -> float:
"""
Rolling Percentage Change Maximum across interval.
:param dataframe: DataFrame The original OHLC dataframe
:param method: High to Low / Open to Close
:param length: int The length to look back
"""
if method == 'HL':
return (dataframe['high'].rolling(length).max() - dataframe['low'].rolling(length).min()) / dataframe['low'].rolling(length).min()
elif method == 'OC':
return (dataframe['open'].rolling(length).max() - dataframe['close'].rolling(length).min()) / dataframe['close'].rolling(length).min()
else:
raise ValueError(f"Method {method} not defined!")
# Williams %R
def williams_r(dataframe: DataFrame, period: int = 14) -> Series:
"""Williams %R, or just %R, is a technical analysis oscillator showing the current closing price in relation to the high and low
of the past N days (for a given N). It was developed by a publisher and promoter of trading materials, Larry Williams.
Its purpose is to tell whether a stock or commodity market is trading near the high or the low, or somewhere in between,
of its recent trading range.
The oscillator is on a negative scale, from −100 (lowest) up to 0 (highest).
"""
highest_high = dataframe["high"].rolling(center=False, window=period).max()
lowest_low = dataframe["low"].rolling(center=False, window=period).min()
WR = Series(
(highest_high - dataframe["close"]) / (highest_high - lowest_low),
name=f"{period} Williams %R",
)
return WR * -100
# Chaikin Money Flow
def chaikin_money_flow(dataframe, n=20, fillna=False) -> Series:
"""Chaikin Money Flow (CMF)
It measures the amount of Money Flow Volume over a specific period.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf
Args:
dataframe(pandas.Dataframe): dataframe containing ohlcv
n(int): n period.
fillna(bool): if fill nan values.
Returns:
pandas.Series: New feature generated.
"""
mfv = ((dataframe['close'] - dataframe['low']) - (dataframe['high'] - dataframe['close'])) / (dataframe['high'] - dataframe['low'])
mfv = mfv.fillna(0.0) # float division by zero
mfv *= dataframe['volume']
cmf = (mfv.rolling(n, min_periods=0).sum()
/ dataframe['volume'].rolling(n, min_periods=0).sum())
if fillna:
cmf = cmf.replace([np.inf, -np.inf], np.nan).fillna(0)
return Series(cmf, name='cmf')
class BB_RPB_TSL_BI(IStrategy):
'''
BB_RPB_TSL
@author jilv220
Simple bollinger brand strategy inspired by this blog ( https://hacks-for-life.blogspot.com/2020/12/freqtrade-notes.html )
RPB, which stands for Real Pull Back, taken from ( https://github.com/GeorgeMurAlkh/freqtrade-stuff/blob/main/user_data/strategies/TheRealPullbackV2.py )
The trailing custom stoploss taken from BigZ04_TSL from Perkmeister ( modded by ilya )
I modified it to better suit my taste and added Hyperopt for this strategy.
'''
# (1) sell rework
##########################################################################
# Hyperopt result area
# buy space
buy_params = {
"max_slip": 0.668,
##
"buy_bb_width_1h": 1.074,
"buy_roc_1h": 4,
##
"buy_threshold": 0.003,
"buy_bb_factor": 0.999,
#
"buy_bb_delta": 0.025,
"buy_bb_width": 0.095,
##
"buy_cci": -116,
"buy_cci_length": 25,
"buy_rmi": 49,
"buy_rmi_length": 17,
"buy_srsi_fk": 32,
##
"buy_closedelta": 13.494,
"buy_ema_diff": 0.024,
##
"buy_ema_high": 0.968,
"buy_ema_low": 0.935,
"buy_ewo": -5.001,
"buy_rsi": 23,
"buy_rsi_fast": 44,
##
"buy_ema_high_2": 1.087,
"buy_ema_low_2": 0.970,
"buy_ewo_high_2": 4.179,
"buy_rsi_ewo_2": 35,
"buy_rsi_fast_ewo_2": 45,
##
"buy_closedelta_local_dip": 13.717,
"buy_ema_diff_local_dip": 0.024,
"buy_ema_high_local_dip": 1.084,
"buy_rsi_local_dip": 20,
##
"buy_r_deadfish_bb_factor": 0.911,
"buy_r_deadfish_bb_width": 0.091,
"buy_r_deadfish_ema": 0.972,
"buy_r_deadfish_volume_factor": 1.008,
"buy_r_deadfish_cti": -0.115,
"buy_r_deadfish_r14": -44.34,
##
"buy_clucha_bbdelta_close": 0.04,
"buy_clucha_bbdelta_tail": 0.913,
"buy_clucha_close_bblower": 0.04,
"buy_clucha_closedelta_close": 0.05,
"buy_clucha_rocr_1h": 0.416,
##
"buy_adx": 13,
"buy_cofi_39_r14": -85.016,
"buy_cofi_cti": -0.892,
"buy_ema_cofi": 1.147,
"buy_ewo_high": 8.594,
"buy_fastd": 28,
"buy_fastk": 39,
##
"buy_nfix_39_cti": -0.105,
"buy_nfix_39_r14": -81.827,
}
# sell space
sell_params = {
##
"sell_cmf": -0.046,
"sell_ema": 0.988,
"sell_ema_close_delta": 0.022,
##
"sell_deadfish_profit": -0.05,
"sell_deadfish_bb_factor": 0.954,
"sell_deadfish_bb_width": 0.043,
"sell_deadfish_volume_factor": 2.37
}
minimal_roi = {
"0": 0.205,
}
# Optimal timeframe for the strategy
timeframe = '5m'
inf_1h = '1h'
