-
-
Notifications
You must be signed in to change notification settings - Fork 133
/
Copy pathextract_dump.py
378 lines (314 loc) · 12.7 KB
/
extract_dump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#!/usr/bin/env python3
"""
Extrai os dados do dump do QSA da Receita Federal
Dentro dos arquivos ZIP existe apenas um arquivo do tipo fixed-width file,
contendo registros de diversas tabelas diferentes. O script descompacta sob
demanda o ZIP e, conforme vai lendo os registros contidos, cria os arquivos de
saída, em formato CSV. Você deve especificar o arquivo de entrada e o diretório
onde ficarão os CSVs de saída (que por padrão ficam compactados também, em
gzip, para diminuir o tempo de escrita e economizar espaço em disco).
"""
from argparse import ArgumentParser
from decimal import Decimal
from io import TextIOWrapper
from pathlib import Path
from zipfile import ZipFile
import rows
from rows.fields import slug
from rows.plugins.utils import ipartition
from rows.utils import CsvLazyDictWriter, open_compressed
from tqdm import tqdm
# Fields to delete/clean in some cases so we don't expose personal information
FIELDS_TO_DELETE_COMPANY = ("codigo_pais", "correio_eletronico", "nome_pais")
FIELDS_TO_DELETE_PARTNER = ("codigo_pais", "nome_pais")
FIELDS_TO_CLEAR_INDIVIDUAL_COMPANY = (
"complemento",
"ddd_fax",
"ddd_telefone_1",
"ddd_telefone_2",
"descricao_tipo_logradouro",
"logradouro",
"numero",
)
ONE_CENT = Decimal("0.01")
INDIVIDUAL_COMPANIES = tuple(
row.codigo
for row in rows.import_from_csv("data/natureza-juridica.csv")
if "individual" in row.natureza_juridica.lower()
)
def clear_company_name(words):
"""Remove CPF from company name (useful to remove sensitive data from MEI)
>>> clear_company_name(['FULANO', 'DE', 'TAL', '12345678901'])
'FULANO DE TAL'
>>> clear_company_name(['FULANO', 'DE', 'TAL', 'CPF', '12345678901'])
'FULANO DE TAL'
>>> clear_company_name(['FULANO', 'DE', 'TAL', '-', 'CPF', '12345678901'])
'FULANO DE TAL'
>>> clear_company_name(['123456'])
'123456'
"""
if len(words) == 1 and words[0].isdigit(): # Weird name, but doesn't have a CPF
return words[0]
last_word = words[-1]
if last_word.isdigit() and len(last_word) == 11: # Remove CPF (numbers)
words.pop()
if words[-1].upper() == "CPF": # Remove CPF (word)
words.pop()
if words[-1] == "-":
words.pop()
return " ".join(words).strip()
class ParsingError(ValueError):
def __init__(self, line, error):
super().__init__()
self.line = line
self.error = error
def clear_email(email):
"""
>>> clear_email('-') is None
True
>>> clear_email('.') is None
True
>>> clear_email('0') is None
True
>>> clear_email('0000000000000000000000000000000000000000') is None
True
>>> clear_email('N/TEM') is None
True
>>> clear_email('NAO POSSUI') is None
True
>>> clear_email('NAO TEM') is None
True
>>> clear_email('NT') is None
True
>>> clear_email('S/N') is None
True
>>> clear_email('XXXXXXXX') is None
True
>>> clear_email('________________________________________') is None
True
>>> clear_email('n/t') is None
True
>>> clear_email('nao tem') is None
True
"""
clean = email.lower().replace("/", "").replace("_", "")
if len(set(clean)) < 3 or clean in ("nao tem", "n tem", "ntem", "nao possui", "nt"):
return None
return email
def read_header(filename):
"""Read a CSV file which describes a fixed-width file
