-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_seq2seq.py
565 lines (470 loc) · 25 KB
/
attention_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import torch
import torch.nn as nn
from torchtext.datasets import TranslationDataset
from torchtext.data import Field, BucketIterator
from spacy.lang.hi import Hindi
from spacy.lang.en import English
import os
import math
import random
import numpy as np
import torch.optim as optim
import time
import math
import pickle
import logging
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu, SmoothingFunction
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch.nn.functional as F
import sys
MODEL_NAME = 'attn-verse'
CACHE_DIR = "/home/tushar/Desktop/MS/sem 2/nlpa/assignment-2/saved_models/attention"
#smoothing_function
smoothie = SmoothingFunction()
spacy_en, spacy_hi = English(), Hindi()
log_file = os.path.join(CACHE_DIR, "%s.log"%MODEL_NAME)
#logging to a file
logging.basicConfig(filename=os.path.abspath(log_file), filemode='w', level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p')
#logging to standard output
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
class EncoderRNN(nn.Module):
def __init__(self, input_dim, embedding_dim, hidden_dim, layer_count, dropout_rate, bidirectional=True):
super().__init__()
self.hidden_dim = hidden_dim
self.layer_count = layer_count
self.bidirectional = bidirectional
self.embedding = nn.Embedding(input_dim, embedding_dim)
self.dropout = nn.Dropout(dropout_rate)
self.rnn = nn.GRU(embedding_dim, hidden_dim, num_layers=layer_count, bidirectional=True)
def forward(self, input_data, src_field, device):
#input dimensions : [seq_length, batch_size]
batch_size = input_data.shape[1]
embedding = self.dropout(self.embedding(input_data))
#packing padded sequence
packed_embedding = pack_padded_sequence(embedding, calculate_seq_length_in_batch(input_data, src_field, device), enforce_sorted=False)
packed_output, hidden = self.rnn(packed_embedding)
direc_hidden = hidden.view(self.layer_count, 2 if self.bidirectional else 1, batch_size, self.hidden_dim)
#output dim = [seq_len, batch, hidden_dim]
#hidden = [layer_count, batch, hidden_dim]
return torch.cat((direc_hidden[:, 0], direc_hidden[:, 1]), dim=2), packed_output
class DecoderRNN(nn.Module):
def __init__(self, output_dim, embedding_dim, hidden_dim, layer_count, dropout_rate):
super().__init__()
self.hidden_dim = hidden_dim
self.layer_count = layer_count
self.output_dim = output_dim
self.embedding = nn.Embedding(output_dim, embedding_dim)
self.dropout = nn.Dropout(dropout_rate)
self.rnn = nn.GRU(embedding_dim + hidden_dim, hidden_dim, num_layers=layer_count)
self.out_layer = nn.Linear(embedding_dim + 2*hidden_dim, output_dim)
def forward(self, output_data, hidden_state, context_state):
##[input dims]
#output_data dim : [batch_size, 1]
#hidden_state dim : [dir(1)*layer_count(1), batch, hidden_size]
#context_state dim : [dir(1)*layer_count(1), batch, hidden_size]
#embedding dim : [1, batch_size, embedding_size]
embedding = self.dropout(self.embedding(output_data.unsqueeze(0)))
#print(embedding.shape, "--", context_state.shape)
#output dim = [seq_len(1), batch, number_dir(1)*hidden_size]
#next_hidden dim = [dir(1)*layer_count(1), batch, hidden_size]
#print(embedding.shape, " -- ", context_state.shape)
emb_con = torch.cat((embedding, context_state), dim=2)
output, next_hidden = self.rnn(emb_con, hidden_state)
#output dim = [1, batch, out_dim]
#hidden dim = [layer_count, batch, hidden_dim]
#cell dim = [layer_count, batch, hidden_dim]
emb_out = (torch.cat((output, embedding, context_state), dim=2)).squeeze(0)
out_predict = self.out_layer(emb_out)
return out_predict, next_hidden
class BahdanauAttention(nn.Module):
def __init__(self, enc_hid_dim, dec_hid_dim):
super().__init__()
self.attn = nn.Linear(enc_hid_dim + dec_hid_dim, dec_hid_dim)
self.v = nn.Linear(dec_hid_dim, 1, bias = False)
#will return weighted context and softmax attention
#weighted context dim : [1, batch_size, hidden_encoder_size]
#softmax attention dim : [1, batch_size, seq_length]
def forward(self, decoder_hidden, encoder_outputs, mask):
#decoder_hidden = [1, batch size, dec_hid_dim]
