-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathselfe2tecVContour.py
executable file
·195 lines (155 loc) · 5.76 KB
/
selfe2tecVContour.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/python
#####################################################
## An python program to extract data along a profile
## line from the selfe binary and generate tecplot
## output files to plot a vertical profile contour map
##
## selfe2tecVProfile.py <datadir> <tecfile> <param> <profilelinefile> <nfiles>
##
## param = salt.63,temp.63 etc
#####################################################
## Author : Dharhas Pothina
## Last Modified : 20080611
## Requires :
## No Other Scripts Required
#####################################################
programname = "selfe2tecVContour.py";
# load required modules
import os
import sys
import platform
import numpy as np
import shapefile
sys.path.append('/home/snegusse/pyselfe')
import pyselfe
def read_curtain_shapefile(curtain_shapefile):
line = shapefile.Reader(curtain_shapefile)
curtain_coords = np.array([s.points for s in line.shapes()])
cx = curtain_coords[:,:,0].ravel()
cy = curtain_coords[:,:,1].ravel()
return cx, cy
def calc_channel_orientation(cx, cy):
cx_delta = (cx[1:] - cx[:-1])
cy_delta = (cy[1:] - cy[:-1])
segment_length = np.hypot(cx_delta, cy_delta)
cos_theta = cx_delta / segment_length
theta_deg = np.arccos(cos_theta) * 180. / np.pi
sin_theta = cy_delta / segment_length
neg_sin_theta_ind = sin_theta < 0.
theta_deg[neg_sin_theta_ind] *= -1
theta_deg *= -1
theta_deg = np.insert(theta_deg, 0, theta_deg[0]) # assuming that the orientation at the first two points is the same for simplicity.
return theta_deg
#read in command line variables
if platform.system() == 'Linux':
base_dir = '/home/snegusse/modeling/brazos_river'
data_dir = '/home/snegusse/tmp'
tec_filename = 'tdff_curt.dat'
curtain_filename = 'brazos_centerline.shp'
curtain_file = os.path.join(base_dir, curtain_filename)
tec_file = os.path.join(data_dir, tec_filename)
param = 'tdff.63'
sfile = 19
nfile = 1
model = pyselfe.Dataset(os.path.join(data_dir, str(sfile) + '_' + param))
# Read in xy/node locations of profile line
cx, cy = read_curtain_shapefile(curtain_file)
#take every third point and remove points upstream of bz2
cx = cx[::-1]
cy = cy[::-1]
cx = cx[::3][-10:]
cy = cy[::3][-10:]
channel_orientation = calc_channel_orientation(cx, cy)
xy = np.column_stack((cx, cy))
nxy = xy.shape[0]
# Read all time series data for set of xy
# level = nlevel - 1 because of zero indexing
[t,t_iter,eta,dp,data] = model.read_time_series(param,xy=xy, nfiles=nfile,
datadir=data_dir, sfile=sfile)
#generate xz values for each timestep
sLevels = np.hstack([-1.0,model.slevels])
Z = np.zeros((t.size,nxy,model.nlevels))/0.0
Z0 = np.zeros((nxy,model.nlevels))/0.0
for time in range(t.size):
H = dp + eta[time,:]
for node in range(nxy):
Z[time,node,:] = H[node] * (1+sLevels) - dp[node]
Z0[node,:] = dp[node]*sLevels
#Make this actual xy distances later
D=[]
D.append(0)
dist = 0
for i in range(1,xy.shape[0]):
dist = dist + np.hypot((xy[i,0]-xy[i-1,0]), (xy[i,1]-xy[i-1,1]))
D.append(dist)
X=[]
for lev in range(model.nlevels):
X.append(D)
X = np.array(X).transpose()
#X = X.transpose().ravel()
#X = X.ravel()
header = []
header.append('TITLE = Selfe Vertical Profile : ' + (model.version).strip() \
+ ', ' + curtain_file)
variables = {'salt.63': '\"Sal\"',
'temp.63': '\"Temp\"',
'vert.63': '\"W\"',
'hvel.64': '\"Vel\"',
'tdff.63': '\"tdff"',
'vdff.63': '\"vdff"'
}[(model.var_type).strip()]
header.append('Variables = \"X\", \"Z\", ' + variables)
zonetype = 'I=' + nxy.__str__() \
+ ', J=' + model.nlevels.__int__().__str__() \
+ ', DATAPACKING=POINT'
header.append('ZONE T=\"0.0\"' + zonetype + ', SOLUTIONTIME=0.0')
#Write ZONE 1
fid = open(tec_file,'w')
for txt in header:
fid.write(txt + '\n')
for j in range(model.nlevels):
for i in range(nxy):
fid.write(X[i,j].__str__() + ' ' + Z0[i,j].__str__() + ' ' + (Z0[i,j]*0.0).__str__() + '\n')
#Write Timesteps
for dt in range(t.size):
zone = 'ZONE T=\"' + t[dt].__str__() + '\", ' + zonetype + ', SOLUTIONTIME= ' +t[dt].__str__() +'\n'
fid.write(zone)
Z0=Z[dt,:,:]
for j in range(model.nlevels):
for i in range(nxy):
fid.write(X[i,j].__str__() + ' ' + Z0[i,j].__str__() + ' ' + (data[dt,i,j,0]).__str__() + '\n')
fid.close()
#split into rows of 10
#rows = X.size/10
#remain = X.size-10*rows
#end = X.size
#savetxt(fid,X[0:10*rows].reshape(rows,10),delimiter=' ',fmt="%f")
#X[10*rows:end].tofile(fid,sep=" ",format="%f")
#fid.write('\n')
#Z0=Z0.transpose().ravel()
#savetxt(fid,Z0[0:10*rows].reshape(rows,10),delimiter=' ',fmt="%f")
#Z0[10*rows:end].tofile(fid,sep=" ",format="%f")
#fid.write('\n')
#dummy = Z0*0.0
#set all other vars =0 at t=0
#for i in range(model.flagSv):
# savetxt(fid,dummy[0:10*rows].reshape(rows,10),delimiter=' ',fmt="%f")
# #fid.write('\n')
# dummy[10*rows:end].tofile(fid,sep=" ",format="%f")
# fid.write('\n')
#fid.write('\n')
#for i in range(t.size):
# zone = 'ZONE T=\"' + t[i].__str__() + '\", ' + zonetype + ', SOLUTIONTIME= ' +t[i].__str__() +'\n'
# fid.write(zone)
# savetxt(fid,X[0:10*rows].reshape(rows,10),delimiter=' ',fmt="%f")
# X[10*rows:end].tofile(fid,sep=" ",format="%f")
# fid.write('\n')
# Z0=Z[i,:,:].transpose().ravel()
# savetxt(fid,Z0[0:10*rows].reshape(rows,10),delimiter=' ',fmt="%f")
# Z0[10*rows:end].tofile(fid,sep=" ",format="%f")
# fid.write('\n')
# for j in range(model.flagSv):
# tmpdata=data[i,:,:,j].transpose()
# savetxt(fid,tmpdata[0:10*rows].reshape(rows,10),delimiter=' ',fmt="%f")
# tmpdata[10*rows:end].tofile(fid,sep=" ",format="%f")
# fid.write('\n')