From a10f89404f1bfe0c911ca4977216948a6db612c4 Mon Sep 17 00:00:00 2001 From: Tyler Sutterley Date: Wed, 25 Oct 2023 18:35:40 -0700 Subject: [PATCH] feat: can read from netCDF4 or HDF5 variable groups (#249) fix: spelling mistakes --- pyTMD/io/OTIS.py | 10 +++++----- pyTMD/spatial.py | 31 +++++++++++++++++++++---------- pyTMD/time.py | 2 +- 3 files changed, 27 insertions(+), 16 deletions(-) diff --git a/pyTMD/io/OTIS.py b/pyTMD/io/OTIS.py index cbb60a44..3c3ed504 100644 --- a/pyTMD/io/OTIS.py +++ b/pyTMD/io/OTIS.py @@ -1133,7 +1133,7 @@ def read_otis_elevation( input_file: str or pathlib.Path input elevation file ic: int - index of consituent + index of constituent Returns ------- @@ -1183,7 +1183,7 @@ def read_atlas_elevation( input_file: str or pathlib.Path input ATLAS elevation file ic: int - index of consituent + index of constituent constituent: str tidal constituent ID @@ -1282,7 +1282,7 @@ def read_otis_transport( input_file: str or pathlib.Path input transport file ic: int - index of consituent + index of constituent Returns ------- @@ -1340,7 +1340,7 @@ def read_atlas_transport( input_file: str or pathlib.Path input ATLAS transport file ic: int - index of consituent + index of constituent constituent: str tidal constituent ID @@ -1652,7 +1652,7 @@ def read_netcdf_file( input_file: str or pathlib.Path input transport file ic: int - index of consituent + index of constituent variable: str or NoneType, default None Tidal variable to read diff --git a/pyTMD/spatial.py b/pyTMD/spatial.py index 8a660090..eaed3a5b 100644 --- a/pyTMD/spatial.py +++ b/pyTMD/spatial.py @@ -1,7 +1,7 @@ #!/usr/bin/env python u""" spatial.py -Written by Tyler Sutterley (09/2023) +Written by Tyler Sutterley (10/2023) Utilities for reading, writing and operating on spatial data @@ -22,6 +22,7 @@ constants.py: calculate reference parameters for common ellipsoids UPDATE HISTORY: + Updated 10/2023: can read from netCDF4 or HDF5 variable groups Updated 09/2023: add function to invert field mapping keys and values use datetime64[ns] for parsing dates from ascii files Updated 08/2023: remove possible crs variables from output fields list @@ -304,6 +305,8 @@ def from_netCDF4(filename: str, **kwargs): full path of input netCDF4 file compression: str or NoneType, default None file compression type + group: str or NoneType, default None + netCDF4 variable group timename: str, default 'time' name for time-dimension variable xname: str, default 'lon' @@ -317,6 +320,7 @@ def from_netCDF4(filename: str, **kwargs): """ # set default keyword arguments kwargs.setdefault('compression', None) + kwargs.setdefault('group', None) kwargs.setdefault('timename', 'time') kwargs.setdefault('xname', 'lon') kwargs.setdefault('yname', 'lat') @@ -359,19 +363,21 @@ def from_netCDF4(filename: str, **kwargs): kwargs['field_mapping']['data'] = copy.copy(kwargs['varname']) if kwargs['timename'] is not None: kwargs['field_mapping']['time'] = copy.copy(kwargs['timename']) + # check if reading from root group or sub-group + group = fileID.groups[kwargs['group']] if kwargs['group'] else fileID # for each variable for key, nc in kwargs['field_mapping'].items(): # Getting the data from each NetCDF variable - dinput[key] = fileID.variables[nc][:] + dinput[key] = group.variables[nc][:] # get attributes for the included variables dinput['attributes'][key] = {} for attr in attributes_list: # try getting the attribute try: - ncattr, = [s for s in fileID.variables[nc].ncattrs() + ncattr, = [s for s in group.variables[nc].ncattrs() if re.match(attr, s, re.I)] dinput['attributes'][key][attr] = \ - fileID.variables[nc].getncattr(ncattr) + group.variables[nc].getncattr(ncattr) except (ValueError, AttributeError): pass # get projection information if there is a grid_mapping attribute @@ -380,9 +386,9 @@ def from_netCDF4(filename: str, **kwargs): grid_mapping = dinput['attributes']['data']['grid_mapping'] # get coordinate reference system attributes dinput['attributes']['crs'] = {} - for att_name in fileID[grid_mapping].ncattrs(): + for att_name in group[grid_mapping].ncattrs(): dinput['attributes']['crs'][att_name] = \ - fileID.variables[grid_mapping].getncattr(att_name) + group.variables[grid_mapping].getncattr(att_name) # get the spatial projection reference information from wkt # and overwrite the file-level projection attribute (if existing) srs = osgeo.osr.SpatialReference() @@ -408,6 +414,8 @@ def from_HDF5(filename: str | pathlib.Path, **kwargs): full path of input HDF5 file compression: str or NoneType, default None file compression type + group: str or NoneType, default None + netCDF4 variable group timename: str, default 'time' name for time-dimension variable xname: str, default 'lon' @@ -421,6 +429,7 @@ def from_HDF5(filename: str | pathlib.Path, **kwargs): """ # set default keyword arguments kwargs.setdefault('compression', None) + kwargs.setdefault('group', None) kwargs.setdefault('timename', 'time') kwargs.setdefault('xname', 'lon') kwargs.setdefault('yname', 'lat') @@ -468,16 +477,18 @@ def from_HDF5(filename: str | pathlib.Path, **kwargs): kwargs['field_mapping']['data'] = copy.copy(kwargs['varname']) if kwargs['timename'] is not None: kwargs['field_mapping']['time'] = copy.copy(kwargs['timename']) + # check if reading from root group or sub-group + group = fileID[kwargs['group']] if kwargs['group'] else fileID # for each variable for key, h5 in kwargs['field_mapping'].items(): # Getting the data from each HDF5 variable - dinput[key] = np.copy(fileID[h5][:]) + dinput[key] = np.copy(group[h5][:]) # get attributes for the included variables dinput['attributes'][key] = {} for attr in attributes_list: # try getting the attribute try: - dinput['attributes'][key][attr] = fileID[h5].attrs[attr] + dinput['attributes'][key][attr] = group[h5].attrs[attr] except (KeyError, AttributeError): pass # get projection information if there is a grid_mapping attribute @@ -486,7 +497,7 @@ def from_HDF5(filename: str | pathlib.Path, **kwargs): grid_mapping = dinput['attributes']['data']['grid_mapping'] # get coordinate reference system attributes dinput['attributes']['crs'] = {} - for att_name, att_val in fileID[grid_mapping].attrs.items(): + for att_name, att_val in group[grid_mapping].attrs.items(): dinput['attributes']['crs'][att_name] = att_val # get the spatial projection reference information from wkt # and overwrite the file-level projection attribute (if existing) @@ -1090,7 +1101,7 @@ def convert_ellipsoid( .. [1] J. Meeus, *Astronomical Algorithms*, 2nd edition, 477 pp., (1998). """ if (len(phi1) != len(h1)): - raise ValueError('phi and h have incompatable dimensions') + raise ValueError('phi and h have incompatible dimensions') # semiminor axis of input and output ellipsoid b1 = (1.0 - f1)*a1 b2 = (1.0 - f2)*a2 diff --git a/pyTMD/time.py b/pyTMD/time.py index 3e03466c..f30dbad3 100644 --- a/pyTMD/time.py +++ b/pyTMD/time.py @@ -1014,7 +1014,7 @@ def get_leap_seconds(truncate: bool = True): # convert from time of 2nd leap second to time of 1st leap second leap_GPS = convert_delta_time(leap_UTC + TAI_UTC - TAI_GPS - 1, epoch1=_ntp_epoch, epoch2=_gps_epoch) - # return the GPS times of leap second occurance + # return the GPS times of leap second occurrence if truncate: return leap_GPS[leap_GPS >= 0].astype(np.float64) else: