Skip to content

Latest commit

 

History

History
 
 

cardScanner

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Goal

Demonstrate card scanning using OpenCV.js filters.

Note

To accurately detect card edges and numbers you should use:

  • monotonic smooth surface that is different in color from the card background,
  • credit card with monotonic background and good contrast between background and card numbers,
  • good lighting in the room and light should not create glare on the card. Otherwise, the card edges or digits may not be detected or digits can be recognized incorrectly.

Steps of card scanning

1. Detect the edges of the credit card

  • Convert image to gray:
cv.cvtColor(src, dst, cv.COLOR_RGB2GRAY, 0);
  • Apply Canny filter:
cv.Canny(dst, dst, 15, 45, 3, false);

15 and 45 are values of the first and second thresholds, 3 is aperture size.

  • Find contours:
let contours = new cv.MatVector();
let hierarchy = new cv.Mat();
let approxCnt = new cv.Mat();
cv.findContours(dst, contours, hierarchy, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE);
  • Loop through every contour, find contour perimeter.
for (let i = 0; i < contours.size(); ++i) {
  let cnt = contours.get(i);
  let perimeter = cv.arcLength(cnt, true);
  ...
  cnt.delete();
}
  • Approximate the contour with the (0.01 * perimeter) precision:
cv.approxPolyDP(cnt, approxCnt, 0.01 * perimeter, true);
  • Get sorted contour coordinates if contour approximation has 4 angles:
if (approxCnt.rows == 4) {
  let sortedCoordinates = getContourCoordinates(approxCnt);
  ...
}
  • Start processing if contour coordinates are close to expected:
if (isCloseToExpectedContour(sortedCoordinates)) {
  startCardProcessing(src, controls.expectedContour[0], controls.expectedContour[2]);
  return;
}

2. Localize groups of digits

We are goin to find the four groupings of four digits, pertaining to the sixteen digits on the credit card.

  • Extract card area from source image:
let cardImg = new cv.Mat();
let rect = new cv.Rect(rectPointUpperLeft.x, rectPointUpperLeft.y,
  rectPointBottomRight.x - rectPointUpperLeft.x,
  rectPointBottomRight.y - rectPointUpperLeft.y);
cardImg = src.roi(rect);
  • Resize card and convert it to grayscale:
resize(cardImg, width = 300);
cv.cvtColor(cardImg, grayCard, cv.COLOR_BGR2GRAY);
  • Apply filters.

Initialize rectangular and square structuring kernels:

let rectKernel = new cv.Mat();
let squareKernel = new cv.Mat();
rectKernel = cv.getStructuringElement(cv.MORPH_RECT, new cv.Size(9, 3));
squareKernel = cv.getStructuringElement(cv.MORPH_RECT, new cv.Size(5, 5));

Apply a tophat (whitehat) morphological operator to find light regions against a dark background (i.e., the credit card numbers):

let tophat = new cv.Mat();
cv.morphologyEx(grayCard, tophat, cv.MORPH_TOPHAT, rectKernel);

Compute the Sobel gradient of the tophat image. Set the order of the derivative in x direction:

let gradX = new cv.Mat();
let kernel = 1, xOrder = 1, yOrder = 0;
cv.Sobel(tophat, gradX, cv.CV_32F, xOrder, yOrder, kernel);
cv.convertScaleAbs(gradX, gradX, 1, 0);
gradX.convertTo(gradX, cv.CV_8U);

Apply a closing operation using the rectangular kernel to help close gaps between credit card number regions:

let thresh = new cv.Mat();
cv.morphologyEx(gradX, gradX, cv.MORPH_CLOSE, rectKernel);

Apply Otsu's thresholding method to binarize the image:

cv.threshold(gradX, thresh, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU);

Apply a second closing operation to the binary image, again to help close gaps between credit card number regions:

cv.morphologyEx(thresh, filteredCard, cv.MORPH_CLOSE, squareKernel);
  • Find groups of digits in filtered image.

First, find contours and get rectangles of these contours:

let contours = new cv.MatVector();
let hierarchy = new cv.Mat();
cv.findContours(filteredCard, contours, hierarchy, cv.RETR_EXTERNAL,
  cv.CHAIN_APPROX_SIMPLE);
let groupRectangles = getSortedRectangles(contours);

Loop through each rectangle and calculate aspect ratio:

  let digitGroups = [];
  for (let i = 0; i < groupRectangles.length; ++i) {
    let rect = groupRectangles[i];
    let ratio = rect.width / rect.height;
    ...
  }

Since credit cards used a fixed size fonts with 4 groups of 4 digits, we can prune potential contours based on the aspect ratio. Contours can further be pruned on min/max width and height:

if (ratio > 2.5 && ratio < 4.0)
  if ((rect.width > 40 && rect.width < 55)
    && (rect.height > 10 && rect.height < 20))
    digitGroups.push(rect);

3. Apply OCR font to recognize the digits

In each of four groups we have to recognize four digits.

  • Extract the group of 4 digits from the grayscale image, then apply thresholding to segment the digits from the background of the credit card:
let groupSrc = new cv.Mat();
groupSrc = grayCard.roi(groupRect);
cv.threshold(groupSrc, groupSrc, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU);
  • Detect the contours of each individual digit in the group, then sort the digit contours from left to right:
let contours = new cv.MatVector();
let hierarchy = new cv.Mat();
cv.findContours(groupSrc, contours, hierarchy, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE);
let digitRectangles = getSortedRectangles(contours);
contours.delete(); hierarchy.delete();
  • Loop over the contours and recognize each digit:
groupOutput = [];
for (let i = 0; i < digitRectangles.length; ++i) {
  let detectedDigit =
    detectDigit(groupSrc, digitRectangles[i], refDigits, refSize);
  groupOutput.push(detectedDigit);
}
  • Digit recongnition.

Resize digit to have the same fixed size as the reference digits.

let cardDigit = new cv.Mat();
cardDigit = group.roi(digitRect);
cv.resize(cardDigit, cardDigit, refSize);

Initialize a list of template matching scores:

scores = [];

Loop over the reference digits and apply correlation-based template matching:

let cardDigitDst = new cv.Mat();
let mask = new cv.Mat();
for (let i = 0; i < refDigits.length; ++i) {
  cv.matchTemplate(cardDigit, refDigits[i], cardDigitDst, cv.TM_CCOEFF, mask);
  let score = cv.minMaxLoc(cardDigitDst, mask).maxVal;
  scores.push(score);
}
cardDigit.delete(); cardDigitDst.delete(); mask.delete();

Take the largest template matching score:

return scores.indexOf(Math.max(...scores));

4. Recognize the type of credit card (i.e., Visa, MasterCard, American Express, etc.)

CARD_TYPE = {
  "3": "American Express",
  "4": "Visa",
  "5": "MasterCard",
  "6": "Discover Card"
}
document.getElementById('cardType').innerText = 'Card type: ' + CARD_TYPE[output[0][0]];

References

  1. Credit card OCR with OpenCV and Python - scan card and detect digits
  2. How to Build a Kick-Ass Mobile Document Scanner in Just 5 Minutes - detect edge of the card