# Run "populate_indicators()" only for new candle.
process_only_new_candles = True
# Disabled
stoploss = -0.99
# Custom stoploss
use_custom_stoploss = True
use_sell_signal = True
############################################################################
## Buy params
is_optimize_dip = False
buy_rmi = IntParameter(30, 50, default=35, optimize= is_optimize_dip)
buy_cci = IntParameter(-135, -90, default=-133, optimize= is_optimize_dip)
buy_srsi_fk = IntParameter(30, 50, default=25, optimize= is_optimize_dip)
buy_cci_length = IntParameter(25, 45, default=25, optimize = is_optimize_dip)
buy_rmi_length = IntParameter(8, 20, default=8, optimize = is_optimize_dip)
is_optimize_break = False
buy_bb_width = DecimalParameter(0.065, 0.135, default=0.095, optimize = is_optimize_break)
buy_bb_delta = DecimalParameter(0.018, 0.035, default=0.025, optimize = is_optimize_break)
is_optimize_local_uptrend = False
buy_ema_diff = DecimalParameter(0.022, 0.027, default=0.025, optimize = is_optimize_local_uptrend)
buy_bb_factor = DecimalParameter(0.990, 0.999, default=0.995, optimize = False)
buy_closedelta = DecimalParameter(12.0, 18.0, default=15.0, optimize = is_optimize_local_uptrend)
is_optimize_local_dip = False
buy_ema_diff_local_dip = DecimalParameter(0.022, 0.027, default=0.025, optimize = is_optimize_local_dip)
buy_ema_high_local_dip = DecimalParameter(0.90, 1.2, default=0.942 , optimize = is_optimize_local_dip)
buy_closedelta_local_dip = DecimalParameter(12.0, 18.0, default=15.0, optimize = is_optimize_local_dip)
buy_rsi_local_dip = IntParameter(15, 45, default=28, optimize = is_optimize_local_dip)
buy_crsi_local_dip = IntParameter(10, 18, default=10, optimize = False)
is_optimize_ewo = False
buy_rsi_fast = IntParameter(35, 50, default=45, optimize = is_optimize_ewo)
buy_rsi = IntParameter(15, 35, default=35, optimize = is_optimize_ewo)
buy_ewo = DecimalParameter(-6.0, 5, default=-5.585, optimize = is_optimize_ewo)
buy_ema_low = DecimalParameter(0.9, 0.99, default=0.942 , optimize = is_optimize_ewo)
buy_ema_high = DecimalParameter(0.95, 1.2, default=1.084 , optimize = is_optimize_ewo)
is_optimize_ewo_2 = False
buy_rsi_fast_ewo_2 = IntParameter(15, 50, default=45, optimize = is_optimize_ewo_2)
buy_rsi_ewo_2 = IntParameter(15, 50, default=35, optimize = is_optimize_ewo_2)
buy_ema_low_2 = DecimalParameter(0.90, 1.2, default=0.970 , optimize = is_optimize_ewo_2)
buy_ema_high_2 = DecimalParameter(0.90, 1.2, default=1.087 , optimize = is_optimize_ewo_2)
buy_ewo_high_2 = DecimalParameter(2, 12, default=4.179, optimize = is_optimize_ewo_2)
is_optimize_ewo2_protection = False
buy_ewo2_cti = DecimalParameter(-0.9, -0.0, default=-0.5 , optimize = is_optimize_ewo2_protection)
buy_ewo2_r14 = DecimalParameter(-100, -44, default=-60 , optimize = is_optimize_ewo2_protection)
is_optimize_r_deadfish = False
buy_r_deadfish_ema = DecimalParameter(0.90, 1.2, default=1.087 , optimize = is_optimize_r_deadfish)
buy_r_deadfish_bb_width = DecimalParameter(0.03, 0.75, default=0.05 , optimize = is_optimize_r_deadfish)
buy_r_deadfish_bb_factor = DecimalParameter(0.90, 1.2, default=1.0 , optimize = is_optimize_r_deadfish)
buy_r_deadfish_volume_factor = DecimalParameter(1, 2.5, default=1.0 , optimize = is_optimize_r_deadfish)
is_optimize_r_deadfish_protection = False
buy_r_deadfish_cti = DecimalParameter(-0.6, -0.0, default=-0.5 , optimize = is_optimize_r_deadfish_protection)
buy_r_deadfish_r14 = DecimalParameter(-60, -44, default=-60 , optimize = is_optimize_r_deadfish_protection)
is_optimize_clucha = False
buy_clucha_bbdelta_close = DecimalParameter(0.01,0.05, default=0.02206, optimize=is_optimize_clucha)
buy_clucha_bbdelta_tail = DecimalParameter(0.7, 1.2, default=1.02515, optimize=is_optimize_clucha)
buy_clucha_close_bblower = DecimalParameter(0.001, 0.05, default=0.03669, optimize=is_optimize_clucha)
buy_clucha_closedelta_close = DecimalParameter(0.001, 0.05, default=0.04401, optimize=is_optimize_clucha)
buy_clucha_rocr_1h = DecimalParameter(0.1, 1.0, default=0.47782, optimize=is_optimize_clucha)
is_optimize_cofi = False
buy_ema_cofi = DecimalParameter(0.94, 1.2, default=0.97 , optimize = is_optimize_cofi)
buy_fastk = IntParameter(0, 40, default=20, optimize = is_optimize_cofi)
buy_fastd = IntParameter(0, 40, default=20, optimize = is_optimize_cofi)
buy_adx = IntParameter(0, 30, default=30, optimize = is_optimize_cofi)
buy_ewo_high = DecimalParameter(2, 12, default=3.553, optimize = is_optimize_cofi)
is_optimize_cofi_protection = False
buy_cofi_cti = DecimalParameter(-0.9, -0.0, default=-0.5 , optimize = is_optimize_cofi_protection)
buy_cofi_39_r14 = DecimalParameter(-100, -44, default=-60 , optimize = is_optimize_cofi_protection)
is_optimize_nfix_39_protection = False
buy_nfix_39_cti = DecimalParameter(-0.9, -0.0, default=-0.5 , optimize = is_optimize_nfix_39_protection)
buy_nfix_39_r14 = DecimalParameter(-100, -44, default=-60 , optimize = is_optimize_nfix_39_protection)
is_optimize_btc_safe = False
buy_btc_safe = IntParameter(-300, 50, default=-200, optimize = is_optimize_btc_safe)
buy_btc_safe_1d = DecimalParameter(-0.075, -0.025, default=-0.05, optimize = is_optimize_btc_safe)
buy_threshold = DecimalParameter(0.003, 0.012, default=0.008, optimize = is_optimize_btc_safe)
is_optimize_check = False
buy_roc_1h = IntParameter(-25, 200, default=10, optimize = is_optimize_check)
buy_bb_width_1h = DecimalParameter(0.3, 2.0, default=0.3, optimize = is_optimize_check)
## Slippage params
is_optimize_slip = False
max_slip = DecimalParameter(0.33, 0.80, default=0.33, decimals=3, optimize=is_optimize_slip , load=True)
## Sell params
sell_btc_safe = IntParameter(-400, -300, default=-365, optimize = False)
is_optimize_sell_stoploss = False
sell_cmf = DecimalParameter(-0.4, 0.0, default=0.0, optimize = is_optimize_sell_stoploss)
sell_ema_close_delta = DecimalParameter(0.022, 0.027, default= 0.024, optimize = is_optimize_sell_stoploss)
sell_ema = DecimalParameter(0.97, 0.99, default=0.987 , optimize = is_optimize_sell_stoploss)
sell_rsi_delta = IntParameter(4, 15, default=10, optimize = is_optimize_sell_stoploss)
is_optimize_deadfish = False
sell_deadfish_bb_width = DecimalParameter(0.03, 0.75, default=0.05 , optimize = is_optimize_deadfish)
sell_deadfish_profit = DecimalParameter(-0.15, -0.05, default=-0.05 , optimize = is_optimize_deadfish)
sell_deadfish_bb_factor = DecimalParameter(0.90, 1.20, default=1.0 , optimize = is_optimize_deadfish)
sell_deadfish_volume_factor = DecimalParameter(1, 2.5, default=1.0 , optimize = is_optimize_deadfish)
############################################################################
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, '1h') for pair in pairs]
return informative_pairs
def informative_1h_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
assert self.dp, "DataProvider is required for multiple timeframes."
# Get the informative pair
informative_1h = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=self.inf_1h)
# EMA
informative_1h['ema_8'] = ta.EMA(informative_1h, timeperiod=8)
informative_1h['ema_50'] = ta.EMA(informative_1h, timeperiod=50)
informative_1h['ema_100'] = ta.EMA(informative_1h, timeperiod=100)
informative_1h['ema_200'] = ta.EMA(informative_1h, timeperiod=200)
# CTI
informative_1h['cti'] = pta.cti(informative_1h["close"], length=20)
# CRSI (3, 2, 100)
crsi_closechange = informative_1h['close'] / informative_1h['close'].shift(1)
crsi_updown = np.where(crsi_closechange.gt(1), 1.0, np.where(crsi_closechange.lt(1), -1.0, 0.0))
informative_1h['crsi'] = (ta.RSI(informative_1h['close'], timeperiod=3) + ta.RSI(crsi_updown, timeperiod=2) + ta.ROC(informative_1h['close'], 100)) / 3
# Williams %R
informative_1h['r_480'] = williams_r(informative_1h, period=480)
# Bollinger bands
bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(informative_1h), window=20, stds=2)
informative_1h['bb_lowerband2'] = bollinger2['lower']
informative_1h['bb_middleband2'] = bollinger2['mid']
informative_1h['bb_upperband2'] = bollinger2['upper']
informative_1h['bb_width'] = ((informative_1h['bb_upperband2'] - informative_1h['bb_lowerband2']) / informative_1h['bb_middleband2'])
# ROC
informative_1h['roc'] = ta.ROC(dataframe, timeperiod=9)
# MOMDIV
mom = momdiv(informative_1h)
informative_1h['momdiv_buy'] = mom['momdiv_buy']
informative_1h['momdiv_sell'] = mom['momdiv_sell']
informative_1h['momdiv_coh'] = mom['momdiv_coh']
informative_1h['momdiv_col'] = mom['momdiv_col']
# RSI
informative_1h['rsi'] = ta.RSI(informative_1h, timeperiod=14)
# CMF
informative_1h['cmf'] = chaikin_money_flow(informative_1h, 20)
# Heikin Ashi
inf_heikinashi = qtpylib.heikinashi(informative_1h)
informative_1h['ha_close'] = inf_heikinashi['close']
informative_1h['rocr'] = ta.ROCR(informative_1h['ha_close'], timeperiod=168)
# Pump protections
#informative_1h['hl_pct_change_48'] = range_percent_change(informative_1h, 'HL', length=48)
#informative_1h['hl_pct_change_36'] = range_percent_change(informative_1h, 'HL', length=36)
#informative_1h['hl_pct_change_24'] = range_percent_change(informative_1h, 'HL', length=24)
#informative_1h['hl_pct_change_12'] = range_percent_change(informative_1h, 'HL', length=12)
#informative_1h['hl_pct_change_6'] = range_percent_change(informative_1h, 'HL', length=6)
return informative_1h
############################################################################
### Custom functions
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
sl_new = 1
if (current_profit > 0.2):
sl_new = 0.05
elif (current_profit > 0.1):
sl_new = 0.03
elif (current_profit > 0.06):
sl_new = 0.02
elif (current_profit > 0.03):
sl_new = 0.015
return sl_new
# From NFIX
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1]
previous_candle_1 = dataframe.iloc[-2]
max_profit = ((trade.max_rate - trade.open_rate) / trade.open_rate)
max_loss = ((trade.open_rate - trade.min_rate) / trade.min_rate)
# sell trail
if 0.012 > current_profit >= 0.0:
if (max_profit > (current_profit + 0.045)) and (last_candle['rsi'] < 46.0):
return 'sell_profit_t_0_1'
elif (max_profit > (current_profit + 0.025)) and (last_candle['rsi'] < 32.0):
return 'sell_profit_t_0_2'
elif (max_profit > (current_profit + 0.05)) and (last_candle['rsi'] < 48.0):
return 'sell_profit_t_0_3'
elif 0.02 > current_profit >= 0.012:
if (max_profit > (current_profit + 0.01)) and (last_candle['rsi'] < 39.0):
return 'sell_profit_t_1_1'
elif (max_profit > (current_profit + 0.035)) and (last_candle['rsi'] < 45.0) and (last_candle['cmf'] < -0.0) and (last_candle['cmf_1h'] < -0.0):
return 'sell_profit_t_1_2'
elif (max_profit > (current_profit + 0.02)) and (last_candle['rsi'] < 40.0) and (last_candle['cmf'] < -0.0) and (last_candle['cti_1h'] > 0.8):
return 'sell_profit_t_1_4'
elif (max_profit > (current_profit + 0.04)) and (last_candle['rsi'] < 49.0) and (last_candle['cmf_1h'] < -0.0):
return 'sell_profit_t_1_5'
elif (max_profit > (current_profit + 0.06)) and (last_candle['rsi'] < 43.0) and (last_candle['cmf'] < -0.0):
return 'sell_profit_t_1_7'
elif (max_profit > (current_profit + 0.025)) and (last_candle['rsi'] < 40.0) and (last_candle['cmf'] < -0.1) and (last_candle['rsi_1h'] < 50.0):
return 'sell_profit_t_1_9'
elif (max_profit > (current_profit + 0.025)) and (last_candle['rsi'] < 46.0) and (last_candle['cmf'] < -0.0) and (last_candle['r_480_1h'] > -20.0):
return 'sell_profit_t_1_10'
elif (max_profit > (current_profit + 0.025)) and (last_candle['rsi'] < 42.0):
return 'sell_profit_t_1_11'
elif (max_profit > (current_profit + 0.01)) and (last_candle['rsi'] < 44.0) and (last_candle['cmf'] < -0.25):
return 'sell_profit_t_1_12'
if (last_candle['momdiv_sell_1h'] == True) and (current_profit > 0.02):
return 'signal_profit_q_momdiv_1h'
if (last_candle['momdiv_sell'] == True) and (current_profit > 0.02):
return 'signal_profit_q_momdiv'
if (last_candle['momdiv_coh'] == True) and (current_profit > 0.02):
return 'signal_profit_q_momdiv_coh'
# sell bear
if last_candle['close'] < last_candle['ema_200']:
if 0.02 > current_profit >= 0.01:
if (last_candle['rsi'] < 34.0) and (last_candle['cmf'] < 0.0):
return 'sell_profit_u_bear_1_1'
elif (last_candle['rsi'] < 44.0) and (last_candle['cmf'] < -0.4):
return 'sell_profit_u_bear_1_2'
# sell quick
if (0.06 > current_profit > 0.02) and (last_candle['rsi'] > 80.0):
return 'signal_profit_q_1'
if (0.06 > current_profit > 0.02) and (last_candle['cti'] > 0.95):
return 'signal_profit_q_2'
if (0.06 > current_profit > 0.02) and (last_candle['pm'] <= last_candle['pmax_thresh']) and (last_candle['close'] > last_candle['sma_21'] * 1.1):
return 'signal_profit_q_pmax_bull'
if (0.06 > current_profit > 0.02) and (last_candle['pm'] > last_candle['pmax_thresh']) and (last_candle['close'] > last_candle['sma_21'] * 1.016):
return 'signal_profit_q_pmax_bear'
if (
(current_profit < -0.05)
and (last_candle['close'] < last_candle['ema_200'] * self.sell_ema.value)
and (last_candle['cmf'] < self.sell_cmf.value)
and (((last_candle['ema_200'] - last_candle['close']) / last_candle['close']) < self.sell_ema_close_delta.value)
and last_candle['rsi'] > previous_candle_1['rsi']
and (last_candle['rsi'] > (last_candle['rsi_1h'] + self.sell_rsi_delta.value))
):
return 'sell_stoploss_u_e_1'
# stoploss - deadfish
if ( (current_profit < self.sell_deadfish_profit.value)
and (last_candle['close'] < last_candle['ema_200'])
and (last_candle['bb_width'] < self.sell_deadfish_bb_width.value)
and (last_candle['close'] > last_candle['bb_middleband2'] * self.sell_deadfish_bb_factor.value)
and (last_candle['volume_mean_12'] < last_candle['volume_mean_24'] * self.sell_deadfish_volume_factor.value)
):
return 'sell_stoploss_deadfish'
return None
## Confirm Entry
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float, time_in_force: str, **kwargs) -> bool:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
max_slip = self.max_slip.value
if(len(dataframe) < 1):
return False
dataframe = dataframe.iloc[-1].squeeze()
if ((rate > dataframe['close'])) :
slippage = ( (rate / dataframe['close']) - 1 ) * 100
#print("open rate is : " + str(rate))
#print("last candle close is : " + str(dataframe['close']))
#print("slippage is : " + str(slippage) )
#print("############################################################################")
if slippage < max_slip:
return True
else:
return False
return True
############################################################################
def normal_tf_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Bollinger bands
bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband2'] = bollinger2['lower']
dataframe['bb_middleband2'] = bollinger2['mid']
dataframe['bb_upperband2'] = bollinger2['upper']
bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=3)
dataframe['bb_lowerband3'] = bollinger3['lower']
dataframe['bb_middleband3'] = bollinger3['mid']
dataframe['bb_upperband3'] = bollinger3['upper']
### Other BB checks
dataframe['bb_width'] = ((dataframe['bb_upperband2'] - dataframe['bb_lowerband2']) / dataframe['bb_middleband2'])
dataframe['bb_delta'] = ((dataframe['bb_lowerband2'] - dataframe['bb_lowerband3']) / dataframe['bb_lowerband2'])
# CCI hyperopt
for val in self.buy_cci_length.range:
dataframe[f'cci_length_{val}'] = ta.CCI(dataframe, val)
dataframe['cci'] = ta.CCI(dataframe, 26)
dataframe['cci_long'] = ta.CCI(dataframe, 170)
# RMI hyperopt
for val in self.buy_rmi_length.range:
dataframe[f'rmi_length_{val}'] = RMI(dataframe, length=val, mom=4)
# SRSI hyperopt
stoch = ta.STOCHRSI(dataframe, 15, 20, 2, 2)
dataframe['srsi_fk'] = stoch['fastk']
dataframe['srsi_fd'] = stoch['fastd']
# BinH
dataframe['closedelta'] = (dataframe['close'] - dataframe['close'].shift()).abs()
# SMA
dataframe['sma_9'] = ta.SMA(dataframe, timeperiod=9)
dataframe['sma_15'] = ta.SMA(dataframe, timeperiod=15)
dataframe['sma_21'] = ta.SMA(dataframe, timeperiod=21)
dataframe['sma_30'] = ta.SMA(dataframe, timeperiod=30)
dataframe['sma_75'] = ta.SMA(dataframe, timeperiod=75)
# CTI
dataframe['cti'] = pta.cti(dataframe["close"], length=20)
# CMF
dataframe['cmf'] = chaikin_money_flow(dataframe, 20)
# CRSI (3, 2, 100)
crsi_closechange = dataframe['close'] / dataframe['close'].shift(1)
crsi_updown = np.where(crsi_closechange.gt(1), 1.0, np.where(crsi_closechange.lt(1), -1.0, 0.0))
dataframe['crsi'] = (ta.RSI(dataframe['close'], timeperiod=3) + ta.RSI(crsi_updown, timeperiod=2) + ta.ROC(dataframe['close'], 100)) / 3
# EMA
dataframe['ema_8'] = ta.EMA(dataframe, timeperiod=8)
dataframe['ema_12'] = ta.EMA(dataframe, timeperiod=12)
dataframe['ema_13'] = ta.EMA(dataframe, timeperiod=13)
dataframe['ema_16'] = ta.EMA(dataframe, timeperiod=16)
dataframe['ema_20'] = ta.EMA(dataframe, timeperiod=20)
dataframe['ema_26'] = ta.EMA(dataframe, timeperiod=26)
dataframe['ema_50'] = ta.EMA(dataframe, timeperiod=50)
dataframe['ema_100'] = ta.EMA(dataframe, timeperiod=100)
dataframe['ema_200'] = ta.EMA(dataframe, timeperiod=200)
# RSI
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4)
dataframe['rsi_slow'] = ta.RSI(dataframe, timeperiod=20)
# Elliot
dataframe['EWO'] = EWO(dataframe, 50, 200)
# Williams %R
dataframe['r_14'] = williams_r(dataframe, period=14)
dataframe['r_32'] = williams_r(dataframe, period=32)
dataframe['r_64'] = williams_r(dataframe, period=64)
dataframe['r_96'] = williams_r(dataframe, period=96)
dataframe['r_480'] = williams_r(dataframe, period=480)
# Volume
dataframe['volume_mean_4'] = dataframe['volume'].rolling(4).mean().shift(1)
dataframe['volume_mean_12'] = dataframe['volume'].rolling(12).mean().shift(1)
dataframe['volume_mean_24'] = dataframe['volume'].rolling(24).mean().shift(1)
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# Heiken Ashi
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
## BB 40
bollinger2_40 = qtpylib.bollinger_bands(ha_typical_price(dataframe), window=40, stds=2)
dataframe['bb_lowerband2_40'] = bollinger2_40['lower']
dataframe['bb_middleband2_40'] = bollinger2_40['mid']
dataframe['bb_upperband2_40'] = bollinger2_40['upper']
# ClucHA
dataframe['bb_delta_cluc'] = (dataframe['bb_middleband2_40'] - dataframe['bb_lowerband2_40']).abs()
dataframe['ha_closedelta'] = (dataframe['ha_close'] - dataframe['ha_close'].shift()).abs()
dataframe['tail'] = (dataframe['ha_close'] - dataframe['ha_low']).abs()
dataframe['ema_slow'] = ta.EMA(dataframe['ha_close'], timeperiod=50)
dataframe['rocr'] = ta.ROCR(dataframe['ha_close'], timeperiod=28)
# Cofi
stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
dataframe['adx'] = ta.ADX(dataframe)
# Profit Maximizer - PMAX
dataframe['pm'], dataframe['pmx'] = pmax(heikinashi, MAtype=1, length=9, multiplier=27, period=10, src=3)
dataframe['source'] = (dataframe['high'] + dataframe['low'] + dataframe['open'] + dataframe['close'])/4
dataframe['pmax_thresh'] = ta.EMA(dataframe['source'], timeperiod=9)
# MOMDIV
mom = momdiv(dataframe)
dataframe['momdiv_buy'] = mom['momdiv_buy']
dataframe['momdiv_sell'] = mom['momdiv_sell']
dataframe['momdiv_coh'] = mom['momdiv_coh']
dataframe['momdiv_col'] = mom['momdiv_col']
return dataframe
############################################################################
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# The indicators for the 1h informative timeframe
informative_1h = self.informative_1h_indicators(dataframe, metadata)
dataframe = merge_informative_pair(dataframe, informative_1h, self.timeframe, self.inf_1h, ffill=True)
# The indicators for the normal (5m) timeframe
dataframe = self.normal_tf_indicators(dataframe, metadata)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
dataframe.loc[:, 'buy_tag'] = ''
is_dip = (
(dataframe[f'rmi_length_{self.buy_rmi_length.value}'] < self.buy_rmi.value) &
(dataframe[f'cci_length_{self.buy_cci_length.value}'] <= self.buy_cci.value) &
(dataframe['srsi_fk'] < self.buy_srsi_fk.value)
)
is_break = (
(dataframe['bb_delta'] > self.buy_bb_delta.value) &
(dataframe['bb_width'] > self.buy_bb_width.value) &
(dataframe['closedelta'] > dataframe['close'] * self.buy_closedelta.value / 1000 ) & # from BinH
(dataframe['close'] < dataframe['bb_lowerband3'] * self.buy_bb_factor.value)
)
is_local_uptrend = ( # from NFI next gen
(dataframe['ema_26'] > dataframe['ema_12']) &
(dataframe['ema_26'] - dataframe['ema_12'] > dataframe['open'] * self.buy_ema_diff.value) &
(dataframe['ema_26'].shift() - dataframe['ema_12'].shift() > dataframe['open'] / 100) &
(dataframe['close'] < dataframe['bb_lowerband2'] * self.buy_bb_factor.value) &
(dataframe['closedelta'] > dataframe['close'] * self.buy_closedelta.value / 1000 )
)
is_local_dip = (
(dataframe['ema_26'] > dataframe['ema_12']) &
(dataframe['ema_26'] - dataframe['ema_12'] > dataframe['open'] * self.buy_ema_diff_local_dip.value) &
(dataframe['ema_26'].shift() - dataframe['ema_12'].shift() > dataframe['open'] / 100) &
(dataframe['close'] < dataframe['ema_20'] * self.buy_ema_high_local_dip.value) &
(dataframe['rsi'] < self.buy_rsi_local_dip.value) &
(dataframe['crsi'] > self.buy_crsi_local_dip.value) &
(dataframe['closedelta'] > dataframe['close'] * self.buy_closedelta_local_dip.value / 1000 )
)
is_ewo = ( # from SMA offset
(dataframe['rsi_fast'] < self.buy_rsi_fast.value) &
(dataframe['close'] < dataframe['ema_8'] * self.buy_ema_low.value) &
(dataframe['EWO'] > self.buy_ewo.value) &
(dataframe['close'] < dataframe['ema_16'] * self.buy_ema_high.value) &
(dataframe['rsi'] < self.buy_rsi.value)
)
is_ewo_2 = (
(dataframe['ema_200_1h'] > dataframe['ema_200_1h'].shift(12)) &
(dataframe['ema_200_1h'].shift(12) > dataframe['ema_200_1h'].shift(24)) &
(dataframe['rsi_fast'] < self.buy_rsi_fast_ewo_2.value) &
(dataframe['close'] < dataframe['ema_8'] * self.buy_ema_low_2.value) &
(dataframe['EWO'] > self.buy_ewo_high_2.value) &
(dataframe['close'] < dataframe['ema_16'] * self.buy_ema_high_2.value) &
(dataframe['rsi'] < self.buy_rsi_ewo_2.value)