The CSV must have the following columns:
- name (final field name)
- size (fixed size of the field, in bytes)
- start_column (column in the fwf file where the fields starts)
- type ("A" for text, "N" for int)
"""
table = rows.import_from_csv(filename)
table.order_by("start_column")
header = []
for row in table:
row = dict(row._asdict())
row["field_name"] = slug(row["name"])
row["start_index"] = row["start_column"] - 1
row["end_index"] = row["start_index"] + row["size"]
header.append(row)
return header
def transform_empresa(row, censor):
"""Transform row of type company"""
if censor:
for field_name in FIELDS_TO_DELETE_COMPANY:
del row[field_name]
if row["codigo_natureza_juridica"] in INDIVIDUAL_COMPANIES: # "eupresa"
for field_name in FIELDS_TO_CLEAR_INDIVIDUAL_COMPANY:
row[field_name] = ""
for field_name in ("razao_social", "nome_fantasia"):
words = row[field_name].split()
if words and words[-1].isdigit():
row[field_name] = clear_company_name(words)
if "correio_eletronico" in row: # Could be deleted by censorship
row["correio_eletronico"] = clear_email(row["correio_eletronico"])
if row["opcao_pelo_simples"] in ("", "0", "6", "8"):
row["opcao_pelo_simples"] = "0"
elif row["opcao_pelo_simples"] in ("5", "7"):
row["opcao_pelo_simples"] = "1"
else:
raise ValueError(f"Opção pelo Simples inválida: {row['opcao_pelo_simples']} (CNPJ: {row['cnpj']})")
if row["opcao_pelo_mei"] in ("N", ""):
row["opcao_pelo_mei"] = "0"
elif row["opcao_pelo_mei"] == "S":
row["opcao_pelo_mei"] = "1"
else:
raise ValueError(f"Opção pelo MEI inválida: {row['opcao_pelo_mei']} (CNPJ: {row['cnpj']})")
if set(row["nome_fantasia"]) == set(["0"]):
row["nome_fantasia"] = ""
if row["capital_social"] is not None:
row["capital_social"] = Decimal(row["capital_social"]) * ONE_CENT
return [row]
def transform_socio(row, censor):
"""Transform row of type partner"""
if row["campo_desconhecido"] != "":
raise ValueError(f"Campo desconhecido preenchido - checar: {row}")
del row["campo_desconhecido"]
if row["nome_representante_legal"] == "CPF INVALIDO":
row["cpf_representante_legal"] = None
row["nome_representante_legal"] = None
row["codigo_qualificacao_representante_legal"] = None
if row["cnpj_cpf_do_socio"] == "000***000000**":
row["cnpj_cpf_do_socio"] = ""
if row["identificador_de_socio"] == 2: # Pessoa Física
row["cnpj_cpf_do_socio"] = row["cnpj_cpf_do_socio"][-11:]
# TODO: convert percentual_capital_social
# Delete some fields if needed
if censor:
for field_name in FIELDS_TO_DELETE_PARTNER:
del row[field_name]
return [row]
def transform_cnae_secundaria(row, censor):
"""Transform row of type CNAE"""
cnaes = ["".join(digits) for digits in ipartition(row.pop("cnae"), 7) if set(digits) != set(["0"])]
data = []
for cnae in cnaes:
new_row = row.copy()
new_row["cnae"] = cnae
data.append(new_row)
return data
def parse_row(header, line):
"""Parse a fixed-width file line and returns a dict, based on metadata
The `header` parameter is the return from `read_header`.
Notes:
1- There's no check whether all fields are parsed (this function trusts
the `header` was created in the correct way).
2- `line` is already decoded and since the input encoding is `latin1`, one
character equals to one byte. If the input encoding does not have this
characteristic then this function needs to be changed.