#encoder_outputs = [src len, batch size, enc hid dim]
batch_size = encoder_outputs.shape[1]
src_len = encoder_outputs.shape[0]
#repeat decoder hidden state src_len times for each batch
hidden = decoder_hidden.repeat(src_len, 1, 1)
#hidden = [src len, batch size, dec hid dim]
#encoder_outputs = [src len, batch size, enc hid dim * 2]
#energy = [batch size, src len, dec hid dim]
energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim = 2)))
#attention= [src len, batch_size, 1]
attention = self.v(energy)
#mask the zero padded encoder outputs
attention = attention.masked_fill(mask==0, -1e10)
#soft max attention= [src len, batch_size, 1]
soft_max_attention = F.softmax(attention, dim=1)
scaled_encoder_outputs = encoder_outputs * soft_max_attention
weighted_context = torch.sum(scaled_encoder_outputs, dim=0)
return weighted_context.unsqueeze(0), soft_max_attention.T
def extract_sents(reference_translation, predicted_translation, trg_field):
# reference_translation dim : [seq_len, batch_size]
# predicted_translation dim : [seq_len, batch_size, output_dimension]
seq_length = reference_translation.shape[0]
batch_size = reference_translation.shape[1]
#initializing the words
reference_sents, predicted_sents = [[] for x in range(batch_size)], [[] for x in range(batch_size)]
#done[i][0] for reference and done[i][1] for predicted translation
done = [[False, False] for x in range(batch_size)]
eos_token = trg_field.eos_token
ref_count, pred_count = 0, 0
#find the max probability of the word at each time step
predicted_translation = predicted_translation.argmax(2)
for i in range(1, seq_length):
if ref_count == batch_size and pred_count == batch_size:
break
for j in range(batch_size):
#considering the reference translation
if not done[j][0]:
p_token = trg_field.vocab.itos[reference_translation[i, j]]
if p_token == eos_token:
done[j][0] = True
ref_count += 1
else:
reference_sents[j].append(p_token)
#considering thr hypothesis translation
if not done[j][1]:
p_token = trg_field.vocab.itos[predicted_translation[i, j]]
if p_token == eos_token:
done[j][1] = True
pred_count += 1
else:
predicted_sents[j].append(p_token)
return reference_sents, predicted_sents
def get_source_sentences(source, src_field):
seq_length = source.shape[0]
batch_size = source.shape[1]
eos_token = src_field.eos_token
src_count = 0
src_sents = [[] for x in range(batch_size)]
done = [False for x in range(batch_size)]
for i in range(1, seq_length):
if src_count == batch_size:
break
for j in range(batch_size):
#considering the reference translation
if not done[j]:
p_token = src_field.vocab.itos[source[i, j]]
if p_token == eos_token:
done[j] = True
src_count += 1
else:
src_sents[j].append(p_token)
return src_sents
class Seq2seqModel(nn.Module):
def __init__(self, encoder, decoder, device):
super(Seq2seqModel, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.attention = BahdanauAttention(2*encoder.hidden_dim, decoder.hidden_dim)
self.device = device
def create_mask(self, encoder_seq_lengths):
batch_size = len(encoder_seq_lengths)
seq_length = torch.max(encoder_seq_lengths)
mask = torch.zeros(batch_size, seq_length).to(self.device)
for i in range(batch_size):
mask[i, 0:encoder_seq_lengths[i]] = 1.0
mask = mask.unsqueeze(0)
return mask.T
def forward(self, src_batch, trg_batch, src_field, teacher_verse=0.5):
#src_batch dim: [seq_len, batch]
#trg_batch dim: [seq_len, batch]
batch_size = src_batch.shape[1]
trg_len = trg_batch.shape[0]
#to store the output generated at each time step
#out_pred dim : [seq_len, batch_size, out_dim]
out_pred = torch.zeros(trg_len, batch_size, self.decoder.output_dim).to(self.device)
encoder_context, packed_hidden_states = self.encoder(src_batch, src_field, self.device)
#encoder_hidden_outputs dim = [seq_length, batch_size, 2*encoder_hidden_dim]
#encoder_hidden_length dim = [batch_size]
encoder_hidden_outputs, encoder_seq_lengths = pad_packed_sequence(packed_hidden_states)
#creating mask
mask = self.create_mask(encoder_seq_lengths)
hidden = encoder_context
decoder_input = trg_batch[0, :] #<sos>
for i in range(1, trg_len):
context_state, _ = self.attention(hidden, encoder_hidden_outputs, mask)
decoder_output, hidden = self.decoder(decoder_input, hidden, context_state)
out_pred[i] = decoder_output
teacher_verse_prob = random.random() < teacher_verse
top1 = decoder_output.argmax(1)
decoder_input = trg_batch[i, :] if teacher_verse_prob else top1.detach()
return out_pred
def random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def store_object(pickle_object, file_path):
try:
with open(os.path.abspath(file_path), 'wb') as p_file:
pickle.dump(pickle_object, p_file)
except Exception as e:
logging.info("[INFO] unable to store object to %s. Error : %s" % (file_path, str(e)))
return False
return True
def hindi_tokenizer(sentence):
return [x.text for x in spacy_hi.tokenizer(sentence)]
def english_tokenizer(sentence):
return [x.text for x in spacy_en.tokenizer(sentence)][::-1]
def print_dataset_statistics(train_data, valid_data, test_data, extension, fields):
logging.info("[INFO] number of training examples : %s" % (len(train_data.examples)))
logging.info("[INFO] number of validation examples : %s" % (len(valid_data.examples)))
logging.info("[INFO] number of testing examples : %s" % (len(test_data.examples)))
logging.info('--'*30)
logging.info("[INFO] source language vocab (%s) : %s" % (extension[0], len(fields[0].vocab)))
logging.info("[INFO] target language vocab (%s) : %s" % (extension[1], len(fields[1].vocab)))
def load_datasets(dataset_path, dataset_names, translate_pair, extentions, fields):
final_datasets = []
exts = [".%s"%x for x in extentions]
for dataset_name in dataset_names:
final_datasets.append(TranslationDataset(path=os.path.join(dataset_path, translate_pair, dataset_name), exts=exts, fields=[fields[0], fields[1]]))
return final_datasets
def create_seq2seq_model(model_config, src_vocab, trg_vocab, device='cpu'):
#encoder config
enc_emb_dim = model_config['encoder']['emb_dim']
enc_hid_dim = model_config['encoder']['hidden_dim']
enc_layer_count = model_config['encoder']['layer_count']
enc_dropout = model_config['encoder']['dropout']
#decoder config
dec_emb_dim = model_config['decoder']['emb_dim']
dec_hid_dim = model_config['decoder']['hidden_dim']
dec_layer_count = model_config['decoder']['layer_count']
dec_dropout = model_config['decoder']['dropout']
enc = EncoderRNN(src_vocab, enc_emb_dim, enc_hid_dim, enc_layer_count, enc_dropout)
dec = DecoderRNN(trg_vocab, dec_emb_dim, dec_hid_dim, dec_layer_count, dec_dropout)
return Seq2seqModel(enc, dec, device).to(device)
def train_model(model, iterator, optimizer, loss_function, clip, src_field, trg_field):
#set the model in train mode so the dropout and other training parameter will be effective
model.train()
reference_sents, hypothesis_sents = [], []
epoch_loss = 0
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
optimizer.zero_grad()
output = model(src, trg, src_field)
with torch.no_grad():
new_refs, new_hypos = extract_sents(trg, output, trg_field)
reference_sents.extend(new_refs)
hypothesis_sents.extend(new_hypos)
#trg = [trg len, batch size]
#output = [trg len, batch size, output dim]
output_dim = output.shape[-1]
output = output[1:].view(-1, output_dim)
trg = trg[1:].view(-1)
#trg = [(trg len - 1) * batch size]
#output = [(trg len - 1) * batch size, output dim]
loss = loss_function(output, trg)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator), corpus_bleu([[x] for x in reference_sents], hypothesis_sents, smoothing_function=smoothie.method3)
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def evaluate_model(model, iterator, loss_function, src_field, trg_field):
model.eval()
reference_sents, hypothesis_sents = [], []
epoch_loss = 0
with torch.no_grad():
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
output = model(src, trg, src_field, 0) #turn off teacher forcing
with torch.no_grad():
new_refs, new_hypos = extract_sents(trg, output, trg_field)
reference_sents.extend(new_refs)
hypothesis_sents.extend(new_hypos)
#trg = [trg len, batch size]
#output = [trg len, batch size, output dim]
output_dim = output.shape[-1]
output = output[1:].view(-1, output_dim)
trg = trg[1:].view(-1)
#trg = [(trg len - 1) * batch size]
#output = [(trg len - 1) * batch size, output dim]