)
is_r_deadfish = ( # reverse deadfish
(dataframe['ema_100'] < dataframe['ema_200'] * self.buy_r_deadfish_ema.value) &
(dataframe['bb_width'] > self.buy_r_deadfish_bb_width.value) &
(dataframe['close'] < dataframe['bb_middleband2'] * self.buy_r_deadfish_bb_factor.value) &
(dataframe['volume_mean_12'] > dataframe['volume_mean_24'] * self.buy_r_deadfish_volume_factor.value) &
(dataframe['cti'] < self.buy_r_deadfish_cti.value) &
(dataframe['r_14'] < self.buy_r_deadfish_r14.value)
)
is_clucHA = (
(dataframe['rocr_1h'] > self.buy_clucha_rocr_1h.value ) &
(
(
(dataframe['bb_lowerband2_40'].shift() > 0) &
(dataframe['bb_delta_cluc'] > dataframe['ha_close'] * self.buy_clucha_bbdelta_close.value) &
(dataframe['ha_closedelta'] > dataframe['ha_close'] * self.buy_clucha_closedelta_close.value) &
(dataframe['tail'] < dataframe['bb_delta_cluc'] * self.buy_clucha_bbdelta_tail.value) &
(dataframe['ha_close'] < dataframe['bb_lowerband2_40'].shift()) &
(dataframe['ha_close'] < dataframe['ha_close'].shift())
)
|
(
(dataframe['ha_close'] < dataframe['ema_slow']) &
(dataframe['ha_close'] < self.buy_clucha_close_bblower.value * dataframe['bb_lowerband2'])
)
)
)
is_cofi = (
(dataframe['open'] < dataframe['ema_8'] * self.buy_ema_cofi.value) &
(qtpylib.crossed_above(dataframe['fastk'], dataframe['fastd'])) &
(dataframe['fastk'] < self.buy_fastk.value) &
(dataframe['fastd'] < self.buy_fastd.value) &
(dataframe['adx'] > self.buy_adx.value) &
(dataframe['EWO'] > self.buy_ewo_high.value) &
(dataframe['cti'] < self.buy_cofi_cti.value) &
(dataframe['r_14'] < self.buy_cofi_39_r14.value)
)
# NFI quick mode
is_nfi_13 = (
(dataframe['ema_50_1h'] > dataframe['ema_100_1h']) &
(dataframe['close'] < dataframe['sma_30'] * 0.99) &
(dataframe['cti'] < -0.92) &
(dataframe['EWO'] < -5.585) &
(dataframe['cti_1h'] < -0.88) &
(dataframe['crsi_1h'] > 10.0)
)
is_nfi_32 = ( # NFIX 26
(dataframe['rsi_slow'] < dataframe['rsi_slow'].shift(1)) &
(dataframe['rsi_fast'] < 46) &
(dataframe['rsi'] > 25.0) &
(dataframe['close'] < dataframe['sma_15'] * 0.93) &
(dataframe['cti'] < -0.9)
)
is_nfi_33 = (
(dataframe['close'] < (dataframe['ema_13'] * 0.978)) &
(dataframe['EWO'] > 8) &
(dataframe['cti'] < -0.88) &
(dataframe['rsi'] < 32) &
(dataframe['r_14'] < -98.0) &
(dataframe['volume'] < (dataframe['volume_mean_4'] * 2.5))
)
is_nfi_38 = (
(dataframe['pm'] > dataframe['pmax_thresh']) &
(dataframe['close'] < dataframe['sma_75'] * 0.98) &
(dataframe['EWO'] < -4.4) &
(dataframe['cti'] < -0.95) &
(dataframe['r_14'] < -97) &
(dataframe['crsi_1h'] > 0.5)
)
is_nfix_5 = (
(dataframe['ema_200_1h'] > dataframe['ema_200_1h'].shift(12)) &
(dataframe['ema_200_1h'].shift(12) > dataframe['ema_200_1h'].shift(24)) &
(dataframe['close'] < dataframe['sma_75'] * 0.932) &
(dataframe['EWO'] > 3.6) &
(dataframe['cti'] < -0.9) &
(dataframe['r_14'] < -97.0)
)
is_nfix_49 = (
(dataframe['ema_26'].shift(3) > dataframe['ema_12'].shift(3)) &
(dataframe['ema_26'].shift(3) - dataframe['ema_12'].shift(3) > dataframe['open'].shift(3) * 0.032) &
(dataframe['ema_26'].shift(9) - dataframe['ema_12'].shift(9) > dataframe['open'].shift(3) / 100) &
(dataframe['close'].shift(3) < dataframe['ema_20'].shift(3) * 0.916) &
(dataframe['rsi'].shift(3) < 32.5) &
(dataframe['crsi'].shift(3) > 18.0) &
(dataframe['cti'] < self.buy_nfix_39_cti.value) &
(dataframe['r_14'] < self.buy_nfix_39_r14.value)
)
is_nfix_51 = (
(dataframe['close'].shift(3) < dataframe['ema_16'].shift(3) * 0.944) &
(dataframe['EWO'].shift(3) < -1.0) &
(dataframe['rsi'].shift(3) > 28.0) &
(dataframe['cti'].shift(3) < -0.84) &
(dataframe['r_14'].shift(3) < -94.0) &
(dataframe['rsi'] > 30.0) &
(dataframe['crsi_1h'] > 1.0)
)
is_additional_check = (
(dataframe['roc_1h'] < self.buy_roc_1h.value) &
(dataframe['bb_width_1h'] < self.buy_bb_width_1h.value)
)
## Additional Check
is_BB_checked = is_dip & is_break
## Condition Append
conditions.append(is_BB_checked) # ~0.93 / 90.9% / 34.09% D
dataframe.loc[is_BB_checked, 'buy_tag'] += 'bb '
conditions.append(is_local_uptrend) # ~1.92 / 92.3% / 58.64% D
dataframe.loc[is_local_uptrend, 'buy_tag'] += 'local_uptrend '
conditions.append(is_local_dip) # ~0.26 / 97.8% / 7.74% D
dataframe.loc[is_local_dip, 'buy_tag'] += 'local_dip '
conditions.append(is_ewo) # ~0.33 / 86.4% / 49.25% D
dataframe.loc[is_ewo, 'buy_tag'] += 'ewo '
conditions.append(is_ewo_2) # ~0.95 / 87% / 21.77% D
