-
Notifications
You must be signed in to change notification settings - Fork 43
/
args.py
221 lines (210 loc) · 8.2 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
def get_args():
parser = argparse.ArgumentParser('Train DCRNN on TUH data.')
# General args
parser.add_argument('--save_dir',
type=str,
default=None,
help='Directory to save the outputs and checkpoints.')
parser.add_argument(
'--load_model_path',
type=str,
default=None,
help='Model checkpoint to start training/testing from.')
parser.add_argument('--do_train',
default=False,
action='store_true',
help='Whether perform training.')
parser.add_argument('--rand_seed',
type=int,
default=123,
help='Random seed.')
parser.add_argument(
'--task',
type=str,
default='detection',
choices=(
'detection',
'classification',
'SS pre-training'),
help="Seizure detection, seizure type classification, \
or SS pre-training.")
parser.add_argument('--fine_tune',
default=False,
action='store_true',
help='Whether to fine-tune pre-trained model.')
# Input args
parser.add_argument(
'--graph_type',
choices=(
'individual',
'combined'),
default='individual',
help='Whether use individual graphs (cross-correlation) or combined graph (distance).')
parser.add_argument('--max_seq_len',
type=int,
default='60',
help='Maximum sequence length in seconds.')
parser.add_argument(
'--output_seq_len',
type=int,
default=12,
help='Output seq length for SS pre-training, in seconds.')
parser.add_argument('--time_step_size',
type=int,
default=1,
help='Time step size in seconds.')
parser.add_argument('--input_dir',
type=str,
default=None,
help='Dir to resampled EEG signals (.h5 files).')
parser.add_argument('--raw_data_dir',
type=str,
default=None,
help='Dir to TUH data with raw EEG signals.')
parser.add_argument('--preproc_dir',
type=str,
default=None,
help='Dir to preprocessed (Fourier transformed) data.')
parser.add_argument(
'--top_k',
type=int,
default=3,
help='Top-k neighbors of each node to keep, for graph sparsity.')
# Model args
parser.add_argument("--model_name", type=str, default="dcrnn", choices=("dcrnn", "lstm", "densecnn", "cnnlstm"))
parser.add_argument('--num_nodes',
type=int,
default=19,
help='Number of nodes in graph.')
parser.add_argument('--num_rnn_layers',
type=int,
default=2,
help='Number of RNN layers in encoder and/or decoder.')
parser.add_argument(
'--pretrained_num_rnn_layers',
type=int,
default=3,
help='Number of RNN layers in encoder and decoder for SS pre-training.')
parser.add_argument('--rnn_units',
type=int,
default=64,
help='Number of hidden units in DCRNN.')
parser.add_argument('--dcgru_activation',
type=str,
choices=('relu', 'tanh'),
default='tanh',
help='Nonlinear activation used in DCGRU cells.')
parser.add_argument('--input_dim',
type=int,
default=100,
help='Input seq feature dim.')
parser.add_argument(
'--num_classes',
type=int,
default=1,
help='Number of classes for seizure detection/classification.')
parser.add_argument('--output_dim',
type=int,
default=100,
help='Output seq feature dim.')
parser.add_argument('--max_diffusion_step',
type=int,
default=2,
help='Maximum diffusion step.')
parser.add_argument('--cl_decay_steps',
type=int,
default=3000,
help='Scheduled sampling decay steps.')
parser.add_argument(
'--use_curriculum_learning',
default=False,
action='store_true',
help='Whether to use curriculum training for seq-seq model.')
parser.add_argument(
'--use_fft',
default=False,
action='store_true',
help='Whether the input data is Fourier transformed EEG signal or raw EEG.')
# Training/test args
parser.add_argument('--train_batch_size',
type=int,
default=40,
help='Training batch size.')
parser.add_argument('--test_batch_size',
type=int,
default=128,
help='Dev/test batch size.')
parser.add_argument('--num_workers',
type=int,
default=8,
help='Number of sub-processes to use per data loader.')
parser.add_argument('--dropout',
type=float,
default=0.0,
help='Dropout rate for dropout layer before final FC.')
parser.add_argument('--eval_every',
type=int,
default=1,
help='Evaluate on dev set every x epoch.')
parser.add_argument(
'--metric_name',
type=str,
default='auroc',
choices=(
'F1',
'acc',
'loss',
'auroc'),
help='Name of dev metric to determine best checkpoint.')
parser.add_argument('--lr_init',
type=float,
default=3e-4,
help='Initial learning rate.')
parser.add_argument('--l2_wd',
type=float,
default=5e-4,
help='L2 weight decay.')
parser.add_argument('--num_epochs',
type=int,
default=100,
help='Number of epochs for training.')
parser.add_argument('--max_grad_norm',
type=float,
default=5.0,
help='Maximum gradient norm for gradient clipping.')
parser.add_argument('--metric_avg',
type=str,
default='weighted',
help='weighted, micro or macro.')
parser.add_argument('--data_augment',
default=False,
action='store_true',
help='Whether perform data augmentation.')
parser.add_argument(
'--patience',
type=int,
default=5,
help='Number of epochs of patience before early stopping.')
args = parser.parse_args()
# which metric to maximize
if args.metric_name == 'loss':
# Best checkpoint is the one that minimizes loss
args.maximize_metric = False
elif args.metric_name in ('F1', 'acc', 'auroc'):
# Best checkpoint is the one that maximizes F1 or acc
args.maximize_metric = True
else:
raise ValueError(
'Unrecognized metric name: "{}"'.format(
args.metric_name))
# must provide load_model_path if testing only
if (args.load_model_path is None) and not(args.do_train):
raise ValueError(
'For evaluation only, please provide trained model checkpoint in argument load_model_path.')
# filter type
if args.graph_type == "individual":
args.filter_type = "dual_random_walk"
if args.graph_type == "combined":
args.filter_type = "laplacian"
return args