loss = loss_function(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator), corpus_bleu([[x] for x in reference_sents], hypothesis_sents, smoothing_function=smoothie.method3)
def translate(model, iterator, src_field, trg_field):
model.eval()
source_sents, reference_sents, hypothesis_sents = [], [], []
with torch.no_grad():
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
output = model(src, trg, src_field, 0) #turn off teacher forcing
with torch.no_grad():
new_refs, new_hypos = extract_sents(trg, output, trg_field)
new_src = get_source_sentences(src, src_field)
source_sents.extend(new_src)
reference_sents.extend(new_refs)
hypothesis_sents.extend(new_hypos)
return source_sents, reference_sents, hypothesis_sents
def init_weights(m):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def calculate_seq_length_in_batch(src_batch_tensor, src_field, device):
seq_length = src_batch_tensor.shape[0]
batch_size = src_batch_tensor.shape[1]
length_vector = torch.zeros(batch_size).to(device)
count = 0
for i in range(seq_length-1, -1, -1):
if count == batch_size:
break
for j in range(batch_size):
if length_vector[j] == 0 and src_batch_tensor[i][j] == src_field.vocab.stoi[src_field.eos_token]:
length_vector[j] = i
count += 1
return length_vector+1
def execute_training_loop(model, train_iterator, valid_iterator, loss_function, optimizer, clip_value, src_field, trg_field, epochs=3, model_cache_path='seq2seq-model.pt'):
best_valid_loss = float('inf')
stats = {
"train" : [],
"valid" : [],
}
for epoch in range(epochs):
start_time = time.time()
train_loss, train_bleu = train_model(model, train_iterator, optimizer, loss_function, clip_value, src_field, trg_field)
valid_loss, valid_bleu = evaluate_model(model, valid_iterator, loss_function, src_field, trg_field)
stats["train"].append({'loss' : train_loss, 'bleu' : train_bleu})
stats["valid"].append({'loss' : valid_loss, 'bleu' : valid_bleu})
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), model_cache_path)
logging.info(f'[INFO] Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
logging.info(f'[INFO] \tTrain Loss: {train_loss:.3f} Train Bleu : {train_bleu:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
logging.info(f'[INFO] \t Val. Loss: {valid_loss:.3f} Val. Bleu : {valid_bleu:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}')
return stats
def init(model_config, device='cpu'):
logging.critical("[CRITICAL] %s device is selected" % device)
logging.info('[INFO] Using directory %s for the translation pair with filename %s' % (os.path.abspath(model_config['global']['dataset_path']), model_config['global']['translate_pair']))
#initialize the field for src language
src_field = Field(tokenize = english_tokenizer,
init_token = '<sos>',
eos_token = '<eos>',
lower = True)
#initialize the field for trg language
trg_field = Field(tokenize = hindi_tokenizer,
init_token = '<sos>',
eos_token = '<eos>',
lower = True)
train_data, valid_data, test_data = load_datasets(model_config['global']['dataset_path'], model_config['global']['dataset_file_names'], model_config['global']['translate_pair'], model_config['global']['lang_extensions'], [src_field, trg_field])
#initialize the vocabulary
src_field.build_vocab(train_data, min_freq = 1)
trg_field.build_vocab(train_data, min_freq = 1)
#display dataset stats
print_dataset_statistics(train_data, valid_data, test_data, model_config['global']['lang_extensions'], [src_field, trg_field])
model = create_seq2seq_model(model_config, len(src_field.vocab), len(trg_field.vocab), device)
optimizer = optim.Adam(model.parameters())
#defining the loss function
loss_function = nn.CrossEntropyLoss(ignore_index = trg_field.vocab.stoi[trg_field.pad_token])
logging.info(model.apply(init_weights))
logging.info('[INFO] Model has %s trainable parameters' % (count_parameters(model)))
logging.info('[INFO] About to start the primary training loop')
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = model_config['global']['batch_size'],
device = device)
cache_file_name = "%s-%s-%s-epoch-%s.pt" % (model_config['global']['name'], model_config['global']['lang_extensions'][0], model_config['global']['lang_extensions'][1], model_config['global']['epochs'])
