forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbyol_rn50_8xb32_200e.py
127 lines (124 loc) · 3.43 KB
/
byol_rn50_8xb32_200e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
_base_ = '../../base.py'
# model settings
model = dict(
type='BYOL',
pretrained=False,
base_momentum=0.996,
backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN')),
neck=dict(
type='NonLinearNeckV2',
in_channels=2048,
hid_channels=4096,
out_channels=256,
with_avg_pool=True),
head=dict(
type='LatentPredictHead',
size_average=True,
predictor=dict(
type='NonLinearNeckV2',
in_channels=256,
hid_channels=4096,
out_channels=256,
with_avg_pool=False)))
# dataset settings
dataset_type = 'MultiViewDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline1 = [
dict(type='RandomResizedCrop', size=224, interpolation=3), # bicubic
dict(type='RandomHorizontalFlip'),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(
type='RandomAppliedTrans',
transforms=[
dict(type='GaussianBlur', sigma=(0.1, 2.0), kernel_size=23)
],
p=1.),
dict(
type='RandomAppliedTrans',
transforms=[dict(type='Solarization')],
p=0.),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img'])
]
train_pipeline2 = [
dict(type='RandomResizedCrop', size=224, interpolation=3), # bicubic
dict(type='RandomHorizontalFlip'),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(
type='RandomAppliedTrans',
transforms=[
dict(type='GaussianBlur', sigma=(0.1, 2.0), kernel_size=23)
],
p=0.1),
dict(
type='RandomAppliedTrans',
transforms=[dict(type='Solarization')],
p=0.2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img'])
]
data = dict(
imgs_per_gpu=32, # total 32*8=256
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
type='SSLSourceImageList',
list_file='oss://path/to/data/imagenet-raw/meta/train.txt',
root='oss://path/to/data/imagenet-raw/train/',
),
num_views=[1, 1],
pipelines=[train_pipeline1, train_pipeline2]))
# additional hooks
custom_hooks = [dict(type='BYOLHook', end_momentum=1.)]
# optimizer
optimizer = dict(
type='LARS',
lr=0.2,
weight_decay=0.0000015,
momentum=0.9,
paramwise_options={
'(bn|gn)(\d+)?.(weight|bias)':
dict(weight_decay=0., lars_exclude=True),
'bias': dict(weight_decay=0., lars_exclude=True)
})
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0.,
warmup='linear',
warmup_iters=2,
warmup_ratio=0.0001, # cannot be 0
warmup_by_epoch=True)
checkpoint_config = dict(interval=10)
# runtime settings
total_epochs = 200