-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune_w2v2_focal_ctc_linguistic.py
548 lines (428 loc) · 17.3 KB
/
finetune_w2v2_focal_ctc_linguistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import torch
import numpy
import json
import torchaudio
import evaluate
from torch import nn
import transformers
from dataclasses import dataclass
from torch.utils.data import Dataset, DataLoader
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from transformers import TrainingArguments, Trainer
from huggingface_hub import login
import os
import numpy as np
from tqdm.auto import tqdm
from mdd.utils import phoneme_tokenizer, encode_phone, greedy_decode, VOCAB
from mdd.augmentation import SpeedPerturbation
from mdd.criterion import FocalCTCLoss
from torchaudio.transforms import MelSpectrogram
import wandb
from typing import Optional, List, Tuple, Union
from transformers.modeling_outputs import CausalLMOutput
import pandas as pd
import torch.nn.functional as F
import argparse
import random
import jiwer
import datetime
parser = argparse.ArgumentParser()
parser.add_argument('--focal-alpha', type=float, default=0.99)
parser.add_argument('--focal-gamma', type=float, default=2)
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
HF_TOKEN = 'put_token_here'
login(token=HF_TOKEN)
SAMPLING_RATE = 16000
spec_augment = True
pad_id = 0
ignore_value = -100
_HIDDEN_STATES_START_POSITION = 2
def reproducibility(random_seed, args=None):
torch.manual_seed(random_seed)
random.seed(random_seed)
np.random.seed(random_seed)
os.environ['PYTHONHASHSEED'] = str(random_seed)
# cudnn_deterministic = True
# cudnn_benchmark = False
# print("cudnn_deterministic set to False")
# print("cudnn_benchmark set to True")
# if torch.cuda.is_available():
# torch.cuda.manual_seed_all(random_seed)
# torch.backends.cudnn.deterministic = cudnn_deterministic
# torch.backends.cudnn.benchmark = cudnn_benchmark
return
reproducibility(1211)
class SupervisedDataset(Dataset):
def __init__(self, data_path, do_augment=False):
super().__init__()
self.data = json.load(open(data_path, encoding="utf-8"))
self.n_fft = 512
self.hop_len = 128
self.n_mels = 80
self.cal_mel = MelSpectrogram(
sample_rate=SAMPLING_RATE,
n_fft=self.n_fft,
hop_length=self.hop_len,
n_mels=self.n_mels,
)
self.do_augment = do_augment
self.speed_pertub = SpeedPerturbation(SAMPLING_RATE)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
wav, sr = torchaudio.load(self.data[idx]["path"])
if self.do_augment:
wav = self.speed_pertub(wav)
ret_dict = dict(input_values=wav[0].numpy())
if "transcript" in self.data[idx]:
phoneme = phoneme_tokenizer(self.data[idx]["transcript"], sep=" ")
ids = encode_phone(phoneme)
ret_dict["labels"] = ids
if "canonical" in self.data[idx]:
canoncial_phoneme = phoneme_tokenizer(self.data[idx]["canonical"], sep=" ")
canonical_ids = encode_phone(canoncial_phoneme)
ret_dict["canonical_labels"] = canonical_ids
if "tonal" in self.data[idx]:
tonal_ids = torch.LongTensor(self.data[idx]["tonal"])
ret_dict["tonal_labels"] = tonal_ids
return ret_dict
@dataclass
class DataCollatorForSupervisedDataset(object):
processor: Wav2Vec2Processor
def __call__(self, features):
audio = [i["input_values"] for i in features]
batch = self.processor(
audio=audio, padding=True, return_tensors="pt", sampling_rate=SAMPLING_RATE
)
if "labels" in features[0]:
text = [i["labels"] for i in features]
labels_batch = torch.nn.utils.rnn.pad_sequence(text, batch_first=True)
labels = labels_batch.masked_fill(labels_batch.eq(pad_id), ignore_value)
batch["labels"] = labels
if "canonical_labels" in features[0]:
canon_text = [i["canonical_labels"] for i in features]
canon_labels_batch = torch.nn.utils.rnn.pad_sequence(
canon_text, batch_first=True
)
# canonical_labels = canon_labels_batch.masked_fill(canon_labels_batch.eq(pad_id), ignore_value)
batch["canonical_labels"] = canon_labels_batch
if "tonal_labels" in features[0]:
tonal = [i["tonal_labels"] for i in features]
tonal_labels_batch = torch.nn.utils.rnn.pad_sequence(
tonal, batch_first=True
)
tonal_labels = tonal_labels_batch.masked_fill(
tonal_labels_batch.eq(pad_id), ignore_value
)
batch["tonal_labels"] = tonal_labels
return batch
wer_metric = evaluate.load("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
label_ids = (
pred.label_ids if not isinstance(pred.label_ids, tuple) else pred.label_ids[0]
)
label_ids[label_ids == ignore_value] = pad_id
pred_str = greedy_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = greedy_decode(label_ids)
pred_str = [" ".join(i) for i in pred_str]