"""
line = line.replace("\x00", " ").replace("\x02", " ")
row = {}
for field in header:
field_name = field["field_name"]
value = line[field["start_index"] : field["end_index"]].strip()
if field_name == "filler":
if set(value) not in (set(), {"9"}):
raise ParsingError(line=line, error="Wrong filler")
continue # Do not save `filler`
elif field_name == "tipo_de_registro":
continue # Do not save row type (will be saved in separate files)
elif field_name == "fim":
if value.strip() != "F":
raise ParsingError(line=line, error="Wrong end")
continue # Do not save row end mark
elif field_name in ("indicador_full_diario", "tipo_de_atualizacao"):
continue # These fields are usually useless
if field_name.startswith("data_") and value:
if len(str(value)) > 8:
raise ParsingError(line=line, error="Wrong date size")
value = f"{value[:4]}-{value[4:6]}-{value[6:8]}"
if value == "0000-00-00":
value = ""
elif field["type"] == "N" and "*" not in value:
try:
value = int(value) if value else None
except ValueError:
raise ParsingError(line=line, error=f"Cannot convert {repr(value)} to int")
row[field_name] = value
return row
def extract_files(
filenames,
header_definitions,
transform_functions,
output_writers,
error_filename,
input_encoding="latin1",
censorship=True,
):
"""Extract files from a fixed-width file containing more than one row type
`filenames` is expected to be a list of ZIP files having only one file
inside each. The file is read and metadata inside `fobjs` is used to parse
it and save the output files.
"""
error_fobj = open_compressed(error_filename, mode="w", encoding="latin1")
error_writer = CsvLazyDictWriter(error_fobj)
for filename in filenames:
# TODO: use another strategy to open this file (like using rows'
# open_compressed when archive support is implemented)
zf = ZipFile(filename)
inner_filenames = zf.filelist
assert len(inner_filenames) == 1, f"Only one file inside the zip is expected (got {len(inner_filenames)})"
# XXX: The current approach of decoding here and then extracting
# fixed-width-file data will work only for encodings where 1 character is
# represented by 1 byte, such as latin1. If the encoding can represent one
# character using more than 1 byte (like UTF-8), this approach will make
# incorrect results.
fobj = TextIOWrapper(zf.open(inner_filenames[0]), encoding=input_encoding)
for line in tqdm(fobj, desc=f"Extracting {filename}"):
row_type = line[0]
try:
row = parse_row(header_definitions[row_type], line)
except ParsingError as exception:
error_writer.writerow({"error": exception.error, "line": exception.line})
continue
data = transform_functions[row_type](row, censorship)
for row in data:
output_writers[row_type].writerow(row)
fobj.close()
zf.close()
error_fobj.close()
def main():
base_path = Path(__file__).parent
output_path = base_path / "data" / "output"
error_filename = output_path / "errors.csv"
parser = ArgumentParser()
parser.add_argument("output_path", default=str(output_path))
parser.add_argument("input_filenames", nargs="+")
parser.add_argument("--no_censorship", action="store_true")
args = parser.parse_args()
input_encoding = "latin1"
input_filenames = args.input_filenames
output_path = Path(args.output_path)
if not output_path.exists():
output_path.mkdir(parents=True)
error_filename = output_path / "error.csv.gz"
censorship = not args.no_censorship
row_types = {
"0": {
"header_filename": "headers/header.csv",
"output_filename": output_path / "header.csv.gz",
"transform_function": lambda row, censor: [row],
},
"1": {
"header_filename": "headers/empresa.csv",
"output_filename": output_path / "empresa.csv.gz",
"transform_function": transform_empresa,
},
"2": {
"header_filename": "headers/socio.csv",
"output_filename": output_path / "socio.csv.gz",
"transform_function": transform_socio,
},
"6": {
"header_filename": "headers/cnae_secundaria.csv",
"output_filename": output_path / "cnae_secundaria.csv.gz",
"transform_function": transform_cnae_secundaria,
},
"9": {
"header_filename": "headers/trailler.csv",
"output_filename": output_path / "trailler.csv.gz",
"transform_function": lambda row, censor: [row],
},
}
header_definitions, output_writers, transform_functions = {}, {}, {}
for row_type, data in row_types.items():
header_definitions[row_type] = read_header(data["header_filename"])
output_writers[row_type] = CsvLazyDictWriter(data["output_filename"])
transform_functions[row_type] = data["transform_function"]
extract_files(
filenames=input_filenames,
header_definitions=header_definitions,
transform_functions=transform_functions,
output_writers=output_writers,
error_filename=error_filename,
input_encoding=input_encoding,
censorship=censorship,
)
if __name__ == "__main__":
main()