-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain_ssl.py
284 lines (235 loc) · 9.08 KB
/
train_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
import os
import pickle
import torch
import json
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pandas as pd
import math
import utils
from data.data_utils import *
from data.dataloader_ssl import load_dataset_ssl
from constants import *
from args import get_args
from collections import OrderedDict
from json import dumps
from model.model import DCRNNModel_nextTimePred
from tensorboardX import SummaryWriter
from tqdm import tqdm
from torch.optim.lr_scheduler import CosineAnnealingLR
def main(args):
# Get device
args.cuda = torch.cuda.is_available()
device = "cuda" if args.cuda else "cpu"
# Set random seed
utils.seed_torch(seed=args.rand_seed)
# Get save directories
args.save_dir = utils.get_save_dir(args.save_dir, training=True)
# Save args
args_file = os.path.join(args.save_dir, 'args.json')
with open(args_file, 'w') as f:
json.dump(vars(args), f, indent=4, sort_keys=True)
# Set up logging
log = utils.get_logger(args.save_dir, 'train')
tbx = SummaryWriter(args.save_dir)
log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
# Build dataset
log.info('Building dataset...')
dataloaders, _, scaler = load_dataset_ssl(
input_dir=args.input_dir,
raw_data_dir=args.raw_data_dir,
train_batch_size=args.train_batch_size,
test_batch_size=args.test_batch_size,
time_step_size=args.time_step_size,
input_len=args.max_seq_len,
output_len=args.output_seq_len,
standardize=True,
num_workers=args.num_workers,
augmentation=args.data_augment,
adj_mat_dir='./data/electrode_graph/adj_mx_3d.pkl',
graph_type=args.graph_type,
top_k=args.top_k,
filter_type=args.filter_type,
use_fft=args.use_fft,
preproc_dir=args.preproc_dir)
# Build model
log.info('Building model...')
model = DCRNNModel_nextTimePred(device=device, args=args)
num_params = utils.count_parameters(model)
log.info('Total number of trainable parameters: {}'.format(num_params))
if args.load_model_path is not None:
model = utils.load_model_checkpoint(
args.load_model_path, model)
model = model.to(device)
if args.do_train:
train(model, dataloaders, args, device, args.save_dir, log, tbx,
scaler=scaler)
# Load best model after training finished
best_path = os.path.join(args.save_dir, 'best.pth.tar')
model = utils.load_model_checkpoint(best_path, model)
model = model.to(device)
# Evaluate on test set
log.info('Training DONE. Evaluating model...')
test_loss = evaluate(model,
dataloaders['test'],
args,
args.save_dir,
device,
is_test=True,
nll_meter=None,
scaler=scaler)
# Log to console
log.info('Test set prediction MAE loss: {:.3f}'.format(test_loss))
def train(
model,
dataloaders,
args,
device,
save_dir,
log,
tbx,
scaler=None):
"""
Perform training and evaluate on dev set
"""
# Data loaders
train_loader = dataloaders['train']
dev_loader = dataloaders['dev']
# Get saver
saver = utils.CheckpointSaver(save_dir,
metric_name=args.metric_name,
maximize_metric=args.maximize_metric,
log=log)
# To train mode
model.train()
# Get optimizer and scheduler
optimizer = optim.Adam(params=model.parameters(),
lr=args.lr_init, weight_decay=args.l2_wd)
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
# average meter for validation loss
nll_meter = utils.AverageMeter()
# Train
log.info('Training...')
epoch = 0
step = 0
prev_val_loss = 1e10
patience_count = 0
early_stop = False
while (epoch != args.num_epochs) and (not early_stop):
epoch += 1
log.info('Starting epoch {}...'.format(epoch))
total_samples = len(train_loader.dataset)
with torch.enable_grad(), \
tqdm(total=total_samples) as progress_bar:
for x, y, _, supports, _, _ in train_loader:
batch_size = x.shape[0]
# input seqs
# (batch_size, input_seq_len, num_nodes, input_dim)
x = x.to(device)
# (batch_size, output_seq_len, num_nodes, output_dim)
y = y.to(device)
for i in range(len(supports)):
supports[i] = supports[i].to(device)
# Zero out optimizer first
optimizer.zero_grad()
# Forward
# (batch_size, seq_len, num_nodes, output_dim)
seq_preds = model(x, y, supports, batches_seen=step)
loss = utils.compute_regression_loss(
y_true=y,
y_predicted=seq_preds,
loss_fn="MAE",
standard_scaler=scaler,
device=device)
loss_val = loss.item()
# Backward
loss.backward()
nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
optimizer.step()
step += batch_size
# Log info
progress_bar.update(batch_size)
progress_bar.set_postfix(epoch=epoch,
loss=loss_val,
lr=optimizer.param_groups[0]['lr'])
tbx.add_scalar('train/MAE Loss', loss_val, step)
tbx.add_scalar('train/LR',
optimizer.param_groups[0]['lr'],
step)
if epoch % args.eval_every == 0:
# Evaluate and save checkpoint
log.info('Evaluating at epoch {}...'.format(epoch))
eval_loss = evaluate(model,
dev_loader,
args,
save_dir,
device,
is_test=False,
nll_meter=nll_meter,
scaler=scaler)
best_path = saver.save(epoch,
model,
optimizer,
eval_loss)
# Accumulate patience for early stopping
if eval_loss < prev_val_loss:
patience_count = 0
else:
patience_count += 1
prev_val_loss = eval_loss
# Early stop
if patience_count == args.patience:
early_stop = True
# Back to train mode
model.train()
# Log to console
log.info('Dev MAE loss: {:.3f}'.format(eval_loss))
# Log to TensorBoard
log.info('Visualizing in TensorBoard...')
tbx.add_scalar(
'eval/{}'.format('MAE Loss'), eval_loss, step)
# step lr scheduler
scheduler.step()
def evaluate(model, dataloader, args, save_dir, device, is_test=False,
nll_meter=None, scaler=None):
# To evaluate mode
model.eval()
file_name_all = []
y_truths = []
y_preds = []
with torch.no_grad(), tqdm(total=len(dataloader.dataset)) as progress_bar:
for x, y, _, supports, _, file_name in dataloader:
batch_size = x.shape[0]
# input seqs
# (batch_size, max_seq_len-1, num_nodes, input_dim)
x = x.to(device)
y = y.to(device) # (batch_size, horizon, num_nodes, output_dim)
for i in range(len(supports)):
supports[i] = supports[i].to(device)
# Forward
# (batch_size, output_seq_len, num_nodes, output_dim)
seq_preds = model(x, y, supports)
loss = utils.compute_regression_loss(
y_true=y,
y_predicted=seq_preds,
loss_fn="mae",
standard_scaler=scaler,
device=device)
if nll_meter is not None:
nll_meter.update(loss.item(), batch_size)
file_name_all.extend(file_name)
y_truths.append(y.cpu().numpy())
y_preds.append(seq_preds.cpu().numpy())
# Log info
progress_bar.update(batch_size)
# (all_samples, output_len, num_nodes, output_dim)
y_truths = np.concatenate(y_truths, axis=0)
# (all_samples, output_len, num_nodes, output_dim)
y_preds = np.concatenate(y_preds, axis=0)
eval_loss = nll_meter.avg if (nll_meter is not None) else loss.item()
return eval_loss
if __name__ == '__main__':
main(get_args())