label_str = [" ".join(i) for i in label_str]
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
processor_id = "nguyenvulebinh/wav2vec2-base-vietnamese-250h"
# model_id = "./wav2vec2-base-finetune-vi_phone-non_freeze"
model_id = processor_id
vocab_size = len(VOCAB)
print("Vocab size:", vocab_size)
processor = Wav2Vec2Processor.from_pretrained(processor_id)
data_collator = DataCollatorForSupervisedDataset(processor=processor)
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
class PositionalEncoding(nn.Module):
def __init__(self, d_hid, n_position=200):
super(PositionalEncoding, self).__init__()
# Not a parameter
self.register_buffer(
"pos_table", self._get_sinusoid_encoding_table(n_position, d_hid)
)
def _get_sinusoid_encoding_table(self, n_position, d_hid):
"""Sinusoid position encoding table"""
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]
)
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
def forward(self, x):
return x + self.pos_table[:, : x.size(1)].clone().detach()
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class Wav2VecForLinguisticTonalForCTC(transformers.Wav2Vec2PreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.wav2vec2 = transformers.Wav2Vec2Model(config)
# self.dropout = nn.Dropout(config.final_dropout)
num_tonals = 7
# NormLayer = nn.LayerNorm
NormLayer = RMSNorm
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size
if hasattr(config, "add_adapter") and config.add_adapter
else config.hidden_size
)
# linguistic part
# embedding -> pos enc -> norm -> attention & add -> norm & ffn & add
self.ling_emb = nn.Embedding(
num_embeddings=config.vocab_size,
embedding_dim=output_hidden_size,
padding_idx=pad_id,
)
self.pos_enc = PositionalEncoding(d_hid=output_hidden_size, n_position=128)
self.mha = nn.MultiheadAttention(
embed_dim=output_hidden_size,
num_heads=output_hidden_size // 64,
batch_first=True,
)
self.attn_norm = NormLayer(output_hidden_size, eps=1e-6)
self.ffn_layer = nn.Sequential(
NormLayer(output_hidden_size),
nn.Linear(output_hidden_size, output_hidden_size * 2),
SwiGLU(),
nn.Dropout(config.final_dropout),
nn.Linear(output_hidden_size, output_hidden_size),
)
self.out_norm = NormLayer(output_hidden_size, eps=1e-6)
self.lm_head = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(output_hidden_size, config.vocab_size)
)
self.focal_alpha = args.focal_alpha
self.focal_gamma = args.focal_gamma
self.focal_ctc_loss = FocalCTCLoss(self.focal_alpha, self.focal_gamma)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
tonal_labels: Optional[torch.Tensor] = None,
canonical_labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
enc_states = outputs[0]
ling_states = self.pos_enc(self.ling_emb(canonical_labels))
ling_states = self.attn_norm(ling_states)
# acoustic as query
hidden_states = (
self.mha(enc_states, ling_states, ling_states, need_weights=False)[0]
+ enc_states
)
hidden_states = self.ffn_layer(hidden_states) + hidden_states
hidden_states = self.out_norm(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(
f"Label values must be <= vocab_size: {self.config.vocab_size}"
)
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask
if attention_mask is not None
else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(
attention_mask.sum(-1)
).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(
logits, dim=-1, dtype=torch.float32
).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = self.focal_ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
model_configs = {}
if processor_id == model_id:
model_configs["ignore_mismatched_sizes"] = True
model_configs["ctc_loss_reduction"] = "mean"
model_configs["pad_token_id"] = pad_id
model_configs["vocab_size"] = vocab_size
if spec_augment:
model_configs["mask_time_prob"] = 0.025
model_configs["mask_time_length"] = 10
model_configs["mask_feature_prob"] = 0.001
model_configs["mask_feature_length"] = 16
model = Wav2VecForLinguisticTonalForCTC.from_pretrained(model_id, **model_configs)
# model = Wav2VecForLinguisticTonalForCTC.from_pretrained('./fine-w2v2base-bs8-ep200-lr2e-05-non-freeze-lr_cosine-red_aug-tonal_0.1-full-linguistic-rmsnorm')
# print(model)
data_path = "data/splitted_data"
train_dataset = SupervisedDataset(os.path.join(data_path, "train.json"), True)
eval_dataset = SupervisedDataset(os.path.join(data_path, "public_test.json"))
test_dataset = SupervisedDataset(os.path.join(data_path, "private_test.json"))
print("Train:", len(train_dataset))
print("Eval:", len(eval_dataset))
print("Test:", len(test_dataset))
# not freezing at all
# model.freeze_feature_encoder()
# print("Frezzing weights...")
# for p in model.wav2vec2.parameters():
# p.requires_grad = False
continue_train = False
epochs = 100
accum_grads = 1
train_batchsize = 8
eval_batchsize = 16
save_steps = 100
log_steps = 100
eval_steps = 100
default_lr = 2e-5
lr_divide_factor = 1
label_smoothing = 0.0
warmup_ratio = 0.1
log_result = True
focal_alpha = model.focal_alpha
focal_gamma = model.focal_gamma
timenow = datetime.datetime.now()
# warmup_steps = round(len(train_dataset) / (train_batchsize * accum_grads) / 4 * epochs * 0.1)
# no tonal by default
focal_part = f'a{focal_alpha}_g{focal_gamma}'
run_name = f'w2v2_ablation_focal_ctc_{focal_part}-best_on-ling_head-tp0.025_tl10_fp0.001_fl16'
# run_name = f"fine-w2v2base-bs{train_batchsize}-ep{epochs}-lr{default_lr}-linguistic-rmsnorm-focal_ctc_{add_part}-0.05_10_0.004_40-final"
timenow = datetime.datetime.now()
with open('list_run_till_now.txt', 'a') as f:
f.write(run_name + ' - ' + str(timenow) + '\n')
# can try layernorm
if log_result:
os.environ["WANDB_PROJECT"] = "md_d_vlsp_2023" # name your W&B project
print("Run name:", run_name)
training_args = TrainingArguments(
output_dir=run_name,
group_by_length=False,
per_device_train_batch_size=train_batchsize,
per_device_eval_batch_size=eval_batchsize,
eval_accumulation_steps=eval_batchsize,
gradient_accumulation_steps=accum_grads,
evaluation_strategy="steps",
num_train_epochs=epochs,
gradient_checkpointing=bool(accum_grads > 1),
fp16=True,
adam_beta1=0.9,
adam_beta2=0.98,
ddp_find_unused_parameters=False,
save_steps=save_steps,
eval_steps=eval_steps,
logging_steps=log_steps,
learning_rate=default_lr / lr_divide_factor,
label_smoothing_factor=label_smoothing,
warmup_ratio=warmup_ratio,
save_total_limit=2,
push_to_hub=True,
torch_compile=False,
resume_from_checkpoint=continue_train,
report_to="wandb" if log_result else "none",
run_name=run_name,
lr_scheduler_type="cosine",
load_best_model_at_end=True,
metric_for_best_model="eval_wer",
greater_is_better=False,
)
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=processor.feature_extractor,
)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total params:", total_params)
print(
"Trainable params:",
trainable_params,
"% trainable:",
trainable_params / total_params,
)
trainer.train(resume_from_checkpoint=continue_train)
trainer.save_model()
trainer.save_state()
trainer.push_to_hub()
# output = trainer.predict(test_dataset)
# print("Output:", output)
# torch.save(output, "private_test_predict.pt")
# predict = greedy_decode(np.argmax(output.predictions, axis=-1))
# predictions = []
# for datum, pred in zip(test_dataset.data, predict):
# path = datum["path"]
# path = path.split("VMD-VLSP23-private-test")[-1]
# predictions.append({"id": datum["id"], "path": path, "predict": " ".join(pred)})
# df = pd.DataFrame(predictions)
# df.to_csv(f"private_test_submission_final.csv", index=False)
# # os.system("python fix_vi_ftfy.py")