dataframe.loc[is_ewo_2, 'buy_tag'] += 'ewo2 '
conditions.append(is_r_deadfish) # ~0.65 / 93.9% / 36.87% D
dataframe.loc[is_r_deadfish, 'buy_tag'] += 'r_deadfish '
conditions.append(is_clucHA) # ~0.34 / 93.4% / 37.01% F
dataframe.loc[is_clucHA, 'buy_tag'] += 'clucHA '
conditions.append(is_cofi) # ~0.36 / 89.1% / 10.32% D
dataframe.loc[is_cofi, 'buy_tag'] += 'cofi '
conditions.append(is_nfi_13) # ~0.4 / 100% D
dataframe.loc[is_nfi_13, 'buy_tag'] += 'nfi_13 '
conditions.append(is_nfi_32) # ~0.78 / 92.0 % / 37.41% D
dataframe.loc[is_nfi_32, 'buy_tag'] += 'nfi_32 '
conditions.append(is_nfi_33) # ~0.11 / 100% D
dataframe.loc[is_nfi_33, 'buy_tag'] += 'nfi_33 '
conditions.append(is_nfi_38) # ~1.07 / 83.2% / 70.22% F
dataframe.loc[is_nfi_38, 'buy_tag'] += 'nfi_38 '
conditions.append(is_nfix_5) # ~0.25 / 97.7% / 6.53% D
dataframe.loc[is_nfix_5, 'buy_tag'] += 'nfix_5 '
conditions.append(is_nfix_49) # ~0.33 / 100% / 0% D
dataframe.loc[is_nfix_49, 'buy_tag'] += 'nfix_49 '
if conditions:
dataframe.loc[
is_additional_check
&
reduce(lambda x, y: x | y, conditions)
, 'buy' ] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[ (dataframe['volume'] > 0), 'sell' ] = 0
return dataframe
# PMAX
def pmax(df, period, multiplier, length, MAtype, src):
period = int(period)
multiplier = int(multiplier)
length = int(length)
MAtype = int(MAtype)
src = int(src)
mavalue = f'MA_{MAtype}_{length}'
atr = f'ATR_{period}'
pm = f'pm_{period}_{multiplier}_{length}_{MAtype}'
pmx = f'pmX_{period}_{multiplier}_{length}_{MAtype}'
# MAtype==1 --> EMA
# MAtype==2 --> DEMA
# MAtype==3 --> T3
# MAtype==4 --> SMA
# MAtype==5 --> VIDYA
# MAtype==6 --> TEMA
# MAtype==7 --> WMA
# MAtype==8 --> VWMA
# MAtype==9 --> zema
if src == 1:
masrc = df["close"]
elif src == 2:
masrc = (df["high"] + df["low"]) / 2
elif src == 3:
masrc = (df["high"] + df["low"] + df["close"] + df["open"]) / 4
if MAtype == 1:
mavalue = ta.EMA(masrc, timeperiod=length)
elif MAtype == 2:
mavalue = ta.DEMA(masrc, timeperiod=length)
elif MAtype == 3:
mavalue = ta.T3(masrc, timeperiod=length)
elif MAtype == 4:
mavalue = ta.SMA(masrc, timeperiod=length)
elif MAtype == 5:
mavalue = VIDYA(df, length=length)
elif MAtype == 6:
mavalue = ta.TEMA(masrc, timeperiod=length)
elif MAtype == 7:
mavalue = ta.WMA(df, timeperiod=length)
elif MAtype == 8:
mavalue = vwma(df, length)
elif MAtype == 9:
mavalue = zema(df, period=length)
df[atr] = ta.ATR(df, timeperiod=period)
df['basic_ub'] = mavalue + ((multiplier/10) * df[atr])
df['basic_lb'] = mavalue - ((multiplier/10) * df[atr])
basic_ub = df['basic_ub'].values
final_ub = np.full(len(df), 0.00)
basic_lb = df['basic_lb'].values
final_lb = np.full(len(df), 0.00)
for i in range(period, len(df)):
final_ub[i] = basic_ub[i] if (
basic_ub[i] < final_ub[i - 1]
or mavalue[i - 1] > final_ub[i - 1]) else final_ub[i - 1]
final_lb[i] = basic_lb[i] if (
basic_lb[i] > final_lb[i - 1]
or mavalue[i - 1] < final_lb[i - 1]) else final_lb[i - 1]
df['final_ub'] = final_ub
df['final_lb'] = final_lb
pm_arr = np.full(len(df), 0.00)
for i in range(period, len(df)):
pm_arr[i] = (
final_ub[i] if (pm_arr[i - 1] == final_ub[i - 1]
and mavalue[i] <= final_ub[i])
else final_lb[i] if (
pm_arr[i - 1] == final_ub[i - 1]
and mavalue[i] > final_ub[i]) else final_lb[i]
if (pm_arr[i - 1] == final_lb[i - 1]
and mavalue[i] >= final_lb[i]) else final_ub[i]
if (pm_arr[i - 1] == final_lb[i - 1]
and mavalue[i] < final_lb[i]) else 0.00)
pm = Series(pm_arr)
# Mark the trend direction up/down
pmx = np.where((pm_arr > 0.00), np.where((mavalue < pm_arr), 'down', 'up'), np.NaN)
return pm, pmx
# Mom DIV
def momdiv(dataframe: DataFrame, mom_length: int = 10, bb_length: int = 20, bb_dev: float = 2.0, lookback: int = 30) -> DataFrame:
mom: Series = ta.MOM(dataframe, timeperiod=mom_length)
upperband, middleband, lowerband = ta.BBANDS(mom, timeperiod=bb_length, nbdevup=bb_dev, nbdevdn=bb_dev, matype=0)
buy = qtpylib.crossed_below(mom, lowerband)
sell = qtpylib.crossed_above(mom, upperband)
hh = dataframe['high'].rolling(lookback).max()
ll = dataframe['low'].rolling(lookback).min()
coh = dataframe['high'] >= hh
col = dataframe['low'] <= ll
df = DataFrame({
"momdiv_mom": mom,
"momdiv_upperb": upperband,
"momdiv_lowerb": lowerband,
"momdiv_buy": buy,
"momdiv_sell": sell,
"momdiv_coh": coh,
"momdiv_col": col,
}, index=dataframe['close'].index)
return df