cache_file_path = os.path.join(model_config['global']['cache_path'], cache_file_name)
stats = execute_training_loop(model, train_iterator, valid_iterator, loss_function, optimizer, model_config['global']['clip_value'], src_field, trg_field, epochs=model_config['global']['epochs'], model_cache_path=os.path.abspath(cache_file_path))
stats_file_name = "%s-%s-%s-epoch-%s-stats.pickle" % (model_config['global']['name'], model_config['global']['lang_extensions'][0], model_config['global']['lang_extensions'][1], model_config['global']['epochs'])
store_object(stats, os.path.join(model_config['global']['cache_path'], stats_file_name))
logging.info("[INFO] loading the model %s" % (cache_file_name))
model.load_state_dict(torch.load(os.path.abspath(cache_file_path)))
test_loss, test_bleu = evaluate_model(model, test_iterator, loss_function, src_field, trg_field)
logging.info(f'[INFO] | Test Loss: {test_loss:.3f} Test Bleu: {test_bleu:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')
if __name__ == "__main__":
done_training = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#seq2seq model configuration
model_config = {
'global' : {
'name' : MODEL_NAME,
'epochs' : 30,
'clip_value' : 1,
'batch_size' : 50,
'cache_path': CACHE_DIR,
'dataset_path' : "/home/tushar/Desktop/MS/sem 2/nlpa/assignment-2/data",
#comnination of <src><trg>
"translate_pair" : "enghin",
#in order of training, validation and testing
"dataset_file_names" : ['train', 'dev', 'test'],
#<src> then <trg>
'lang_extensions' : ['en', 'hi'],
},
'encoder' : {
'emb_dim' : 128,
'hidden_dim' : 256,
'dropout' : 0.5,
'layer_count' : 1,
},
'decoder' : {
'emb_dim' : 128,
'hidden_dim' : 512, #should be double of the encoder hidden_dim as written in paper
'dropout' : 0.5,
'layer_count' : 1,
},
}
initial_seed = 1234
random_seed(initial_seed)
if not done_training:
init(model_config, device)
else:
model_type = "attention"
test_samples_count = 10
logging.critical("[CRITICAL] %s device is selected" % device)
logging.info('[INFO] Using directory %s for the translation pair with filename %s' % (os.path.abspath(model_config['global']['dataset_path']), model_config['global']['translate_pair']))
#initialize the field for src language
src_field = Field(tokenize = english_tokenizer,
init_token = '<sos>',
eos_token = '<eos>',
lower = True)
#initialize the field for trg language
trg_field = Field(tokenize = hindi_tokenizer,
init_token = '<sos>',
eos_token = '<eos>',
lower = True)
train_data, valid_data, test_data = load_datasets(model_config['global']['dataset_path'], model_config['global']['dataset_file_names'], model_config['global']['translate_pair'], model_config['global']['lang_extensions'], [src_field, trg_field])
#initialize the vocabulary
src_field.build_vocab(train_data, min_freq = 1)
trg_field.build_vocab(train_data, min_freq = 1)
#display dataset stats
print_dataset_statistics(train_data, valid_data, test_data, model_config['global']['lang_extensions'], [src_field, trg_field])
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = model_config['global']['batch_size'],
device = device)
cache_file_name = "%s-%s-%s-epoch-%s.pt" % (model_config['global']['name'], model_config['global']['lang_extensions'][0], model_config['global']['lang_extensions'][1], model_config['global']['epochs'])
#model type used in cache_file_path
cache_file_path = os.path.join(model_config['global']['cache_path'], model_type, cache_file_name)
model = create_seq2seq_model(model_config, len(src_field.vocab), len(trg_field.vocab), device)
logging.info("[INFO] loading the model %s" % (cache_file_name))
model.load_state_dict(torch.load(os.path.abspath(cache_file_path)))
logging.info("[INFO] translating the test sentences")
src_sents, ref_sents, hypo_sents = translate(model, test_iterator, src_field, trg_field)
for i in range(test_samples_count):
index = int(len(src_sents) * torch.rand(1).item())
logging.info("source : %s" % (' '.join(src_sents[index][::-1])))
logging.info("reference : %s" % (' '.join(ref_sents[index])))
logging.info("predicited : %s" % (' '.join(hypo_sents[index])))
logging.info("test bleu score : %s" % (corpus_bleu([[x] for x in ref_sents], hypo_sents, smoothing_function=smoothie.method3)))