-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresidual_flow_flux.py
executable file
·140 lines (114 loc) · 5.76 KB
/
residual_flow_flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 28 14:22:31 2013
@author: SNegusse
"""
import os
import sys
sys.path.append('/home/snegusse/pyselfe/')
import numpy as np
import pandas as pd
import pyselfe
sfile = 1
nfiles = 2
mod_start_datetime = pd.datetime(2008,8,24,0,0)
no_dow_start_datetime = pd.datetime(2008,9,23,0,0)
density = 1020.
tidal_period = '1490min'
flux_calc_start_date = pd.datetime(2008,9,20,19)
flux_calc_end_date = pd.datetime(2008,9,25)
base_dir = '/home/snegusse/modeling/brazos_river/calibration_20080824'
mod_dirs = {'base_case': os.path.join(base_dir, 'base_case', 'outputs')}
#'fine': os.path.join(base_dir, 'grid_convergence', 'fine_grid_tvd',
# 'outputs')}
sal_init_file = str(sfile) + '_salt.63'
vel_init_file = str(sfile) + '_hvel.64'
mod_initial={}
sites_xy = pd.DataFrame(np.array([[246469.00 , 3226774.00, np.nan],
[ 251473.33, 3216482.68, np.nan],
[ 258762.88, 3213500.45, 62.],
[ 268056.17, 3204466.99, 103.],
[ 268006.08, 3204401.47, 103.],
[ 267495.05, 3198979.43, np.nan],
[ 276812.42, 3205896.17, np.nan] ,
[ 2730 , 3203521.88, np.nan]]),
index=['bz1','bz2','bz3','bz4','bz5',
'bz6u','icfr','frpt'],
columns=['x','y','orientation'])
brazos_sites = sites_xy.ix[['bz3','bz5'], ['x', 'y']]
sites_sal_data = {}
sites_uvel_data = {}
sites_vvel_data = {}
sites_dp_data = {}
mod_t = {}
for i in mod_dirs.keys():
hdf5_file = os.path.join(base_dir, mod_dirs[i], i + '_' + \
'mod_data' + '.h5')
if os.path.exists(hdf5_file):
hdf5_storage = pd.io.pytables.HDFStore(hdf5_file, mode='r')
sites_sal_data[i] = hdf5_storage['salinity']
sites_uvel_data[i] = hdf5_storage['u_vel']
sites_vvel_data[i] = hdf5_storage['v_vel']
sites_dp_data[i] = hdf5_storage['depth']
else:
mod_initial[i] = (pyselfe.Dataset(os.path.join(mod_dirs[i],
sal_init_file)), pyselfe.Dataset(os.path.join(mod_dirs[i],
vel_init_file)),)
[sal_t, tstep, eta, dp, sal_data] = \
mod_initial[i][0].read_time_series('salt.63',
xy=brazos_sites.values,
nfiles=nfiles, datadir=mod_dirs[i],
sfile=sfile)
[vel_t, tstep, eta, dp, vel_data] = \
mod_initial[i][1].read_time_series('hvel.64',
xy=brazos_sites.values,
nfiles=nfiles, datadir=mod_dirs[i],
sfile=sfile)
sal_mod_datetimes = [mod_start_datetime + pd.datetools.Second(dt)
for dt in sal_t]
vel_mod_datetimes = [mod_start_datetime + pd.datetools.Second(dt)
for dt in vel_t]
sites_sal_data[i] = pd.Panel(sal_data[:,:,:,0],
major_axis=brazos_sites.index,
items=sal_mod_datetimes)
sites_uvel_data[i] = pd.Panel(vel_data[:,:,:,0],
major_axis=brazos_sites.index,
items=vel_mod_datetimes)
sites_vvel_data[i] = pd.Panel(vel_data[:,:,:,1],
major_axis=brazos_sites.index,
items=vel_mod_datetimes)
dp_dynamic = dp + eta
sites_dp_data[i] = pd.DataFrame(dp_dynamic, index=sal_mod_datetimes,
columns=brazos_sites.index.values)
hdf5_storage = pd.io.pytables.HDFStore(hdf5_file)
hdf5_storage['salinity'] = sites_sal_data[i]
hdf5_storage['u_vel'] = sites_uvel_data[i]
hdf5_storage['v_vel'] = sites_vvel_data[i]
hdf5_storage['depth'] = sites_dp_data[i]
hdf5_storage.close()
for site in brazos_sites.index:
site_sal_dict = {}
site_uvel_dict = {}
site_vvel_dict = {}
site_uprime_dict = {}
site_dp_dict = {}
site_salt_flux = {}
for sim in sites_sal_data.keys():
site_sal_dict[sim] = sites_sal_data[sim].xs(site).T
site_uvel_dict[sim] = sites_uvel_data[sim].xs(site).T
site_vvel_dict[sim] = sites_vvel_data[sim].xs(site).T
site_uprime_dict[sim] = site_uvel_dict[sim] * \
np.cos(sites_xy.ix[site, 'orientation'] * np.pi / 180.) - \
site_vvel_dict[sim] * np.sin(sites_xy.ix[site, 'orientation'] * \
np.pi / 180.)
site_dp_dict[sim] = sites_dp_data[sim][site]
depth_avg_vel = site_uprime_dict[sim].mean(axis=1)
depth_avg_sal = site_sal_dict[sim].mean(axis=1)
site_flux_params = pd.DataFrame({'salinity': depth_avg_sal,
'velocity': depth_avg_vel,
'depth': site_dp_dict[sim]})
site_flux_params = site_flux_params[flux_calc_start_date:\
flux_calc_end_date]
tidal_avg_flux_param = site_flux_params.resample(tidal_period)
tidal_avg_flux_param = tidal_avg_flux_param[:-1]
site_salt_flux[sim] = tidal_avg_flux_param.prod(axis=1) * density